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Abstract

The Lamina Cribrosa is a part of the optic nerve head acting as a scaffold for collecting the retinal ganglion cell axons.

It can be modeled as a poroelastic material where the saturated porosity stands for the capillary network running inside

the collagen beams. Our aim is to study the interaction between tissue porosity, deformation and hemodynamics. To

this end we first focus on the derivation of a poroelastic model in a rather general case, using as a prototype a model

of species diffusion in an elastic material. Then we outline the clinical significance of the mechanical behavior of

the Lamina Cribrosa and show, through numerical simulations, how an increased intraocular pressure results in a

deformation affecting porosity and blood perfusion. We emphasize how the model behavior relies on the free energy

expression.
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1. Introduction

An increased pressure inside the vitreous chamber (intraocular pressure, IOP) is a major risk factor for optic nerve

damage. The optic nerve carries, through the axons, signals generated by the retina to the brain. A damaged optic

nerve results in vision impairment and blindness (glaucoma) [1].

The Lamina Cribrosa (LC) is a laminar region, part of the optic nerve head (ONH), made up of a fenestrated

meshwork of thin collagen beams acting as a scaffold for collecting the retinal ganglion cell (RGC) axons, grouped

in bundles [2]. It is also the region crucial to blood supply and drainage. Ganglion cell axons and surrounding glial

elements are dependent on the local blood supply for their energy requirements [3]. Other biological functions of the

LC are in sustaining the central retina vein (CRV) and central retinal artery (CRA), passing through the optic nerve

towards the retina, and in stabilizing the pressure difference between IOP and the retrolaminar tissue pressure (RLTp).

The main blood supply to the optic nerve head is from the posterior ciliary artery via the peripapillary choroid and

short posterior ciliary arteries (the circle of Zinn-Haller). Raised IOP may result in an alteration of the blood supply

to the optic nerve head to induce ischemia [3].

Even though the pathogenesis of glaucoma is far from being understood, we know that mechanics plays a key

role in its onset and development [4, 5, 6, 7]. A comprehensive overview of the many factors which can be related to
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glaucoma is summarized in a diagram in [8, Fig. 2], where we can find: tissue deformation, stress and strain, altered

blood flow and nutrient supply. Hemodynamic alterations in the lamina cribrosa have also been identified in [9] as

strongly related to glaucoma. In [10] it is emphasized how a deformation of the structurally weak LC due to large IOP

values can lead to an impairment of axonal transport and blood flow.

In the computational modeling in [11] the LC is described as a framework made up of connected thin hollow

cylinders. Hemodynamics and oxygen diffusion are then statistically characterized by morphologic factors through a

large number of simulations.

In our work, we aim at combining the mechanical and hemodynamic viewpoints and study the interaction between

deformation and blood perfusion in a continuum. We model the lamina cribrosa as a poroelastic soft material where a

saturated porosity network stands for the capillary network running inside the collagen beams [12].

To this end we first focus on the derivation of a poroelastic model in a rather general case, using as a prototype

the model of species diffusion in an elastic material. This task is carried out by transforming, in a natural way, quan-

tities appropriate to a diffusing species, like concentration, chemical potential and molar flux into the corresponding

quantities which are appropriate to a saturated porous material, like porosity, interstitial pressure and discharge, while

retaining the usual description for a nonlinear elastic solid, based on deformation and stress. We get a couple of power

balance laws, for both the forces and the amount of fluid filling the porosity network, in such a way that it is natu-

ral to state an energy imbalance principle from which we draw a constitutive characterization coupling deformation

and stress with porosity, and leading to Darcy’s law as well. We emphasize how this characterization relies on the

expression for the free energy, in particular on the way it depends on porosity.

The power balance laws allows us to state clearly the basic boundary conditions and to illustrate their meaning. In

particular, by permeable boundary we mean a condition where the interstitial pressure in a thin boundary layer equals

the external pressure.

Further we show how to derive a suitable description of a porosity dependent permeability in the LC, based on a

simple microscopic model of the capillary network. Then we describe some numerical simulations we conducted on

a thick small spherical cap, approximately the same shape and size as the Lamina Cribrosa, cast in the peripapillary

sclera, which show how an increased IOP results in a deformation leading to a non uniform porosity and a reduced

blood flow.

2. Species diffusion in a crystal lattice

The charging process of a Lithium battery has recently drawn much interest [13, 14, 15] for its industrial relevance.

It consists mainly in the diffusion of Lithium atoms in a Silicon anode. We look at this process as an exemplary case

of atomic diffusion in a crystal lattice [16] and outline here the basic chemo-mechanical setting, denoting by ”b” the

diffusing species. This setting will be used later as a prototype for deriving a model of fluid perfusion in an elastic

material.
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Figure 1: Decomposition of the deformation gradient ∇χ .

2.1. Kinematics and kinetics

Let us denote by

χ : Ro → R , (1)

a time dependent deformation of a crystal lattice from the reference shape to the current shape. Describing the

intercalation distortion of a crystal lattice [17] as a spherical tensor field

G = β
1
3 I , (2)

with det G = β , and ruling out any plastic distortion, the accompanying elastic distortion F is defined by the

deformation gradient decomposition

Fo ≡ ∇χ = F G , (3)

which is illustrated by the schematic diagram in Fig. 1. It is convenient to describe the amount of intercalated b-atoms

by the concentration

c =
ρb

ρo

=
<molar density of species b per unit reference volume>

<molar density of lattice sites per unit reference volume>
, (4)

and make the assumption that it is related to the lattice volume change through

β = 1 + α (c − co) , (5)

where α is a stoichiometric positive constant coefficient and co is a reference concentration.

