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Abstract: This paper studies the journey planning problem in the context of transit networks. Given
the timetable of a schedule-based transportation system (consisting, e.g., of trains, buses, etc.),
the problem seeks journeys optimizing some criteria. Specifically, it seeks to answer natural queries
such as, for example, “find a journey starting from a source stop and arriving at a target stop as early
as possible”. The fastest approach for answering to these queries, yielding the smallest average query
time even on very large networks, is the Public Transit Labeling framework, proposed for the first
time in Delling et al., SEA 2015. This method combines three main ingredients: (i) a graph-based
representation of the schedule of the transit network; (ii) a labeling of such graph encoding its
transitive closure (computed via a time-consuming pre-processing); (iii) an efficient query algorithm
exploiting both (i) and (ii) to answer quickly to queries of interest at runtime. Unfortunately, while
transit networks’ timetables are inherently dynamic (they are often subject to delays or disruptions),
PTL is not natively designed to handle updates in the schedule—even after a single change,
precomputed data may become outdated and queries can return incorrect results. This is a major
limitation, especially when dealing with massively sized inputs (e.g., metropolitan or continental
sized networks), as recomputing the labeling from scratch, after each change, yields unsustainable
time overheads that are not compatible with interactive applications. In this work, we introduce a new
framework that extends PTL to function in delay-prone transit networks. In particular, we provide
a new set of algorithms able to update both the graph and the precomputed labeling whenever
a delay affects the network, without performing any recomputation from scratch. We demonstrate
the effectiveness of our solution through an extensive experimental evaluation conducted on
real-world networks. Our experiments show that: (i) the update time required by the new algorithms
is, on average, orders of magnitude smaller than that required by the recomputation from scratch via
PTL; (ii) the updated graph and labeling induce both query time performance and space overhead that
are equivalent to those that are obtained by the recomputation from scratch via PTL. This suggests that
our new solution is an effective approach to handling the journey planning problem in delay-prone
transit networks.
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1. Introduction

Computing the “best” journeys in schedule-based transit systems (consisting, e.g., of trains, buses,
etc.) is a problem that has been faced at least once by everybody who has ever travelled [1]. In particular,
the journey planning problem takes as input a timetable (or schedule), that is, the description, in terms
of departure and arrival times, of transits of vehicles between stops within the system, and seeks to
answer to natural queries such as “What is the best journey from some stop A to some other stop B if I
want to depart at time t?”.

Solving (efficiently) such problems constitutes a fundamental primitive in the world of information
technologies and intelligent transport systems. Nowadays, in fact, millions of people rely on
computer-based journey planning to obtain, accurately and quickly, public transit directions.
To this aim, most of the currently deployed journey planners employ algorithms that have
been developed and refined in the last couple of decades by researchers in applied algorithmics
and algorithm engineering.

In particular, it is known that, despite its simple formulation, the problem is much more
challenging than, for instance, the classic route planning problem in road networks [1–3],
since schedule-based transit systems exhibit an inherent time-dependent component that requires
complex modeling assumptions to obtain meaningful results. For this reason, transit companies in
the last decade have invested a lot of resources to develop effective systems called journey planners
(like, e.g., Google Transit or bahn.de), that store the schedule via a suitable model/data structure
and incorporate algorithms to answer efficiently to various types of queries on such model, seeking
best journeys with respect to different metrics of interest. Depending on the considered metric
and modelling assumptions, the problem can be in turn specialized into a plethora of optimization
problems [1].

The most common type of query in this context is the earliest arrival query, which asks for
computing a journey that minimizes the total travelling time from a given departure stop to a given
arrival stop, if one departs at a certain departure time. Another prominent type of query is the profile
query, which instead asks to retrieve a set of journeys from a given departure stop to a given arrival
stop if the departure time can lie within a given range. Further types of queries can be obtained
by considering multiple optimization criteria simultaneously (multi-criteria queries) or according
to the abstraction at which the problem has to be solved. If, for instance, one wants to optimize
the transfer time, that is, the time required by a passenger for moving from one vehicle to another
one within a stop, then the journey planning problem is called realistic, while it is referred to as ideal
otherwise [2]. In this paper, we focus on the realistic scenario, which is much more meaningful from
an application viewpoint.

