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Abstract. – OBJECTIVE: Intestinal fibrosis is 
a process characterized by an excessive depo-
sition of Extracellular Matrix (ECM) proteins by 
activated myofibroblasts and represents a con-
sequence of a chronic inflammation that usual-
ly occurs during Inflammatory Bowel Disease 
(IBD). The relationship between inflammation 
and fibrosis in IBD remains still unclear and 
nevertheless the recent pharmacological pro-
gresses, currently the only resolutive therapeu-
tic strategy is surgery, especially when compli-
cations (stricture, stenosis and obstruction of 
intestinal tracts) appear. As many different cel-
lular types and molecular mechanisms are im-
plicated in the pathogenesis of IBD, the identifi-
cation of molecules able to counteract this pro-
cess could be crucial.

MATERIALS AND METHODS: This is a lit-
erature review of several articles published on 
PubMed databases.

RESULTS: A number of researches suggest 
that Proliferator-Activated Receptor-gamma 
(PPAR-γ) has both anti-inflammatory and anti-fi-
brotic effects in many organs. PPAR-γ has been 
demonstrated to be able to downregulate pro-in-
flammatory cytokines production such as Inter-
leukin (IL)-4,-5,-6 but also to interfere with pro-
fibrotic molecules as Platelet-Derived Growth 
Factor (PDGF), IL-1 and Transforming Growth 
Factor Beta (TGF-β), the main promoter of fibro-
sis. In preliminary clinical trials and in experi-
mental models of intestinal fibrosis, natural and 
chemical PPAR-γ ligands have ameliorated the 
fibrotic process.

CONCLUSIONS: Since PPAR-γ could play a 
crucial role in the development of the disease, 
the research of new molecules, capable of ame-
liorating both inflammation and fibrosis lesions, 
as PPAR-γ agonists, could represent a valid and 
effective therapeutic approach for the preven-
tion and treatment of IBD and intestinal fibrosis.
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Introduction

In Inflammatory Bowel Disease (IBD), includ-
ing Ulcerative Colitis (UC) and Crohn’s Disease 
(CD), chronic damage occurring in intestinal wall 
leads to an excessive accumulation of fibrillary 
Extra Cellular Matrix (ECM) proteins, respon-
sible for fibrosis, strictures, stenosis and ob-
structions1-3. Features and evolution of intestinal 
lesions are different between UC and CD: UC 
shows inflammatory lesions in the large bowel 
mucosa and submucosa, while in CD the inflam-
mation is transmural and fibrosis can involve the 
whole intestinal wall of the gastrointestinal tract 
affected by the disease, specially the terminal 
ileum4. The current objective of medical treat-
ment is to achieve not only clinical remission, 
but also healing of intestinal lesions. Available 
therapies, including aminosalicytes, steroids, im-
munomodulators and biologic drugs can relieve 
the inflammatory symptoms but they do not 
significantly improve the fibrosis and fibrostenos-
ing lesions. Pathophysiology of chronic mucosal 
healing and late events of repair leading to in-
testinal fibrosis remain largely unknown2,5,6. To 
date efficient and well-tolerated antifibrotic drugs 
are not yet available and surgery represents the 
only therapeutic option once intestinal fibrosten-
onis has occurred5,7-9. The relationship between 
inflammation and fibrosis in IBD remains still 
unclear. At an early stage, intestinal lesion is 
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followed by an acute inflammatory response and 
a healing of damaged tissue with the restoration 
of organ function. On the other hand, when the 
inflammatory process is prolonged over time, 
weeks or months from its onset, it can lead to 
fibrosis10. It is commonly accepted that chronic 
intestinal inflammation inevitably leads to fibro-
sis; however, this process does not occur in all 
chronic intestinal disorders. Celiac disease and 
lymphocytic colitis are not complicated by fibrot-
ic processes and stenosis development, indicating 
the existence of distinct mechanisms between 
inflammation and fibrosis11. Administration of 
anti-inflammatory drugs in IBD, as well as in 
other fibroproliferative diseases associated with 
chronic inflammation, does not prevent the devel-
opment of fibrosis after the extracellular matrix 
deposition has begun 12. The lack of effective 
anti-fibrotic drugs is due to the fact that the main 
and specific cellular and molecular events leading 
to fibrosis still remain unclear13,14.