If we denote by ρ the molar density of lattice sites per unit current volume, then for any regular subset P ⊂ R

which is convected from a reference subset Po ⊂ Ro by the same deformation (1)

χ : Po → P , (6)
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the molar conservation law of lattice sites reads1

0 =
d

dt

∫

P
ρ dV =

d

dt

∫

Po

ρ det Fo dV =

∫

Po

(ρ̇ + ρ tr∇v) det Fo dV , (7)

and localizes to

ρ̇ + ρ div v = 0 . (8)

Since by definition (4) the product c ρ is the molar density of species b per unit current volume, the rate of change

of the amount of species b will be instead

d

dt

∫

P
c ρ dV =

d

dt

∫

Po

c ρ det Fo dV =
d

dt

∫

Po

c ρo dV =

∫

Po

ċ ρo dV =

∫

P
ċ ρ dV . (9)

2.2. From the species molar balance to the species power balance

Denoting by h the molar flux per unit current area, and by h a supply density per unit current volume, the species

b molar balance law reads
∫

P
ċ ρ dV = −

∫

∂P
h · n dA +

∫

P
h dV , (10)

and localizes to

ċ ρ = − div h + h , (11)

from which we will drop the supply term, thus assuming h = 0.

Let us set now a scalar field µ , power conjugate to the kinetic descriptor ċ ρ , transforming the molar balance law

(11) into a power balance law
∫

P
µ ċ ρ dV = −

∫

P
µ div h dV ∀µ . (12)

Since

div(µh) = µ div h + h · ∇µ , (13)

we get finally the molar balance law (10) replaced by the power balance law

∫

P
µ ċ ρ dV = −

∫

∂P
µ h · n dA +

∫

P
h · ∇µ dV ∀µ . (14)

Notice that µ (energy per mole) is a chemical potential, acting here just as a test field.2

Finally it is worth noting that although equation (14) can be interpreted as the balance of an energy transport, its

derivation differs from the corresponding one in [16].

1A superposed dot will denote time derivative.
2Throughout the paper we will consistently denote test fields by underlying the corresponding symbol.
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2.3. Power balance laws

We can move the species power balance (14) back to the reference shape, and get ∀Po ⊂ Ro

∫

Po

µ ċ ρo dV = −
∫

∂Po

µ ho · no dA +

∫

Po

ho · ∇o µ dV ∀µ , (15)

using first the identity relating the reference and the current gradient of the scalar field µ , which we get from

∀e (∇o µ) · e = (∇µ) · Fo e ⇒ ∇o µ = FT

o ∇µ , (16)

then replacing the current flux with the reference flux, according to the relation

ho = (det Fo) F−1
o h , (17)

derived by the following surface integral transform

∫

∂P
µh · n dA =

∫

∂Po

µh · ((det Fo) F−T

o no

)

dA =

∫

∂Po

µho · no dA . (18)

Since we are interested in coupling species diffusion to deformation and stress we state now the force power

balance law, ∀Po ⊂ Ro ,
∫

Po

bo · v dV +

∫

∂Po

to · v dA =

∫

Po

So · ∇o v dV ∀v , (19)

where bo and to stand for the reference bulk force density and the reference boundary traction. The reference Piola

stress So , the Cauchy stress T and the intermediate Piola stress S turn out to be related one another by

So = (det Fo) T F−T

o = β (det F) T F−T

o = β
2
3 (det F) T F−T = β

2
3 S , (20)

according to the following volume integral transform

∫

P
T · ∇v dV =

∫

Po

(det Fo)T F−T

o · ∇o v dV =

∫

Po

So · ∇o v dV , (21)

where the current gradient of the vector field v is related to the reference one by the identity we get from

∀e (∇o v) e = (∇v) Fo e ⇒ ∇o v = (∇v) Fo . (22)

The standard frame-invariance argument, stating that T · ∇v = 0 for any rigid test velocity field, leads to the symme-

try property of tensor T.

2.4. Free energy imbalance

Let us consider now any evolution of the model we are defining, i.e. any constitutive process, and the corresponding

force power balance
∫

Po

bo · v dV +

∫

∂Po

to · v dA

︸                                ︷︷                                ︸

(exchanged) external power

=

∫

Po

So · Ḟo dV , (23)
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together with the species power balance

∫

Po

µ ċ ρo dV = −
∫

∂Po

µho · no dA

︸                 ︷︷                 ︸

(exchanged) external power

+

∫

Po

ho · ∇o µ dV . (24)

Comparing the power exchanged between the matter inside any Po and the outside with the rate of change of a

free energy density per unit reference volume ψ , we state the energy imbalance or dissipation inequality [16, 18]

So · Ḟo + µ ρo ċ − ho · ∇o µ −
d

dt
ψ ≥ 0 . (25)

By (20), (3) and (5), the stress power term in (25) can be given the expression

So · Ḟo = β S · Ḟ + 1

3
S · F α ċ , (26)

which, since

S · F = (det F) T F−T · F = (det F) T · I = (det F) tr T , (27)

simplifies to

So · Ḟo = β S · Ḟ − J pα ċ , (28)

with

J := det F , p := −1

3
tr T . (29)

Therefore the inequality (25) can be rewritten as

β S · Ḟ + (

µ ρo − J pα
)

ċ − ho · ∇o µ −
d

dt
ψ ≥ 0 . (30)

2.5. Free energy expression and constitutive characterization

Looking at (30) let us choose a free energy expression like the one given in [13, 14, 19]

ψ = ψ̂(F, c) = ϕch(c) + β ϕe(F) , (31)

which is the sum of a chemical energy density per unit reference volume, and a strain energy density per unit inter-

mediate volume. Defining the response functions µ̂ch and Ŝ such that

ρo µ̂ch(c) ċ =
d

dt
ϕch(c) , (32)

Ŝ(F) · Ḟ = d

dt
ϕe(F) , (33)

the rate of change of the free energy, because of the decomposition (3) and the assumption (5), turns out to be

d

dt
ψ̂(F, c) = β Ŝ(F) · Ḟ + (

α ϕe(F) + ρo µ̂ch(c)
)

ċ . (34)
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If we finally substitute (34) into (30) we get

β
(

S − Ŝ(F)
︸    ︷︷    ︸

S+

) · Ḟ + (

ρo

(

µ − µ̂ch(c)
) − α (

J p + ϕe(F)
)

︸                                    ︷︷                                    ︸

ρo µ+

)

ċ − ho · ∇o µ ≥ 0 . (35)

In order for the inequality (35) to hold for any constitutive process the following conditions must be fulfilled

µ = µ̂ch(c) +
α

ρo

(

J p + ϕe(F)
)

+ µ+ , µ+ ċ ≥ 0 , (36)

S = Ŝ(F) + S+ , S+ · Ḟ ≥ 0 , (37)

−ho · ∇o µ ≥ 0 , (38)

with S+ and µ+ possibly describing dissipative mechanisms.

