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Abstract

In this paper, we extend and analyze in a finite projec-
tive space of any dimension the notion of standard two-
intersection sets previously introduced in the projective
plane by T.Penttila and G.F.Royle in [7], see also [1].
Moreover, given a pair of suitable distinct standard two-
intersection sets in a finite projective space it is possible
to get further standard two-intersection sets by applying
elementary set-theoretical operations to the elements of
the pair.
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1 Introduction and motivation

Let us denote by PG(r, q) the r-dimensional space over the finite
field GF (q) with q = ph a prime power and by Π the pointset
of PG(r, q). A k-set K of PG(r, q) is a set of k points of Π.
By Kc we denote the set Π \ K, i.e. the complementary set
of K. A k-set K is said a set of type (m, n)d, with m < n, if
each subspace of dimension d of PG(r, q) meets K in either m
or n points and both values occur. The integers m and n are
known as the intersection numbers of K with respect to the d-
dimensional subspaces. A two-intersection set is a set of type
(m, n)r−1. Such a set is also known as a two-character set. It is
well known that a necessary condition for the existence of such
a set is that n − m divides qr−1, see [8]. In [7] pag. 231 (see
also [1] pag. 378) T.Penttila and G.F.Royle said standard the

parameters of a k-set of type (m, m + q
1
2 )1 in a projective plane

of order q a square. Extending their definition, we say standard
the parameters of a k-set of type (m, m + q

r−1
2 )r−1 in PG(r, q)

with r odd or q a square. Furthermore, in this paper we will
say standard a two-intersection set having standard parameters.
In [3] the author proved that a standard two-intersection set

has size k− = m[θr−1(q) + q
r−1
2 ]/θr−2(q) or k+ = n[θr−1(q) −

q
r−1
2 ]/θr−2(q) where θn(q) :=

∑n
i=0 qi. If k− = k+ = θr(q)/2,

then both r and q are odd and m = (θr−1(q) − q
r−1
2 )/2. If a

standard two-intersection set has size k− (respectively k+) we
say that it has size of type k− (respectively size of type k+). Let
us note that if two standard two-intersection sets H and K have
size of different type, then |H| 6= θr(q)/2 and |K| 6= θr(q)/2.

In PG(r, q) with r odd, classical examples of standard two-
intersection sets are non-singular hyperbolic quadrics (having
m = θr−2(q) and size of type k−) and non-singular elliptic
quadrics (having n = θr−2(q) and size of type k+). More-
over, in PG(r, q2), classical examples are Baer subspaces (having
m = θr−2(q) and size of type k−) and non-singular Hermitian
varieties (having: m = (qr + 1)θ r−3

2
(q2) and size of type k− if r

2



is odd; n = (qr−1 + 1)θ r−2
2

(q2) and size of type k+ if r is even).

A number of people constructed standard two-intersection
sets using disjoint unions of standard two-intersection sets hav-
ing the same type of size, see, for istance, [2], [3], [5], and [6].
In this paper we prove that this is always possible. As a matter
of fact, we prove the following three results.

Theorem 1.1. Let H and K be two standard two-intersection
sets in PG(r, q) such that H 6= Kc and H∩K = ∅. Then H∪K
is a standard two-intersection set if and only if H and K have
size of the same type. Furthermore, H, K, and H ∪K have size
of the same type.

Theorem 1.2. Let H and K be two standard two-intersection
sets in PG(r, q) having size of the same type such that H ∩K 6=
∅. Then H ∩K is a standard two-intersection set if and only if
H ∪K is a standard two-intersection set. Furthermore, H, K,
H ∩K, and H ∪K have size of the same type.

Theorem 1.3. Let H and K be two standard two-intersection
sets in PG(r, q) having size of different type such that H * K,
K * H, H ∩K 6= ∅, |H \K| 6= θr(q)/2, and |K \H| 6= θr(q)/2.
If H ∩ K (respectively H ∪ K) is a standard two-intersection
set, then H ∪ K (respectively H ∩ K) is not a standard two-
intersection set.

2 Preliminary results

Let K be a standard k-set of type (m, m + δ)r−1 in PG(r, q)

with δ := q
r−1
2 . For each i ∈ {m, m + δ}, let us denote by:

• ti the number of hyperplanes meeting K in exactly i points;

• ui the number of hyperplanes passing through a point not
in K and meeting K in exactly i points;

• vi the number of hyperplanes passing through a point of
K and meeting K in exactly i points.
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Set θd(q) :=
∑d

i=0 qi. From [8], we get the following result.