1.1. Related Work

To solve both the ideal and the realistic version of the problems, a great variety of
models and algorithms have been proposed in the literature in the last decade, each exhibiting
a different performance. In particular, most of them can be broadly classified into two categories:
those representing the timetable as an array and those representing it as a graph (see e.g., Reference [1]).
Two of the most successful (and effective) examples of the array-based model are the Connection Scan
Algorithm (CSA) [4] and the Round-bAsed Public Transit Optimized Router (RAPTOR) [5]. In CSA,
all the elementary connections of a timetable are stored in a single array, which is scanned only once
per query. An elementary connection represents a vehicle driving from one stop to another without
intermediate stops. The acyclic nature of the timetables is then exploited to solve the earliest arrival
problem. In RAPTOR, on the other hand, the timetable is stored as a set of arrays of trips and routes,
that is suitably defined sets of elementary connections. This representation is used by a dynamic
programming algorithm that operates in rounds and extends partial journeys by one trip per round
to solve the problem. Several variants of RAPTOR, either incorporating heuristical improvements or
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considering more refined modeling strategies, have been presented and experimentally analyzed in
the last couple of years (see, e.g., References [6–8]).

The graph-based models, instead, store the timetable as a suitable graph and execute known
adaptations of Dijkstra’s shortest path algorithm to compute optimal routes [2,9–11]. Alternatives to
both plain array-based and graph-based models have been also recently considered [12–14]. Some of
them, like the one in Reference [12], directly operate on the timetable. In details, trips are labeled with
the stops at which they are boarded and a precomputed list of transfers to other trips is scanned during
a query. Newly reached trips are labeled and for a trip reaching a desired destination, a journey is
added to the result set. The algorithm terminates only when all optimal journeys have been found.

Some others, like those in References [13,14], combine a graph representation of the timetable
with the notion of graph labeling to achieve extremely low query times. In this paper, we focus on
this latter category of approaches, since they are the ones that offer the smallest average query times
and are hence suited for modern applications of the journey planning problem.

1.2. Motivation

The fastest solutions to the journey planning problem with respect to query time are those in
References [13,14]. Of them, the one in Reference [13] relies on an algorithmic framework referred to,
in the following, as Public Transit Labeling (PTL). Such a framework employs a heavy preprocessing
phase of the input data to speed up the query algorithm at runtime. This allows to obtain query times
that have been experimentally observed to be, on average, the smallest among all known techniques,
including RAPTOR, CSA and their variants. Such behavior have been observed on all meaningful
real-world inputs that have been tested, including continental sized networks and the method has
been shown to scale very well with the networks’ size [13].

In more details, PTL consists of three main ingredients: (i) the well-known time-expanded graph
model to store transit networks (see e.g., Reference [9]); (ii) a labeling that is a compact representation
of the transitive closure of the said graph, computed via a (time-consuming) preprocessing step;
(iii) an efficient query algorithm exploiting both the graph and the precomputed labeling to answer
quickly to queries of interest at runtime.

On the one hand, the approach outperforms all other solutions in terms of query time and it
is general and widely applicable, since several variants of the three mentioned components exist to
manage a variety of meaningful application scenarios, including being able to answer to both profile
and multi–criteria queries. On the other hand, unfortunately, PTL has the major drawback of not
being practical in dynamic scenarios, that is when the network can undergo to unpredictable updates
(e.g., due to delays affecting the route traversed by a given vehicle). In particular, even after a single
update to the network, queries can return arbitrarily incorrect results, since the preprocessed data
can become easily outdated and hence may not reflect properly the transitive closure. Note that
recomputing the preprocessed data from scratch, after an update occurs, is not a viable option as it
yields unsustainable time overheads, up to tens of hours [13]. Since transit networks are inherently
dynamic (delays can be very frequent), the above represents a major limitation of PTL.

Dynamic approaches to update graphs and corresponding (compact) representations of transitive
closures have been investigated in the past, in other application domains, due to the effectiveness
of such structures for retrieving graph properties [15–22]. However, none of these can be directly
employed in the PTL case, where time constraints imposed by the time-expanded graph add a further
level of complexity to the involved data structures.

1.3. Contribution of the Paper

In this paper, we move forward toward overcoming the above mentioned limitations,
by presenting a new algorithm, named Dynamic Public Transit Labeling (D-PTL, for short), that
is able to update the information precomputed by PTL whenever a delay occurs in the transit network,
without recomputing it from scratch. It is worthy to mention that, although decreases in departure
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times are typically not allowed in transit networks [1], hence updating the information in such case
would not be necessary, our solution can be easily extended to manage such scenario. It is also worthy
to mention that part of the work we present here already appeared in [23].

