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ABSTRACT 33 

 34 

Aim. The species-area relationship (SAR) is often modelled by the linearized power function log S = log c + z log A, 35 

where S is species richness, A is area, logc is the intercept and z is the slope. Although investigating how c and z values 36 

vary across taxa and archipelagos can provide  insights into the biology of the SAR, this approach has many caveats. In 37 

this study, we aim to clarify how and why SARs should be properly compared for the same taxon among different 38 

areas, or among different taxa in the same area. 39 

 40 

Location. Mediterranean. We considered 18 to 46 Tyrrhenian islands (0.000024 to 223 km2) and 32 to 65 Aegean 41 

islands (0.0058 to 8261 km2). 42 

 43 

Methods. We used OLS regressions to estimate c and z values for various taxonomic groups: land snails, isopods, 44 

centipedes, tenebrionids and reptiles. We used ANCOVAs to test (1) if different taxa have different z and c values 45 

within the same island group (possibly due to their dispersal ability and ecological characteristics), and (2) if the same 46 

taxon has different z and c values in different island groups (possibly due to differences in historical processes and 47 

isolation). 48 

 49 

Results. z varied between 0.141 and 0.309, while c varied between 2.717 and 12.286 species per unit area (1 km2). For 50 

tenebrionids, centipedes and land snails, we found higher c values in the Tyrrhenian islands than in the Aegean islands. 51 

Overall, c values were highest for land snails. 52 

 53 

Main conclusions. Our results demonstrate the importance of comparing SARs either of different groups within the 54 

same area, or of the same group in different areas. Furthermore, we identify the intercept, rather than the slope, as being 55 

dependent on the biogeographical dynamics (relict versus equilibrium faunas) and species ecology (dispersal 56 

capabilities and population abundance). 57 

 58 

Key words: allometric function, intercept, island biogeography, power function, regression lines, species-area 59 

relationship (SAR), slope 60 
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INTRODUCTION 61 

The species-area relationship (SAR), i.e. the increase in species number with area, is one of the best documented 62 

patterns in ecology (Lomolino, 2000, 2001; Whittaker & Fernández-Palacios, 2007; Triantis et al., 2012). Although 63 

several mathematical functions have been proposed to model SARs (Tjørve, 2003, 2009; Dengler, 2009; Williams et al., 64 

2009), comparative studies identify the power function as the model that, in general, best fits empirical data (at least for 65 

island systems, see Triantis et al., 2012; Matthews et al., 2015), and which is best supported by ecological theories (e.g., 66 

Rosenzweig, 1995; Martin & Goldenfeld, 2006). The power function S = c Az (where S represents species richness and 67 

A the area) can be linearized by a double logarithmic transformation as log S = log c + z log A. In this form, log c and z 68 

represent, respectively, the intercept and the slope of the line fitting the relationship. Since the space of the linearized 69 

power function is not arithmetic but logarithmic, z can be interpreted as a scaling factor describing how fast the 70 

response of species richness to area changes along the SAR curve (see Lomolino, 2001).  71 

Several hypotheses have been proposed to interpret the biological meaning of z and to explain its variation among 72 

organisms and island systems. In particular, it has been suggested that z should increase with area, isolation 73 

(Rosenzweig, 1995), species trophic ranks (Holt et al., 1999; Holt, 2010; Roslin et al., 2014), nestedness (Matthews et 74 

al., 2016) and spatial aggregation of the individuals (Tjørve & Turner, 2009), and should decrease with species 75 

dispersal ability  (Wright, 1981; Williamson, 1988), abundance of common species (Tjørve et al., 2008), human impact 76 

on the islands (Ficetola & Padoa-Schioppa, 2009) and latitude (Willig & Lyons, 2000; possibly as a response to 77 

increasing energy availability; Storch et al., 2005). It has been also noted that z tends to be higher in oceanic islands 78 

than in continental ones (Patiño et al., 2014). 79 

Conversely, the parameter c, which represents the expected mean number of species per unit area, has received much 80 

