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In this paper, we study the problem of mobile entities that synchronously have to explore 
and repair a graph with faulty nodes, usually called black-holes, that destroy any entering 
entity. We consider the scenario where the destruction of an entity by means of a black-
hole also affects all the entities within a fixed range r (in terms of number of edges), while 
the black-hole disappears. Clearly, if there are b black-holes in the graph, then k ≥ b entities 
are necessary to remove all of them from that graph. We ask for the minimum number of 
synchronous steps needed to make safe all the graph.
The results of this paper are both theoretical and experimental, and can be summarized 
as follows. From the theoretical point of view, first we show that the problem is NP-hard 
even for b = k = 1. Then, we provide a general lower bound holding when r ≥ 0 and a 
higher one for the case of r > 0. We then consider the case of r ≤ 1. We propose an 
optimal solution holding when k is unbounded, that is, an infinite number of robots is 
available. Then, we provide three different exploration strategies, named snake, scout, and 
parallel-scout, respectively, for the case of bounded k, that is, the number of robots is fixed 
a priori. The three strategies are then analyzed according to the time complexity with 
respect to the lower bound. From the experimental point of view, we implemented the 
three strategies and tested them on different scenarios with the aim of assessing their 
practical performance. The experiments confirm the theoretical analysis and show that 
parallel-scout is always by far the best exploration strategy in practice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The exploration task of unknown graphs by means of mobile entities has been widely considered during the last years. 
The increasing interest to the problem comes from the variety of applications that it meets. In robotics, it might be very 
useful to let a robot or a team of robots to explore dangerous or impervious zones. In networking, software agents might 
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automatically discover nodes of a network and perform updates and/or refuse their connections. In this paper, we are 
interested in the exploration of a graph with faulty nodes, i.e. nodes that destroy any entering entity. Such nodes are called 
black-holes, and the exploration of a graph in such kind of networks is usually referred to as black-hole search. According to 
the assumed initial settings of the network, the knowledge, and the capabilities of the involved entities, many results have 
been provided in the literature.

1.1. Related works

Pure exploration strategies, without dealing with black-holes, have been widely addressed (see, for instance, [2–5] and 
references therein). In that case, the requirement is usually to perform the exploration as fast as possible. When black-holes 
are considered, along with the time (or equivalently the number of edge traversals) required for a full exploration, the main 
goal consists in minimizing the number of entities that may fall into the black-holes. A full exploration in this case means 
that, at the end, all the edges which do not lead to any black-hole must be “marked” as safe edges.

In this research area, many different models have been investigated. The system might be either synchronous [6,7]
or asynchronous [8,9]. The input graph might be undirected [7,9] or directed [10,11]. It can be known in advance [7,12]
or just a bound on the number of nodes is provided [11]. It can refer to a specific topology like rings [9,13], trees [6], 
hypercubes [14], tori [15]. Entities may communicate only when they meet [16], or by means of white-boards associated to 
the nodes of the graph [13], or simply by opportunely disposing available pebbles [17] or tokens [18]. The objective function 
may ask for the minimum number of entities, the minimum number of steps performed by all the entities, the minimum 
number of synchronous steps.

An interesting variation to the black-hole search problem has been recently introduced in [19], where the network must 
be decontaminated from black-viruses. A black-virus is a harmful process which destroys any agent arriving at the node 
where it resides; when that occurs, a black-virus moves, spreading to all the neighboring nodes, thus increasing its presence 
in the network. If however one of these nodes contains an entity, then that clone of the black-virus is destroyed. The initial 
location of the black-virus is unknown. The objective is to permanently remove any presence of the black-virus from the 
network with minimum number of node infections. The main cost measure is the total number of entities needed to solve 
the problem.

A hybrid model in between exploration and black-hole search has been introduced in [16], named the Explore and Repair
problem. Given a graph G with n nodes, some of which are black holes, and a number k of entities, the idea is to perform 
the exploration of G as fast as possible with the constraint that if an entity enters in a black-hole, then it is destroyed and 
the black-hole disappears. The objective is to provide an exploration strategy that ensures to make safe the whole graph (i.e. 
removing all the black-holes) in the fastest way. A particular assumption is made in [16] on the consequences of entering 
in a black-hole. In fact, if more than one entity enter in a black-hole, only one gets destroyed while the others continue the 
exploration. With this assumption, a deterministic algorithm for the Explore and Repair problem is proposed in [16] which 
terminates within O (n

k + log f
log log f D) steps, where f = min{n

k , n
D }, and D is the diameter of G . This algorithm is also shown 

to be worst-case asymptotically optimal, by giving a network such that for any deterministic algorithm, there is a placement 
of the faulty nodes forcing the algorithm to work for �(n

k + log f
log log f D) steps. A general lower bound of �(n

k + D) steps is 
also provided.

It is possible to think about different scenarios where the model fits the assumption of [16], like in the case that software 
agents move along a network and, when they find a virus (represented by a black-hole), only one of them prolongs its stay 
for repairing purposes. However, it is also possible to think about scenarios where the assumption of [16] cannot model 
reality. For instance, in the case that entities are mobile robots exploring an impervious area disseminated of land-mines, if 
more than one robot incur concurrently in an explosion, then all of them get involved. Furthermore, the explosion may also 
affect robots within a fixed range.

1.2. Contribution of the paper

In this paper, we consider the Explore and Repair problem, and extend the model of [16] in two ways: (i) if more than 
one entity enters a black hole, then all of them are destroyed; (ii) given an integer number r, all entities within distance 
r (in terms of number of edges) from an entity entered in a black-hole instantaneously disappear from the network along 
with the black-hole. We call this the Explore and Repair problem with radius r. Clearly, if there are b black-holes, then k ≥ b
entities are necessary to remove all the black-holes from the network. It might happen that the network is not explored 
completely, but an exploration algorithm must guarantee that all the black-holes have been removed as long as k ≥ b.

The results of this paper are both theoretical and experimental, and can be summarized as follows. From the theoretical 
point of view, first we show that the problem is NP-hard even for b = k = 1; second, we consider the case of r = 0 and 
propose a simple variation of the strategy proposed in [16] that can be applied to give a worst-case asymptotically optimal 
solution when k ≥ 2b; third, we consider the case of r > 0, and provide a lower bound of �(n

k + D + r min{D, b} + |Kmax|)
time steps, where b is the number of black holes, D is the diameter of the input graph, and |Kmax| is the size of its 
maximum clique; fourth, we consider the case of r ≤ 1 with an unbounded or a bounded number of entities k. In the 
unbounded case, that is, an infinite number of robots is available, we give an optimal strategy. For the bounded case, 
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that is the number of robots is fixed a priori, we propose three different exploration strategies, named snake, scout, and 
parallel-scout, respectively, with different peculiarities. In particular, snake is independent of the graph topology, scout is 
independent of the number of black holes, while parallel-scout introduces some parallel moves in the scout strategy, thus 
allowing a reduction in the number of time steps with respect to scout. We show that the three strategies require in the 
worst case a number of time steps linear in the number of nodes of the input graph, and then discuss their behavior with 
respect to the given lower bound. Moreover, all the proposed strategies can be easily shown to be worst-case asymptotically 
optimal, by providing simple instances where any algorithm requires �(n) time steps. Finally, we provide some hints on 
how to extend the proposed strategies to the case of r > 1.

