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Abstract

In this paper, we extend and analyze in a finite projec-
tive space of any dimension the notion of standard two-
intersection sets previously introduced in the projective
plane by T.Penttila and G.F.Royle in [7], see also [1].
Moreover, given a pair of suitable distinct standard two-
intersection sets in a finite projective space it is possible
to get further standard two-intersection sets by applying
elementary set-theoretical operations to the elements of
the pair.
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1 Introduction and motivation

Let us denote by PG(r, ) the r-dimensional space over the finite
field GF(q) with ¢ = p” a prime power and by II the pointset
of PG(r,q). A k-set K of PG(r,q) is a set of k points of II.
By K¢ we denote the set 1T\ K, i.e. the complementary set
of K. A k-set K is said a set of type (m,n)q, with m < n, if
each subspace of dimension d of PG(r,q) meets K in either m
or n points and both values occur. The integers m and n are
known as the intersection numbers of K with respect to the d-
dimensional subspaces. A two-intersection set is a set of type
(m,n),_1. Such a set is also known as a two-character set. It is
well known that a necessary condition for the existence of such
a set is that n — m divides ¢" !, see [8]. In [7] pag. 231 (see
also [1] pag. 378) T.Penttila and G.F.Royle said standard the
parameters of a k-set of type (m,m + q%)l in a projective plane
of order ¢ a square. Extending their definition, we say standard
the parameters of a k-set of type (m,m + q%)r_l in PG(r,q)
with r odd or ¢ a square. Furthermore, in this paper we will
say standard a two-intersection set having standard parameters.
In [3] the author proved that a standard two-intersection set
has size k_ = m[f,_1(q) + ¢"= |/0,_2(q) or ky = n[b_1(q) —
47 /6, 5(q) where 0,(q) == Yioq' Tk = ky = 6,(q)/2,
then both r and ¢ are odd and m = (6,_,(¢) — ¢"2)/2. If a
standard two-intersection set has size k_ (respectively k) we
say that it has size of type k_ (respectively size of type k). Let
us note that if two standard two-intersection sets H and K have
size of different type, then |H| # 6,(q)/2 and |K| # 6,(q)/2.

In PG(r,q) with r odd, classical examples of standard two-
intersection sets are non-singular hyperbolic quadrics (having
m = 0, 2(q) and size of type k_) and non-singular elliptic
quadrics (having n = 6,_5(q) and size of type k;). More-
over, in PG(r, ¢*), classical examples are Baer subspaces (having
m = 0,_5(q) and size of type k_) and non-singular Hermitian
varieties (having: m = (¢" + 1)9% (¢?) and size of type k_ if r



isodd; n = (¢ + 1)0%@2) and size of type k, if r is even).

A number of people constructed standard two-intersection
sets using disjoint unions of standard two-intersection sets hav-
ing the same type of size, see, for istance, [2], [3], [5], and [6].
In this paper we prove that this is always possible. As a matter
of fact, we prove the following three results.

Theorem 1.1. Let H and K be two standard two-intersection
sets in PG(r,q) such that H # K¢ and HNK = (. Then HUK
is a standard two-intersection set if and only if H and K have
size of the same type. Furthermore, H, K, and H UK have size
of the same type.

Theorem 1.2. Let H and K be two standard two-intersection
sets in PG(r, q) having size of the same type such that HN K #
(). Then HN K is a standard two-intersection set if and only if
H U K is a standard two-intersection set. Furthermore, H, K,
HNK, and HU K have size of the same type.

Theorem 1.3. Let H and K be two standard two-intersection
sets in PG(r,q) having size of different type such that H ¢ K,
K¢ H, HOK #0, |H\ K| £ 0,(q)/2, and |K\ H| # 6,(q)/2.
If HN K (respectively H U K ) is a standard two-intersection
set, then H U K (respectively H N K ) is not a standard two-
intersection set.

2 Preliminary results

Let K be a standard k-set of type (m,m + §),_1 in PG(r,q)
with & := ¢"= . For cach i € {m, m + ¢}, let us denote by:

e t; the number of hyperplanes meeting K in exactly ¢ points;

e u; the number of hyperplanes passing through a point not
in K and meeting K in exactly ¢ points;

e v; the number of hyperplanes passing through a point of
K and meeting K in exactly ¢ points.
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Set 04(q) := Y20, ¢'. From [8], we get the following result.