less attention, being often (and simplistically) interpreted as a direct result of species richness (with higher values of c 81 

expected for more diverse taxa). Yet, it is not difficult to imagine situations where the same mean number of species per 82 

unit area is found in groups with different regional species richness. For example, a very diverse group at a regional 83 

scale with a high degree of nestedness across islands could have the same c value of a less rich taxon with a more 84 

uniform local richness. This calls for a deeper evaluation of the potential causes behind variations in c values. Although 85 

this need has already been emphasized by Connor & McCoy (1979) and, even more, by Gould (1979), after more than 86 

thirty years, comparative analyses of c values are still scanty, with the most relevant studies being very recent.  87 

Triantis et al. (2012) suggested that differences in c values may be related to the diverse ecological space required by 88 

species of different taxa (see also Öckinger et al., 2010). Patiño et al. (2014) showed that the intercept increases from 89 

poor to more diverse taxa (ferns to bryophytes and seed plants) in all the archipelagos evaluated, while Matthews et al. 90 
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(2015) observed that the intercepts were significantly lower for oceanic than continental islands. These analyses have 91 

the important merit of exploring general patterns of variation in both z and c. However, because of their general 92 

approach, they were a bit elusive in providing specific interpretations about the possible mechanisms involved in the 93 

observed patterns. 94 

When fitting the line log S = log c + z log A, c and z are unrelated, in the sense that they are estimated independently 95 

and jointly describe the data. Nevertheless, in the log-log space, when z increases, the fitting line tends to be more 96 

vertical, and hence it has more chances to intercept the y-axis at lower values. Consequently, island systems with higher 97 

z tend, on average, to have lower c. Due to this expected negative relationship, Gould (1979: 336) emphasized that c 98 

values should be compared only in families of regression lines having the same slopes (i.e. between parallel lines). 99 

Finding homogeneous z values and heterogeneous c values among SAR regressions would suggest that the observed 100 

differences are due to the “initial trajectory” of the curve, i.e. to area-independent factors. Conversely, differences in z 101 

values would indicate that the functional relationships described by the various regression lines are not the same, 102 

suggesting that SARs have emerged in different systems for different reasons, either ecological or historical. 103 

However, as observed by Gould (1979), it only makes sense to compare SAR regression lines built for the same taxon 104 

in different areas (to investigate how island characteristics affect species richness), or for different taxa in the same area 105 

(to investigate how different groups respond to the same eco-geographical settings). This recommendation, however, 106 

has been often ignored, and several global scale studies analyzed patterns of variation in c values aggregating different 107 

taxa and island systems (Connor & McCoy, 1979), or used only coarse categorizations, such as a subdivision of islands 108 

into general types (e.g., inland, continental shelf, oceanic), and of organisms into broad groups (plants, invertebrates, 109 

vertebrates) (Triantis et al., 2012; Patiño et al., 2014; Matthews et al., 2015; but see Aranda et al., 2013). 110 

The Mediterranean islands are ideal candidates to investigate variations in c and z values by strictly adhering to Gould's 111 

recommendation, since they are numerous, biodiverse, and well surveyed for many taxonomic groups. Taking 112 

advantage of these properties, we built SARs for various taxonomic groups (land snails, isopods, centipedes, 113 

tenebrionid beetles and reptiles) in two island systems (the Tyrrhenian and the Aegean islands). Then we compared z 114 

and c values of SARs built for different organisms in the same island group, or for the same organisms in different 115 

island groups. 116 

In particular, this approach permitted us to test if: (1) different taxa have different z values within the same island group 117 

as a reflection of their dispersal ability (z is expected to be higher in more sedentary animals); (2) different taxa have 118 

different c values within the same island group as a reflection of their ecology (c values are expected to be larger for 119 

animals requiring smaller spaces); (3) the same taxon has different z values in different island groups as a reflection of a 120 
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different degree of isolation (a more isolated system is expected to have a higher z); (4) the same taxon has different c 121 