From the experimental point of view, we implemented the three new strategies for the r ≤ 1 case, and tested them on 
different graph classes by varying on their size, on the number of black-holes, and on the number of available entities. These 
experiments confirm the theoretical analysis of the proposed strategies and clearly show, as expected, that parallel-scout is 
always by far the best exploration strategy in practice.

1.3. Outline

In Section 2, we introduce definitions and notation needed for the formalization of the Explore and Repair problem with 
radius r. In Section 3, we provide results on the complexity of the problem. In Section 4, we propose different exploration 
algorithms for both the unbounded and the bounded case of k, when r ≤ 1, and analyze their complexity and correctness. In 
Section 5, we compare the behavior of the proposed algorithms for the bounded case of k by means of extended experiments 
on different scenarios. In Section 6, we provide some hints on how to extend the proposed strategies to the case of r > 1. 
Finally, in Section 7, we conclude the paper with some possible future research directions.

2. Definitions and notation

We represent the exploration area as an undirected graph G = (V , E) where V is a finite set of nodes and E is a finite 
set of edges. An edge in E between two nodes u, v ∈ V is denoted as {u, v}. Given v ∈ V , N(v) denotes the set of neighbors 
of v in G , and deg(v) = |N(v)| denotes the degree of v . A path P in G between nodes u and v is denoted as P = (u, . . . , v). 
The length of P , denoted as l(P ) is equal to the number of edges in P . A shortest path between nodes u and v is a path 
from u to v with the minimum length. The distance d(u, v) from u to v is the length of a shortest path from u to v . The 
eccentricity ecc(v) of a node v is the maximum distance between v and any other node in G . The diameter D of G is the 
maximum distance between two nodes in G , i.e. D = max

v∈G
{ecc(v)}. By Kmax, we denote the maximum clique contained in G . 

Given G and a source node s ∈ V , a Breadth First Search (BFS) tree of G , denoted from now on as T = (V T , ET ), is the result 
of a Breadth First Search algorithm on G , starting at s. Given T and a node v of T other than the source s, the parent of 
v , denoted as parent(v), is the neighbor of v belonging to the path P = (v, . . . , s) in T from v to the source s. We assume 
parent(s) = s, so every node has a unique parent in T . The set of children of a node v in T is denoted by children(v), and 
contains the neighbors of v in T with the exception of parent(v). The level of v in T , denoted by �(v), equals the distance 
d(s, v) between s and v . A given tree is ordered if and only if an ordering is specified for the children of each node.

We study the Explore and Repair problem of [16] with radius r (r-ER problem from now on), which is defined as follows. 
We are given:

• An undirected graph G = (V , E), with n nodes and m edges.
• A set of 0 < b ≤ n − 1 black-holes, each of them being posed at a different node of G . Parameter b, and the locations of the 

black-holes are unknown.
• A specific node s ∈ V , referred to as the home-base of G , which is assumed to be always safe, that is, entities in s cannot 

be destroyed by black-holes.
• A set of k entities, numbered from 1 to k (the entities’ identifiers), initially placed at s. Feasibility constraint requires 

k ≥ b.
• A parameter r ∈ N, named radius, which represents the maximum distance (in the number of edges) from a black-hole 

at which an entity is affected by such a black-hole.

The goal is to define an exploration strategy that exploits the k entities, which synchronously move from s through G by 
traversing one edge per time step, with the goal of repairing all the black holes of G . If an entity is at the beginning of 
the current step at a node v , then its next move and its next state are determined by the exploration algorithm based on 
the topology of the network, the entity’s identity, the entity’s state (the state of its memory), the states of all other entities 
which are at the same time step at node v . We consider the general case where the repair of a black-hole affects also its 
neighborhood within distance r. The exploration strategy has to satisfy the following rules:

• If an entity enters in a black-hole residing at node v , then it is destroyed while repairing the black-hole. We assume 
that the repair of a node by an entity is instantaneous.

• If several entities enter in the same black-hole concurrently, then they are all destroyed and the black-hole is repaired.
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• If an entity enters in a node where initially there was a black-hole that subsequently has been repaired, then the entity 
does not notice any differences. In fact, after the repair, the node acts normally and other entities can pass through it 
as if the black-hole never existed.

• If an entity enters in a black-hole residing at node v , then all entities not in s within distance r from v are destroyed 
during the repair of such a black-hole.

• Entities can communicate only when they meet at a common node of G , i.e. they can access the states of all other 
entities currently at the same node.

During the exploration, entities may decrease in number as some of them can enter in black-holes. On the one hand, 
since it is assumed that k ≥ b, entities suffice to repair all the black-holes. On the other hand, while an entity is acting to 
repair a black-hole, it is a must to avoid that other entities get involved (in particular if k = b).

An exploration strategy is correct if it ensures to repair all the b black-holes in a network by means of k ≥ b entities, 
within a finite number of time steps, for any possible placements of the black-holes. It is optimal if it requires the minimum 
number of time steps among all possible correct strategies. The definition of the r-ER problem can be summarized as fol-
lows.

r-ER problem

Input: An undirected graph G = (V , E) with black-holes, a home-base node s ∈ V where a set of k > 0 ordered entities is 
initially placed, a radius r ≥ 0.

Goal: A correct exploration strategy performed by the k entities which minimizes the overall number of synchronous 
time steps.

3. Complexity results

In this section, we first show that the r-ER problem is NP-hard even for b = k = 1. Then, we consider the case of r = 0
and show that a simple variation of the strategy proposed in [16] can be applied to give an asymptotically optimal solution. 
Finally, we provide a general lower bound for the case of r > 0.

Theorem 3.1. The r-ER problem is NP-hard for b = 1 and k = 1.

Proof. It is enough to observe that even the fastest way to explore a graph in order to detect where the unique black-hole 
resides must involve all the nodes of the input graph G . Hence, n − 1 time steps are required for the full exploration by 
means of the unique entity. This corresponds to the problem of finding a Hamiltonian Path in G , if possible. Since the 
Hamiltonian Path problem is known to be NP-complete [20], the claim holds also for the r-ER problem. �

The r-ER problem is subject to a simple lower bound concerning the time steps required by any exploration algorithm 
with k ≥ b. In fact, the input instance might need an entity to move from the home-base s to the farthest possible node 
whose distance from s is the diameter D of G . Moreover, if k entities are available, then each of them can explore a portion 
of the graph equal to n

k nodes, concurrently. The next lemma follows.

Lemma 3.2. Any correct exploration strategy for the r-ER problem requires �(n
k + D) time steps.