The algorithm we present here is based on suited combinations of graph update routines inspired
to those in Reference [1] and labeling dynamic algorithms, extensions of those in References [15,21,24].
In particular, we present different versions of the algorithm, that are compatible with the different
flavors of PTL, namely single criterion and multi-criteria. Furthermore, we discuss on the correctness
of D-PTL and analyse its computational complexity in the worst case.

Asymptotically speaking, the proposed solution is not better than the recomputation from scratch.
However, we present an extensive algorithm-engineering based experimental study, conducted
on real-world networks of large size, that shows that D-PTL always outperforms the from scratch
computation in practice. In particular, our results show that (i) D-PTL is able to update both the graph
and the labeling structure orders of magnitude faster than the recomputation from scratch via PTL;
(ii) this behavior is amplified when networks are massive in size, thus suggesting that D-PTL scales
well with the networks’ size. Our data also highlight that the updated graph and labeling structure
induce both query time performance and space overhead that are equivalent to those that are obtained
by the recomputation from scratch, thus suggesting the use of D-PTL as an effective approach to handle
the journey planning problem in delay-prone transit networks.

1.4. Structure of the Paper

The paper is organized as follows. Section 2 gives the basic notation and the definitions used
throughout the paper. Sections 3 and 4 describe the PTL approach [13] in its two flavours, namely single
and multi-criteria, respectively. Sections 5 and 6 present our new dynamic algorithms, in the basic
and multi-criteria versions, respectively and discusses correctness and complexity of the new methods.
Section 7 presents our experimental study. Finally, Section 8 concludes the paper and outlines possible
future research directions.

2. Background

The journey planning problem takes as input a timetable that contains data concerning stops,
vehicles (e.g., trains, buses or any means of transportation) connecting stops and departure and arrival
times of vehicles at stops. More formally, a timetable T is defined by a triple T = (Z , S, C), where Z is
a set of vehicles, S is a set of stops (often in the literature also referred to as stations) and C is a set of
elementary connections whose elements are 5-tuples of the form c = (Z, si, sj, td, ta). Such a tuple is
interpreted as vehicle Z ∈ Z leaves departure stop si ∈ S at departure time td, and the immediately
next stop of vehicle Z is stop sj ∈ S at time ta (i.e., ta is the arrival time of Z at arrival stop sj ∈ S).
Departure and arrival times are integers in {0, 1, . . . , tmax} representing times in minutes after midnight,
where tmax is the largest time allowed within the timetable (typically tmax = (n · 1440− 1), where n
is the number of days that are represented by the timetable). We assume |C| ≥ max{|S|, |Z|}, that
is we do not consider vehicles and stops that do not take part to any connection. In the realistic
scenario, each stop si ∈ S has an associated minimum transfer time, denoted by MTTi, that is the time,
in minutes, required for moving from one vehicle to another inside stop si.

Definition 1 (Trip). A trip is a sequence TRIP = (c1, c2, . . . , ck) of k connections that: (i) are operated
by the same vehicle; (ii) share pairwisely departure and arrival stop, that is, formally, we have ci′−1 =

(Z, si, sj, td, ta) and ci′ = (Z, sj, sk, t′d, t′a) with t′d > td for any i′ ∈ [2, k].

Clearly, connections in a trip are ordered in terms of the associated departure times, hence we say
connection cj follows connection cj−1 in a trip TRIP whenever the departure time of the former is larger
than that of the latter. Similarly, we say connection cj precedes connection cj+1 in a trip TRIP.
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Definition 2 (Journey). A journey J = (c1, c2, . . . cn) connecting two stops si and sj is a sequence of n
connections that: (i) can be operated by different vehicles; (ii) allows reaching a given target stop starting from
a distinguished source stop at a given departure time τ ≥ 0, that is, the departure stop of c1 is si, the arrival
stop of cn is sj and the departure time of c1 is larger than or equal to τ; (iii) is formed by connections that
satisfy the time constraints imposed by the timetable, namely that if the vehicle of connection ci is different with
reference to that of ci+1 at a certain stop sh, then the departure time of ci+1 must be larger than the arrival time
of ci plus MTTh.

As well as trips, journeys are implicitly ordered by time according to departure times of
the connections. The traveling time of a journey is given by the difference between arrival time
of its last connection and τ.