Theorem 2.1. Let K be a standard k-set of type (m,m+6),_4
in PG(r,q). Then

0, —2(q)k* = [(2m + 6)0,-1(q) — 0°]k +m(m +6)6.(q) =0 (1)
Stimys = (K —m)b,_1(q) — mqd® (2)

Otm = (m +0)qd” — (k —m — 8)0,-1(q) (3)

Otumis = (k —m)8,-2(q) — méd* (4)

Sty = (m 4+ 6)6* — (K —m — 6)0,_2(q) (5)

Umts = Ums + 0 (6)

Uy = Uy — O (7)

From [3] we get the following result.

Theorem 2.2. Let K be a standard k-set of type (m,m—+0),_1
in PG(r,q). Then either k = k_ = m[0,_1(q) + 0]/0,—2(q) or
k= ky = (m+ 0)[6,1(a) — 0]/6,-2(q).

Remark 2.3. If0 < a < b, then it is easy to see that
o Oh11(q) = 0u(q) + ¢ 0p-a(q);
® Oh1(q) = 1+ qbi(q);
o Op11(q) = On(q) +¢"*".
Lemma 2.4. Ifr > 2, then 0,.(q)0,_2(q) = 0>_,(q) — ¢ "

Proof. By Remark 2.3 we have
0r(0)0r—2(q) = [¢" + ¢ + 0,—2(q))0r—2(q) =
=¢"[q"2 4+ 0,-3(q)] + ¢ 0r-2(q) + 075 (q) =
= "D 4 ¢ Vgb,3(q)] + ¢ 0r_a(q) + 02_5(q) =
= 0D 4 0, 2(q) — 1] + ¢ 0,0(q) + 02 5(q) =
— q2(7"—1) 4 2qr—19r 2((]) 9372< ) _ qr 1 _
=" 0 - =0 () — g O
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Lemma 2.5. Let K be a standard k-set of type (m,m + 9),_4
in PG(r,q). Then

hd (tm+67um+57vm+5) = (kum7m+ 5) ka - k‘—;‘
o (tmyUm, V) = (k,m+3d,m) if k = k.

Proof. First, let us suppose that k = k_. By Theorem 2.2 we
have k6,_2(q) = m[0,-1(q)+6]. So (k—m)b,_2(q) = m[0,-1(q) —
0,—2(q)+0] = md(d+1). By equation (2) and Remark 2.4, we get
Otynrsbr—2(q) = md( + 1)0,-1(q) — mqd®0,_2(q) = om[0,_1(q) +
3(0r-1(q) — q0r—2(q))] = om[0,-1(q) + 6] = dkb,_2(q). SO tpmis =
k. By equation (4), we get duy, s = md(d + 1) —md* = md. So
Um+s = m. By equation (6), we get v,,46 = m + 0.

Now, let us suppose that £k = k,. By using very similar
arguments, we get (t,,, U, V) = (k,m + 0,m). ]

Lemma 2.6. If K is a standard two-intersection set, then K¢
18 a standard two-intersection set too. Furhermore, K and K¢
have size of the same type.

Proof. K is a set of type (m,m + 0),_1. If a hyperplane meets
K in m points, then it meets K¢ in 6,_1(q) — m points. If
a hyperplane meets K in m + ¢ points, then it meets K¢ in
0,-1(q) —m — 0 points. So K¢ is a set of type (d,d + §),_ with
d = 0,1(q) — 6 —m. It is clear that |[K¢| = 0,(¢) — |K|. If
K has size of type k_ (respectively k), then by Theorem 2.2
we get |K0,_2(q) = m[0,_1(q) + 6] (respectively |K|0,_2(q) =
(m + 6) [er—l(Q) - 6]) By Lemma 2.4 we get QT’(q)QT’—Q(Q) =
6v1(a) — 0)l6r_1(a) + 6. Then |K°I6, a(q) = dlt, +(q) + 0]
(respectively |K°|0,-2(q) = (d + 0)[0,-1(q) — J]) easily follows.
So K¢ has size of type k_ (respectively k). O

3 On sets having size of type k_
In this section by H,, we will denote a standard set of type

(m,m +0),_1 in PG(r,q) having size of type k_. Putting « :=
[0,-1(q) + 0]/0,_2(q), by Theorem 2.2, we have |H,,| = ma.
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Lemma 3.1. Let H be an H,, and H' be an H,,,. f HNH' =
and H' # H€, then HU H' is an H, .