values in different island groups as a reflection of their degree of isolation (a more isolated system is expected to have a 122 

smaller c). 123 

 124 

MATERIALS AND METHODS 125 

We selected two island groups, namely the Tyrrhenian and the Aegean islands (Figure 1), sharing the same 126 

environmental, ecological and basic socio-economic conditions (e.g., climate, vegetation setting, and history of 127 

anthropogenic disturbance), but differing in their average distance to the mainland and in their palaeogeographical 128 

history. Most of the Aegean islands (which are, on average, 80-90 km far from the mainland) are land-bridge islands, 129 

whereas most of the Tyrrhenian islands (which are, on average, 30 km far from the mainland) have never been 130 

connected to each other and/or to the mainland in the past. We collected presence data for five taxa (see Appendix 1) 131 

for which both island groups have been thoroughly investigated. Because not all islands were equally studied for all 132 

taxa, the number of islands we considered in the analyses varied for the different taxonomic groups. Values of native 133 

species richness reported in Appendix S1 in Supporting Information should be considered virtually complete (see, for 134 

example, Foufopoulos & Ives, 1999; Hausdorf & Hennig, 2005; Fattorini, 2007, 2009, 2011a, Sfenthourakis, 1996; 135 

Simaiakis et al., 2012). The relatively high number of islands considered for each taxon (from 18 to 65) allows us to 136 

exclude the possibility that estimates of c and z values are affected by the uncertainty in regression parameters 137 

estimated for small island groups (Sólymos & Lele, 2012). Island area data were extracted from Arnold (2008). For 138 

uninhabited islands not included in Arnold (2008), we referred to values reported in the papers used as source of species 139 

richness data. 140 

Presence of islands with “no species” for a certain group in a certain archipelago in our datasets, does not imply that no 141 

species of that group occurs there, but only that the island has not been sampled for that group. In other words, zero 142 

values indicate lack of data, not zero species. We are not aware of islands for which “zero species” really indicates lack 143 

of species. For this reason, we did not include islands with no species in the analyses. 144 

SARs were modelled using OLS regressions on the double logarithmic transformation (with decimal logarithms, log) of 145 

the power function. We checked regression results for violations of homoscedasticity by plotting residuals versus 146 

predicted values, and for normality by using normal quantile plots. We used analyses of covariance (ANCOVAs) to test 147 

for differences in c and z values. In the ANCOVAs, each pair of species-area data was a set of correlated x (area) - y 148 

(richness) values relative to the compared taxa; means were compared for species richness, while area was the 149 

covariate. Calculations were done using the software PAST 3.0 (Hammer et al., 2001). 150 
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 151 

Because c values change according to the unit used to measure island surface, we always express areas in km2, which 152 

makes values comparable across islands and taxa. This means that c values express the number of species per 1 km2. 153 

Although any unit of measurement might be used in SARs, using km2 is a rather standard practice, and is a reasonable 154 

choice in consideration of the area of the islands used in this study (0.00002 to 8261 km2, mean ± SE: 131.2083 ± 155 

53.330, n = 174), and the dimension of habitat requirements of the studied taxa (much bigger than 1 m2, as an example). 156 

Changing units of measurement does not change regression slopes, but only rescales the x-axis. Therefore, c values can 157 

be easily recalculated for any unit area by using parameters of the fitted SAR. For example, if the fitted parameters of 158 

the SAR were obtained using km2, c is the number of species expected for 1 km2; to obtain the number of species per 159 

hectare, it is sufficient to solve the equation for A = 0.01. To explore how different unit areas affect ranking of c values, 160 

we performed a sensitivity analysis by calculating c at 0.001, 0.01, 0.1, 1, 10, 100, and 1000 km2. We obtained 161 

substantially stable results, with few cases of different ranking (Table 1). Thus, we concentrate our dicussion only on c 162 

values calculated for 1 km2. Also, as explained by White & Gould (1965) and Gould (1979), c values originally 163 

expressed using different systems of measurements (e.g. km2 versus square miles) can be converted by using an 164 