Notice how the coupling between diffusion and stress is described by the expression (36) characterizing the chem-

ical potential through the spherical part of the Eshelby tensor [20, 19]

E = −FT S + ϕe(F) I . (39)

2.6. Fick’s law

The last condition (38) holds true if

ho = −Mo ∇o µ , (40)

with Mo a positive semi-definite tensor. Expression (40) is the reference form of Fick’s law. By (16) and (17)

the reference flux and the reference chemical potential gradient can be transformed into the corresponding current

quantities, leading to the new expression of Fick’s law

h = −M ∇µ , (41)

where the reference and the current mobility tensors are related by

Mo = β (det F) F−1
o M F−T

o (42)

2.7. Strain energy splitting

Let us assume that the strain energy can be decomposed as

ϕe(F) = ϕι(Fι) + ϕvol(J) , (43)

where Fι is the isochoric part of the elastic distortion F defined by

F = J
1
3 Fι . (44)
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The corresponding velocity gradient decomposition

Ḟ F−1 = Ḟι F
−1
ι +

1

3
I J̇/J (45)

leads to

S · Ḟ = J T · Ḟ F−1 = J T · Ḟι F
−1
ι +

1

3
T · I J̇ = J dev T · Ḟι F

−1
ι +

1

3
tr T J̇ , (46)

as well as

Ŝ(F) · Ḟ = J dev T̂(F) · Ḟι F
−1
ι +

1

3
tr T̂(F) J̇ . (47)

Denoting by

Sι = (dev T) FT

ι , (48)

and, consistently with the definition of p in (29),

Ŝι(F) = (dev T̂(F)) FT

ι ,

p̂e(F) = −1

3
tr T̂(F) ,

(49)

the expressions (46) and (47) simplify to

S · Ḟ = J Sι · Ḟι − p J̇ , (50)

Ŝ(F) · Ḟ = J Ŝι(F) · Ḟι − p̂e(F) J̇ . (51)

Replacing (50) and (51) respectively into (26) and (34), the dissipation inequality (30) leads to the new form of (35)

β J
(

Sι − Ŝι(F)
︸     ︷︷     ︸

S+ι

) · Ḟι −
(

p − p̂e(F)
︸     ︷︷     ︸

p+

)

β J̇ +
(

ρo

(

µ − µ̂ch(c)
) − α (

J p + ϕe(F)
)

︸                                    ︷︷                                    ︸

ρo µ+

)

ċ − ho · ∇o µ ≥ 0 , (52)

from which we get a more detailed constitutive characterization for the stress

Sι = Ŝι(F) + S+ι , S+ι · Ḟι ≥ 0 , (53)

p = p̂e(F) + p+ , −p+ · J̇ ≥ 0 , (54)

with S+ι and p+ possibly describing different dissipative mechanisms, while (36) and (38) still hold unchanged.

3. From species diffusion to poroelasticity

From the diffusion of a single species in an elastic solid, described in the previous section, we now derive a model

for the perfusion of a fluid, by assuming that the fluid is incompressible and flows through a porosity network which it

keeps saturated. This way we recover a poroelasticity theory as a special case of a diffusion theory where the species

concentration has been replaced by the saturated porosity.
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Figure 2: Decomposition of the deformation gradient ∇χ .

Our aim is just to lay down a self-contained, neat and consistent framework, suitable for our modeling purposes

and numerical simulations. We cared about consistency of our setting with the relevant scientific literature, from the

classical work [21] to the historical description [22] or the comprehensive book [23], as well as works on the many

variants of poroelasticity [24, 25, 26], including polymeric gels [27, 28, 29] and blood perfusion [30]. Nevertheless

no explicit detailed references will in general be made neither to basic relations nor to main results therein.

3.1. Deformation and porosity

Let us denote by χ : Ro → R , as in (1), a time dependent deformation of a body made up of a porous material

whose pores are filled at any time with an incompressible interstitial fluid. Let us assume further that the solid matrix

material is incompressible.

Because of the incompressibility condition for both the fluid and the solid matrix the deformation gradient decom-

position (3) will be replaced by

Fo ≡ ∇χ = Fι Fφ , (55)

as shown in the schematic diagram in Fig. 2, where the porosity distortion

Fφ = β
1
3 I (56)

describes a spherical porosity growth, while the elastic distortion Fι is isochoric

det Fι = 1 . (57)

Hence the volume change is characterized by

det Fo = det Fφ = β . (58)
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In this setting it is customary to measure the amount of matter by its mass, instead of the number of moles.

Accordingly, we define the interstitial fluid content as the ratio

c =
ρ f

ρo

=
<fluid mass density per unit reference volume>

<solid mass density per unit reference volume>
. (59)

Denoting by ν f the volume per unit mass of the (incompressible) fluid, the current volume of fluid per unit reference

volume turns out to be

ν f ρ f = ν f ρo c . (60)

Let us call porosity the non-negative scalar field

φ := (β − 1) + φo ≥ 0 , (61)

where (β − 1) is the volume increment per unit reference volume, consisting just of the interstitial volume change

because of the solid matrix incompressibility, up to a reference value 0 ≤ φo < 1 . The saturation condition (the pores

are filled with fluid) can then be stated as

φ = ν f ρ f = α c , (62)

where, according to (60),

α = ν f ρo (63)

is a positive coefficient independent of time because of fluid incompressibility. We make the assumption that the

saturation condition holds at any time. Rearranging terms in (61) the other way round we get

β = 1 + (φ − φo) = 1 + α (c − co) , (64)

with φo = α co , matching definition (5). It is worth noting that, by (64),

β̇ = φ̇ = α ċ . (65)

3.2. Interstitial pressure and interstitial power balance law

In order to state a suitable form of the mass balance law for the interstitial fluid, let us first go back to the species

power balance law (15) and define a scalar field p̌ , power conjugate to the interstitial volume rate of change, such

that ∀Po ⊂ Ro
∫

Po

µ ρo ċ dV =

∫

Po

p̌ β̇ dV , ∀β̇ . (66)

