# On standard two-intersection sets in $P G(r, q)$ 

Fulvio Zuanni<br>Department of Industrial and Information Engineering and Economics<br>University of L'Aquila<br>Piazzale Ernesto Pontieri, 1<br>I-67100 L'Aquila<br>Italy<br>fulvio.zuanni@univaq.it


#### Abstract

In this paper, we extend and analyze in a finite projective space of any dimension the notion of standard twointersection sets previously introduced in the projective plane by T.Penttila and G.F.Royle in [7], see also [1]. Moreover, given a pair of suitable distinct standard twointersection sets in a finite projective space it is possible to get further standard two-intersection sets by applying elementary set-theoretical operations to the elements of the pair.


AMS classification: 51E20, 05B25
Keywords: Two-intersection sets, two-character sets, sets of type ( $m, n$ ).

## 1 Introduction and motivation

Let us denote by $P G(r, q)$ the $r$-dimensional space over the finite field $G F(q)$ with $q=p^{h}$ a prime power and by $\Pi$ the pointset of $P G(r, q)$. A $k$-set $K$ of $P G(r, q)$ is a set of $k$ points of $\Pi$. By $K^{c}$ we denote the set $\Pi \backslash K$, i.e. the complementary set of $K$. A $k$-set $K$ is said a set of type $(m, n)_{d}$, with $m<n$, if each subspace of dimension $d$ of $P G(r, q)$ meets $K$ in either $m$ or $n$ points and both values occur. The integers $m$ and $n$ are known as the intersection numbers of $K$ with respect to the $d$ dimensional subspaces. A two-intersection set is a set of type $(m, n)_{r-1}$. Such a set is also known as a two-character set. It is well known that a necessary condition for the existence of such a set is that $n-m$ divides $q^{r-1}$, see [8]. In [7] pag. 231 (see also [1] pag. 378) T.Penttila and G.F.Royle said standard the parameters of a $k$-set of type $\left(m, m+q^{\frac{1}{2}}\right)_{1}$ in a projective plane of order $q$ a square. Extending their definition, we say standard the parameters of a $k$-set of type $\left(m, m+q^{\frac{r-1}{2}}\right)_{r-1}$ in $P G(r, q)$ with $r$ odd or $q$ a square. Furthermore, in this paper we will say standard a two-intersection set having standard parameters. In [3] the author proved that a standard two-intersection set has size $k_{-}=m\left[\theta_{r-1}(q)+q^{\frac{r-1}{2}}\right] / \theta_{r-2}(q)$ or $k_{+}=n\left[\theta_{r-1}(q)-\right.$ $\left.q^{\frac{r-1}{2}}\right] / \theta_{r-2}(q)$ where $\theta_{n}(q):=\sum_{i=0}^{n} q^{i}$. If $k_{-}=k_{+}=\theta_{r}(q) / 2$, then both $r$ and $q$ are odd and $m=\left(\theta_{r-1}(q)-q^{\frac{r-1}{2}}\right) / 2$. If a standard two-intersection set has size $k_{-}$(respectively $k_{+}$) we say that it has size of type $k_{-}$(respectively size of type $k_{+}$). Let us note that if two standard two-intersection sets $H$ and $K$ have size of different type, then $|H| \neq \theta_{r}(q) / 2$ and $|K| \neq \theta_{r}(q) / 2$.

In $P G(r, q)$ with $r$ odd, classical examples of standard twointersection sets are non-singular hyperbolic quadrics (having $m=\theta_{r-2}(q)$ and size of type $\left.k_{-}\right)$and non-singular elliptic quadrics (having $n=\theta_{r-2}(q)$ and size of type $k_{+}$). Moreover, in $P G\left(r, q^{2}\right)$, classical examples are Baer subspaces (having $m=\theta_{r-2}(q)$ and size of type $\left.k_{-}\right)$and non-singular Hermitian varieties (having: $m=\left(q^{r}+1\right) \theta_{\frac{r-3}{2}}\left(q^{2}\right)$ and size of type $k_{-}$if $r$
is odd; $n=\left(q^{r-1}+1\right) \theta_{\frac{r-2}{2}}\left(q^{2}\right)$ and size of type $k_{+}$if $r$ is even $)$.
A number of people constructed standard two-intersection sets using disjoint unions of standard two-intersection sets having the same type of size, see, for istance, [2], [3], [5], and [6]. In this paper we prove that this is always possible. As a matter of fact, we prove the following three results.