Theorem 2.1. Let K be a standard k-set of type (m, m+ δ)r−1

in PG(r, q). Then

θr−2(q)k
2 − [(2m + δ)θr−1(q)− δ2]k + m(m + δ)θr(q) = 0 (1)

δtm+δ = (k −m)θr−1(q)−mqδ2 (2)

δtm = (m + δ)qδ2 − (k −m− δ)θr−1(q) (3)

δum+δ = (k −m)θr−2(q)−mδ2 (4)

δum = (m + δ)δ2 − (k −m− δ)θr−2(q) (5)

vm+δ = um+δ + δ (6)

vm = um − δ (7)

From [3] we get the following result.

Theorem 2.2. Let K be a standard k-set of type (m, m+ δ)r−1

in PG(r, q). Then either k = k− = m[θr−1(q) + δ]/θr−2(q) or
k = k+ = (m + δ)[θr−1(q)− δ]/θr−2(q).

Remark 2.3. If 0 ≤ a ≤ b, then it is easy to see that

• θb+1(q) = θa(q) + qa+1θb−a(q);

• θb+1(q) = 1 + qθb(q);

• θb+1(q) = θb(q) + qb+1.

Lemma 2.4. If r ≥ 2, then θr(q)θr−2(q) = θ2
r−1(q)− qr−1.

Proof. By Remark 2.3 we have
θr(q)θr−2(q) = [qr + qr−1 + θr−2(q)]θr−2(q) =

= qr[qr−2 + θr−3(q)] + qr−1θr−2(q) + θ2
r−2(q) =

= q2(r−1) + qr−1[qθr−3(q)] + qr−1θr−2(q) + θ2
r−2(q) =

= q2(r−1) + qr−1[θr−2(q)− 1] + qr−1θr−2(q) + θ2
r−2(q) =

= q2(r−1) + 2qr−1θr−2(q) + θ2
r−2(q)− qr−1 =

= [qr−1 + θr−2(q)]
2 − qr−1 = θ2

r−1(q)− qr−1.
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Lemma 2.5. Let K be a standard k-set of type (m, m + δ)r−1

in PG(r, q). Then

• (tm+δ, um+δ, vm+δ) = (k,m, m + δ) if k = k−;

• (tm, um, vm) = (k,m + δ,m) if k = k+.

Proof. First, let us suppose that k = k−. By Theorem 2.2 we
have kθr−2(q) = m[θr−1(q)+δ]. So (k−m)θr−2(q) = m[θr−1(q)−
θr−2(q)+δ] = mδ(δ+1). By equation (2) and Remark 2.4, we get
δtm+δθr−2(q) = mδ(δ + 1)θr−1(q)−mqδ2θr−2(q) = δm[θr−1(q) +
δ(θr−1(q)− qθr−2(q))] = δm[θr−1(q)+ δ] = δkθr−2(q). So tm+δ =
k. By equation (4), we get δum+δ = mδ(δ + 1)−mδ2 = mδ. So
um+δ = m. By equation (6), we get vm+δ = m + δ.

Now, let us suppose that k = k+. By using very similar
arguments, we get (tm, um, vm) = (k,m + δ,m).

Lemma 2.6. If K is a standard two-intersection set, then Kc

is a standard two-intersection set too. Furhermore, K and Kc

have size of the same type.

Proof. K is a set of type (m, m + δ)r−1. If a hyperplane meets
K in m points, then it meets Kc in θr−1(q) − m points. If
a hyperplane meets K in m + δ points, then it meets Kc in
θr−1(q)−m− δ points. So Kc is a set of type (d, d + δ)r−1 with
d = θr−1(q) − δ − m. It is clear that |Kc| = θr(q) − |K|. If
K has size of type k− (respectively k+), then by Theorem 2.2
we get |K|θr−2(q) = m[θr−1(q) + δ] (respectively |K|θr−2(q) =
(m + δ)[θr−1(q) − δ]). By Lemma 2.4 we get θr(q)θr−2(q) =
[θr−1(q) − δ][θr−1(q) + δ]. Then |Kc|θr−2(q) = d[θr−1(q) + δ]
(respectively |Kc|θr−2(q) = (d + δ)[θr−1(q) − δ]) easily follows.
So Kc has size of type k− (respectively k+).

3 On sets having size of type k−

In this section by Hm we will denote a standard set of type
(m,m + δ)r−1 in PG(r, q) having size of type k−. Putting α :=
[θr−1(q) + δ]/θr−2(q), by Theorem 2.2, we have |Hm| = mα.
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Lemma 3.1. Let H be an Hm and H ′ be an Hm′. If H∩H ′ = ∅
and H ′ 6= Hc, then H ∪H ′ is an Hm+m′.