3.1. Case r = 0

When r = 0 the r-ER problem is very similar to that presented in [16]. The only differences are the following: we relax 
the constraint k ≥ 2b to k ≥ b; we need to avoid that more than one entity at the same time enters in a black-hole as 
otherwise all of them would be destroyed. As lower bound, the one provided for the general case by Lemma 3.2 holds. As 
upper bound for the case k ≥ 2b, we can exploit the solution proposed in [16] with a slight modification. Assume a bunch 
of entities has to move from a node u to a node v concurrently (in one time step). The same movement can be obtained 
in two time steps as follows: first move only one entity (say the one with the smallest identifier) from u to v; then, in the 
subsequent time step, move all the remaining entities from u to v , while the first entity, if survived, waits for them at v . In 
this way, if node v is occupied by a black-hole, only one entity is affected. The case where a node is entered concurrently 
from different neighbors cannot occur. In fact, all moves of the algorithm in [16] are performed on the edges of a fixed 
spanning tree. Therefore, a black-hole can be entered only through one edge (the one leading to its parent). Hence, we can 
state the next lemma by simply exploiting the exploration algorithm proposed in [16] that holds for k ≥ 2b, with the only 
modification of applying the considerations given above.

Lemma 3.3. If n ≥ k ≥ 2b, the 0-ER problem can be solved in O (n
k + log f

log log f D) time steps, where f = min{n
k , n

D }.

More general upper bounds holding for any k ≥ b will be discussed in Section 4.
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3.2. Case r > 0

In general, when r > 0, the exploration strategy of [16] enriched as described in Section 3.1 is no longer sufficient to 
guarantee that all black-holes of the graph will be repaired. In fact, when the first entity moves from a node u to a node v , 
if v is a black-hole, then this entity and all the entities waiting on u will die. Hence, we need to develop a completely new 
strategy for the case of r > 0. The following lemma provides a lower bound on the number of time steps required.

Lemma 3.4. Any correct exploration strategy for the r-ER problem requires �(n
k + D + r min{D, b} + |Kmax|) time steps, for any 

r > 0 and b ≤ k < n − 1.

Proof. The term �(n
k + D) comes from Lemma 3.2. The other terms are obtained as follows.

Assume G contains a simple path P with p black holes and the home-base s as one end-point. Since each black-hole 
affects nodes at distance at most r, once an entity enters a black-hole v on P , the next entity e that keeps on exploring P
must reside at distance greater than r from v . This means that e can continue the exploration of P after r + 1 steps, and 
this happens for each black-hole on P but the first. Hence, �(P ) + (r + 1)(p − 1) − r(r+1)

2 time steps are required. The last 
term is due to the fact that, for each node of the path at distance h ≤ r + 1 from s, h steps are needed instead of r + 1. If 
�(P ) = D and p = b then �(D + r(min{D, b})) time steps are required for exploring G .

Furthermore, let us assume G contains a clique K p of p nodes, one of which is the home-base s. As parameter b is 
unknown, any exploration algorithm must work also for the case k = b. Since each entity can repair at most one black-hole, 
if the repairing of one black-hole causes the destruction of more than one entity, then there will not remain enough entities 
to repair all the black-holes. In order to find out all the b black-holes, any algorithm can allow at most one entity to reside 
in K p apart from those in s. In fact, since r > 0, it is sufficient that such an entity enters in a black-hole to destroy all the 
other entities in K p but not in s. Since there is no knowledge on the possible locations where the black-holes reside, any 
algorithm can allow to explore K p at most one node per time step, until all the clique gets repaired, thus requiring at least 
p − 1 time steps for K p . It follows that �(|Kmax|) time steps are required for exploring the maximum clique contained in G .

The hypothesis on k < n − 1 is required for the case in which G is a clique of n nodes. In such a case, in fact, if n − 1
entities are available, then they can move concurrently from s to all the other nodes of G , hence repairing all the black-holes 
in one time step. �

The above lemma reveals that �(n) time steps are required if the number of available entities is constant or D = �(n), 
or |Kmax| = �(n). This implies that in the two limit cases of G being a path or a complete graph, �(n) time steps are 
required. In general, it is not so clear how to spread entities over G in order to exploit possible concurrency. In the next 
section, we tackle the problem for r ≤ 1 and provide some efficient exploration strategies. Some hints on how to extend the 
proposed strategies to the case of r > 1 will be given in Section 6.

4. Exploration algorithms for r ≤ 1

In this section, we propose various exploration strategies for r ≤ 1, and show their complexity and correctness analysis. In 
particular, we first propose an approach for unbounded k (an infinite number of entities is available) which tries to exploit 
potential parallelism among the entities in order to save execution time. As we will see, this approach is not suitable for 
the case of bounded k (a finite number of entities is available), for which we propose three different alternative exploration 
strategies and analyze their performance with respect to the lower bound.

4.1. Unbounded k

Our first approach is based on the observation that more entities may potentially explore different parts of the input 
graph G , concurrently. This can be done as long as the graph is opportunely divided into “disconnected” parts. In fact, if an 
entity gets destroyed by means of a black-hole, it might be required that this event does not affect other entities on the 
graph. We describe a basic greedy algorithm, called basic, that works when a sufficiently large number of entities k ≥ n − 1
is available.

The basic algorithm works in stages as follows. At each stage, some entities starting from s move to enlarge the borders 
of a Safe-Zone. This is a connected subgraph of G containing s, whose nodes have been explored and hence repaired from 
possible black-holes. At the first stage, the safe-zone contains only node s. Then, N(s) entities move concurrently to make 
safe all the neighbors of s in G , which will be included in the safe-zone. It may happen that some entities survive for the 
second stage, but since the number of entities is sufficiently large, we can ignore them. At the second stage, the nodes to 
explore are those neighboring to nodes in the safe-zone but not belonging to it. Keeping working this way, all the graph 
will be made safe, eventually. The basic strategy solves the 1-ER problem in O (D2) time steps. In fact, at each stage, ∑

x∈SafeZone |N(x)\SafeZone| new entities are sent from s to explore as much unvisited nodes as possible, where unvisited 
nodes are nodes that may contain black-holes. Since the number of entities k is assumed to be at least n − 1, all the nodes 
will be explored, eventually. The number of stages required by the algorithm equals ecc(s), and each stage i requires i
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time steps as the explored nodes are at distance i from s. In total, the number of time steps required by basic is hence ∑ecc(s)
i=1 i = ecc(s)(ecc(s) − 1)/2 = O (D2).
The above result is not much satisfactory if compared to the lower bound. Actually, this comes from the fact that at each 

stage, entities reach the border of the safe-zone always starting from s. A simple variant of basic, named bfs-basic, can be 
provided requiring an optimal number of time steps. It is based on the observation that, since each entity knows the input 
graph G , and G is explored in a breadth first way by basic, then a BFS tree T of G can be pre-computed and used by the 
entities for the exploration as follows. Assume entities are at stage i > 2, exploring the i-th level of T . Given a node v of 
the i-th level, the number of entities required to explore the subtree T v of T rooted at v is known and is equal to |T v |. 
Hence, bfs-basic during the last step of stage i − 1 can preventively move |T v | entities to parent(v) in case r = 0 or to the 
ancestor of v in T at distance two from v in case r = 1. By observing that all entities necessary to explore the unexplored 
subtrees are at distance at most two from the root of each subtree, it follows that each stage of bfs-basic requires at most 
two time steps. The overall cost is hence upper bounded by 2D , and the following lemma holds.