appropriate conversion factor depending on the units chosen. All other studies that analysed c values cited in this paper 165 

used km2 as unit of measurement. 166 

 167 

 168 

RESULTS 169 

Overall, regressions for the power function model of SARs explained 54 to 90% of variance (Figure 2). The best fitting 170 

curve was that of the Aegean isopods, while the worst fitting one was that of the Aegean tenebrionids. The residuals do 171 

not suggest any pattern, except in the case of Aegean land snails, where they seem to indicate that z increases with 172 

scale. 173 

 174 

Same taxa, different island systems 175 

The same taxonomic groups had homogeneous z values in the two island systems, with the exception of reptiles, that 176 

showed a z value significantly higher in the Aegean islands (Table 2). By contrast, we found significant differences in c 177 

values between the two island groups for land snails, centipedes and tenebrionids, but not for isopods and reptiles 178 

(Table 2). 179 

 180 
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Different taxa, same island system 181 

In the Tyrrhenian islands, all taxonomic groups showed similar z values, with the exception of reptiles versus centipedes 182 

and reptiles versus tenebrionids (Table 3). Conversely, we found significant differences in c values between: (1) 183 

tenebrionids and reptiles, (2) centipedes and reptiles, (3) land snails and reptiles, (4) isopods and reptiles, and (5) land 184 

snails and centipedes. Marginally significant differences were also found between land snails and tenebrionids, 185 

centipedes and tenebrionids, and centipedes and isopods (Table 3). In the Aegean islands, we found significant 186 

differences in the z values between reptiles and land snails, and between reptiles and isopods. All other taxonomic 187 

groups had similar z values (Table 3). c values resulted significantly different in all comparisons except those between 188 

centipedes and tenebrionids and between isopods and land snails (Table 3). 189 

 190 

DISCUSSION 191 

Interactions among factors (taxa, area, and ecological conditions in different areas) that may vary from one area to 192 

another may complicate the interpretation of SARs. Bunnefeld & Phillimore (2012) proposed to use mixed effect 193 

models to investigate the effects of archipelago, taxon and island type on the variation in species richness. This is a 194 

promising approach for controlling sources of variation and hence to identify general trends across different 195 

archipelagos and taxa in island biogeographical studies. Our aim, however, was not to disentangle interactions of 196 

multiple factors that influence SARs, but to provide interpretation of the biological meaning of the two parameters that 197 

define the power function model of the SAR which, after decades of research, still remains elusive. 198 

In all the SARs we analyzed, z values fell within the typical range (0.20 - 0.40) as observed in true isolated 199 

archipelagos/islands (Connor & McCoy, 1979; Rosenzweig, 1995; Whittaker & Fernández-Palacios, 2007; Triantis et 200 

al., 2012; Matthews et al., 2015). Consistent with previous studies (Connor & McCoy, 1979; Triantis et al., 2012; 201 

Matthews et al., 2015), most of our SARs did not show significant variations in z values. We detected significant 202 

differences in z values only in a few cases for SARs regarding different groups within the same area and no significant 203 

differences when comparing SARs of the same taxon between different areas, except for the vertebrate group (reptiles). 204 

In general, isolation is known as a major factor affecting z values  (cf. Rosenzweig, 1995). Although the two study 205 

systems considered in this paper have a different degree of isolation, this discrepancy is not so large to produce 206 

differences in the z values as strong as those observed among oceanic archipelagos. The difference between the slopes 207 

of reptiles (the only vertebrate taxon included in this analysis) and those of land snails, isopods and centipedes, may 208 

suggest that factors regulating SARs in these groups are different and/or operate in different ways. The reptiles 209 

represent the largest predators among the groups we took into account, and their lowest slope in the Tyrrhenian islands 210 
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contrasts with the hypothesis that slope should increase with trophic rank (Holt et al., 1999; Holt, 2010). Conversely, 211 

the slope of reptiles’ SAR in the Aegean islands was similar to, or even significantly higher than, that recorded for other 212 

taxa. This may suggest that reptiles have colonized the two island systems with different mechanisms. The Aegean 213 

islands are inhabited by a relict fauna that has mostly arrived through no longer existing land-bridges, and which is now 214 

under relaxation (Foufopoulos & Ives, 1999; Lymberakis & Poulakakis, 2010). By contrast, in the Tyrrhenian islands 215 

the current reptile fauna seems to follow equilibrium models although land-bridge colonization has had some 216 

importance (Fattorini, 2009, 2010a), and is profoundly altered by recent introductions (Ficetola & Padoa-Schioppa, 217 