Theorem 1.1. Let $H$ and $K$ be two standard two-intersection sets in $P G(r, q)$ such that $H \neq K^{c}$ and $H \cap K=\emptyset$. Then $H \cup K$ is a standard two-intersection set if and only if $H$ and $K$ have size of the same type. Furthermore, $H, K$, and $H \cup K$ have size of the same type.

Theorem 1.2. Let $H$ and $K$ be two standard two-intersection sets in $P G(r, q)$ having size of the same type such that $H \cap K \neq$ $\emptyset$. Then $H \cap K$ is a standard two-intersection set if and only if $H \cup K$ is a standard two-intersection set. Furthermore, $H, K$, $H \cap K$, and $H \cup K$ have size of the same type.

Theorem 1.3. Let $H$ and $K$ be two standard two-intersection sets in $P G(r, q)$ having size of different type such that $H \nsubseteq K$, $K \nsubseteq H, H \cap K \neq \emptyset,|H \backslash K| \neq \theta_{r}(q) / 2$, and $|K \backslash H| \neq \theta_{r}(q) / 2$. If $H \cap K$ (respectively $H \cup K$ ) is a standard two-intersection set, then $H \cup K$ (respectively $H \cap K$ ) is not a standard twointersection set.

## 2 Preliminary results

Let $K$ be a standard $k$-set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$ with $\delta:=q^{\frac{r-1}{2}}$. For each $i \in\{m, m+\delta\}$, let us denote by:

- $t_{i}$ the number of hyperplanes meeting $K$ in exactly $i$ points;
- $u_{i}$ the number of hyperplanes passing through a point not in $K$ and meeting $K$ in exactly $i$ points;
- $v_{i}$ the number of hyperplanes passing through a point of $K$ and meeting $K$ in exactly $i$ points.

Set $\theta_{d}(q):=\sum_{i=0}^{d} q^{i}$. From [8], we get the following result.
Theorem 2.1. Let $K$ be a standard $k$-set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$. Then

$$
\begin{gather*}
\theta_{r-2}(q) k^{2}-\left[(2 m+\delta) \theta_{r-1}(q)-\delta^{2}\right] k+m(m+\delta) \theta_{r}(q)=0  \tag{1}\\
\delta t_{m+\delta}=(k-m) \theta_{r-1}(q)-m q \delta^{2}  \tag{2}\\
\delta t_{m}=(m+\delta) q \delta^{2}-(k-m-\delta) \theta_{r-1}(q)  \tag{3}\\
\delta u_{m+\delta}=(k-m) \theta_{r-2}(q)-m \delta^{2}  \tag{4}\\
\delta u_{m}=(m+\delta) \delta^{2}-(k-m-\delta) \theta_{r-2}(q)  \tag{5}\\
v_{m+\delta}=u_{m+\delta}+\delta  \tag{6}\\
v_{m}=u_{m}-\delta \tag{7}
\end{gather*}
$$

From [3] we get the following result.
Theorem 2.2. Let $K$ be a standard $k$-set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$. Then either $k=k_{-}=m\left[\theta_{r-1}(q)+\delta\right] / \theta_{r-2}(q)$ or $k=k_{+}=(m+\delta)\left[\theta_{r-1}(q)-\delta\right] / \theta_{r-2}(q)$.

Remark 2.3. If $0 \leq a \leq b$, then it is easy to see that

- $\theta_{b+1}(q)=\theta_{a}(q)+q^{a+1} \theta_{b-a}(q)$;
- $\theta_{b+1}(q)=1+q \theta_{b}(q)$;
- $\theta_{b+1}(q)=\theta_{b}(q)+q^{b+1}$.

Lemma 2.4. If $r \geq 2$, then $\theta_{r}(q) \theta_{r-2}(q)=\theta_{r-1}^{2}(q)-q^{r-1}$.
Proof. By Remark 2.3 we have

$$
\begin{aligned}
& \theta_{r}(q) \theta_{r-2}(q)=\left[q^{r}+q^{r-1}+\theta_{r-2}(q)\right] \theta_{r-2}(q)= \\
& \quad=q^{r}\left[q^{r-2}+\theta_{r-3}(q)\right]+q^{r-1} \theta_{r-2}(q)+\theta_{r-2}^{2}(q)= \\
& \quad=q^{2(r-1)}+q^{r-1}\left[q \theta_{r-3}(q)\right]+q^{r-1} \theta_{r-2}(q)+\theta_{r-2}^{2}(q)= \\
& \quad=q^{2(r-1)}+q^{r-1}\left[\theta_{r-2}(q)-1\right]+q^{r-1} \theta_{r-2}(q)+\theta_{r-2}^{2}(q)= \\
& \quad=q^{2(r-1)}+2 q^{r-1} \theta_{r-2}(q)+\theta_{r-2}^{2}(q)-q^{r-1}= \\
& \quad=\left[q^{r-1}+\theta_{r-2}(q)\right]^{2}-q^{r-1}=\theta_{r-1}^{2}(q)-q^{r-1} .
\end{aligned}
$$