An earliest arrival query EA(si, sj, τ) asks, given a triple si, sj, τ consisting of a source stop si,
a target stop sj, and a departure time τ ≥ 0, to compute a quickest journey, that is, a journey that starts
at any t ≥ τ, connects si to sj, and minimizes traveling time. In what follows we provide two useful
definitions that are necessary to introduce the notion of profile query.

Definition 3 (Time-Dominated Journey). Let J′ and J′′ be two journeys, both connecting two stops si and sj.
Then journey J′′ is time-dominated by journey J′ if and only if both the following conditions hold:

• the departure time of the first connection of J′ is larger than the departure time of the first connection of J′′;
• the arrival time of the last connection in J′ is smaller than the arrival time of the last connection in J′′.

By the above, if we let J be the set of all journeys connecting two stops si and sj in a transit
network, then trivially a journey J ∈ J is non-time-dominated if and only if either one of the two
following conditions hold: (i) the departure time of the first connection of J is larger than the departure
time of the first connection of all other journeys in J ; (ii) the arrival time of the last connection of J is
smaller than the arrival time of the last connection of all other journeys in J .

Hence, we define a profile query PQ(si, sj, τ, τ′) as the one that asks for the set of
non-time-dominated journeys between stops si and sj in the time range 〈τ, τ′〉, subject to τ < τ′,
that is, the set of journeys connecting stops si and sj that start at any time in [τ, τ′] and are
non-time-dominated journeys.

Finally, we define a multi-criteria query MC-EA(si, sj, τ) as the one asking to compute the set of
Pareto-optimal journeys. Informally, such journeys simultaneously optimize more than one criterion
(e.g., traveling time and number of vehicle transfers), departing in si at some time t ≥ τ ≥ 0
and arriving at stop sj. More precisely, given a set of criteria, a journey is in the Pareto-optimal
set S if it is non-dominated by any other journey. A journey J1 dominates a journey J2 if it is better with
respect to every criterion, while it is non-dominated otherwise. Note that, most commonly considered
optimization criteria are traveling time and number of vehicle transfers, although other optimization
can be found in the literature, for example, monetary cost.

It is long known that the problem of computing the mentioned Pareto-optimal set is (weakly)
NP-hard [25], since such journeys can be exponential in number. However, if some degree of
importance of the optimization criteria is imposed then the problem is polynomially solvable, by using
a simple multi-criteria modification of the Dijkstra’s algorithm, based on lexicographical optimality [25].
An example of this scenario is when one wants to compute the set of quickest journeys between
two stops si and sj and then, among them, to choose the one minimizing the number of transfers
between vehicles. In this paper, we focus on this latter realistic variant of the journey planning problem.
As a final remark, observe that profile queries are a special case of multi-criteria ones using arrival
and departure times as criteria.
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3. Basic Public Transit Labeling

The state-of-the-art method (in terms of query time) to solve the journey planning problem is
commonly referred to as Public Transit Labeling (PTL) [13]. The technique comes in two flavors: a basic
version to answer to earliest arrival and profile queries only, and an extended, more general version to
incorporate generic criteria of optimization, for example, to seek for earliest arrival journeys that also
minimize the number of transfers. The basic version essentially consists of three main ingredients:

1. a reduced time-expanded graph, a well-known data structure for storing transit networks (see e.g.,
Reference [9]);

2. a reachability labeling, a compact labeling-based representation of the transitive closure of the said
graph, computed via a (time-consuming) preprocessing step;

3. an efficient query algorithm exploiting both the graph and the labeling to answer quickly to
queries of interest at runtime.

In what follows we describe such ingredients in detail.

3.1. Reduced Time-Expanded Graph

The input timetable T = (Z , S, C) associated to the transit network is modelled via a reduced
time-expanded graph (RED-TE) [2]. In the case of an aperiodic timetable, the RED-TE graph is
a directed acyclic graph (DAG) G = (V, A) [13]. Starting from initially empty sets of vertices V
and arcs A, the DAG G associated with the aperiodic timetable T is built as follows. For each
elementary connection c = (Z, si, sj, td, ta):

• two vertices are added to V, namely a departure vertex vc
d and an arrival vertex vc

a, respectively,
each having an associated time time(vc

d) and time(vc
a), respectively, such that time(vc

d) = td
and time(vc

a) = ta. Departure and arrival vertices are logically stored within the corresponding
stop, that is each vertex vc

d (vc
a, respectively) belongs to the set of departure (arrival, respectively)

vertices DV[i] (AV[j], respectively) of stop si (sj, respectively);
• a directed connection arc (vc

d, vc
a) is added to A, connecting the corresponding departure

and arrival vertices.