Lemma 4.1. Given a graph G of n nodes and k ≥ n − 1 entities, bfs-basic takes O (D) time steps.

Strategy bfs-basic relies on the assumption to have a number of entities k at least equal to n − 1. If this in not the case, 
then a more accurate strategy is required. In particular, a generic algorithm should work as long as k ≥ b. The worst possible 
scenario is certainly the case of k = b. In this case, when an entity meets a black-hole, an exploration algorithm must 
guarantee that no other entity is affected as otherwise there will not remain enough entities to terminate the exploration. 
It is worth noting that since parameter b is unknown, any strategy must be designed to work also for the limit case k = b.

4.2. Bounded k

In what follows, we first propose two exploration strategies for the case k ≥ b, named snake and scout, and show their 
complexity and correctness. Such strategies do not require any parallel movements by the available entities. Then, we 
introduce a variant of the scout strategy named parallel-scout which is able to take advantage of parallelism.

In all strategies, we assume that an ordered BFS tree T of the input graph G , rooted at the home-base s, has been 
pre-computed and that all the entities know it. Given an edge {u, v} in T , such that the level of u is smaller than the level 
of v , then an entity is said to move in the down (up, respectively) direction if it moves from u to v (v to u, respectively).

Given a BFS tree T of a graph G with n nodes, we call exploration walk of T the path obtained by visiting T by a Depth 
First Search algorithm. Clearly, this visit traverses each edge of the ordered tree T twice, once in the down direction and 
once in the up direction. Then, it follows that the exploration walk of T has length equal to 2(n − 1).

The strategies we propose require that entities move along the edges of the exploration walk of T by giving priority to 
the visit (and possibly to the repair) of unvisited nodes, i.e. nodes that are not safe, and by avoiding to visit nodes that have 
already been visited. For implementing this behavior, entities have to keep trace of which part of T has already been made 
safe by the exploration strategy at hand. To this aim, we define, at each time step i, the unvisited part of T , denoted by 
Ui = (V Ui

, EUi
), which is a tree obtained from T as follows: at the beginning, U equals T , i.e. U0 ≡ T . At the generic time 

i, EUi
is obtained by removing from EU0

edges of the following types:

• {x, y} : �(x) < �(y), there exists a time instant 0 < j < i such that y is a leaf node of U j , and edge {x, y} has been 
traversed both down and up by an entity;

• {x, y} : �(x) < �(y), there exists a time instant 0 < j < i such that y is a leaf node of U j , and a black-hole on y was 
repaired (and hence edge {x, y} has been traversed down by a single entity).

Trivially, every edge removal, as described above, induces a zero degree node, which is also removed from the unvisited 
tree.

Since the unvisited tree changes as the exploration proceeds, each entity e maintains, at every time step i, a local copy 
of the unvisited tree, denoted by U e

i and updates it, in order to perform the correct exploration strategy, every time either 
it detects one of the events that modify U or it meets an entity with a more recent copy of U . In particular, if some entities 
meet at node x at time t , then each of them updates its own unvisited tree with that known by the entity with the smallest 
id among those residing at x. This update policy follows from the fact that, in our strategies, when a bunch of entities reside 
at a node and has to agree about who leaves the node first, the entity with the smallest id is chosen. Hence, the entity 
with the smallest id always carries the most recent version of U , as it is the first to detect edges to be removed from T , as 
described above. More details about this issue will be given within the descriptions of the proposed strategies.

For the sake of readability, we introduce the following notation that characterizes nodes of the graph and that is used 
within the pseudo-code. Given a node x in G and a time i:

• home(x) is a boolean value which is true if and only if x is the home-base, i.e. the root of T (and the root of every U , 
consequently);

• min(x) is the smallest id among entities residing at x;
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Fig. 1. Pseudo-code of procedure REGULAR.

• parent(x) is the parent of x in T ;
• leaf (x) is a boolean value which is true if and only if x is a leaf of U min(x)

i at time i;
• next(x) is the first child of node x in the ordered tree U min(x)

i .

Moreover, we denote by time the positive integer representing the number of elapsed time steps. Every entity is aware 
of the synchronous increase of time and uses it to determine the action to be performed. In our strategies, we assume 
that in one time step an entity can traverse at most one edge. Any other computation performed by the entity is executed 
instantaneously.

4.2.1. The snake strategy
In this strategy, we distinguish three different types of entities: regular, head, and backward. The pseudo-code of the 

procedures executed by the entities for the case r = 1 is given in Figs. 1, 2, and 3. The type of each entity is determined by 
the procedure it executes. An example of execution is given in Fig. 4 and will be discussed later. Clearly, the strategy can be 
simplified to also work for the case r = 0.

Given a node x in G , we define the following variables which are used by entities during the exploration:

• H(x) is a boolean value which is true if and only if the head is residing at x;
• R(x) (B(x), respectively) is a non-negative integer equal to the number of regular (backward, respectively) entities re-

siding at x.

Note that, variables H(x), R(x) and B(x) can be easily computed by an entity while entering in or residing at node x.
At the beginning, all the entities are of regular type, reside in the home-base s, and execute REGULAR as first routine. 

Then, on the basis of their identifiers, a head entity is elected. In particular, an easy way of computing the regular entity 
that has to turn its type to head, is that of choosing the entity with the smallest id (see Line 14 of Fig. 1). By now, no 
backward entity exists and U e

0 equals T , for every entity e at s. The snake strategy allows at each time step, the existence 
of at most one head entity. The entities move synchronously through the exploration walk starting from s, according to their 
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Fig. 2. Pseudo-code of procedure HEAD.

Fig. 3. Pseudo-code of procedure BACKWARD.

type. In general, as the strategy name suggests, the entities proceed in line in a snake-like visit as follows: the head entity 
starts moving from s, edge by edge in the down direction through the exploration walk (see Line 10 of Fig. 2), and every 
r + 1 time steps (see Line 17 of Fig. 1) a regular entity leaves s along the same walk as the head (see Line 22 of Fig. 1). As 
well as in the head election step, the regular entity that has to leave s can be decided by choosing that with the smallest 
id among those residing at s (see Line 21 of Fig. 1). This implies that there are always r empty nodes between each pair of 
consecutive entities composing the snake, when they are moving in the down direction. Usually, entities do not meet, except 
for the following cases.