Lemma 2.5. Let $K$ be a standard $k$-set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$. Then

- $\left(t_{m+\delta}, u_{m+\delta}, v_{m+\delta}\right)=(k, m, m+\delta)$ if $k=k_{-}$;
- $\left(t_{m}, u_{m}, v_{m}\right)=(k, m+\delta, m)$ if $k=k_{+}$.

Proof. First, let us suppose that $k=k_{-}$. By Theorem 2.2 we have $k \theta_{r-2}(q)=m\left[\theta_{r-1}(q)+\delta\right]$. So $(k-m) \theta_{r-2}(q)=m\left[\theta_{r-1}(q)-\right.$ $\left.\theta_{r-2}(q)+\delta\right]=m \delta(\delta+1)$. By equation (2) and Remark 2.4, we get $\delta t_{m+\delta} \theta_{r-2}(q)=m \delta(\delta+1) \theta_{r-1}(q)-m q \delta^{2} \theta_{r-2}(q)=\delta m\left[\theta_{r-1}(q)+\right.$ $\left.\delta\left(\theta_{r-1}(q)-q \theta_{r-2}(q)\right)\right]=\delta m\left[\theta_{r-1}(q)+\delta\right]=\delta k \theta_{r-2}(q)$. So $t_{m+\delta}=$ $k$. By equation (4), we get $\delta u_{m+\delta}=m \delta(\delta+1)-m \delta^{2}=m \delta$. So $u_{m+\delta}=m$. By equation (6), we get $v_{m+\delta}=m+\delta$.

Now, let us suppose that $k=k_{+}$. By using very similar arguments, we get $\left(t_{m}, u_{m}, v_{m}\right)=(k, m+\delta, m)$.
Lemma 2.6. If $K$ is a standard two-intersection set, then $K^{c}$ is a standard two-intersection set too. Furhermore, $K$ and $K^{c}$ have size of the same type.
Proof. $K$ is a set of type $(m, m+\delta)_{r-1}$. If a hyperplane meets $K$ in $m$ points, then it meets $K^{c}$ in $\theta_{r-1}(q)-m$ points. If a hyperplane meets $K$ in $m+\delta$ points, then it meets $K^{c}$ in $\theta_{r-1}(q)-m-\delta$ points. So $K^{c}$ is a set of type $(d, d+\delta)_{r-1}$ with $d=\theta_{r-1}(q)-\delta-m$. It is clear that $\left|K^{c}\right|=\theta_{r}(q)-|K|$. If $K$ has size of type $k_{-}$(respectively $k_{+}$), then by Theorem 2.2 we get $|K| \theta_{r-2}(q)=m\left[\theta_{r-1}(q)+\delta\right]$ (respectively $|K| \theta_{r-2}(q)=$ $\left.(m+\delta)\left[\theta_{r-1}(q)-\delta\right]\right)$. By Lemma 2.4 we get $\theta_{r}(q) \theta_{r-2}(q)=$ $\left[\theta_{r-1}(q)-\delta\right]\left[\theta_{r-1}(q)+\delta\right]$. Then $\left|K^{c}\right| \theta_{r-2}(q)=d\left[\theta_{r-1}(q)+\delta\right]$ (respectively $\left.\left|K^{c}\right| \theta_{r-2}(q)=(d+\delta)\left[\theta_{r-1}(q)-\delta\right]\right)$ easily follows. So $K^{c}$ has size of type $k_{-}$(respectively $k_{+}$).

## 3 On sets having size of type $k_{-}$

In this section by $H_{m}$ we will denote a standard set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$ having size of type $k_{-}$. Putting $\alpha:=$ $\left[\theta_{r-1}(q)+\delta\right] / \theta_{r-2}(q)$, by Theorem 2.2, we have $\left|H_{m}\right|=m \alpha$.