Furthermore:

• for each trip TRIP = (c0, c1, . . . , ck), and for each connection ci ∈ TRIP, 0 ≤ i < k, a bypass arc
(vci

a , vci+1
a ) is added to A, connecting the two arrival vertices of ci and ci+1.

• for each pair of vertices u, v ∈ DV[i], a waiting arc (u, v) is added to A if time(v) ≥ time(u),
and there is no w in DV[i] such that time(v) ≥ time(w) ≥ time(u).

• for each u ∈ AV[i] and for each v ∈ DV[i], a transfer arc (u, v) is added to A if time(v) ≥ time(u) +
MTTi, and there is no w ∈ DV[i] such that time(w) < time(v) and time(w) ≥ time(u) + MTTi.

An example of construction of RED-TE graph is given in Figure 1, built using the timetable of
Table 1 as input.

Table 1. An example of timetable with three stops X, Y, Z and five vehicles α, β, γ, φ, θ.

Departure Stop Arrival Stop Departure Time Arrival Time VehicleID Minimum Transfer Time

− X − 00:05 α 5
− X − 00:07 β 5
X Y 00:10 00:15 α 5
X Y 00:15 00:20 β 5
Y − 00:20 − α −
Y Z 00:25 00:30 β 5
Y Z 00:30 00:39 γ 5
X Y 00:35 00:42 φ 5
Z − 00:40 − θ 5
Y − 00:50 − φ −
Z − 00:50 − γ −
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In the remainder of the paper, given a directed graph G = (V, A): we denote by Nout(v) =

{u ∈ V : (v, u) ∈ A} (Nin(v) = {u ∈ V : (u, v) ∈ A}, respectively) the set of outgoing (incoming,
respectively) neighbors of a vertex v ∈ V. We say a vertex u is reachable from (reaches, respectively)
another vertex v if and only if there exists a path from v to u (from u to v, respectively) in G, that
is, a sequence of arcs ((v, v1), (v1, v2), . . . , (vk, u)).

Figure 1. An example of RED-TE graph for a timetable with three stops X, Y and Z, five trips {a, b, c, d, e}.
Details of the timetable are reported in Table 1. Each ellipse groups together vertices in DV[i] ∪ AV[i] for
each stop i ∈ {X, Y, Z}, where vertices on the left side of each group, filled in light blue, are arrival
vertices, while vertices on the right side, filled in light yellow, are departure vertices. The latter are
connected to the former via transfer arcs. The numbers within vertices show the associated time, where
the minimum transfer time is assumed to be, for the sake of simplicity, MTTX = MTTY = MTTZ = 5 min
for all stops. Departure and arrival vertices of connections of the same trip are highlighted via a same
border color. Bypass arcs are drawn in green while consecutive departure vertices of a same set DV[i]
are connected via waiting arcs.

Moreover, we say a path P connecting two vertices u and v is a shortest path between u and v
in G if P is a path from u and v in G whose length is minimum among all paths connecting u and v
in G. Such length is given by the sum of the weights of the arcs in the path, it is typically denoted by
dG(u, v) and it is often referred to as the distance from u to v in G.

3.2. Reachability Labeling

Given a graph G = (V, A), any approach for computing a so–called 2-Hop-Cover reachability
labeling (2HC-R labeling, for short) L of G associates two labels to each vertex v ∈ V, namely a backward
label Lin(v) and a forward label Lout(v), where a label is a subset of the vertices of G [26]. In particular,
for any two vertices u, v ∈ V, Lout(u) ∩ Lin(v) 6= ∅ if and only if there exists a path from u to v in G.
Therefore, any query on the reachability between two vertices u, v ∈ V can be answered by a linear
scan of the two labels of u and v only [26]. Vertices {h : h ∈ Lout(u) ∩ Lin(v)} are called hub vertices for
pair u, v, and each element in said set is a vertex lying on a path from u to v in G.

The size of a 2HC-R labeling is given by the sum of the sizes of the label entries and it is known that
computing a 2HC-R labeling of minimum size is NP-Hard [26]. However, numerous approaches have
been presented to heuristically improve both the time to compute the labeling and its size [24,27,28].
Among them, the one in Reference [24], called BUTTERFLY, has been shown to exhibit superior
performance for DAGs and is suited for dynamic graphs, that is, the authors also provide a dynamic
algorithm that is able to update the 2HC-R labeling L of a graph G to reflect changes occurring on
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G itself. In particular, given a graph G, a 2HC-R labeling L of G, and an update operation occurring
on G, the algorithm is able to compute another labeling L′ that is a 2HC-R labeling for G′, where G′ is
the graph obtained by applying the update on G.