Main Headings

Cellular and Molecular Mechanisms 
Involved in Intestinal Fibrosis

Once intestinal epithelium is injured by exter-
nal factors, intraluminal bacteria and antigens 
cross the epithelial layer, trigger antigen pre-
senting cells and transform naïve T cell into Th1, 
Th2, Th7, and natural killer T cells responsible 
for release of multiple type of proinflammatory 
citokines15. Persistent epithelial and endothelial 
damage leads to chronic inflammation and the 
release of inflammatory factors that promote 
activation of ECM producing cells2,7 especial-
ly fibroblasts and myofibroblasts, activated by 
multiple pathways (autocrine factors, paracrine 
signals and microbe associated molecular pat-
terns)16-18. During intestinal inflammation and 
remodelling process, the normal turnover of 
the extracellular matrix components is regulat-
ed by the delicate balance between proteolytic 
enzymes, like Metalloproteinases (MMPs), and 
theirs Tissue Inhibitors (TIMPs). Therefore, both 
the imbalance of the MMPs/TIMPs system and 
a failure in myofibroblast apoptosis and/or a lack 
in their reversion to a non-activated state result 
in an excessive deposition of ECM proteins11,17. 
Researches11,19 have demonstrated that activat-
ed miofibroblasts can derive from several and 
distinct cellular sources such as resident mesen-
chymal cells (fibroblasts, subepithelial miofibro-

blasts, smooth muscle cells and interstitial cells 
of Cajal) as well as by Hepatic Stellate Cells 
(HSC), pericytes and bone marrow stem cells. 
In addition, activated miofibroblasts can also 
differentiate from non-mesenchymal cells, such 
as endothelial and epithelial cells16,20. Epithelial 
to Mesenchymal Transition (EMT) represents an 
important source of ECM producing cells2,21,22. 
Evidence demonstrated that epithelial cells play 
a crucial role on the development and progres-
sion of fibrosis comparable to that of the fibro-
blasts. Therefore, EMT may represent one of the 
pivotal mechanisms promoting fibro-proliferative 
processes. Epithelial phenotype is characterized 
by polarized cells, which interact with basal 
membrane and show a highly specialized cell-cell 
apical junctions, including Adherens Junctions 
(AJ), Tight Junctions (TJ) together with desmo-
somes and gap junctions necessary for maintain-
ing the integrity of the epithelium and its barrier 
function23. The Apical Junctional Complex (AJC) 
is constituted by the tight junctions and adherens 
junctions and its key proteins are represented by 
Occludin, the Claudin protein family and Junc-
tional Adhesion Molecules (JAM), all localized 
in the TJ, whereas E-cadherins are confined in 
the AJ. The extracellular region of E-cadherins 
is located along the lateral cell surface and binds 
to cadherins presented on adjacent cells24 while 
its intracellular portion contains binding sites to 
interact with catenins. Thus, E-cadherin forms a 
complex with β-catenin that contributes to main-
taining the epithelial stability. A typical feature 
of EMT is the disruption of intercellular junctions 
that leads to a downregulation of AJ and TJ pro-
teins and in particular a loss of E-cadherin that 
promotes β-catenin release and its nuclear trans-
location faciliting EMT. In addition, a de novo 
synthesis of proteins associated with myofibro-
blasts including vimentin, α-Smooth Muscle Ac-
tin (α-SMA) and production of interstitial matrix 
components, as fibronectin and type 1 collagen, 
have been demonstrated23,25,26. This transformed 
cellular phenotype can be reversed to epithelial 
phenotype (Mesenchymal Epithelial Transition, 
MET) when the expression of E-cadherin nor-
malizes. 