Lemma 3.1. Let $H$ be an $H_{m}$ and $H^{\prime}$ be an $H_{m^{\prime}}$. If $H \cap H^{\prime}=\emptyset$ and $H^{\prime} \neq H^{c}$, then $H \cup H^{\prime}$ is an $H_{m+m^{\prime}}$.

Proof. Since $H \cap H^{\prime}=\emptyset$ it is clear that $\left|H \cup H^{\prime}\right|=\left(m+m^{\prime}\right) \alpha$. Furthermore, $m^{\prime}|H|=m^{\prime}(m \alpha)=m\left(m^{\prime} \alpha\right)=m\left|H^{\prime}\right|$. Now let us denote by $x$ the number of the hyperplanes meeting $H$ in $m+\delta$ points and $H^{\prime}$ in $m^{\prime}+\delta$ points. If we prove that $x=0$, then each hyperplane meets $H \cup H^{\prime}$ in $m+m^{\prime}$ points or in $m+m^{\prime}+\delta$ points. So $H \cup H^{\prime}$ is an $H_{m+m^{\prime}}$. Let $Q$ be a point not in $H^{\prime}$ and let us denote by $u_{i}$ the number of hyperplanes passing through $Q$ and meeting $H^{\prime}$ in exactly $i$ points, with $i \in\left\{m^{\prime}, m^{\prime}+\delta\right\}$. Since $H^{\prime}$ has size of type $k_{-}$, by Lemma 2.5, we have $u_{m^{\prime}+\delta}=m^{\prime}$. Let us denote by $y$ the number of pairs $(Q, \pi)$ where $Q \in H$ and $\pi$ is a hyperplane through $Q$ meeting $H^{\prime}$ in $m^{\prime}+\delta$ points. Being $Q \notin H^{\prime}$ we have

$$
\begin{equation*}
y=|H| u_{m^{\prime}+\delta}=|H| m^{\prime} \tag{8}
\end{equation*}
$$

Now, if we consider the $t_{m^{\prime}+\delta}$ hyperplanes meeting $H^{\prime}$ in exactly $m^{\prime}+\delta$ points, then by Remark 2.5 we have $t_{m^{\prime}+\delta}=\left|H^{\prime}\right|$. Furthermore,

$$
\begin{equation*}
y=x(m+\delta)+\left(t_{m^{\prime}+\delta}-x\right) m \tag{9}
\end{equation*}
$$

since there are $x$ hyperplanes meeting $H$ in $m+\delta$ points and $t_{m^{\prime}+\delta}-x$ hyperplanes meeting $H$ in $m$ points. By (8) and (9) we get $|H| m^{\prime}=x \delta+m t_{m^{\prime}+\delta}=x \delta+m\left|H^{\prime}\right|$. Being $m^{\prime}|H|=m\left|H^{\prime}\right|$ we get $x \delta=0$ and hence $x=0$.

Lemma 3.2. Let $H$ be an $H_{m}$ and $H^{\prime \prime}$ be an $H_{m+m^{\prime}}$. If $H \subset H^{\prime \prime}$, then $H^{\prime \prime} \backslash H$ is an $H_{m^{\prime}}$.

Proof. Put $\tau:=\theta_{r-1}(q)-\delta$. By Lemma $2.6\left(H^{\prime \prime}\right)^{c}$ is an $H_{\tau-\left(m+m^{\prime}\right)}$. Being $H \subset H^{\prime \prime}$, we have that $H \cap\left(H^{\prime \prime}\right)^{c}=\emptyset$. So, by Lemma 3.1, $H \cup\left(H^{\prime \prime}\right)^{c}$ is an $H_{\tau-m^{\prime}}$. By Lemma 2.6, $\left(H \cup\left(H^{\prime \prime}\right)^{c}\right)^{c}$ is an $H_{\tau-\left(\tau-m^{\prime}\right)}$. Finally, being $H^{\prime \prime} \backslash H=H^{c} \cap H^{\prime \prime}=\left(H \cup\left(H^{\prime \prime}\right)^{c}\right)^{c}$, we have that $H^{\prime \prime} \backslash H$ is an $H_{m^{\prime}}$.

By Lemmas 3.1 and 3.2 we immediately get the following

Theorem 3.3. Let $H$ be an $H_{m}$ and $H^{\prime}$ be a set such that $H^{\prime} \neq H^{c}$ and $H \cap H^{\prime}=\emptyset$. Now put $H^{\prime \prime}:=H \cup H^{\prime}$. Then $H^{\prime}$ is an $H_{m^{\prime}}$ if and only if $H^{\prime \prime}$ is an $H_{m+m^{\prime}}$.