2009). 218 

In all the cases where slopes were significantly different among taxa, the c values were also significantly different, 219 

which makes it difficult to identify the biogeographical processes responsible for variation in z values. 220 

Our study supports Gould's prediction (1979), that the general homogeneity of slopes not only eases the investigation of 221 

variations in the c parameter, but also emphasizes how the intercept could be a very distinctive property of different 222 

SARs. In fact, comparisons between different archipelagos indicate that the Tyrrhenian islands host more species of 223 

land snails, tenebrionids and centipedes per unit area than the Aegean islands, but approximately the same number of 224 

isopod and reptile species. Three, not mutually exclusive hypotheses can be formulated to explain this pattern: (1) a 225 

higher extinction rate on the Aegean Islands; (2) a higher colonization rate on the Tyrrhenian islands; and (3) similar 226 

colonization rates, but a higher success of establishment on the Tyrrhenian islands. 227 

As regards the tenebrionids, all these hypotheses can be supported by the high number of endemic species existing in 228 

the Aegean islands. Tenebrionid colonization of the Aegean islands mainly occurred via Pleistocene land-bridges 229 

(Hausdorf & Hennig, 2005; Fattorini, 2007; Papadopoulou et al., 2009). After the Last Glacial Maximum, tenebrionid 230 

populations on different islands remained substantially isolated from one another, and from the mainland. This led to 231 

faunal relaxation and to the evolution of neo-endemic taxa (Hausdorf & Hennig, 2005; Fattorini, 2007; Papadopoulou et 232 

al., 2009). More than 32% of the tenebrionid currently inhabiting the Aegean islands are endemic, whereas the 233 

percentage of endemic tenebrionids on the Tyrrhenian islands is less than 20% (Fattorini, 2006b and unpublished data), 234 

which indicates that the latter were subject to a more recent colonization. Compared to the Aegean Islands, Tyrrhenian 235 

islands are, in general, closer to the mainland coast, which suggests a major role for over-sea dispersal as a route for 236 

their colonization. Most of them can be considered at equilibrium, and their populations are probably enriched by 237 

regular species arrivals (rescue effect) (Fattorini, 2009, 2011a, b). The same reasoning applies also to centipedes and 238 

land snails. 239 

In general, it has been observed that c values tend to decrease progressively from inland to continental shelf to ocean 240 
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islands (Triantis et al., 2012), i.e. in relation to system isolation. Our results for tenebrionids, centipedes and reptiles 241 

support this conclusion, with higher c values in the less isolated (Tyrrhenian) islands. 242 

Our analyses indicate that SAR intercepts are also influenced by organisms’ ecology. In the Tyrrhenian area, c values, 243 

i.e. the number of species per km2, increased in the order reptiles < centipedes < tenebrionids ≈ isopods ≈ land snails. In 244 

the Aegean area, we found the same pattern with number of species per km2 increasing in the order reptiles < centipedes 245 

≈ tenebrionids < isopods ≈ land snails. These consistent results suggest that c values, which area measure of species 246 

density, reflect the population abundances of the respective taxa. 247 

Reptiles are the largest animals considered in our study, and it is reasonable to assume that the same area can sustain a 248 

lower number of species than that of the other groups (Brown, 1995). A survey conducted in an Italian coastal site using 249 

pitfall traps revealed that, among the investigated arthropods, isopods were the most abundant group, followed by 250 

tenebrionids and centipedes (Pitzalis et al., 2005; Trucchi et al., 2009; Fattorini, 2010b). A study conducted in Greece 251 

confirmed these results, finding that abundance of soil arthropods decreased in the order isopods > tenebrionids > 252 

centipedes (Gkisakis et al., 2014). Although, to the best of our knowledge, there is no research comparing the 253 

abundance of arthropods with that of land snails, the latter are known to be extremely abundant (Cameron et al., 2003). 254 