Proof. Since H ∩H ′ = ∅ it is clear that |H ∪H ′| = (m + m′)α.
Furthermore, m′|H| = m′(mα) = m(m′α) = m|H ′|. Now let us
denote by x the number of the hyperplanes meeting H in m + δ
points and H ′ in m′+δ points. If we prove that x = 0, then each
hyperplane meets H∪H ′ in m+m′ points or in m+m′+δ points.
So H ∪H ′ is an Hm+m′ . Let Q be a point not in H ′ and let us
denote by ui the number of hyperplanes passing through Q and
meeting H ′ in exactly i points, with i ∈ {m′, m′ + δ}. Since H ′

has size of type k−, by Lemma 2.5, we have um′+δ = m′. Let
us denote by y the number of pairs (Q, π) where Q ∈ H and π
is a hyperplane through Q meeting H ′ in m′ + δ points. Being
Q /∈ H ′ we have

y = |H|um′+δ = |H|m′ (8)

Now, if we consider the tm′+δ hyperplanes meeting H ′ in ex-
actly m′ + δ points, then by Remark 2.5 we have tm′+δ = |H ′|.
Furthermore,

y = x(m + δ) + (tm′+δ − x)m (9)

since there are x hyperplanes meeting H in m + δ points and
tm′+δ−x hyperplanes meeting H in m points. By (8) and (9) we
get |H|m′ = xδ + mtm′+δ = xδ + m|H ′|. Being m′|H| = m|H ′|
we get xδ = 0 and hence x = 0.

Lemma 3.2. Let H be an Hm and H ′′ be an Hm+m′. If H ⊂ H ′′,
then H ′′ \H is an Hm′.

Proof. Put τ := θr−1(q)−δ. By Lemma 2.6 (H ′′)c is an Hτ−(m+m′).
Being H ⊂ H ′′, we have that H ∩ (H ′′)c = ∅. So, by Lemma
3.1, H ∪ (H ′′)c is an Hτ−m′ . By Lemma 2.6, (H ∪ (H ′′)c)c is an
Hτ−(τ−m′). Finally, being H ′′ \ H = Hc ∩ H ′′ = (H ∪ (H ′′)c)c,
we have that H ′′ \H is an Hm′ .

By Lemmas 3.1 and 3.2 we immediately get the following
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Theorem 3.3. Let H be an Hm and H ′ be a set such that
H ′ 6= Hc and H ∩H ′ = ∅. Now put H ′′ := H ∪H ′. Then H ′ is
an Hm′ if and only if H ′′ is an Hm+m′.

Theorem 3.4. Let H be an Hm and H ′ be an Hm′ such that
H ′ 6= Hc and H ∩H ′ 6= ∅. Then H ∩H ′ is an Hi if and only if
H ∪H ′ is an Hm+m′−i.

Proof. First let us suppose that H∩H ′ is an Hi. Being H∩H ′ ⊂
H, by Lemma 3.2 we have that H \ H ′ = H \ (H ∩ H ′) is an
Hm−i. Now, being (H \ H ′) ∩ H ′ = ∅, by Lemma 3.1 we have
that (H\H ′)∪H ′ is an Hm−i+m′ . So H∪H ′ = (H\H ′)∪H ′ is an
Hm+m′−i. Now let us suppose that H∪H ′ is an Hm+m′−i. Being
H ′ ⊂ H∪H ′, by Lemma 3.2 we have that (H∪H ′)\H ′ = H \H ′

is an Hm−i. Now, being H \ H ′ ⊂ H, again by Lemma 3.2, we
have that H \(H \H ′) is an Hm−(m−i). So H∩H ′ = H \(H \H ′)
is an Hi.

4 On sets having size of type k+

For a better reading, we present in a new section the results on
standard two-intersection sets having size of type k+ although
they are similar to those ones on sets having size of type k− and
also the proofs run in a very similar way.
In this section by Km we will denote a standard set of type
(m,m + δ)r−1 in PG(r, q) having size of type k+. Putting β :=
[θr−1(q)−δ]/θr−2(q), by Theorem 2.2, we have |Km| = (m+δ)β.

Lemma 4.1. Let K be a Km and K ′ be a Km′. If K ∩K ′ = ∅
and K ′ 6= Kc, then K ∪K ′ is a Km+m′+δ.