Proof. Since HN H' = () it is clear that |H U H'| = (m + m/)a.
Furthermore, m/|H| = m/(ma) = m(m’a) = m|H'|. Now let us
denote by x the number of the hyperplanes meeting H in m +
points and H’ in m/+ 9 points. If we prove that z = 0, then each
hyperplane meets HUH' in m+m/ points or in m-+m’+4 points.
So HU H'"is an H,, . Let @ be a point not in H’ and let us
denote by u; the number of hyperplanes passing through () and
meeting H' in exactly i points, with i € {m/,m’ 4+ ¢}. Since H’
has size of type k_, by Lemma 2.5, we have u,, s = m’. Let
us denote by y the number of pairs (Q, ) where Q € H and 7
is a hyperplane through @) meeting H' in m’ + § points. Being
Q ¢ H' we have

y = |Hluess = |Hlm! ®)

Now, if we consider the t,,,s hyperplanes meeting H' in ex-
actly m’ + 0 points, then by Remark 2.5 we have t,,,,s = |H'|.
Furthermore,

y =x(m+90) + (twys —2)m (9)

since there are x hyperplanes meeting H in m + 0 points and
tmr+s — = hyperplanes meeting H in m points. By (8) and (9) we
get |H|m' = z6 + mt,yis = x0 +m|H'|. Being m/|H| = m|H’|
we get 6 = 0 and hence x = 0. m

Lemma 3.2. Let H be an H,, and H" be an H,, . If H C H”,
then H" \ H is an H,,.

Proof. Put 7 := 0,_1(q)—d. By Lemma 2.6 (H")¢is an H,_ (1)
Being H C H”, we have that H N (H")¢ = (). So, by Lemma
3.1, HU(H")¢is an H,_,,. By Lemma 2.6, (H U (H")°)¢ is an
H. (. Finally, being H"\ H = H*NH" = (H U (H")°)°,
we have that H"” \ H is an H,,. O

By Lemmas 3.1 and 3.2 we immediately get the following
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Theorem 3.3. Let H be an H,, and H' be a set such that
H' # H® and HNH' =0. Now put H" := HU H'. Then H' is
an H,, if and only if H" is an Hy, .

Theorem 3.4. Let H be an H,, and H' be an H,, such that
H' # H® and HNH' # 0. Then HN H' is an H; if and only if
HUH'" is an Hyy ;.

Proof. First let us suppose that HNH' is an H;. Being HNH' C
H, by Lemma 3.2 we have that H \ H' = H\ (HN H') is an
H,,—i. Now, being (H\ H') N H = (), by Lemma 3.1 we have
that (H\H')UH'isan Hy,—jypy. So HUH' = (H\H')UH' is an
H,, ;. Now let us suppose that HUH’ is an H,,,,, ;. Being
H' ¢ HUH', by Lemma 3.2 we have that (HUH')\H' = H\ H’
is an H,,_;. Now, being H \ H' C H, again by Lemma 3.2, we
have that A\ (H\ H') is an Hy,_(m—;). So HNH' = H\ (H\ H’)
is an H;. O

4 On sets having size of type k.

For a better reading, we present in a new section the results on
standard two-intersection sets having size of type &k, although
they are similar to those ones on sets having size of type k_ and
also the proofs run in a very similar way:.

In this section by K,, we will denote a standard set of type
(m,m+ 9d),_1 in PG(r,q) having size of type k.. Putting § :=
[0,-1(q) —9]/0,_2(q), by Theorem 2.2, we have |K,,| = (m+9)0.