Localizing we get

µ =
α

ρo

p̌ = ν f p̌ . (67)

Substituting the expression (67) for the chemical potential, we can now consistently transform the species power

balance law (15) into

∫

Po

p̌ β̇ dV = −
∫

∂Po

p̌ (ν f ho) · no dA +

∫

Po

(ν f ho) · ∇o p̌ dV ∀ p̌ . (68)
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If we further define the vector field

qo = ν f ho , (69)

we finally get the interstitial power balance law

∫

Po

p̌ β̇ dV = −
∫

∂Po

p̌ qo · no dA +

∫

Po

qo · ∇o p̌ dV ∀ p̌ . (70)

Let us call p̌ the interstitial pressure and qo the discharge. It is worth emphasizing that equation (70) still retains its

original meaning as the balance law between the amount of matter exchanged through the boundary and the rate of

change of its bulk content.

Since we are interested in describing a perfusion in an elastic solid we should again supplement the balance law

(70) with the force power balance law (19), subject this time to the incompressibility constraint (57).

The reference Piola stress So , the Cauchy stress T and the intermediate Piola stress S are now related one

another as in (20) with F replaced by Fι

So = (det Fφ) T F−T

o = βT F−T

o = β
2
3 T F−T

ι = β
2
3 S . (71)

3.3. Free energy imbalance

Let us consider for any constitutive process the corresponding force power balance

∫

Po

bo · v dV +

∫

∂Po

to · v dA

︸                                ︷︷                                ︸

(exchanged) external power

=

∫

Po

So · Ḟo dV , (72)

together with the interstitial power balance

∫

Po

p̌ β̇ dV = −
∫

∂Po

p̌ qo · no dA

︸                  ︷︷                  ︸

(exchanged) external power

+

∫

Po

qo · ∇o p̌ dV . (73)

Comparing the power exchanged between the matter inside any Po and the outside, with the rate of change of a

free energy density per unit reference volume ψ , we get the appropriate form of the energy imbalance or dissipation

inequality

So · Ḟo + p̌ β̇ − qo · ∇o p̌ − d

dt
ψ ≥ 0 . (74)

Because of the decomposition (55) and the relations (64) and (71), the stress power term in (74) takes the expres-

sion

So · Ḟo = β dev T · Ḟι F
−1
ι − p β̇ (75)

where

−p I = sph T . (76)

It should be emphasized that p is here a purely reactive pressure because the elastic distortion is isochoric. A

clear picture about this point is given by the species diffusion description of the energy imbalance (52), where the

12



incompressibility condition J = 1 would leave the constitutive characterization of p void, thus qualifying p as

reactive.

Replacing (75) into (74) we get the new expression for the energy imbalance

β dev T · Ḟι F
−1
ι +

(

p̌ − p
)

β̇ − qo · ∇o p̌ − d

dt
ψ ≥ 0 . (77)

Guided by (77), we will consider two different choices for the free energy and characterize them by comparing

the different evolutions they give rise in a sample problem in sect. 4.

3.4. Type g free energy and constitutive characterization

Let us consider first a free energy inspired by expression (31)

ψ̂g(Fι, β) = ϕφ(β) + β ϕι(Fι) , (78)

which is the sum of a bulk energy density per unit reference volume, dependent on the porosity distortion, and a strain

energy density per unit intermediate volume, dependent on the isochoric distortion.

By defining the response functions p̂φ and Ŝg such that

p̂φ(β) β̇ =
d

dt
ϕφ(β) , (79)

Ŝg(Fι) · Ḟι =
d

dt
ϕι(Fι) , (80)

the rate of change of the free energy turns out to be

d

dt
ψ̂g(Fι, β) =

(

p̂φ(β) + ϕι(Fι)
)

β̇ + β T̂g(Fι) · Ḟι F
−1
ι , (81)

where by T̂g(Fι) = Ŝg(Fι) FT

ι we mean a deviatoric tensor since tr (Ḟι F
−1
ι ) = 0 .

If we substitute (81), into the inequality (77) we finally get

β
(

dev T − T̂g(Fι)
︸            ︷︷            ︸

dev T+

) · Ḟι F
−1
ι +

(

p̌ − p − (

p̂φ(β) + ϕι(Fι)
)

︸                         ︷︷                         ︸

p̌+

)

β̇ − qo · ∇o p̌ ≥ 0 , (82)

In order for the inequality above to hold for any constitutive process the following conditions must be fulfilled

p̌ = p̂φ(β) + p + ϕι(Fι) + p̌+ , p̌+ β̇ ≥ 0 , (83)

dev T = T̂g(Fι) + dev T+ , dev T+ · Ḟι F
−1
ι ≥ 0 , (84)

together with

−qo · ∇o p̌ ≥ 0 . (85)

Summarizing, from the energy imbalance (77) we get, through (82), the following constitutive characterization of the

spherical and deviatoric part of the Cauchy stress

sph T = −( p̌ − p̂φ(β) − ϕι(Fι)) I + sph T+ , (86)

dev T = T̂g(Fι) + dev T+ , (87)
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with sph T = −p I . We can add them up and get

T = T̂g(Fι) −
(

p̌ − p̂φ(β) − ϕι(Fι)
)

I + T+ , (88)

or, equivalently,

T =
(

T̂g(Fι) +
(

p̂φ(β) + ϕι(Fι)
)

I
)

︸                              ︷︷                              ︸

effective stress

−p̌ I + T+ . (89)

By effective stress we mean the hyperelastic part of the stress. The dissipative stress T+ can be given any constitutive

prescription complying with the inequalities above.

As a final remark notice how (83) describes the coupling between the interstitial pressure p̌ and the reactive

pressure p, characterizing indeed their difference ( p̌ − p). It is worth noting that p̂φ(β) is called the pressure function

in [21], where it is also likened to the chemical potential.