EMT and Intestinal Fibrosis
Several extracellular mediators including 

Transforming Growth Factor-β (TGF-β), Con-
nective Tissue Growth Factor (CTGF), Epider-
mal Growth Factor (EGF), Fibroblasts Growth 
Factors-2 (FGF-2), Interleukin-1 (IL-1) and Wnt 
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ligands are involved in inducing and maintain-
ing EMT during the fibrosis process27. Several 
investigations28-30 suggest that disruption of the 
TGF-β/Smads (Small mother against decapen-
taplegic) pathway, such as the loss of Smad3 or 
the overexpression Smad7, is able to prevent the 
development of tissue fibrosis in a large number 
of organs (skin, kidney, lunge, liver, intestine). 
Targeted deletion of Smad3 gene confers re-
sistance to the development of both intestinal 
and liver fibrosis30,31. Experimental mouse model 
of IBD by administration of 2,4,5-Trinitroben-
zene Sulphonic Acid (TNBS) showed that Smad3 
knockout (KO) mice were protected from the 
development of colorectal fibrosis. Histological 
and immunohistochemistry evaluations indicated 
an increase in the expression of collagen I-III, 
α- SMA and TGF-β1 in the colonic wall of Wild 
type mice compared to KO mice supporting the 
key role of TGF-β/Smad3 signaling30-31 that can 
be considered as a “core pathway” of intestinal 
fibrosis6. Once activated, TGF-β binds to specific 
membrane receptors, leading to phosphorylation 
of Smad2 and 3, which combine with Smad4 
and translocate into the nucleus where regulate 
specific TGF-β target genes. TGF- β also rep-
resents the most powerful mediator in vitro and 
in vivo of EMT27,32,33. It was described as an 
inducer of EMT in mammary epithelial cells in 
a large number of different adult tissue (heart, 
eye, liver, kidney, lung) also including the intes-
tine6,22,27,34-39. In CD patients, TGF-β1 expression 
was increased in intestinal submucosal layers, 
in particular in fibrotic areas32. In TNBS ex-
perimental induced colitis, intestinal epithelial 
cells are driven to EMT and express Fibroblast 
Specific Protein 1(FSP1)21. In animals receiving 
TNBS, the intestinal fibrotic tract showed an in-
creased number of fibroblasts expressing α-SMA 
as well as E-cadherin and FSP1, suggesting the 
onset of EMT. The role of TGF-β/Smad pathway 
in intestinal EMT has been also confirmed by 
the observation that some molecules, like miR-
200, Glycogen Synthase Kinase-3 beta (GSK-3β), 
and Peroxisome Proliferator-Activated-Receptor 
Gamma (PPAR-γ), are able to inhibit TGF-β1-
induced EMT40. The members of miR-200 fam-
ily have been proved to be able to maintain the 
epithelial phenotype through a downregulation 
of Zinc finger E-box-binding homeobox (ZEB) 
1 and ZEB2 resulting in enhanced E-cadherin 
expression ameliorating intestinal epithelial bar-
rier function. Indeed, it has been demonstrated 
that miR-200 repressing Smad2 protein, inhibits 

vimentin expression through TGFβ1/Smad2 sig-
nal pathway preventing TGF-β1 induced EMT40. 
GSK-3β seems to be able to negatively regulate 
EMT as it resulted not activated in the fibrotic in-
testinal condition, thus β-catenin is free to trans-
locate into the nucleus and promote its pro-fi-
brotic signaling22. In the same study conducted 
in a mouse model of Dextran Sodium Sulphate 
(DSS)-induced intestinal fibrosis, the expression 
of proteins related to EMT has been investigated, 
showing a relationship between TGF-β, Smad3, 
E-cadherin, Zinc finger protein (Snail), ZEB1, 
β-catenin and GSK-3β. A marked increase in 
α-SMA, collagen I-III, fibronectin (main fibrosis 
markers) and a similar increased expression of 
IL-13, TGF-β and Smad3 (pro-fibrotic molecules) 
has been demonstrated in mice with DSS-in-
duced chronic colitis compared to control mice. 
Furthermore, in DSS mice it has been observed 
β-catenin nuclear translocation and E-cadherin 
downregulation suggesting that PPAR-γ activa-
tion could be strongly related to the Smad de-
pendent or Smad independent TGF-β signaling 
pathway and may attenuate fibrosis and TGF-β1 
induced EMT22. PPARs are nuclear receptors 
related with tissue fibrogenesis acting on gene 
transcription by binding to retinoid X receptors. 
Three different isoforms of PPARs are involved 
in several processes including fibrosis and, in 
particular the PPAR-γ isoform, has been shown 
to be largely expressed in the colorectal mucosa; 
its stimulation, from specific ligands, antagonizes 
Smad3 or downregulates CTGF expression41-43. 
PPAR-γ has been identified as an endogenous 
factor involved in several metabolic and cellular 
functions like lipid and carboidrate metabolisms 
and homeostasis, carcinogenesis (cell cycle reg-
ulation, cell differentiation), inflammation and 
fibrosis44,45 (Figure 1).

It appears to be able to regulate intestinal in-
flammation and fibrosis both in IBD patients and 
in DSS and TNBS experimental colitis, decreas-
ing pro-inflammatory and pro-fibrotic cytokines 
and chemokines44.