Theorem 3.4. Let $H$ be an $H_{m}$ and $H^{\prime}$ be an $H_{m^{\prime}}$ such that $H^{\prime} \neq H^{c}$ and $H \cap H^{\prime} \neq \emptyset$. Then $H \cap H^{\prime}$ is an $H_{i}$ if and only if $H \cup H^{\prime}$ is an $H_{m+m^{\prime}-i}$.

Proof. First let us suppose that $H \cap H^{\prime}$ is an $H_{i}$. Being $H \cap H^{\prime} \subset$ $H$, by Lemma 3.2 we have that $H \backslash H^{\prime}=H \backslash\left(H \cap H^{\prime}\right)$ is an $H_{m-i}$. Now, being $\left(H \backslash H^{\prime}\right) \cap H^{\prime}=\emptyset$, by Lemma 3.1 we have that $\left(H \backslash H^{\prime}\right) \cup H^{\prime}$ is an $H_{m-i+m^{\prime}}$. So $H \cup H^{\prime}=\left(H \backslash H^{\prime}\right) \cup H^{\prime}$ is an $H_{m+m^{\prime}-i}$. Now let us suppose that $H \cup H^{\prime}$ is an $H_{m+m^{\prime}-i}$. Being $H^{\prime} \subset H \cup H^{\prime}$, by Lemma 3.2 we have that $\left(H \cup H^{\prime}\right) \backslash H^{\prime}=H \backslash H^{\prime}$ is an $H_{m-i}$. Now, being $H \backslash H^{\prime} \subset H$, again by Lemma 3.2, we have that $H \backslash\left(H \backslash H^{\prime}\right)$ is an $H_{m-(m-i)}$. So $H \cap H^{\prime}=H \backslash\left(H \backslash H^{\prime}\right)$ is an $H_{i}$.

## 4 On sets having size of type $k_{+}$

For a better reading, we present in a new section the results on standard two-intersection sets having size of type $k_{+}$although they are similar to those ones on sets having size of type $k_{-}$and also the proofs run in a very similar way.
In this section by $K_{m}$ we will denote a standard set of type $(m, m+\delta)_{r-1}$ in $P G(r, q)$ having size of type $k_{+}$. Putting $\beta:=$ $\left[\theta_{r-1}(q)-\delta\right] / \theta_{r-2}(q)$, by Theorem 2.2, we have $\left|K_{m}\right|=(m+\delta) \beta$.

Lemma 4.1. Let $K$ be a $K_{m}$ and $K^{\prime}$ be a $K_{m^{\prime}}$. If $K \cap K^{\prime}=\emptyset$ and $K^{\prime} \neq K^{c}$, then $K \cup K^{\prime}$ is a $K_{m+m^{\prime}+\delta}$.

Proof. Since $K \cap K^{\prime}=\emptyset$ it is clear that $\left|K \cup K^{\prime}\right|=\beta[(m+$ $\left.\left.m^{\prime}+\delta\right)+\delta\right]$. Furthermore, $\left(m^{\prime}+\delta\right)|K|=\left(m^{\prime}+\delta\right)[(m+\delta) \beta]=$ $(m+\delta)\left[\left(m^{\prime}+\delta\right) \beta\right]=(m+\delta)\left|K^{\prime}\right|$. Now let us denote by $x$ the number of the hyperplanes meeting $K$ in $m$ points and $K^{\prime}$ in $m^{\prime}$ points. If we prove that $x=0$, then each hyperplane meets
$K \cup K^{\prime}$ in $m+m^{\prime}+\delta$ points or in $m+m^{\prime}+2 \delta$ points. So $K \cup K^{\prime}$ is an $K_{m+m^{\prime}+\delta}$. Let $Q$ be a point not in $K^{\prime}$ and let us denote by $u_{i}$ the number of hyperplanes passing through $Q$ and meeting $K^{\prime}$ in exactly $i$ points, with $i \in\left\{m^{\prime}, m^{\prime}+\delta\right\}$. By Lemma 2.5 we have $u_{m^{\prime}}=m^{\prime}+\delta$. Let us denote by $w$ the number of pairs $(Q, \pi)$ where $Q \in K$ and $\pi$ is a hyperplane through $Q$ meeting $K^{\prime}$ in $m^{\prime}$ points. Being $Q \notin K^{\prime}$ we have

$$
\begin{equation*}
w=|K| u_{m^{\prime}}=|K|\left(m^{\prime}+\delta\right) \tag{10}
\end{equation*}
$$