3.5. Type s free energy and constitutive characterization

As an alternative, let us consider the simple splitting of the strain energy density per unit reference volume into

the sum of a volumetric part and an isochoric part

ψ̂s(Fι, β) = ϕφ(β) + ϕι(Fι) , (90)

where ϕφ(β) and ϕι(Fι) are both densities per unit reference volume.

By defining the new response function Ŝs such that

β
(

Ŝs(Fι, β) · Ḟι

)

=
d

dt
ϕι(Fι) , (91)

we get the corresponding expression for the rate of change of the free energy

d

dt
ψ̂s(Fι, β) = p̂φ(β) β̇ + β T̂s(Fι, β) · Ḟι F

−1
ι , (92)

where again by T̂s(Fι, β) we mean just the deviatoric part of Ŝs(Fι, β) FT

ι .

If we substitute (92) into the inequality (77) we get

β
(

dev T − T̂s(Fι, β)
︸               ︷︷               ︸

dev T+

) · Ḟι F
−1
ι +

(

p̌ − p − p̂φ(β)
︸           ︷︷           ︸

p̌+

)

β̇ − qo · ∇o p̌ ≥ 0 , (93)

In order for the inequality above to hold for any constitutive process the following conditions must be fulfilled

p̌ = p̂φ(β) + p + p̌+ , p̌+ β̇ ≥ 0 , (94)

dev T = T̂s(Fι, β) + dev T+ , dev T+ · Ḟι F
−1
ι ≥ 0 , (95)

as well as (85). Summarizing, from the energy imbalance (77) we get, through (93), the following constitutive

characterization of the spherical and deviatoric part of the Cauchy stress

sph T = −( p̌ − p̂φ(β)) I + sph T+ , (96)

dev T = T̂s(Fι, β) + dev T+ , (97)
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from which we get

T = T̂s(Fι, β) − (

p̌ − p̂φ(β)
)

I + T+ , (98)

or, equivalently,

T =
(

T̂s(Fι, β) + p̂φ(β) I
)

︸                   ︷︷                   ︸

effective stress

− p̌ I + T+ . (99)

The expression for the effective stress is consistent with the definition given in [23]. A historical account of this notion

development dating back to Terzaghi can be found in [22].

It is worth noting that the two energy terms in (90), differently from (78), turn out not to be coupled anymore

by the porosity through β. We will show in sect. 4 the implications of using either ψ̂g or ψ̂s through numerical

simulations of uniaxial tests.

3.6. Darcy’s law

Whatever the free energy expression, condition (85) holds true if

qo = −Ko ∇o p̌ . (100)

with Ko a positive semi-definite tensor. Since, as in (16) and (17),

∇o p̌ = FT

o ∇p̌ , (101)

qo = βF−1
o q , (102)

the expression (100) of Darcy’s law turns into

q = −K ∇p̌ , (103)

where the reference and the current permeability tensors are related by

Ko = βF−1
o K F−T

o . (104)

3.7. Boundary conditions

In order to set up boundary conditions in a consistent way, let us consider a subset So ⊂ ∂Ro and the corresponding

boundary terms in the force power balance law (19) and in the interstitial power balance law (70)
∫

So

to · v dA ,

∫

So

p̌ qo · no dA , (105)

where v is a test velocity field and p̌ is a test interstitial pressure. We should also recall that qo is constitutively

described by Darcy’s law (100).

Let us refer to the usual boundary conditions according to the following table:

Bunc unconstrained boundary deformation

Bcon constrained boundary deformation

Bperm permeable boundary

Bimp impermeable boundary

(106)
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The boundary terms (105) in the balance laws allow us to characterize explicitly each boundary condition:

Bunc the test velocity field v can take any value; thus to should be assigned the value text
o (the

external traction), possibly zero;

Bcon the constraints make the test velocity field v vanish; thus to is just a reactive traction

tr
o = So no;

Bperm we mean that there is no pressure jump across the boundary, i.e. p̌ = pext (the external pres-

sure); hence the test interstitial pressure field p̌ vanishes and qo · no is left free;

Bimp we mean that qo · no = 0 whatever the pressure jump ( p̌ − pext) across the boundary; hence

there is no condition on p̌ .

(107)

The boundary conditions (107) can also be described on a subset S ⊂ ∂R in terms of the current fields.

Let us examine differently paired boundary conditions on the same subset So or S . To this end it will prove

expedient to split the stress constitutive expressions (88) or (98) into a hyperelastic part, the effective stress, and the

interstitial pressure

T = T̂eff(Fι, β) − p̌ I . (108)

Let us consider first the paired conditions (Bunc , Bperm) . Since p̌ = pext the expression for the stress (108)

becomes

T = T̂eff(Fι, β) − pext I . (109)

Denoting by text the current traction field on S and by n the current unit normal, then

T n = text ⇒ T̂eff(Fι, β) n − pext n = text . (110)

Since pext is a known quantity, we can define teff such that

text = teff − pext n . (111)

Hence with boundary conditions (Bunc , Bperm) from (110) we get

T̂eff(Fι, β) n = teff . (112)

With paired boundary conditions (Bunc , Bimp) , p̌ and pext are not related to each other anymore. Thus by (108)

T n = text ⇒ T̂eff(Fι, β) n − p̌ n = teff − pext n , (113)

from which we get

T̂eff(Fι, β) n = teff − (pext − p̌) n . (114)

Let us now consider the paired boundary conditions (Bcon , Bperm) . Since p̌ = pext the expression (108) will be

replaced by (109) and we arrive again at (112) where teff is a reactive traction. The paired boundary conditions

(Bcon , Bimp) lead again to (114) with teff a reactive traction.
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4. Uniaxial deformation of a poroelastic cylinder

Let us consider a body in the shape of a cylinder undergoing homogeneous uniaxial deformations described by

the deformation gradient matrix

[Fo] = β
1
3 [Fι] = β

1
3





λ 0 0

0
1
√
λ

0

0 0
1
√
λ





, (115)

defined in an orthonormal basis {e1, e2, e3} with the first basis vector in the axis direction. Let the cylinder be stretched

by a couple of opposite axial forces on opposite faces defined by a traction t = τ e1, after being submerged in a fluid

reservoir at pressure pext . The cylinder boundary is assumed to be permeable. Hence

p̌ = pext . (116)

From the force balance law we get

T = t ⊗ e1 = τ e1 ⊗ e1 . (117)

Let the energy depending on the porosity distortion be assigned the expression

ϕφ(β) = kφ

(

β2 +
2

β
− 3

)

(118)

which is defined for β > (1 − φo) , or equivalently for φ > 0 , that is in the β range where the material is in the porous

wet phase, according to (64). Otherwise, when φ = 0 we say that the material is in the incompressible dry phase.