Thus, it appears that c values may reflect the abundances of taxa, being therefore indicative of the realized carrying 255 

capacity of the populations of all species of a given group in a given area per unit area, as hypothesized by Triantis et al. 256 

(2012). Thus, the groups that are more abundant are those for which the carrying capacity per unit area is higher. Under 257 

the assumption of random distribution of individuals and species, we expect that a unit area that hosts larger populations 258 

(i.e that samples more individuals from the whole community) tends to host also more species, leading to the relation 259 

between c values and species abundance. 260 

Because of the non-linearity of the power function, the number of species per unit area does not vary linearly, i.e. the 261 

ratio species number/area is not constant. For this reason, to compare species richness of areas of different size, Ovadia 262 

(2003) and Brummitt & Nic Lughadha (2003) proposed the use of the c parameter of the power function as a measure of 263 

species richness standardized by area. A relevant problem with this method is, however, that neither the c value nor the 264 

z value represent the magnitude of species diversity, because both parameters are responsible for the regression. Thus, 265 

some authors (e.g., Veech, 2000; Ulrich & Buszko, 2005; Fattorini, 2006b) propose to use regression residuals to 266 

compare the species densities of different area sizes. Likewise, Hobohm's (2003) α index, defined as α = log S − (z log 267 

A + log c), is, for a given area, exactly its residual from the linearized power function regression line. Because the 268 

number of species per unit area expressed by c varies according area size, c values cannot be used to compare different 269 

areas, but they can be legitimately used to compare different systems, provided comparisons are done by using always 270 
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the same unit of measurement. 271 

 272 

CONCLUSIONS AND FUTURE CHALLENGES 273 

In this study we aimed at exploring if c values can provide ecological information complementary to that provided by z 274 

values. Indeed, we got more insights from SAR intercepts than from slopes, not only because intercepts had higher 275 

variability, but also because they showed interesting relationships with important ecological characteristics of the target 276 

taxa. To the best of our knowledge, no effort has been previously spent to compare the SARs of different taxa within the 277 

same area, under the ‘old’ claim that only few areas have been sampled for multiple taxa (Gould, 1979). A few studies 278 

have compared the slope of the SARs for the same taxonomic group in different archipelagos, but all of them were 279 

based on very small sample sizes. Moreover, they mixed islands with very different geological histories and 280 

contemporary ecology, and/or compared completely unrelated archipelagos (see, for example, Sfenthourakis, 1996; 281 

Simaiakis et al., 2012). Thus, our study represents the first detailed analysis comparing SARs for different taxa in the 282 

same island groups, and that simultaneously tested if a given taxon has different SARs in different island groups. 283 

Our approach can be replicated in other archipelagos benefiting, for example, from the availability of a large number of 284 

datasets for Macaronesia. A larger comparative framework could represent a unique opportunity to understand the eco-285 

evolutionary forces regulating the variation of z and c values across different taxa and archipelagos (see e.g Aranda et 286 

al., 2013; Patiño et al., 2014). Moreover, the unique data on the abundance of several arthropod groups now available 287 

for the Azores (Borges et al., 2005, 2008; Ribeiro et al., 2005) could be an extremely valuable resource for testing how 288 

population abundances affect z and c values of SARs modelled for different taxa within the same archipelago. 289 