1. If the head visits, at step t , a leaf node x of T without entering in a black-hole, then it is back to parent(x) at step t + 1
where it meets the first regular entity following it. This regular entity changes its type to backward (see Line 4 of Fig. 1) 
and updates its own version of U by replacing it with that carried by the head (see Line 6 of Fig. 2).
In such a case, if node x has no children in U , then entities start traversing the exploration walk in the up direction 
one edge per time step (Line 8 of Fig. 2 and Line 5 of Fig. 3). During this traversing the entities can meet other regular
entities which turn to backward type as well and join this group (see Line 4 of Fig. 1).
The visit continues until the entities reach a node v of U with at least one child (that is v is unvisited). At this point, 
the exploration continues as follows: the head visits the first child of v (Line 10 of Fig. 2), while the backward entities 
move together to parent(v) in the up direction (Line 5 of Fig. 3), where they meet a regular entity (if any), and stay 
there. In this case, the regular entity turns its type to backward (see Line 27 of Fig. 1). Now, every two time steps, a 
regular entity (if any) meets the backward entities group and is made aware of the updated U , making the entities able 
to follow the head according to the knowledge of U . In particular, this is done as follows: every two time steps regular
entities entering the node turn into backward entities (Line 27 of Fig. 1) while a backward entity, made aware of the 
most recent version of U , turns its type into regular (see Line 9 of Fig. 3), leaves the node, follows the head entity and 
continues the visit as usual (see Line 10 of Fig. 3).
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Fig. 4. Four consecutive snapshots during the execution of the snake strategy for r = 1. Entities are represented by squares of types head (H), regular (R), and 
backward (B). The bold node s is the safe home-base. Black nodes represent black-holes. Solid edges represent BFS tree edges, while dotted edges represent 
graph edges. Nodes rounded by the dashed line are those affected by the black-hole repair.

2. A regular entity visits a leaf node of U without entering in a black-hole. This can happen if the head entity and possibly 
some regular entities have entered in black-holes. In this case, the leading regular entity immediately changes its type 
to head and the visit proceeds as previously described (see Line 14 of Fig. 1).

3. The surviving entities (if any) have gone throughout all the exploration walk and are back in s, that is, the exploration 
has terminated (see Line 2 of Figs. 2, 1 and 3).

In Fig. 4(a), it is shown a possible situation with r = 1 where the head has reached a leaf of T . In the subsequent step, 
shown in Fig. 4(b), the head has made an up move and has met a regular entity which has become of backward type. 
Moreover, one further entity has moved from s along the exploration walk. In Fig. 4(c), the head and the backward entities 
have made an up move since there was no other child to explore from the situation of Fig. 4(b). There, they also meet the 
other regular entity on the exploration walk, which now has become of backward type. In Fig. 4(d), the head has died in the 
black-hole, while the other entities have moved up in the exploration walk in order to maintain their distance greater than 
r = 1 from the head.

Lemma 4.2. The snake strategy takes 2(n − 1) time steps if b = 0, and 2(n − 1) + (r + 1)(b − 1) time steps if b > 0, for r ≤ 1.

Proof. If b = 0, then the head requires exactly 2(n − 1) synchronous steps to traverse the 2(n − 1) edges of the exploration 
walk. If b > 0, then the leading entity of the snake can be either a head or a regular entity. Every time the leading entity 
enters in a black-hole, r + 1 synchronous steps are required to have the new leading entity in the same position where its 
predecessor died, and hence to keep continuing with the traversing of the exploration walk. Therefore, the snake strategy for 
r = 0 (r = 1, resp.) requires 2(n − 1) + b − 1 (2(n − 1) + 2(b − 1), resp.) overall steps. �
4.2.2. The scout strategy

In this strategy, we distinguish two different types of entities: scout and team. The pseudo-code of the procedures exe-
cuted by the entities for the case r = 1 is given in Figs. 5 and 6. We remind that the type of each entity is determined by 
the procedure it executes. An example of execution is given in Fig. 7 and will be discussed later. Clearly, the strategy can be 
simplified to also work for the case r = 0.

In order to define the procedures we introduce a set of variables that encode specific events that entities can detect 
while performing the exploration. In particular, the variables are as follows:

• SC(x) is a boolean value which is true if and only if a scout entity is residing at x;
• TM(x) is a non-negative integer giving the number of team entities residing at node x.

Note that, variables SC(x) and TM(x), can be easily computed by an entity while entering in or residing at node x.
At the beginning, all the entities are of team type, reside in s, and execute TEAM as first routine. Then, on the basis of 

the identifiers, a scout entity is elected. By now, U e
0 equals T , for every entity e at s. The scout strategy allows at each time 

step, the existence of at most one scout entity. The entities move synchronously through the exploration walk starting from 
s, according to their type as follows. An entity of scout type traverses r + 1 edges in the down direction (see Line 10 of 
Fig. 5) and one edge in the up direction (see Line 8 of Fig. 5), i.e. it performs a scout round. An entity of team type waits 
r + 1 synchronous steps and then traverses an edge in the down direction (see Line 16 of Fig. 6), i.e. it performs a team 
round.

Usually, at the r + 2-th time step of a round, the scout and the team entities meet at a node v of G and the scout
communicates to the team ones the updated unvisited tree (see Line 6 of Fig. 5). This meeting implies that the scout has 
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Fig. 5. Pseudo-code of procedure SCOUT.

Fig. 6. Pseudo-code of procedure TEAM.

visited only safe nodes and the exploration can continue from v . Note that, if the scout has visited a leaf node of the 
unvisited tree, this can be removed from U itself before sharing it with other entities (see Line 5 of Fig. 5).

Otherwise, if the team entities do not meet the scout at node v , this means that the scout has entered in a black-hole 
and has died by repairing it. At this point, a new scout is elected among the team entities in v and the exploration continues 
from v (see Line 11 of Fig. 6).

The only exception to the above behavior is when the scout visits a child node v of s. In this case, the scout and the 
team entities meet always at the second step of a round. However, since all entities know how T must be explored, the 
team entities can infer that the scout can come back after only two synchronous steps, by checking whether leaf (next(x)) is 
true or not (see Line 7 of Fig. 6). Therefore, they can remove next(x) from U (see Line 9 of Fig. 6) and the exploration can 
continue as usual.

When the team entities reach the parent node of a leaf in T , in two time steps the leaf is explored by the scout if r = 0. 
While if r = 1, all the entities already know that the leaf has been already visited. In both cases, all entities can now start 
traversing the exploration walk in the up direction, an edge per step, until they enter in a node v of T with at least one 
unvisited child, or they are back to s. In the first case, the scout (elected now if needed) moves to the first unvisited child 
of v and the team entities move to the parent node of v if r = 1 (see Line 13 of Fig. 6). At this point, the entities start over 
with their normal behavior. In the second case, the exploration keeps continuing on an unexplored child of s, if any. If all 
the children of s have been already explored then the exploration is terminated (see Lines 2 of Figs. 5 and 6).