Proof. Since K ∩ K ′ = ∅ it is clear that |K ∪ K ′| = β[(m +
m′ + δ) + δ]. Furthermore, (m′ + δ)|K| = (m′ + δ)[(m + δ)β] =
(m + δ)[(m′ + δ)β] = (m + δ)|K ′|. Now let us denote by x the
number of the hyperplanes meeting K in m points and K ′ in
m′ points. If we prove that x = 0, then each hyperplane meets

7



K∪K ′ in m+m′+δ points or in m+m′+2δ points. So K∪K ′

is an Km+m′+δ. Let Q be a point not in K ′ and let us denote by
ui the number of hyperplanes passing through Q and meeting
K ′ in exactly i points, with i ∈ {m′, m′ + δ}. By Lemma 2.5
we have um′ = m′ + δ. Let us denote by w the number of pairs
(Q, π) where Q ∈ K and π is a hyperplane through Q meeting
K ′ in m′ points. Being Q /∈ K ′ we have

w = |K|um′ = |K|(m′ + δ) (10)

Now if we consider the tm′ hyperplanes meeting K ′ in exactly
m′ points, then by Lemma 2.5 we have tm′ = |K ′|. Furthermore,

w = xm + (tm′ − x)(m + δ) (11)

since there are x hyperplanes meeting K in m points and tm′−x
hyperplanes meeting K in m+δ points. By (10) and (11) we get
|K|(m′+δ) = |K ′|(m+δ)−xδ. Being |K|(m′+δ) = |K ′|(m+δ),
we get xδ = 0 and so x = 0.

We would like to point out that after submitting the paper
we realized that the statement of Lemma 4.1 has already been
proved in another way by L.Lane-Harward and T.Penttila, see
[6], page 139, Theorem 2.

Lemma 4.2. Let K be a Km and K ′′ be a Km+m′+δ. If K ⊂ K ′′,
then K ′′ \K is a Km′.

Proof. Put τ := θr−1(q)−δ. By Lemma 2.6 (K ′′)c is a Kτ−(m+m′+δ).
Being K ⊂ K ′′, we have that K ∩ (K ′′)c = ∅. So, by Lemma
4.1, K ∪ (K ′′)c is a Kτ−m′ . By Lemma 2.6, (K ∪ (K ′′)c)c is a
Kτ−(τ−m′). Finally, being K ′′ \ K = Kc ∩ K ′′ = (K ∪ (K ′′)c)c,
we have that K ′′ \K is a Km′ .

By Lemmas 4.1 and 4.2 we immediately get the following

Theorem 4.3. Let K be a Km and K ′ a set such that K∩K ′ = ∅
and K ′ 6= Kc. Now put K ′′ := K ∪ K ′. Then K ′ is a Km′ if
and only if K ′′ is a Km+m′+δ.
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Theorem 4.4. Let K be a Km and K ′ be a Km′ such that
K ′ 6= Kc and K ∩K ′ 6= ∅. Then K ∩K ′ is a Ki if and only if
K ∪K ′ is a Km+m′−i.

Proof. First let us suppose that K∩K ′ is a Ki. Being K∩K ′ ⊂
K, by Lemma 4.2 we have that K \ K ′ = K \ (K ∩ K ′) is a
Km−i−δ. Now, being (K \K ′)∩K ′ = ∅, by Lemma 4.1 we have
that (K \K ′)∪K ′ is a K(m−i−δ)+m′+δ. So K∪K ′ = (K \K ′)∪K ′

is a Km+m′−i.
Now let us suppose that K ∪K ′ is a Km+m′−i. Being K ′ ⊂

K ∪K ′, by Lemma 4.2 we have that (K ∪K ′) \K ′ = K \K ′ is
a K(m+m′−i)−m′−δ = Km−i−δ. Now, being K \K ′ ⊂ K, again by
Lemma 4.2 we have that K \ (K \K ′) is a Km−(m−i−δ)−δ = Ki.
So K ∩K ′ = K \ (K \K ′) is a Ki.

5 The proofs of the main results

Here we prove the three theorems claimed in the introduction.

5.1 The proof of Theorem 1.1

Proof. If H and K have size of the same type k− (respectively
k+), then by Lemma 3.1 (respectively Lemma 4.1) H ∪ K is
a standard a two-intersection set having size of type k− (re-
spectively k+). Now, let us suppose that H ∪ K is a standard
two-intersection set having size k− (respectively k+). So, as seen
above, H and K can not have both size of type k+ (respectively
k−). If both H ∪K and H, or K, have size of type k− (respec-
tively k+), then by Lemma 3.3 (respectively Lemma 4.3) K, or
H, has size of type k− (respectively k+). So H and K have size
of the same type k− (respectively k+).