Our findings demonstrate that, despite the wide breadth of literature focusing on the SAR in island systems, rigorous 290 

analyses based on robust datasets can still provide new interesting insights. We do not mean our results to be conclusive 291 

or groundbreaking, but we do hope that they could keep the debate on these points open.  292 
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Appendix 1 Data sources. Literature used to assess species richness of land snails, isopods, centipedes, tenebrionids 445 

and reptiles on the Tyrrhenian and the Aegean islands. 446 

 447 

Values of species richness for the land snails of the Tyrrhenian islands were taken from Giusti (1973, 1976) and 448 

Piantelli et al. (1990). For the Aegean Islands, we used values of land snail richness reported by Welter-Schultes & 449 

Williams (1999). For the Tyrrhenain isopods, we referred to Gentile & Argano (2005), whereas species richness values 450 

for the Aegean islands were taken from Sfenthourakis et al. (1996). Data on centipede species richness were extracted 451 

from Simaiakis et al. (2012) for both the Tyrrenian and the Aegean islands. For the tenebrionid beetles of the 452 

Tyrrhenian islands we used data reported in Luigioni (1923, 1929), Gridelli (1950), Cerruti (1954), Canzoneri (1972, 453 

1976), Gardini (1976, 1979), D'Antonio & Fimiani (1988), Marcuzzi (1988), Leo (1998), Fattorini & Leo (2000), Lo 454 

Cascio et al. (2000), Aliquò et al. (2006), Fattorini (2009a, 2009b, 2010a, 2010b, 2011a, 2011b), plus a few new records 455 

from the Pontine Ilsands. For the tenebrionid beetles of the Aegean islands, we used data reported in Fattorini (2002), 456 

Soldati & Soldati (2003), Fattorini & Fowles (2005), Hausdorf & Hennig (2005), Trichas (2008), Trichas et al. (2008), 457 

Soldati & Kakiopoulos (2010), Kaltsas et al. (2012), Papadopoulou et al. (2009, 2011) and Soldati (2012). For the 458 

reptiles of the Tyrrhenian islands we used data reported by Parlanti et al. (1988) updated and supplemented with data 459 

reported in Balletto (2005), Sindaco et al. (2006), Cipolla & Nappi (2008) and Fattorini (2010). For the reptiles of the 460 

Aegean islands we used distributional data reported in Foufopoulos et al. (1999) supplemented and revised using 461 

Angelici et al. (1990), Dimitropoulos (1990), Ionnides et al. (1994), Cattaneo (2001, 2003, 2005, 2006, 2007, 2008, 462 

2009, 2010a, 2010b) and Hausdorf & Hennig (2005). 463 

 464 
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TABLES 593 

 594 

Table 1. Values of the parameter c of the species-area relationships for the same animal groups in the Tyrrhenian and 595 

the Aegean islands calculated at different area units. Numbers in parentheses indicate the rank sequence of c values 596 

from the lowest (1) to the highest (5). 597 

 598 

 Area unit (km2) 

 0.001 0.01 0.1 1 10 100 1000 

Tyrrhenian Islands        

Land snails 2.594 (5)  4.355 (5) 7.311 (5) 12.274 (5) 20.606 (5) 34.594 (5) 58.076 (5) 

Centipedes 0.748 (1) 1.521 (1) 3.090 (2) 6.281 (2) 12.764 (2) 25.942 (2) 52.723 (2) 

Isopods 1.510 (4) 2.761 (4) 5.047 (4) 9.226 (4) 16.866 (4) 30.832 (4) 56.364 (4) 

Tenebrionids 1.334 (3) 2.483 (3) 4.624 (3) 8.61 (3) 16.032 (3) 29.854 (3) 55.59 (3) 

Reptiles 1.268 (2) 1.754 (2) 2.427 (1) 3.357 (1) 4.645 (1) 6.427 (1) 8.892 (1) 

Aegean Islands       

Land snails 2.685 (5) 4.102 (5) 6.266 (5) 9.572 (5) 14.622 (4) 22.336 (4) 34.119 (4) 

Centipedes 0.721 (3) 1.262 (3) 2.208 (3) 3.864 (2) 6.761 (2) 11.83 (2) 20.701 (2) 