Fig. 7 describes the behavior of the scout strategy in a scenario similar to that of Fig. 4 for the snake strategy with r = 1. 
In detail, Fig. 7(a) shows the situation where the scout entity has explored a branch of a node and is going to inform the 
team entities. Fig. 7(b) shows the time when scout and team entities meet. From there, the scout goes to explore the other 
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Fig. 7. Three consecutive snapshots during the execution of the scout strategy for r = 1. Entities are represented by squares of types scout (S) and team (T). 
The bold node s is the safe home-base. Black nodes represent black-holes. Solid edges represent BFS tree edges, while dotted edges represent graph edges. 
Nodes rounded by the dashed line are those affected by the black-hole repair.

branch of the explored node, while the team entities move up to make them safe from possible black-holes found by scout. 
This occurs in the subsequent step shown in Fig. 7(c).

Let us denote as F the set of leaves in T , as I = V \ {F ∪ {s}}, and as degT (v) the degree of a node v in T . The following 
lemma can be stated.

Lemma 4.3. The scout strategy takes 2(n − 1) + (r + 1)|I| time steps, for r ≤ 1.

Proof. In general, only the scout entity can enter in black-holes while the team is always maintained safe along its walk 
without additional steps.

When r = 1, each node is made safe within three time steps in order to let know the team entities about it. Moreover, 
the team entities make one further step for each reached node in the up direction. This means that in general, any node 
different from the home-base s requires four time steps by the whole process. Exceptions are represented by leaves that 
are never reached by the team entities. Moreover, the children of the home-base s are made safe by the scout in two steps 
each, making known also the team entities. Finally, whenever the team and the scout walk together in the up direction 
until reaching a node x with an unexplored child y, the team goes towards the parent of x while the scout explores y. In 
the subsequent step, both the team entities and the scout (if survived) meet at x, hence y requires only two steps to be 
explored. Note that, for every x ∈ I , there can be at most degT (x) − 2 unexplored children.

By summing up overall the contributions, the scout strategy requires a number of time steps equal to:

4(n − 1) − |F | − degT (s) −
∑

x∈I

(degT (x) − 2)

= 4(n − 1) −
∑

x∈F

degT (x) − degT (s) −
∑

x∈I

degT (x) +
∑

x∈I

2

= 4(n − 1) −
∑

x∈V

degT (x) + 2|I| = 2(n − 1) + 2|I|.

When r = 0, the behavior is quite similar but for the fact that each node is made safe in two time steps. Moreover, the 
team entities make one further step for each reached node in the up direction. Exceptions are represented by leaves that are 
never reached by the team entities. By summing up overall the contributions, the scout strategy requires a number of time 
steps equal to 2(n − 1) + |I|. �
4.2.3. The parallel-scout strategy

The snake and the scout strategies have been shown to require a number of steps proportional to the number of nodes 
of the input graph. Although this is an asymptotically optimal behavior with respect to many practical cases as described 
with the lower bound, none of them exploit possible parallel explorations. The performance (the required number of steps) 
of the scout strategy is independent of b, while that of the snake strategy is independent of the input graph topology, and 
hence on the structure of T . For instance, when r = 1 and the input graph is a path with one extreme as the home-base, 
the scout strategy requires 2(n − 1) + 2|I| = 4(n − 1) − 2 steps, and this might be close to the double of what is required 
by the snake strategy. Nevertheless, the scout strategy reveals an important peculiarity that may help in introducing some 
parallel moves, hence reducing the number of required time steps. In fact, each time the scout entity explores one new 
node, it starts moving after having met all the other entities. In this way, all the entities are always aware of the current 
part of the graph already explored.
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Fig. 8. Four consecutive snapshots during the execution of the parallel-scout strategy for r = 1. Entities are represented by squares of types scout (S) and 
team (T). The bold node s is the safe home-base. Black nodes represent black-holes. Solid edges represent BFS tree edges, while dotted edges represent 
graph edges. Nodes rounded by the dashed line are those affected by the black-hole repair.

In the general step of the scout strategy, when r = 1 and the scout entity e wants to explore a node z, it moves from 
node x, where also all the other entities reside, to a neighbor y which is the parent of z in the BFS tree T . Clearly, node y
must have been made safe in some previous step. From y, e can move towards z without damaging any other entity since 
they are all waiting at distance two in x. If y has many children, then all the ones which are not directly connected to z in 
G could be explored by other entities in parallel with e without causing multiple destructions if a black-hole is met.

Similarly, when r = 0 and the scout entity e wants to explore a node z, it moves from the parent of z, say y, where also 
all the other entities reside, to z. If y has many children, then all them could be explored by other entities in parallel with 
e without causing multiple destructions if a black-hole is met.

In order to implement this variant of the scout strategy called parallel-scout, we need to introduce the following further 
step: in the general step described above for r = 1, the entities compute an independent set in the subgraph of G induced by 
the children of node y in T ; in the general step for r = 0, all the children of node y in T are considered as an independent 
set.

Then, if enough entities are available, all the nodes belonging to the computed independent set can be explored concur-
rently in one time step (see Fig. 8(a) for the case r = 1), and the results made known to all the entities in the subsequent 
step when they all meet again if survived (see Fig. 8(b)). If not survived (see Fig. 8(c)), still all the other entities can imply 
that some black-holes have been repaired and that the computed independent set is now safe (see Fig. 8(d)). The acquired 
information will be used in the subsequent steps of the exploration in order to move safely over nodes already explored, 
and hence saving in the number of required time steps.

Of course the parallel-scout strategy does not give advantages in terms of asymptotic bounds with respect to scout. 
However, it can give a practical gain with respect to the basic scout strategy in terms of the effective number of time steps 
needed, which can make parallel-scout very competitive in practice. We will give experimental evidence of all the above 
observations in Section 5.

4.2.4. Correctness
In this section, we provide the correctness proof of the proposed strategies.

Lemma 4.4. In all snake, scout, and parallel-scout strategies, when r ≤ 1, if an entity enters in a black-hole, then it does not affect 
any other entity.

Proof. First of all notice that in each of the three strategies, an entity can enter in a black-hole only when moving in the 
down direction. In fact, when an entity moves in the up direction, it traverses and edge which has been already traversed, 
and hence possible black-holes have been already repaired.

In the snake and the scout strategies, there is always a single entity leading the exploration. For the parallel-scout strategy, 
there might be more than one entity leading the exploration, but by definition they visit different nodes composing an 
independent set, that is their distance is greater than r. Only leading entities can enter in black-holes, while the other 
entities follow the leading ones at distance greater than r in the exploration walk.

As the exploration walk is induced by the pre-computed BFS tree T , then the distance in G between the leading entities 
and the closest entity in all strategies remains equal to r + 1 by construction, if the leading entity is moving down. The only 
exception to this argument occurs for r = 1 when a leading entity finds a black-hole in a child of the home-base s. However, 
in such a case all the entities in s are safe by definition. �
Theorem 4.5. The snake, the scout, and the parallel-scout strategies are correct.
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Proof. By Lemma 4.4, the repair of one black-hole affects only one leading entity for each strategy. This implies that k = b
entities are sufficient to repair all the black-holes.