5.2 The proof of Theorem 1.2

Proof. If H and K have size of the same type k− (respectively
k+), then by Theorem 3.4 (respectively by Theorem 4.4) H ∩K
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is a standard two-intersection set having size of type k− (respec-
tively k+) if and only if H ∪ K is a standard two-intersection
set having size of type k− (respectively k+).

5.3 The proof of Theorem 1.3

Proof. As we have already seen in the introduction, since H and
K have different type of size we have that |H| 6= θr(q)/2 and
|K| 6= θr(q)/2. Moreover, without loosing on generality, we can
suppose that H has size of type k− and K has size of type k+.

Under the assumption that H ∩ K (respectively H ∪ K) is
a standard two-intersection set, we have to prove that H ∪ K
(respectively H ∩K) is not a standard two-intersection set.

On the contrary, let us suppose that H ∪ K (respectively
H ∩K) is a standard two-intersection set. Hence, in both cases,
we have that H ∩ K and H ∪ K are standard two-intersection
sets. First, let us suppose that H ∩ K has size of type k−. By
Lemma 3.2, we have that H \ K = H \ (H ∩ K) is a standard
two-intersection set having size of type k−. If H ∪ K has size
of type k−, then by Lemma 3.2 we have that K = (H ∪ K) \
(H \ K) is a standard two-intersection set having size of type
k−, a contradiction (being |K| 6= θr(q)/2). So H ∪ K has size
of type k+. By Lemma 3.2 we have that H \ K = (H ∪ K) \
K is a standard two-intersection set having size of type k+, a
contradiction (being |H \K| 6= θr(q)/2). Finally. we have that
H ∩ K has not size of type k−. In a very similar way, we can
prove that H ∩ K has not size of type k+. So H ∩ K is not a
standard two-intersection set, a contradiction.

We conclude the paper by studying what happens when H
and K are two standard two-intersection sets such that H ⊂ K.

Proposition 5.1. Let H and K be two standard two-intersection
sets such that H ⊂ K. Then K\H is a standard two-intersection
set if and only if H and K have size of the same type. Further-
more, H, K, and K \H have size of the same type.
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Proof. If H and K have size of the same type k− (respectively
k+), then by Lemma 3.2 (respectively Lemma 4.2) K \ H is
a standard two-intersection set having size of type k− (respec-
tively k+). Now, let us suppose that K \ H is a standard two-
intersection set having size k− (respectively k+). So, as seen
above, H and K can not have both size of type k+ (respectively
k−). If both K \H and H have size of type k− (respectively k+),
then by Lemma 3.1 (respectively Lemma 4.1) K = (K \H)∪H
has size of type k− (respectively k+). So H and K have size
of the same type k− (respectively k+). If both K \ H and K
have size of type k− (respectively k+), then by Lemma 3.2 (re-
spectively Lemma 4.2) H = K \ (K \ H) has size of type k−
(respectively k+). So H and K have size of the same type k−
(respectively k+).

Corollary 5.2. Let H and K be two standard two-intersection
sets having size of different type. If H ⊂ K, then K \ H is a
three-intersection set.

Proof. Let H be a standard set of type (m, m + δ) and K be a
standard set of type (m′, m′ + δ). A hyperplane can meet the
set K \H in γ points with γ ∈ {m′ −m− δ,m′ −m, m′ −m +
δ}. Furthermore, all those values occurr, since by Proposition
5.1 K \ H is not a two-intersection set. So K \ H is a three-
intersection set.

Let us note that there are standard two-intersection sets H and
K having size of different type such that H ⊂ K. Indeed, let
{Ω1, Ω2, ..., Ωq, Ωq+1} be an ovoidal fibration of PG(3, q), i.e. a
partition of PG(3, q) into q + 1 ovoids, see [4]. The set K :=
∪q

i=1Ωi is a standard set of type (q2, q2 + q)2 having size q(q2 +
1) 6= θ3(q)/2 of type k+. Let A be a point of Ωq+1 and let π
be the plane tangent to Ωq+1 in A. Now, let H be a line of π
not through A. The line H is a standard set of type (1, q + 1)2

having size q + 1 6= θ3(q)/2 of type k−. So H and K have size
of different type. Being H ∩ Ωq+1 = ∅, it is H ⊂ K. So, K \H
is a three-intersection set.
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