Isopods 2.301 (4) 3.673 (4) 5.861 (4) 9.354 (4) 14.928 (5) 23.823 (5) 38.019 (5) 

Tenebrionids 0.637 (2) 1.18 (2) 2.188 (2) 4.055 (3) 7.516 (3) 13.932 (3) 25.823 (3) 

Reptiles 0.398 (1) 0.755 (1) 1.432 (1) 2.716 (1) 5.152 (1) 9.772 (1) 18.535 (1) 

 599 

 600 

 601 

Table 2. Results (F-values) of ANCOVAs for differences in z and c values of species-area relationships for the same 602 

animal groups between the Tyrrhenian and the Aegean islands. P-values: *<0.05; ***<0.001. 603 

 604 

 F-tests for z F-tests for c 

Land snails 1.626 13.740*** 

Centipedes 1.619 28.390*** 

Isopods 2.503 0.374 

Tenebrionid beetles 0.0004 18.470*** 

Reptiles 8.036* 0.226 
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 605 

 606 

Table 3. Results (F-values) of ANCOVAs for differences in z and c values of species-area relationships for different 607 

animal groups in the Tyrrhenian and Aegean islands. F-values above the diagonal refer to differences in z, those below 608 

the diagonal refer to differences in c. P-values : *<0.05; **<0.01; ***<0.001. 609 

 610 

 Land snails Centipedes Isopods Tenebrionid beetles Reptiles 

Tyrrhenian Islands      

Land snails - 2.288 0.338 0.702 4.042 

Centipedes 16.630*** - 0.679 0.757 9.198** 

Isopods 2.329 5.312* - 0.029 3.696 

Tenebrionid beetles 4.282* 4.920* 0.204 - 5.226* 

Reptiles 258.000*** 56.190*** 78.740*** 77.480*** - 

Aegean Islands      

Land snails - 3.149 1.146 3.280 16.840*** 

Centipedes 95.520*** - 1.573 0.154 0.629 

Isopods 0.140 116.800*** - 1.982 8.052** 

Tenebrionid beetles 28.590*** 2.405 28.640*** - 0.025 

Reptiles 184.600*** 6.512** 182.600*** 9.743* - 

 611 
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FIGURES 612 

Figure 1. Tyrrhenian (a) and Aegean (b) islands. Investigated islands are in black. The inset shows the location of the 613 

two study areas in southern Europe. 614 

 615 

Figure 2. Regression lines of log-transformed species richness (log St for the Tyrrhenian islands – black diamonds, log 616 

Sa for the Aegean islands – gray squares) against log-transformed island area (logA). The following animal groups are 617 

modelled: land snails (a), centipedes (b), isopods (c), tenebrionid beetles (d) and reptiles (e). Regression statistics: (a) 618 

Tyrrhenian land snails: R2 = 0.761, F1,16 = 50.817, p < 0.0001; Aegean land snails: R2
 
= 0.819, F1,63 = 285.660, p < 619 

0.0001, n = 18; (b) Tyrrhenian centipedes: R2
 
= 0.700, F1,30 = 70.034, p < 0.0001; Aegean centipedes: R2

 
= 0.546, F1,41 = 620 

49.397, p < 0.0001, n = 43; (c) Tyrrhenian isopods: R2
 
= 0.577, F1,26 = 35.439, p <0 .0001, n = 28; Aegean isopods: R2

 
= 621 

0.898, F1,41 = 360.049, p < 0.0001, n = 43; (d) Tyrrhenian tenebrionids: R2
 
= 0.764, F1,44 = 142.160, p < 0.0001, n = 46; 622 

Aegean tenebrionids: R2
 
= 0.407, F1,30 = 20.575, p < 0.0001, n = 32; (e) Tyrrhenian reptiles: R2

 
= 0.493, F1,26 = 25.251, p 623 

< 0.0001; Aegean reptiles: R2
 
= 0.751, F1,54 = 161.537, n = 56, p < 0.0001. Errors refer to standard errors. 624 
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Figure 1 625 
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Figure 2 628 
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