Let us consider a neo-Hookean strain energy

ϕι(Fι) = kι (Ī1 − 3) , (119)

with Ī1 = tr (FT

ι Fι), to be substituted into both the free energy expressions (78) and (90). The corresponding response

functions for the Cauchy stress turn out to be

T̂g(Fι) = 2 kι dev(Fι F
T

ι ) , (120)

β T̂s(Fι, β) = 2 kι dev(Fι F
T

ι ) . (121)

Further, from (79) and (118) we derive the response function

p̂φ(β) = 2 kφ

(

β − 1

β2

)

, β > (1 − φo) . (122)

All of the expressions above can be specialized to the uniaxial deformation gradient (115) by replacing

Ī1 = λ
2 +

2

λ
, (123)

[dev(Fι F
T

ι )] =
2

3

(

λ2 − 1

λ

)





1 0 0

0 −1

2
0

0 0 −1

2





. (124)
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(pext = 0) (pext = 0.8 kι) (pext = 1.2 kι)

Figure 3: Uniaxial deformation (ψg free energy) with kφ = 0.10 kι .

4.1. Type g free energy

Substituting the response function (120) into (88) and replacing the stress in the balance equation (117), while

neglecting any dissipative term, we get the scalar equations

τ = 2 kι

(

λ2 − 1

λ

)

, (125)

p = −1

3
τ , (126)

p̌ = p̂φ(β) + p + ϕι(Fι) , (φ > 0) . (127)

In the incompressible dry phase (φ = 0) it happens that β̇ vanishes making the second term in the dissipation

inequality (82) disappear. Hence (127) does not make sense and the resulting relation between λ and β is not defined

any more.

Graphs of the solutions to this problem for different values of pext are arranged in columns in Fig. 3, with
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pext = 0 on the first column, pext = 0.8 kι on the second column, pext = 1.2 kι on the third column. Only solu-

tions for kφ = 0.1 kι have been shown. For increasing values of kφ those solutions get closer to the solution for the

incompressible dry material, as shown by the graphs in Fig. 4. A thin horizontal line marks in every graph in Fig. 3 the

unit value of the quantity being plotted against the traction τ , which takes positive values (pulling) or negative values

(pushing). The reference porosity has been assigned the value φo = 0.4 . Correspondingly, a lower thin horizontal line

in the graphs on the first row marks β = (1 − φo) , or equivalently φ = 0 , the incompressible dry phase. Notice the

couple of thin vertical lines in each column marking the porous wet phase (φ , 0) of the material which is otherwise

squeezed to the incompressible dry phase (φ = 0) for τ beyond those limits.

The value of β at τ = 0 is the solution to the equation

p̌ = p̂φ(β) , (128)

according to (127). Looking at the first row in Fig. 3 we can notice how, as the traction τ increases, the porosity

grows until it reaches a maximum value and then shrinks to zero (marked by the right vertical thin line). That means

that after a fluid inflow there is an outflow leading to a dry phase. On the contrary when pushing, the porosity shrinks

monotonically until the dry phase is reached (marked by the left thin vertical line). A bit surprising is the way the

length and the thickness change when in the porous wet phase, as shown in Fig. 4, where the lower solid thin line is

the radial vs axial stretch graph for (φ = 0), while the upper solid thin line is the same graph for (φ = φo).

4.2. Type s free energy

Substituting first the response function (121) into (98) and then replacing the stress in the balance equation (117),

we get the scalar equations

τ = 2 kι

(

λ2 − 1

λ

)

1

β
, (129)

p = −1

3
τ , (130)

p̌ = p̂φ(β) + p , (φ > 0) . (131)

The graphs in Fig. 5, describing the corresponding solutions, are arranged the same way as the graphs in Fig. 3.

We can notice first how supple this material is when compared to the previous one, and that there is only a thin vertical

line separating the porous wet phase (right side) from the incompressible dry phase (left side). That means that when

pulling, the porosity grows while the length increases and the thickness decreases. When pushing instead there is

a fluid outflow leading soon to a dry phase exhibiting the usual shortening and thickening, as shown also in Fig. 6,

where the thin lines are the same graphs as in Fig. 3.
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(kφ = 0.10 kι) (kφ = 0.25 kι) (kφ = 0.50 kι)

Figure 4: Uniaxial deformation (ψg free energy) with p̌ = 0.8 kι (lower solid thin line: φ = 0 , upper solid thin line: φ = φo) .

5. The lamina cribrosa

In the following sections we apply the poroelastic model defined in sect. 3 to study the interplay of blood flow and

deformation within the tissue of the LC. However we first need to introduce a constitutive relation linking porosity

and permeability, which we do in the next section.

5.1. Permeability constitutive characterization

We derive a microscopic constitutive characterization of the permeability tensor which should be appropriate to the

capillary network described by the porosity field. To this end let us consider the capillary network inside a microscopic

reference region Pm and look at the porosity (62) as approximated by the volume ratio

φ =
π r2

c Lc

Vm

, (132)

where Vm is the Pm volume, Lc is the total length of the capillary network inside Pm and rc is the current value of the

capillary radius. Denoting by Lm = V
1/3
m a characteristic microscopic length, after defining the capillary tortuosity as

the constant coefficient

tc :=
Lc

Lm

, (133)

we get from (132)

r2
c =

Vm

π Lc

φ =
L2

m

π tc
φ . (134)
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(pext = 0) (pext = 0.8 kι) (pext = 1.2 kι)

Figure 5: Uniaxial deformation (ψs free energy) with kφ = 0.10 kι .