Now if we consider the $t_{m^{\prime}}$ hyperplanes meeting $K^{\prime}$ in exactly $m^{\prime}$ points, then by Lemma 2.5 we have $t_{m^{\prime}}=\left|K^{\prime}\right|$. Furthermore,

$$
\begin{equation*}
w=x m+\left(t_{m^{\prime}}-x\right)(m+\delta) \tag{11}
\end{equation*}
$$

since there are $x$ hyperplanes meeting $K$ in $m$ points and $t_{m^{\prime}}-x$ hyperplanes meeting $K$ in $m+\delta$ points. By (10) and (11) we get $|K|\left(m^{\prime}+\delta\right)=\left|K^{\prime}\right|(m+\delta)-x \delta$. Being $|K|\left(m^{\prime}+\delta\right)=\left|K^{\prime}\right|(m+\delta)$, we get $x \delta=0$ and so $x=0$.

We would like to point out that after submitting the paper we realized that the statement of Lemma 4.1 has already been proved in another way by L.Lane-Harward and T.Penttila, see [6], page 139, Theorem 2.

Lemma 4.2. Let $K$ be a $K_{m}$ and $K^{\prime \prime}$ be a $K_{m+m^{\prime}+\delta}$. If $K \subset K^{\prime \prime}$, then $K^{\prime \prime} \backslash K$ is a $K_{m^{\prime}}$.

Proof. Put $\tau:=\theta_{r-1}(q)-\delta$. By Lemma $2.6\left(K^{\prime \prime}\right)^{c}$ is a $K_{\tau-\left(m+m^{\prime}+\delta\right)}$. Being $K \subset K^{\prime \prime}$, we have that $K \cap\left(K^{\prime \prime}\right)^{c}=\emptyset$. So, by Lemma 4.1, $K \cup\left(K^{\prime \prime}\right)^{c}$ is a $K_{\tau-m^{\prime}}$. By Lemma 2.6, $\left(K \cup\left(K^{\prime \prime}\right)^{c}\right)^{c}$ is a $K_{\tau-\left(\tau-m^{\prime}\right)}$. Finally, being $K^{\prime \prime} \backslash K=K^{c} \cap K^{\prime \prime}=\left(K \cup\left(K^{\prime \prime}\right)^{c}\right)^{c}$, we have that $K^{\prime \prime} \backslash K$ is a $K_{m^{\prime}}$.

By Lemmas 4.1 and 4.2 we immediately get the following
Theorem 4.3. Let $K$ be a $K_{m}$ and $K^{\prime}$ a set such that $K \cap K^{\prime}=\emptyset$ and $K^{\prime} \neq K^{c}$. Now put $K^{\prime \prime}:=K \cup K^{\prime}$. Then $K^{\prime}$ is a $K_{m^{\prime}}$ if and only if $K^{\prime \prime}$ is a $K_{m+m^{\prime}+\delta}$.

Theorem 4.4. Let $K$ be a $K_{m}$ and $K^{\prime}$ be a $K_{m^{\prime}}$ such that $K^{\prime} \neq K^{c}$ and $K \cap K^{\prime} \neq \emptyset$. Then $K \cap K^{\prime}$ is a $K_{i}$ if and only if $K \cup K^{\prime}$ is a $K_{m+m^{\prime}-i}$.
Proof. First let us suppose that $K \cap K^{\prime}$ is a $K_{i}$. Being $K \cap K^{\prime} \subset$ $K$, by Lemma 4.2 we have that $K \backslash K^{\prime}=K \backslash\left(K \cap K^{\prime}\right)$ is a $K_{m-i-\delta}$. Now, being $\left(K \backslash K^{\prime}\right) \cap K^{\prime}=\emptyset$, by Lemma 4.1 we have that $\left(K \backslash K^{\prime}\right) \cup K^{\prime}$ is a $K_{(m-i-\delta)+m^{\prime}+\delta}$. So $K \cup K^{\prime}=\left(K \backslash K^{\prime}\right) \cup K^{\prime}$ is a $K_{m+m^{\prime}-i}$.