Note that, in this scenario, updates can be incremental (decremental, respectively), if they are
additions (removals, respectively) of a vertex/arc. Throughout the paper, we denote by INC-BU(G, L, v)
(DEC-BU(G, L, v), respectively) the result of the application of the dynamic algorithm of Reference [24]
to the labeling L of a graph G to handle an incremental (decremental, respectively) operation occurring
on vertex v (we refer the reader to Reference [24] for more details on the above dynamic algorithms).

3.3. Query Algorithm

It has been shown that the above described RED-TE graph model, combined with 2HC-R labeling,
can be used to answer efficiently to both earliest arrival and profile queries on a timetable [13].
In particular, for answering an earliest arrival query of the form EA(si, sj, τ), the algorithm is as follows.
First a vertex c ∈ DV[i] satisfying the following conditions is computed:

1. time(c) ≥ τ;
2. there is no arc (c′, c) adjacent to c such that c′ ∈ DV[i] and time(c′) ≤ time(c).

Then, vertices in AV[j] are scanned to search for vertices v ∈ AV[j] such that Lout(c) ∩ Lin(v) 6= ∅
(i.e., that are reachable). If such a vertex v exists, meaning that there exists at least a journey connecting
the two stops, then time(v) is returned as the earliest arrival time, only if there is no other v′ ∈ AV[j]
such that Lout(c) ∩ Lin(v′) 6= ∅ and time(v′) < time(v) (this is easy to check as vertices are typically
sorted by time). Note that the structure of the journey can be easily retrieved by applying a recursive
query procedure [1,13,21].

To answer a profile query PQ(si, sj, τ, τ′), instead, the algorithm needs to compute a set of
non-dominated journeys, let us call it PROFILE, by proceeding as follows. First, the routine computes
a vertex c ∈ DV[i] such that:

1. time(c) ≥ τ;
2. there is no arc (c′, c) adjacent to c such that c′ ∈ DV[i] and time(c′) ≤ time(c).

Then, vertices of AV[j] are scanned to search for a vertex v ∈ AV[j] such that:

1. Lout(c) ∩ Lin(v) 6= ∅ (i.e., v is reachable from c);
2. there is no other vertex v′ ∈ AV[j] having time(v′) < time(v) and Lout(c) ∩ Lin(v′) 6= ∅.

Note that time(v) is the earliest time to arrive at stop sj given the departure time τ from si. Now,
since the set PROFILE must contain all non-dominated journeys, the latest departure time that allows to
reach sj is also necessary to complete the computation of the query. To this aim, the algorithm computes
another vertex c′′ ∈ DV[i] such that there is no arc (c′′, c′′′), with c′′′ ∈ DV[i], having time(c′′) ≤
time(c′′′) and Lout(c′′′) ∩ Lin(v) 6= ∅. The computed time time(c′′) is the latest departure time that
allows to reach sj. Hence, the algorithm adds pair (time(c′′), time(v)) to PROFILE (or alternately
the corresponding journey, both versions of the set PROFILE are equivalent [13]), and repeats the process
above by setting the value of τ to time(c′′) + 1.

Stop Labeling

In order to obtain a very fast query time compatible with modern applications, in Reference [13]
a customization of the general query approach, tailored for RED-TE graphs, was proposed. In particular,
the main idea underlying the PTL query algorithm is to compact labels and to associate them to stops,
rather than to vertices. To this aim, PTL builds a RED-TE (There is a one-to-one correspondence between
RED-TE graphs and classic time–expanded graphs [2]) graph G, computes a 2HC-R labeling L of
G, and compresses it into a set of stop labels SL of L [13]. In detail, we have a forward stop label
SLout(i) and a backward stop label SLin(i) for each stop si ∈ S. A forward (backward, respectively)
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stop label is a list of pairs of the form (v, stoptimei(v)) where v is a hub vertex reachable from (that
reaches, respectively) at least one vertex in DV[i] (AV[i], respectively) and stoptimei(v) encodes the latest
departure (earliest arrival, respectively) time from si to reach hub vertex v (from the stop, say sv, of
vertex v to reach si, respectively).