Entities move along the exploration walk which contains all the nodes of G . By Lemma 4.4, if k > b then k − b entities 
visit the entire exploration walk and come back to the home-base. Whereas, if k = b then the exploration strategy ends with 
the repair of the last black-hole by means of the last surviving entity. In both cases, all the black-holes are repaired and the 
exploration strategy is correct. �
5. Experiments

In this section we present the results of our experimental study, which has been performed on a workstation equipped 
with a Quad-core 3.60 GHz Intel Xeon X5687 processor with 24 GB of main memory. The programs have been compiled 
with GNU g++ compiler 4.4.3 under Linux (Kernel 2.6.32). The experiments consist of simulations within the OMNeT++ 4.0p1 
environment [21], a well known framework for testing networked/distributed systems.

Executed tests We performed simulations for the two different settings of r = 0 and r = 1. For each setting, we modeled 
the network and the entities by means of OMNeT++ modules and then implemented the snake, scout and parallel-scout ex-
ploration strategies, within the modules. Concerning the heuristic of parallel-scout in the r = 1 setting, we implemented the 
(� + 2)/3-approximation algorithm of [22] for the computation of the required independent set, where � is the maximum 
degree of the nodes in the network. For each instance of the problem, we simulated each exploration strategy and measured 
the number of time steps required to explore and repair a network. In particular, we included within the general simulator 
specific modules to verify that the strategies correctly explore the network, i.e. to guarantee that at most one entity dies 
every time a black hole is repaired.

As input to our simulations we used both real-world and artificial instances of the problem, with different number of 
nodes, in order to test how the strategies scale with respect to the size of the network. In detail, we used real-world power-
law topologies of the CAIDA dataset [23], which are very sparse, random power-law graphs generated by the Barabási–Albert
algorithm [24], which are slightly denser than the CAIDA ones, and Erdős–Rényi random graphs [25] with a number of edges 
equal to 20% that of the complete graph with the same number of nodes, which makes these graphs denser than the CAIDA 
and Barabási–Albert ones. We used also planar graphs generated by Boltzmann samplers [26], which have density similar to 
CAIDA graphs.

Concerning CAIDA instances, we parsed the files provided by CAIDA to obtain a weighted undirected graph, which con-
sists of almost 35 000 nodes. We extracted seven different subgraphs of this graph, with n ranging from 50 to 1250, with 
a step of 200. Concerning planar graphs, we used the Boltzmann samplers to generate a 30 000 nodes planar graph. Then, 
we extracted seven different subgraphs of this graph as follows: for each fixed value x between 50 and 1250, we run a 
breadth first search from a node chosen at random and by stopping the search when x nodes have been touched; then, we 
considered the subgraph induced by the visited nodes. We generated random graphs of the same sizes by using also the 
Barabási–Albert and the Erdős–Rényi algorithms.

In order to evaluate how the proposed algorithms behave with respect to both the number of available entities and the 
number of black holes residing within the network, we tested the algorithms on such instances with different values of b
and k. In particular, for each graph with n nodes, we have tested the strategies within different scenarios, given by different 
combinations of b and k that are always kept below n.

On the one side, regarding b, we chose:

• b ranging from 5%n to 50%n with a step of 5%n. The aim of this scenario is to evaluate how the strategies behave when 
the number of black holes within the network is quite high with respect to the size of the network itself;

• b ∈ {ln(n), ln2(n), 
√

n}. The aim of this scenario is to evaluate the behavior of the algorithms when the number of black 
holes within the network is small with respect to the size of the network itself.

On the other side, concerning k, we chose:

• k = b + 3. This choice of k is done to compare the strategies in a setting where at least one entity returns to the 
home-base after the network has been made safe, and to guarantee that in the scout strategy at least the scout and two 
team entities survive;

• k ∈ {ln3(n), n − 1}. This choice of k is done to compare the strategies in a setting where the number of available entities 
exceeds by far the number of black holes of the network. This experimental setup represents the worst possible case 
for strategies that do not use parallelism like snake and scout.

For each possible test instance, given by a combination of the above inputs, we choose the position of the b black holes 
at random, we perform 5 different experiments, and we report average values.

Analysis The results of our experiments are reported in Figs. 9–11. In details, we show the number of time steps required 
by the three algorithms in the case of Erdős–Rényi graphs, Barabási–Albert graphs, CAIDA graphs, and planar graphs.
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Fig. 9. Number of time steps required by scout, snake and parallel-scout on Erdős–Rényi graphs (a), Barabási–Albert graphs (b), CAIDA graphs (c) and planar 
graphs (d). The x-axis represents the number of nodes n ranging from 50 to 1250, with step 200. The number of black holes b is fixed to ln(n) while k
equals b + 3.

For each instance of the 1-ER problem, we report also the exact value of the lower bound of Lemma 3.4, which holds 
for every r > 0. According to the analysis in the proof of Lemma 3.4, the value of the lower bound is computed as 
max{n−1

k , ecc(s) + (r + 1) · (min{b, �(P )} − 1) + 2 · (|Kmax| − 1) − 1}, with P being the longest simple path in the input 
graph.

We show the results for the following scenarios:

• b = ln(n) with k = b + 3 (Fig. 9), and b = ln2(n) with k = ln3(n) (Fig. 10). The time steps required by the strategies and 
the lower bounds are presented as a function of the number of nodes n which ranges from 50 to 1250, with step 200;

• n = 1250 and k = n − 1 (Fig. 11). The results are shown as a function of the number of black holes b which ranges from 
5%n to 50%n with a step of 5%n.

Results for other combinations of n, b and k are omitted, as they are comparable to those of the above ones and lead to 
similar conclusions.

Our experiments clearly confirm the analysis of Section 3, that is: (i) the number of steps required by snake is exactly 
2(n − 1) + 2b, while that of scout is exactly 2(n − 1) + 2|I|; (ii) the number of steps required by all the strategies directly 
depends on n (see Figs. 9–10). However, the experiments show how the dependency on n of the time complexity faced 
by the parallel-scout strategy is drastically reduced with respect to scout and snake. Such a reduction is even larger as the 
density of the input graph increases. Concerning the number of steps required by scout it does not depend on b, whereas 
that required by snake grows linearly as a function of b (see Fig. 11).

Our experiments also show (see Fig. 10) that in the CAIDA graphs and in the planar graphs snake is better than scout, 
as |I| >> b; in the Barabási–Albert graphs snake is almost always better than scout, as in most of the cases |I| > b; in 
the Erdős–Rényi graphs scout is better than snake, as |I| < b. Given a fixed b, this graph-depending behavior is due to the 
structure of the BFS tree T , whose number of leafs grows with the density of the graph. The same behavior is somehow 
confirmed by Fig. 11, where we show that snake is better than scout until a certain value of b, after which scout outperforms 
snake. Such value of b linearly depends on |I| and it is around 35%n in the CAIDA instances and planar instances, around 
20%n in the Barabási–Albert instances, and around 5%n, in the denser Erdős–Rényi instances.