Material and Methods

This is a systematic review of several articles 
published on PubMed databases. It was set up 
following a preliminary meeting in which all the 
authors have identified and discussed the main 
scientific studies about the anti-inflammatory and 
anti-fibrotic effects of PPAR- γ.
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Results

PPAR-γ in Intestinal Inflammation 
and Fibrosis

PPAR-γ plays a crucial role both in inflamma-
tion and fibrosis in several organs modulating the 
production of several mediators46-50. PPAR-γ acti-
vation decreases the production of the pro-inflam-
matory cytokines such as Tumor Necrosis Factor 
α (TNF-α) and IL-6, and inhibits transcription 
factors such as Nuclear Factor-kappa-light-chain-
enhancer of activated B cells (NF-κB), Activator 
Protein-1 (AP-1), Signal Transducer, Activator 
of Transcription (STAT-1) and the expression of 
adhesion molecules, such as Intercellular Adhe-
sion Molecule (ICAM-1), as well as MMP-9. In 
addition, PPAR-γ has been recognized as a key 
anti-inflammatory modulator regulating macro-
phage differentiation and cellular polarization. 
In 2004 Xiong et al50 investigated the implica-
tion of PPAR-γ during inflammatory process in 
Human Mesangial Cells (HMCLs) stimulated by 
IL-1β. Xiong et al50 demonstrated that pro-in-
flammatory cytokines as IL-6 and TNF-α were 
increased in HMCLs respect to untreated cells 
and there was a reduction of TNF-α and IL-6 
when HMCLs were treated with PPAR-γ ag-
onists such as troglitazone, rosiglitazone and 
15deoxy-delta (12,14)-prosglandinJ2. Moreover, 
in cyclophosphamide-induced renal toxicity it 
was found that PPAR-γ agonists showed pro-
tective effects, downregulating pro-inflammatory 
cytokines and inhibiting apoptosis51. Anti-inflam-
matory effects of PPAR-γ were also reported 
in airways diseases. The Authors demonstrated 

that the administration of PPAR-γ agonists was 
able to reduce pro-inflammatory cytokines such 
as IL-4 and IL-5, eosinophilic inflammation and 
airway hyper-responsiveness. The inhibition of 
IL-10 activity partially reverted the inflammatory 
process, suggesting that PPAR-γ played a pro-
tective role in the physiopathology of asthma52. 

Investigations conducted in Chronic Obstruc-
tive Pulmonary Disease (COPD) have also high-
lighted the anti-inflammatory effect of PPAR-γ: 
in epithelial cells from COPD patients; PPAR-γ 
resulted reduced while NF-kB was increased. 
After treatment with PPAR-γ synthetic ligand as 
rosiglitazone and natural ligand as 10-nitro-ole-
ic acid, epithelial cells showed an increase of 
PPAR-γ expression and an inhibition of secretion 
of inflammatory cytokines53. PPAR-γ has shown 
an anti-inflammatory activity also within pulmo-
nary Vascular Endothelial (VE) cells, promoting 
transcription of genes for anti-inflammatory fac-
tors and inhibiting the activity of NF-κB, AP-1, 
and other proinflammatory transcription factors54 
(Figure 2).

The relevant role of PPAR-γ agonists in in-
flammatory diseases was also demonstrated in 
systemic lupus erythematous, renal disease, ath-
erosclerosis, brain inflammation, pancreatitis 
and in experimental rat model of IBD55-59. In 
1999, for the first time, Su et al46 showed the 
involvement of PPAR-γ in the regulation of in-
testinal inflammation in DSS-induced colitis in 
mice. The administration of synthetic agonist of 
PPAR-γ ameliorated the clinical course of colitis 
compared to control mice46-47. In experimental 
TNBS-induced colitis in heterozygous PPAR-γ 

Figure 1. Main effects of 
PPAR-γ on metabolism and 
cellular functions.
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+/- mice and wild-type mice, Dubuquoy et al47 