For the sake of the efficiency, entries in SLout(i) (SLin(i), respectively) are stored as sorted arrays,
in increasing order of hub vertices (according to distinct ids assigned to vertices). The set of stop
labels is usually referred to as stop labeling of G (or of L). Similarly to the general 2HC-R labeling
case, queries on the timetable can be answered via stop labels by scanning the entries associated to
source and target stops only. The query algorithms exploit the information in the stop labeling to
discard time-dominated journeys toward the stored hubs and to achieve query times of the order of
milliseconds [13].

In particular, the routine for answering to an earliest arrival query EA(si, sj, τ) using stop labels is
as follows. Since SLout(i) and SLin(j) are arrays sorted with respect to ids, the algorithm as a first step
finds the vertex v in SLout(i) (SLin(j) whose time is greater than or equal to τ. Assume that said vertex
is in position p (q, respectively) in such arrays.

Then, a linear sweep, starting from location p, is performed on SLout(i) to find the first entry
(v, stoptimei(v)) satisfying the condition that stoptimei(v) ≥ τ. Let us assume this entry is stored in
location p′ ≥ p. This part of the computation is known as the process of computing relevant hubs
and it is followed by the computation of all hubs that are both SLout(i) and SLin(j), stored at locations
greater than p′ and q in SLout(i) and SLin(j), respectively. Finally, the earliest arrival time among all
such common hubs, computed in the previous step, is returned as an answer to the query EA(si, sj, τ).

The query algorithm for answering a profile query PQ(si, sj, τ, τ′) using stop labels works
as follows. First, the algorithm performs the computation of relevant hubs, which returns p′ and q
as the locations in SLout(i) and SLin(j), respectively. Then, all hubs in both SLout(i) and SLin(j), stored at
locations greater or equal to p′ in SLout(i), and q in SLin(j) are computed. Finally, among all such
common hubs, all non-dominated journeys satisfying the condition that the departure is less than
or equal to τ′ are added to PROFILE, which is initially an empty set. At the end of the procedure,
PROFILE is returned as the answer to the profile query PQ(si, sj, τ, τ′).

4. Multi-Criteria Public Transit Labeling

The basic PTL approach is not naturally designed for answering to multi-criteria queries,
which require a more careful design to achieve lexicographical optimality for generic optimization
criteria. However, besides optimizing arrival time, many users also prefer journeys with fewer transfers.
To this aim, in Reference [13], the authors show how the basic approach can be modified to handle
general multi-criteria queries by modifying its constituents. Briefly, a weighted reduced time-expanded
graph (WRED-TE, for short) is used in place of the RED-TE graph (again note that there is a one-to-one
correspondence between RED-TE graphs and classic time–expanded graphs [2]), a shortest path labeling
replaces the reachability labeling, and the query algorithm is modified accordingly. In what follows,
without loss of generality, we describe the modification designed to manage, as optimization criteria,
the traveling time and the number of transfers, both to be minimized. However, both PTL and our
approach can be extended to handle other criteria (e.g., monetary cost) [13].

4.1. Weighted Reduced Time-expanded Graph

In the specific case, when the additional criterion to be considered is the number of transfers,
the weighted reduced time-expanded graph is obtained as follows: each transfer arc (u, w) in the graph
is assigned a weight of value equal to 1. By interpreting weights of 1 as “leaving a vehicle”, we can
count the number of trips taken along any path. To model staying in the vehicle, consecutive
connection vertices of the same trip are linked by zero-weight arcs. In such a way, the weight of
paths encodes the number of transfers taken during a journey while the duration of the journey itself
can still be deduced from the time difference of the vertices. Thus, if one prefers paths in the graph
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having minimum weight, besides optimizing the time criterion as shown in the previous section,
then the sought journey will be the one exhibiting minimum arrival time and minimum number of
transfers between vehicles. To this aim, a shortest path labeling [26], instead of a reachability labeling,
is employed to accelerate the computation of shortest paths. Notice that, differently from the case of
basic PTL, to the best of our knowledge no compact version of the shortest path labeling is known, that
is, there is no analog of stop labelings (see Section 3.3) for the multi-criteria setting.