Finally, our experiments clearly show that parallel-scout is very effective in practice. In fact, its number of steps is always 
by far smaller than those required by scout and snake, as shown in Figs. 9–10, thus resulting in the best strategy in all the 
cases.
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Fig. 10. Number of time steps required by scout, snake and parallel-scout on Erdős–Rényi graphs (a), Barabási–Albert graphs (b), CAIDA graphs (c) and planar 
graphs (d). The x-axis represents the number of nodes n ranging from 50 to 1250, with step 200. The number of black holes b is fixed to ln2(n) while k
equals ln3(n).

Concerning the practical performance of the strategies with respect to the exact value of the lower bound, we distinguish 
two cases: (i) the dense Erdős–Rényi instances, and (ii) the sparser CAIDA, Barabási–Albert, and planar instances. In case (i) 
(see Figs. 9(a)–10(a) and 11(a)), the performance of the parallel-scout strategy is quite close to the lower bound, since in 
dense graphs the parallel moves of this strategy are quite effective. While, in case (ii) (see Figs. 9(b, c, d)–10(b, c, d) and 
11(b, c, d)) the gap between the performance of parallel-scout and the lower bound increases. This is due to the fact that 
the average degree of nodes in these instances is quite small. This is more evident in the planar graphs, where the average 
degree is at most 4. Clearly, this does not affect the validity of the proposed strategies with respect to the asymptotic lower 
bound.

Another evidence that is pointed out by our experiments is the relationship that exists between the exact value of the 
lower bound of Lemma 3.4 and the specific scenario given by a combination of n, b and k. On the one side, when k is 
small with respect to n, the lower bound is dominated by its first term ( n−1

k ). An example of this behavior is shown in 
Fig. 9, where b = ln(n) and k = b + 3. On the other side, when k is closer to n, the exact lower bound is dominated by the 
second term which is almost always a small constant. Example of this behavior are shown in Fig. 10, where b = ln2(n) and 
k = ln3(n), and in Fig. 11, where k = n − 1.

For the sake of completeness, we performed experiments also for instances of the 0-ER problem in similar scenarios. 
Along with the three strategies we compare the results with the exact value of the lower bound for general r, that is 
max{n−1

k , ecc(s)}. The results of our experiments in this case show similar behavior with respect to the case r = 1, and 
hence we omit them.

6. Implications for the case r > 1

In Section 4 we have proposed three different strategies to solve the r-ER problem when r ≤ 1 and the number k of 
entities is bounded. In what follows, we provide some hints on how to extend the proposed strategies to the case r > 1.

Regarding the snake strategy, an idea could be that of interleaving r empty nodes between two consecutive entities 
composing the “snake”. The exploration would still behave as described in Section 4, but at some time, the shape of the 
subsequent entities released could not necessarily look like a snake. In fact, the first entity follows the exploration walk. 
Any other entity must be kept at distance r + 1 from the position p of its predecessor, in such a way it is able to reach p
within r + 1 steps. In doing so, 2(n − 1) + 2rb steps would be required. However, every entity must be kept also at distance 
grater than r from any other entity already released. This is still realized by a “snake” if the input graph admits enough 
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Fig. 11. Number of time steps required by scout, snake and parallel-scout on Erdős–Rényi graphs (a), Barabási–Albert graphs (b), CAIDA graphs (c) and planar 
graphs (d). The x-axis represents the number of black-holes b ranging from 5%n to 50%n, with step 5%n. The number of nodes n is fixed to 1250 while k
equals n − 1.

space, otherwise different movements might be imposed to the entities. Since entities are synchronized and the exploration 
walk is known to every entity, it should be possible to impose the right movements to each entity accordingly, possibly 
with the side effect of increasing the number of steps required. This implies that the number of required time steps for the 
exploration would be greater than 2(n − 1) + 2rb.

Concerning the scout strategy and its parallel-scout variant, we can follow the proof of Lemma 4.3, and we obtain that, 
instead of three steps required by a general round of scout when r = 1, the strategy would require 	 3

2 (r + 1)
 time steps. 
This is obtained by letting move the scout entity r + 1 steps in the down direction, and then meet the team entities in the 
middle of the traversed path which requires further 	 1

2 (r + 1)
 steps. This implies that the team entities never reach leaves 
nor nodes at distance smaller than 	 1

2 (r + 1)
 from a leaf. Concerning all the nodes at distance d ≤ r from the home-base 
s, these are made safe by the scout in 	 3

2 (d + 1)
 steps making known also the team entities. Furthermore, whenever the 
team and the scout entities walk together in the up direction until reaching a node x with an unexplored child y, the 
team goes towards the parent of x at distance r + 1 from the scout, while the scout waits r time steps before exploring y. 
Subsequently, the team entities and the scout (if survived) meet at the middle node of their joining path as described above. 
Hence y requires 	 3

2 r
 steps to be explored.
Concerning the parallel-scout strategy, the independent set to compute in general is not among the children of a node, 

but among the nodes to be explored of the i-th level of T , i > 	 r+1
2 
, reachable from the current position of the entities. 

The set S to compute is a generalization of the classical independent set, called Distance-d Independent Set (see, e.g. [27]). 
This is such that for any pair of nodes u, v ∈ S , the distance between u and v is at least d. In our case, d must be set to 
r + 1.

7. Concluding remarks

In this paper, we have studied the problem of using k mobile entities to explore and make safe a graph with an unknown 
number b of black-holes. In particular, we have considered the scenario where the destruction of an entity by means of a 
black-hole also affects all the entities within a fixed range r.

We have shown that this problem is NP-hard even when b = k = 1; we have provided two general lower bounds for the 
cases of r ≥ 0 and r > 0. For r ≤ 1, we have proposed an optimal solution for the case of unbounded k, and three different 
exploration strategies for the case of bounded k. We have provided for all of them the analysis of performance guaran-



M. D’Emidio et al. / Theoretical Computer Science 605 (2015) 129–145 145
tees along with correctness proofs. We have then provided an experimental study to show the practical performance of 
the proposed strategies with respect to many different scenarios. Finally, we have provided some hints concerning possible 
extensions of the proposed strategies to the case r > 1. These observations show that the extensions are not so straightfor-
ward. Then, a first open problem is that of studying how the increase of r impacts on the bounds provided for the cases of 
r ≤ 1. Accordingly, the design of completely new exploration strategies for the case r > 1 surely deserves to be investigated. 
Moreover, the study of tighter lower bounds for the cases of r ≤ 1 remains certainly of main interest.

Other interesting research directions that have to be pointed out are those arising by considering a more general model 
in which the exploration graph G is weighted and the radius r represents the distance of two nodes in G computed on the 
basis of the weights associated to its edges.

Finally, another variant of the model that could deserve further investigation is that concerning the case where the 
repairing of a black-hole also involves other black-holes within the range r, hence producing a sort of “chain explosion”.
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[3] L. Gąsieniec, R. Klasing, R.A. Martin, A. Navarra, X. Zhang, Fast periodic graph exploration with constant memory, J. Comput. System Sci. 74 (5) (2008) 
802–822.
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