showed that PPAR-γ was able to mimic the 
therapeutic anti-inflammatory action of 5-amin-
osalicyloic acid (5-ASA; Pentasa, Ferring Phar-
maceuticals, Saint-Prex, Switzerland)55. Among 
side PPAR-γ anti-inflammatory action, there is 
evidence that it is an innate protector against 
fibrogenesis in several organs5,43,45,60-62. It has 
been shown43 that in Hypertrophic Scar Fi-
broblasts (HSFs) a concomitant exposition to 
different concentrations of PPAR-γ natural li-
gands as 15-deoxy-D12,14-prostaglandin J2 and 
synthetic ligand as GW7845 (GlaxoSmithKline 
Pharmaceuticals, Brentford, London, UK), lead 
to a reduced expression of CTGF, collagens and 
fibronectin. PPAR-γ resulted also implicated in 
liver fibrosis showing the capacity to activate 
HSC. Both in vitro and in vivo experiments 
showed that HSC activation due to a reduction 
of PPAR-γ expression was reversed by PPAR-γ 
ligands62-64 assuming that its agonists could have 
a therapeutic benefits65-69. In experimental model 
of bleomycin-induced skin fibrosis, using mice 
with a fibroblast selective depletion of PPAR-γ, 
Kapoor et al60 demonstrated that fibroblasts re-
sulted most susceptible to profibrotic effects of 
TGFβ1 and there was an increase of the main 
signs of fibrosis60. It is well known that during 
IBD there is an imbalance between pro-inflam-
matory and anti-inflammatory cytokines due to 
an anomalous activation of different subtypes 
of T-cell: Th1, Th2, Th17 and regulatory T 

cells (Treg)6. Th1 cells differentiation is induced 
by IL-12 with the input of a pro-inflammato-
ry cytokines INF-γ that promotes macrophages 
differentiation and additional pro-inflammatory 
cytokine production (IL-1β, IL-6, IL-8, gran-
ulocyte-macrophage colony stimulating factor 
(GM-CSF) and TNF-α). Instead, Th2 cells are 
able to produce pro-inflammatory cytokines as 
IL-4, IL-5 and IL-13. Th17 cells are also impli-
cated in the process of chronic inflammation, 
through the production of cytokines as IL-17, 
IL-21 and IL-22. T-cell responses are moni-
tored by Treg cells, which produce cytokines 
with anti-inflammatory action namely IL-10 and 
TGF-β. In IBD an unbalanced toward cytokines 
with pro-inflammatory action and the activation 
of myofibroblasts leads to an excessive deposi-
tion of extracellular matrix proteins modulate 
by pro-fibrotic (TGF-β, activins, CTGF, PDGF, 
IL-1,-4,-6,-13,-17,-21,-22,-23,-33) and anti-fibrot-
ic molecules (Interferon (IFN)-α, IFN-γ, IL-7, 
IL-10, IL-12, Smad7)6. Nevertheless, TGF-β/
Smad appears to act as a driving force of fibrosis 
promoting the progression of damage, other sev-
eral profibrogenic factors (integrins, mammali-
an Target of Rapamycin (mTOR), Wnt/β-catenin 
pathway, Hedgehog and Notch signaling and 
Serotonin) and antifibrotic factors (PPAR-γ, ad-
iponectin, Hippo, Klotho, Bone Morphogenetic 
Protein-7 (BMP-7) and Sirtuin 1 (Sirt1), which 
can directly or indirectly interact with this path-
way6 (Figure 3).

Discussion

PPAR-γ As Potential Therapeutical Target
The anti-fibrotic action of PPAR-γ agonists 

could be a new therapeutical approach for the 
treatment of several diseases including IBD. Thi-
azolidinedione, tioglitazone, rosiglitazone and 
pioglitazone are PPAR-γ agonists currently used 
as anti-diabetic drugs, which have also shown 
anti-fibrogenic effects in many organs (lungs, 
skin, kidneys, eyes, heart)48,70,71 including intesti-
nal fibrosis22,48,49,62.

Recently, Chen et al40 demonstrated an im-
provement of TNBS-induced intestinal fibrosis 
by using curcumin, a natural PPAR-γ agonist, 
that was proved to be as effective as rosigli-
tazone in reverting fibrotic markers (TGF-β, 
α- SMA, E-cadherin)72. 5-hydroxytryptamine 3 
(5HT3) receptor antagonists such as tropisetron, 
granisetron and ondansetron, currently used for 