Lemma 4.1. Let K be a K,,, and K' be a K,y. f KNK' =10
and K' # K¢, then K UK' is a Kyymas-

Proof. Since K N K’ = () it is clear that |[K U K'| = B[(m +
m’ + &) + d]. Furthermore, (m’ 4 6)|K| = (m' 4+ 6)[(m +0)5] =
(m —+0)[(m' +0)5] = (m + 9)|K’|. Now let us denote by x the
number of the hyperplanes meeting K in m points and K’ in
m/ points. If we prove that z = 0, then each hyperplane meets



KUK’ in m+m/+ 4 points or in m+m’+ 26 points. So K U K’
is an K, me5. Let @ be a point not in K’ and let us denote by
u; the number of hyperplanes passing through () and meeting
K' in exactly i points, with i € {m/,m’ + §}. By Lemma 2.5
we have u,, =m' + 9. Let us denote by w the number of pairs
(@, 7) where @ € K and 7 is a hyperplane through () meeting
K’ in m/ points. Being @) ¢ K’ we have

w = |K |ty = |K|(m'+9) (10)

Now if we consider the t,,, hyperplanes meeting K’ in exactly
m’ points, then by Lemma 2.5 we have t,,, = |K’|. Furthermore,

w=axm+ (tpy —x)(m+0) (11)

since there are x hyperplanes meeting K in m points and t,,, —x
hyperplanes meeting K in m+¢ points. By (10) and (11) we get
|K|(m'+6) = |K'|(m+§)—xd. Being |[K|(m'+9) = |K'|(m+9),
we get 6 = 0 and so z = 0. m

We would like to point out that after submitting the paper
we realized that the statement of Lemma 4.1 has already been
proved in another way by L.Lane-Harward and T.Penttila, see
[6], page 139, Theorem 2.

Lemma 4.2. Let K be a K, and K" be a Ky ys. If K C K",
then K"\ K is a K.

Proof. Put 7 :=0,_1(q)—d. By Lemma 2.6 (K")%is a K_ (4m/+6)-
Being K C K", we have that K N (K”)° = (. So, by Lemma
41, KU (K")®is a K;_,y. By Lemma 2.6, (K U (K")°)¢is a
K _(7—m. Finally, being K"\ K = KN K" = (K U (K")°)¢,
we have that K"\ K is a K. O

By Lemmas 4.1 and 4.2 we immediately get the following

Theorem 4.3. Let K be a K,, and K' a set such that KNK' = ()
and K' # K¢. Now put K" := KUK'. Then K' is a K if
and only if K" is a Kpimiis.



Theorem 4.4. Let K be a K,, and K' be a K,, such that
K' # K¢ and KNK'# (. Then KN K' is a K; if and only if
KUK is a K-

Proof. First let us suppose that K N K"’ is a K;. Being KNK' C
K, by Lemma 4.2 we have that K \ K’ = K\ (KN K') is a
Ky—i—s. Now, being (K \ K') N K’ = (), by Lemma 4.1 we have
that (K\ K" )UK is a K(m—i—s)tm+s- S0 KUK' = (K\ K')UK'
is a Kppm/—i-

Now let us suppose that K U K’ is a K, ;. Being K’ C
K UK', by Lemma 4.2 we have that (KUK')\ K' = K\ K’ is
a Knpm/—i)—m/—5 = Km—i—s5. Now, being K\ K’ C K, again by
Lemma 4.2 we have that K\ (K \ K') is a Kp—(m—i—s)—s = ;.
So KNK'=K\ (K\K')isaK;. O

5 The proofs of the main results

Here we prove the three theorems claimed in the introduction.