Now let us suppose that $K \cup K^{\prime}$ is a $K_{m+m^{\prime}-i}$. Being $K^{\prime} \subset$ $K \cup K^{\prime}$, by Lemma 4.2 we have that $\left(K \cup K^{\prime}\right) \backslash K^{\prime}=K \backslash K^{\prime}$ is a $K_{\left(m+m^{\prime}-i\right)-m^{\prime}-\delta}=K_{m-i-\delta}$. Now, being $K \backslash K^{\prime} \subset K$, again by Lemma 4.2 we have that $K \backslash\left(K \backslash K^{\prime}\right)$ is a $K_{m-(m-i-\delta)-\delta}=K_{i}$. So $K \cap K^{\prime}=K \backslash\left(K \backslash K^{\prime}\right)$ is a $K_{i}$.

## 5 The proofs of the main results

Here we prove the three theorems claimed in the introduction.

### 5.1 The proof of Theorem 1.1

Proof. If $H$ and $K$ have size of the same type $k_{-}$(respectively $k_{+}$), then by Lemma 3.1 (respectively Lemma 4.1) $H \cup K$ is a standard a two-intersection set having size of type $k_{-}$(respectively $k_{+}$). Now, let us suppose that $H \cup K$ is a standard two-intersection set having size $k_{-}$(respectively $k_{+}$). So, as seen above, $H$ and $K$ can not have both size of type $k_{+}$(respectively $k_{-}$). If both $H \cup K$ and $H$, or $K$, have size of type $k_{-}$(respectively $k_{+}$), then by Lemma 3.3 (respectively Lemma 4.3) $K$, or $H$, has size of type $k_{-}\left(\right.$respectively $\left.k_{+}\right)$. So $H$ and $K$ have size of the same type $k_{-}$(respectively $k_{+}$).

### 5.2 The proof of Theorem 1.2

Proof. If $H$ and $K$ have size of the same type $k_{-}$(respectively $k_{+}$), then by Theorem 3.4 (respectively by Theorem 4.4) $H \cap K$
is a standard two-intersection set having size of type $k_{-}$(respectively $k_{+}$) if and only if $H \cup K$ is a standard two-intersection set having size of type $k_{-}$(respectively $k_{+}$).

### 5.3 The proof of Theorem 1.3

Proof. As we have already seen in the introduction, since $H$ and $K$ have different type of size we have that $|H| \neq \theta_{r}(q) / 2$ and $|K| \neq \theta_{r}(q) / 2$. Moreover, without loosing on generality, we can suppose that $H$ has size of type $k_{-}$and $K$ has size of type $k_{+}$.

Under the assumption that $H \cap K$ (respectively $H \cup K$ ) is a standard two-intersection set, we have to prove that $H \cup K$ (respectively $H \cap K$ ) is not a standard two-intersection set.

On the contrary, let us suppose that $H \cup K$ (respectively $H \cap K)$ is a standard two-intersection set. Hence, in both cases, we have that $H \cap K$ and $H \cup K$ are standard two-intersection sets. First, let us suppose that $H \cap K$ has size of type $k_{-}$. By Lemma 3.2, we have that $H \backslash K=H \backslash(H \cap K)$ is a standard two-intersection set having size of type $k_{-}$. If $H \cup K$ has size of type $k_{-}$, then by Lemma 3.2 we have that $K=(H \cup K) \backslash$ ( $H \backslash K$ ) is a standard two-intersection set having size of type $k_{-}$, a contradiction (being $\left.|K| \neq \theta_{r}(q) / 2\right)$. So $H \cup K$ has size of type $k_{+}$. By Lemma 3.2 we have that $H \backslash K=(H \cup K) \backslash$ $K$ is a standard two-intersection set having size of type $k_{+}$, a contradiction (being $|H \backslash K| \neq \theta_{r}(q) / 2$ ). Finally. we have that $H \cap K$ has not size of type $k_{-}$. In a very similar way, we can prove that $H \cap K$ has not size of type $k_{+}$. So $H \cap K$ is not a standard two-intersection set, a contradiction.

We conclude the paper by studying what happens when $H$ and $K$ are two standard two-intersection sets such that $H \subset K$.

Proposition 5.1. Let $H$ and $K$ be two standard two-intersection sets such that $H \subset K$. Then $K \backslash H$ is a standard two-intersection set if and only if $H$ and $K$ have size of the same type. Furthermore, $H, K$, and $K \backslash H$ have size of the same type.