Figure 2. Schematic diagram representing the anti-inflam-
matory effect of PPAR-γ. After injury transcription factors 
such as NF-kβ, STAT-1, AP-1, induce the release of inflam-
matory cytokines. PPAR-γ is able to inhibit the activity of 
these molecules.
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ameliorate the chemotherapy-induced emesis, 
were able to reduce the levels of proinflamma-
tory cytokines in experimental model of colitis73 
and also improve macroscopic and histological 
lesions of colonic wall during the course of 
colitis74. These molecules are PPAR-γ dependent 
since their effects are partially or complete-
ly reversed using a PPAR-γ antagonist such 
as GW9662 (Merck KGaA, Darmstadt, Ger-
many)75. AL-1, an andrographolide-lipoic acid 
conjugate, has shown anti-inflammatory effects 
in mice with TNBS induced colitis in which it 
improved the clinical symptoms, macroscopic 
features and histological damage. AL-1 sup-
presses recruitment of immune inflammatory 
cells, down-modulating NF-κB pathway and the 
secretion of pro-inflammatory cytokines, and 
increasing the expression of PPAR-γ76. It is well 
known that both dysbiosis of microbiota, (espe-
cially a decrease in anaerobic bacteria including 
Lactobacillus, Escherichia and Bacteroides) and 
oxidative stress are responsible for the destruc-

tion of epithelial barrier77. Selenoproteins, espe-
cially GPx2 and SEPP1, act as antioxidants and 
show a protective role against oxidative stress 
being able to determine a down-regulation of 
NF-kB, which is highly activated in IBD. Se-
lenium could inhibit the activation of NF-kB 
in intestinal epithelial cells, macrophages and 
dendritic cells via up-regulation and activation 
of PPAR-γ78-81. Moreover, it could be a promising 
candidate to ameliorate intestinal inflammation 
in IBD by creating a homeostatic environment 
in the gut and impacting commensal bacteria 
that regulate NF-kB and PPAR-γ82-84. It has also 
been confirmed that a probiotic mixture, known 
as VSL#3, is able to modulate gut local micro-
biota, decreasing colonic bacterial diversity and 
to favour local Conjugated Linoleic Acid (CLA) 
production. In the colon, CLA is implicated in 
PPAR-γ-dependent mechanisms of action that 
lead to the regulation of inflammatory reac-
tion85 through a mechanism involving epithelial 
TNF-α and NF-kB with the final result of resti-

Figure 3. Cartoon showing the delicate balance between anti-fibrotic (PPAR-γ, Smad7, IL7, IL-10) and pro-fibrotic (TGF-β, 
IL-1, IL-6 and PDGF) molecules. Predominance of anti-fibrotic factors preserves the tissue integrity while overcoming of pro-
fibrotic factors induces fibrosis.
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tution of normal barrier function86. In DSS-in-
duced colitis in mice, PPAR-γ levels could also 
be restored after administration of Portulaca 
extracts, a traditional Chinese herb contain-
ing multiminerals proteins, β carotene, vitamins 
and fatty acids 87, suggesting that Portulaca ex-
tracts could improve general symptoms of IBD 
decreasing the Disease Activity Index (DAI). 
Moreover, in DSS-induced colitis, the same herb 
extracts significantly reduced the expression of 
several cytokines (at both mRNA and protein 
levels) and increased the PPAR-γ expression87. It 
has been evaluated the activity of new PPAR-γ 
modulator, GED-0507-34 Levo (GED, Nogra 
Pharma Ltd., Dublin, Ireland), on fibrosis and 
EMT-associated mediators in DSS-induced coli-
tis22. Di Gregorio et al22 highlighted that GED 
was able to revert histological features of intes-
tinal fibrosis, to normalize both the expression of 
main fibrosis markers and pro-fibrotic molecules 
and also to modulate the expression of other 
proteins (E-cadherin, ZEB1, Snail, β-catenin and 
GSK-3β) involved in fibrosis and EMT. All these 
effects, induced by daily oral administration of 
GED, were antagonized by simultaneous admin-
istration of the PPAR-γ inhibitor GW9662. 

Conclusions

In the last twenty years a great deal of progress 
has been made in the study of the pathophysiology 
of intestinal fibrosis in IBD. However, to date sur-
gery still remains the only resolutive treatment of 
the intestinal fibrostenosis, especially in Crohn’s 
disease. Approximately 80% of patients with 
Crohn’s disease undergo surgical resection within 
10 years from diagnosis due to intestinal com-
plications such as fibrostenotic lesions, alone or 
associated to intestinal fistulas and abscesses88-90. 
Pharmacological agents that induce PPAR-γ ex-
pression and its activation could be more exten-
sively used in different experimental models of 
IBD and in clinical trials, in order to better evalu-
ate and confirm both their anti-inflammatory and 
anti-fibrotic effectiveness. PPAR-γ agonists might 
open a new potential avenue for the treatment of 
IBD, specially for the prevention and treatment of 
intestinal fibrosis which is a common complica-
tion of these diseases.
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