If we assume that the blood flow in the capillary network is laminar, the volumetric flow rate for a pressure drop ∆pm

is given by the Hagen–Poiseuille law

Qm =
π r4

c

8 µb Lc

∆pm , (135)

where µb is the blood viscosity. By (133) and (134) this formula turns into

Qm =
L4

m

8 π µb tc3
φ2 ∆pm

Lm

, (136)

from which we get, dividing by a characteristic microscopic area L2
m , the discharge

qm =

(

L2
m

8 π µb tc3

)

φ2 ∆pm

Lm

. (137)

If we let a single constant cg carry the microscopic constitutive description outlined above, then Darcy’s law (100)

takes the special form [12]

q = −
cg

µb

φ2 ∇p̌ , (138)

21



(kφ = 0.10 kι) (kφ = 0.25 kι) (kφ = 0.50 kι)

Figure 6: Uniaxial deformation (ψs free energy) with p̌ = 0.8 kι (lower solid thin line: φ = 0 , upper solid thin line: φ = φo) .

showing that the permeability is proportional to the square of the porosity.

As a special case, for the uniaxial deformation in sect. 4 we get through (104) the reference permeability in (100)

defined by the scalar expression

ko =
cg

µb

(

φ2

λ2
β1/3

)

. (139)

Values for the expression between brackets are shown by plots in Fig. 7, consistent with plots in Figs. 3, 5 .

(kφ = 0.10 kι) (kφ = 0.25 kι) (kφ = 0.50 kι)

Figure 7: Uniaxial reference permeability with p̌ = 0.8 kι (ψg solid line, ψs dashed line).
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5.2. Numerical simulation setup

Although most works neglect the role played by the surrounding peripapillary sclera when computing the LC

deformation, numerical simulations as well as medical imaging [31, 32] show that IOP alterations affect both the LC

and the sclera deformations. That is why we considered a fully 3D model of the LC embedded in a sclera spherical

cap, pictured in Fig. 8, with physical parameters listed in Table 1.

We used COMSOL MultiphysicsR© software [33] to carry out our simulations, implementing in their original form:

i) the force power balance law (19),

ii) the interstitial power balance law (70),

iii) Darcy’s law (100).

We modeled the LC as a poroelastic material with blood as the interstitial fluid, and assumed the material to be

characterized, as in sect. 4, by the neo-Hookean strain energy function (119) leading to the response functions (120)

and (121), to be substituted in turn into (88) and (98), according to either free energy (78) or (90).

Differently from sect. 4, where condition β > (1 − φo) was enforced explicitly, the energy depending on the

porosity distortion has been given the expression

ϕφ(β) = kφ (β − 1)2 (β − 1 + 3 φo)/(β − 1 + φo) , (140)

whose value increases to infinity as β → (1 − φo), thus preventing the porosity φ from reaching a zero value, ac-

cording to (61). Correspondingly, by (79) we get

p̂φ(β) = 2 kφ (β − 1)
(β − 1)2 − 3 (β − 1) φo + 3 φ2

o

(β − 1 + φo)2
. (141)

The peripapillary sclera has been modeled as a neo-Hookean incompressible non porous solid material.

As boundary conditions we assumed the anterior (facing the vitreous chamber) and the posterior (facing the

retrolaminar region) faces of the LC to be impermeable. This means that there is no blood flux through such boundary

where we imposed a traction −pext n , with pext = IOP on the anterior side and pext = RLTp on the posterior side.

We assumed instead the sclera-LC interface, which is the site of the main blood supply to the ONH, to be permeable

with external pressure pext = Pa . The central retinal vessel passage, with a fixed radius Rv, has been characterized

by a permeable boundary with external pressure pext = Pv . Thus the blood flows through the LC porosity network

from the sclera-LC interface to the central retinal vein. The peripapillary sclera outermost boundary was subject to a

normal traction corresponding to the mean hoop stress in a spherical vitreous chamber depending on IOP.

5.3. Results

Since we are interested in the interplay between hemodynamics and deformations we mainly focus on porosity

and blood flux fields. The LC and peripapillary sclera deformation is shown in the radial cross sections in Figs. 9,

10, 11, with the reference shape in the background, where the porosity field is described by a color map. The sclera
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Figure 8: Model LC embedded in the peripapillary sclera.

lamina thickness 200 µm

lamina radius 950 µm

central retinal vessel passage radius (Rv) 100 µm

1
2

shear modulus (lamina cribrosa) (kι) 4 kPa , 6 kPa

1
2

bulk modulus (lamina cribrosa) (kφ) 0.3 MPa , 0.5 MPa

1
2

shear modulus (sclera) (kι) 0.55 MPa

reference porosity (φo) 0.010

Intra Ocular Pressure (IOP) 15 − 37 mmHg (2.0 − 4.9 kPa)

Retro Laminar Tissue pressure (RLTp) 9.75 mmHg (1.3 kPa)

ciliary pressure (Pa) 15 mmHg (2.0 kPa)

central vein pressure (Pv) 7.5 mmHg (1.0 kPa)

Table 1: Parameter values used in the simulations.

supports the thinner LC membrane which bends in the anterior-posterior direction under the action of an increasing

IOP (from Fig. 9 to Fig. 11), while the RLTp keeps its ground value. The left side and the right side pictures refer

respectively to the underlying free energy ψg or ψs.

In addition to the maps shown in Figs. 9, 10, 11 we also report in Figs. 12, 13, 14 how some relevant quantities

depend on IOP. In particular, in Fig. 12 we plot the anterior-posterior Lamina Cribrosa Displacement (LCD), which

is the simplest way of describing the LC cupping, in medical imaging as well as numerical simulations. In the figure

LCD is scaled by the lamina thickness and we report its value both for the anterior (thin lines) and the posterior face

(thick lines) of the lamina (negative values mean outward displacement). In Fig. 13 we report the mean porosity

values scaled by the reference porosity and finally, in Fig. 14, the blood flux through the sclera-LC interface scaled

by a typical value. A second set of graphs is shown in Figs. 15, 16, 17 to allow a comparison between the previous

results and those obtained with a higher value of the modulus kι.