Proof. If $H$ and $K$ have size of the same type $k_{-}$(respectively $k_{+}$), then by Lemma 3.2 (respectively Lemma 4.2) $K \backslash H$ is a standard two-intersection set having size of type $k_{-}$(respectively $k_{+}$). Now, let us suppose that $K \backslash H$ is a standard twointersection set having size $k_{-}$(respectively $k_{+}$). So, as seen above, $H$ and $K$ can not have both size of type $k_{+}$(respectively $k_{-}$). If both $K \backslash H$ and $H$ have size of type $k_{-}$(respectively $k_{+}$), then by Lemma 3.1 (respectively Lemma 4.1) $K=(K \backslash H) \cup H$ has size of type $k_{-}$(respectively $k_{+}$). So $H$ and $K$ have size of the same type $k_{-}$(respectively $k_{+}$). If both $K \backslash H$ and $K$ have size of type $k_{-}$(respectively $k_{+}$), then by Lemma 3.2 (respectively Lemma 4.2) $H=K \backslash(K \backslash H)$ has size of type $k_{-}$ (respectively $k_{+}$). So $H$ and $K$ have size of the same type $k_{-}$ (respectively $k_{+}$).

Corollary 5.2. Let $H$ and $K$ be two standard two-intersection sets having size of different type. If $H \subset K$, then $K \backslash H$ is a three-intersection set.

Proof. Let $H$ be a standard set of type $(m, m+\delta)$ and $K$ be a standard set of type $\left(m^{\prime}, m^{\prime}+\delta\right)$. A hyperplane can meet the set $K \backslash H$ in $\gamma$ points with $\gamma \in\left\{m^{\prime}-m-\delta, m^{\prime}-m, m^{\prime}-m+\right.$ $\delta\}$. Furthermore, all those values occurr, since by Proposition $5.1 K \backslash H$ is not a two-intersection set. So $K \backslash H$ is a threeintersection set.

Let us note that there are standard two-intersection sets $H$ and $K$ having size of different type such that $H \subset K$. Indeed, let $\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{q}, \Omega_{q+1}\right\}$ be an ovoidal fibration of $P G(3, q)$, i.e. a partition of $P G(3, q)$ into $q+1$ ovoids, see [4]. The set $K:=$ $\cup_{i=1}^{q} \Omega_{i}$ is a standard set of type $\left(q^{2}, q^{2}+q\right)_{2}$ having size $q\left(q^{2}+\right.$ 1) $\neq \theta_{3}(q) / 2$ of type $k_{+}$. Let $A$ be a point of $\Omega_{q+1}$ and let $\pi$ be the plane tangent to $\Omega_{q+1}$ in $A$. Now, let $H$ be a line of $\pi$ not through $A$. The line $H$ is a standard set of type $(1, q+1)_{2}$ having size $q+1 \neq \theta_{3}(q) / 2$ of type $k_{-}$. So $H$ and $K$ have size of different type. Being $H \cap \Omega_{q+1}=\emptyset$, it is $H \subset K$. So, $K \backslash H$ is a three-intersection set.

Acknowledgments. We would like to thank very much the anonymous referee for the useful comments and suggestions that have enabled us to rewrite the paper in a more readable way.

## References

[1] A. Blokhuis, M. Lavrauw, On two-intersection sets with respect to hyperplanes in projective spaces, J. Combin. Theory, Series A 99 (2002), 377-382.
[2] A. Cossidente, N. Durante, G. Marino, T. Penttila, A. Siciliano, The geometry of some two-character sets, Des. Codes Cryptogr. 46 (2008), 231-241.
[3] M. De Finis, On $k$-sets in $P G(r, q), r \geq 3$., Rend. Mat. 3 (1983), 447-454.
[4] M. De Finis, On $k$-sets of type $(m, n)$ in $P G(3, q)$ with respect to planes, Ars Combin. 21 (1986), 119-136.
[5] N. Hamilton, T. Penttila, Sets of type $(a, b)$ from subgroups of $\Gamma L\left(1, p^{R}\right)$, J. Algebraic Combin., 13 (2001), 67-76.
[6] L. Lane-Harvard, T. Penttila, Some strongly regular graphs with the parameters of Paley graphs, Australas. J. Combin., 61 (2015), 138-141.
[7] T. Penttila, G. F. Royle, Sets of type ( $m, n$ ) in the affine and projective planes of order nine, Des. Codes Cryptogr., 6 (1995), 229-245.
[8] M. Tallini Scafati, Sui $k$-insiemi di uno spazio di Galois $S_{r}, q$ a due soli caratteri nella dimensione $d$, Rend. Acc. Naz. Lincei, 60 (8) (1976), 782-788.