5.1 The proof of Theorem 1.1

Proof. If H and K have size of the same type k_ (respectively
ki), then by Lemma 3.1 (respectively Lemma 4.1) H U K is
a standard a two-intersection set having size of type k_ (re-
spectively k. ). Now, let us suppose that H U K is a standard
two-intersection set having size k_ (respectively k). So, as seen
above, H and K can not have both size of type k, (respectively
k_). If both HU K and H, or K, have size of type k_ (respec-
tively k), then by Lemma 3.3 (respectively Lemma 4.3) K, or
H, has size of type k_ (respectively k. ). So H and K have size
of the same type k_ (respectively k. ). O

5.2 The proof of Theorem 1.2

Proof. If H and K have size of the same type k_ (respectively
k), then by Theorem 3.4 (respectively by Theorem 4.4) HN K
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is a standard two-intersection set having size of type k_ (respec-
tively k) if and only if H U K is a standard two-intersection
set having size of type k_ (respectively k). ]

5.3 The proof of Theorem 1.3

Proof. As we have already seen in the introduction, since H and
K have different type of size we have that |H| # 6,(q)/2 and
|K| # 6,(q)/2. Moreover, without loosing on generality, we can
suppose that H has size of type k_ and K has size of type k..
Under the assumption that H N K (respectively H U K) is
a standard two-intersection set, we have to prove that H U K
(respectively H N K) is not a standard two-intersection set.
On the contrary, let us suppose that H U K (respectively
HNK) is a standard two-intersection set. Hence, in both cases,
we have that H N K and H U K are standard two-intersection
sets. First, let us suppose that H N K has size of type k_. By
Lemma 3.2, we have that H \ K = H \ (H N K) is a standard
two-intersection set having size of type k_. If H U K has size
of type k_, then by Lemma 3.2 we have that K = (H U K) \
(H \ K) is a standard two-intersection set having size of type
k_, a contradiction (being |K| # 6,(¢)/2). So H U K has size
of type ky. By Lemma 3.2 we have that H \ K = (H U K) \
K is a standard two-intersection set having size of type k., a
contradiction (being |H \ K| # 0,(¢)/2). Finally. we have that
H N K has not size of type k_. In a very similar way, we can
prove that H N K has not size of type k.. So H N K is not a
standard two-intersection set, a contradiction. O

We conclude the paper by studying what happens when H
and K are two standard two-intersection sets such that H C K.

Proposition 5.1. Let H and K be two standard two-intersection
sets such that H C K. Then K\H is a standard two-intersection
set if and only if H and K have size of the same type. Further-
more, H, K, and K \ H have size of the same type.
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Proof. If H and K have size of the same type k_ (respectively
ki), then by Lemma 3.2 (respectively Lemma 4.2) K \ H is
a standard two-intersection set having size of type k_ (respec-
tively k. ). Now, let us suppose that K \ H is a standard two-
intersection set having size k_ (respectively k;). So, as seen
above, H and K can not have both size of type k, (respectively
k_). If both K\ H and H have size of type k_ (respectively k),
then by Lemma 3.1 (respectively Lemma 4.1) K = (K\ H)UH
has size of type k_ (respectively ky). So H and K have size
of the same type k_ (respectively k;). If both K\ H and K
have size of type k_ (respectively k), then by Lemma 3.2 (re-
spectively Lemma 4.2) H = K \ (K \ H) has size of type k_
(respectively k;). So H and K have size of the same type k_
(respectively k). O

Corollary 5.2. Let H and K be two standard two-intersection
sets having size of different type. If H C K, then K\ H is a
three-intersection set.

Proof. Let H be a standard set of type (m,m + §) and K be a
standard set of type (m/,m’ + ). A hyperplane can meet the
set K\ H in 7 points with v € {m’ —m — d,m’ —m,m’ —m +
d}. Furthermore, all those values occurr, since by Proposition
5.1 K \ H is not a two-intersection set. So K \ H is a three-
intersection set. 0

Let us note that there are standard two-intersection sets H and
K having size of different type such that H C K. Indeed, let
{1, Q,...,Q,, 9,41} be an ovoidal fibration of PG(3,¢), i.e. a
partition of PG(3,q) into ¢ + 1 ovoids, see [4]. The set K :=
UL ,Q; is a standard set of type (¢2, ¢> + ¢)2 having size q(¢* +
1) # 05(q)/2 of type ky. Let A be a point of ,4; and let 7
be the plane tangent to (1,4, in A. Now, let H be a line of 7
not through A. The line H is a standard set of type (1,q + 1)
having size ¢ + 1 # 03(q)/2 of type k_. So H and K have size
of different type. Being H N Q1 =0, it is H C K. So, K\ H
is a three-intersection set.
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