While the deformed shapes exhibited by our LC model in Figs. 9, 10, 11 are close to similar shapes shown in

[31, 32], the displayed porosity field carries a more significant information about changes in hemodynamics related to
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an IOP increase. In this respect a comparison between ψg and ψs free energies is in order. By using the free energy ψs

we get some awkward results about porosity and blood flux: looking at the right side pictures in Figs. 9, 10, 11 (ψs

free energy), we notice that the porosity increases as the LC cupping proceeds and the thickness becomes smaller and

smaller. This is shown clearly by the mean porosity evolution as described by the dashed lines (ψs free energy) in the

graphs in Fig. 13. Correspondingly, from the dashed lines in Fig. 14 we notice that the blood flux increases as well,

for large enough values of IOP. On the contrary, looking at the solid lines (ψg free energy) in the graphs in Fig. 13, we

notice that the mean porosity, after reaching a maximum value, eventually decreases while the corresponding blood

flux in Fig. 14 decreases even faster.

This leads us to the conclusion that the g-type free energy (78) is more suitable to describe the coupling between

deformation and porosity than the s-type free energy (90). The reason for that should be found in the different ways

they depend on porosity. It is also interesting to compare the solid line graph in Fig. 13 (g-type free energy) with the

graph in [34, Fig. 5-B], where experimental in-vivo measurements of collagen beam thickness are reported against

IOP values. The comparison is meaningful since in our model the porosity network stands for the capillary network

running inside the collagen beams, as stated in sect. 1. Both graphs exhibit a maximum value for increasing IOP. This

highlights a feature of the g-type free energy which makes the poroelastic material behave rather differently than the

s-type free energy, as illustrated in sect. 4.

By a closer look at the left side cross sections in Figs. 9, 10, 11 (ψg free energy), we notice the porosity getting

lower and lower across the thickness in a region close to the sclera-LC interface. This is reflected in the decreasing

blood flux shown by the solid lines in Fig. 14, as opposed to what is shown by the dashed lines. The behavior exhibited

by the g-type free energy could be related to the strong shear deformation localized at the peripheral region of the LC,

as shown on the left side of Figs. 18, 19, 20 where, in parallel to the strain energy field on the right side, a color map

describes the evolution of the shear strain field defined by

γ =
ar · aa

‖ar‖ ‖aa‖
, with ar = Fo er , aa = Fo ea , (142)

denoting by ea and er an axial (parallel to the eye axis) and a radial (toward the center of the LC) reference orthonormal

vectors. This turns out to be consistent with the onset and progression of the loss of vision related to glaucoma: the

peripheral vision deteriorates, and eventually is lost altogether, as the visual field shrinks to a small region in the center

of the eye [3], [32].

We look at the above description of the mechanism leading to a blood flow reduction as the main result from our

numerical simulations.
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(ψg free energy) (ψs free energy)

Figure 9: Porosity field φ/φo on a deformed shape cross section for IOP = 15 mmHg (with kφ = 0.3 MPa and kι = 4 kPa).

(ψg free energy) (ψs free energy)

Figure 10: Porosity field φ/φo on a deformed shape cross section for IOP = 25 mmHg (with kφ = 0.3 MPa and kι = 4 kPa).

(ψg free energy) (ψs free energy)

Figure 11: Porosity φ/φo on a deformed shape cross section for IOP = 35 mmHg (with kφ = 0.3 MPa and kι = 4 kPa).
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Figure 12: Scaled anterior-posterior LCD vs IOP (ψg solid line, ψs dashed line; thin lines refer to the inner face) with kι = 4 kPa.
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Figure 13: Scaled mean porosity vs IOP (ψg solid line, ψs dashed line) with kι = 4 kPa.
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Figure 14: Scaled boundary flux vs IOP (ψg solid line, ψs dashed line) with kι = 4 kPa.
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Figure 15: Scaled anterior-posterior LCD vs IOP (ψg solid line, ψs dashed line) with kι = 4 kPa and kι = 6 kPa (thick line).
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Figure 16: Scaled mean porosity vs IOP (ψg solid line, ψs dashed line) with kι = 4 kPa and kι = 6 kPa (thick line).
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Figure 17: Scaled boundary flux vs IOP (ψg free energy) with kι = 4 kPa and kι = 6 kPa (thick line).
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Figure 18: Shear strain (left) and strain energy density (right) for IOP = 15 mmHg (ψg free energy with kφ = 0.3 MPa and kι = 4 kPa).

Figure 19: Shear strain (left) and strain energy density (right) for IOP = 25 mmHg (ψg free energy with kφ = 0.3 MPa and kι = 4 kPa).

Figure 20: Shear strain (left) and strain energy density (right) for IOP = 35 mmHg (ψg free energy with kφ = 0.3 MPa and kι = 4 kPa).
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6. Conclusions

An increased IOP can lead to a significant blood flow reduction in the LC.

The g-type free energy describes much better than the s-type free energy the coupling between deformation and

porosity. That coupling, endowed in the free energy expression, is carried separately by a porosity dependent per-

meability. Modeling in parallel species diffusion and fluid perfusion emphasizes how the two mechanical models

can be cast in the same framework (balance laws and dissipation inequality). The common framework helps also

to better grasp the relation between chemical potential and interstitial pressure and the origin of their constitutive

characterization.

The structurally weak LC deforms under a raising IOP, showing a noticeable shear deformation on the boundary,

together with a deep cupping. Our simulation outcome strongly correlates the shear deformation to porosity and

blood flux decrease. Because the main blood supply to the optic nerve head is from the posterior ciliary artery via

the peripapillary choroid and the circle of Zinn-Haller, the blood flux reduction on the LC boundary results in an

alteration of the blood supply to the optic nerve head.

As a concluding remark we observe that the LC model could be enriched by anisotropic properties of the intri-

cate framework of collagen beams carrying the capillary network while supporting the axons [11], and even by a

remodeling mechanism triggered by the high shear strain on the boundary [35, 36]. Further, the axons themselves

could enter the model as an additional network allowing to couple both axonal transport and blood perfusion with LC

deformation and stress [2]. Nevertheless our essential description of a poroelastic model has proven useful to account

for the interplay between LC deformation and hemodynamics in the glaucoma pathophysiology.
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