4.2. Shortest Path Labeling

Given a directed graph G, a 2-Hop-Cover shortest path labeling (shortly, 2HC-SP labeling) L of G
associates two labels Lin(v) and Lout(v) to each vertex v in V, called backward label and forward
label, respectively. Differently from reachability labelings, in this case, each label contains additional
information, namely each entry in Lin(v) (Lout(v), respectively) is of the form (h, δhv) ((h, δvh),
respectively), where:

• (h, δhv) represents a vertex h in G from which v can be reached via a shortest path of length δhv;
• (h, δvh) represents a vertex h in G reachable from v via a shortest path of length δvh;
• label entries satisfy the so–called cover property that is, for any pair of vertices u, v ∈ V, the distance

d(u, v) (i.e., the weight of the shortest path) from u to v in G can be retrieved by a linear scan of
the two labels of u and v only.

In details, a query on the distance is defined as follows:

QUERY(u, v, L) =

min
h∈V
{δuh + δhv | (h, δuh) ∈ Lout(u) ∧ (h, δhv) ∈ Lin(v)} if Lout(u) ∩ Lin(v) 6= ∅

∞ otherwise.

It can be shown that, for any 2HC-SP labeling, QUERY(u, v, L) always equals d(u, v) [26], that is
for any two connected vertices u, v ∈ V, we have Lout(u) ∩ Lin(v) 6= ∅ and the minimum value of
the sums equals the weight of a shortest path in the graph.

In particular, in this case we call hub vertices for pair u, v the vertices in

{k : k ∈ arg min
h∈V
{δuh + δhv | (h, δuh) ∈ Lout(u) ∧ (h, δhv) ∈ Lin(v)}},

where each element in said set is a vertex lying on a shortest path from u to v in G. In the above
definition we slightly overload our notation by saying that h belongs to Lout(v) (Lin(v), respectively)
whenever (h, δvh) ∈ Lout(v) ((h, δhv) ∈ Lin(v), respectively). Note that, despite the same nomenclature,
the notion of hub vertex here is more restrictive with respect to reachability labelings, as it requires
the vertex to be on a shortest path rather than on any path. To this regard, for 2HC-SP labelings,
the following definition can be given. We refer the reader to Reference [29] for more details.

Definition 4 (Induced Path). Given a graph G = (V, A), a pair s, t ∈ V and a 2HC-SP labeling L of G,
a shortest path P is induced by L for pair s, t ∈ V if, for any two vertices u and v in P, there exists a hub h of
pair (u, v) such that h ∈ P, or h = u, or h = v. The set of shortest paths between vertices s and t induced by L
is denoted by PATH(s, t, L).

Finally, note that, as well as reachability labelings, also for shortest path labelings the size of
the labeling is given by the sum of the sizes of the label entries and it is known that computing
a 2HC-SP covering of the graph of minimum size is NP-Hard, by a simple reduction to the 2HC-R

case [26]. However, numerous approaches have been presented to heuristically improve both the time
to compute the labeling and its size [24,27,28].

A reference approach for DAGs (as the WRED-TE is) is that of Reference [24] which, in the case of
shortest path labelings, relies on computing a topological order over the vertices of G. A topological
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order Ton the vertex set V for a DAG is a total ordering defining a precedence relationship among
the vertices such that for any arc (u, v) in G we have t(u) < t(v), where t(w) is the position in
the ordering of the generic vertex w ∈ V. Note that a topological order can be computed in linear time
with respect to the size of the graph. For details about the mentioned approach, we refer the reader
to [24] and references therein.

Note also that, for a pair u, v ∈ V, the shortest path between u and v in G can be also retrieved
from the labeling L by deploying a recursive procedure that builds the path by repeatedly combining
hub vertices of pairs of vertices belonging to the path. This is possible due to the optimal sub-structure
of shortest paths, where each sub-path of a shortest path is itself a shortest path. We refer the reader to
Reference [29] for more details. Such a path between u and v is commonly known as the path induced
by the labeling, which in our case is L.

4.3. Multi-Criteria Query Algorithm

It is known that the above described WRED-TE graph model, combined with a 2HC-SP labeling, can
be used to answer efficiently to both earliest arrival and profile queries on a timetable (see Reference [13]
for more details). In particular, the routine for answering a multi-criteria query MC-EA(si, sj, τ)

is as follows. First, a vertex c ∈ DV[i] satisfying the following conditions is computed:

1. time(c) ≥ τ;
2. there is no arc (c′, c) in G such that c′ ∈ DV[i] and time(c′) ≥ τ, meaning that vertex c is associated

with the smallest departure time larger than τ.

Then, the algorithm computes d(c, v), by querying the shortest path labeling L, for all v ∈ AV[j]
such that time(c) < time(v), and selects the arrival vertex v having minimum d(c, v). Finally, the time
associated to such vertex is the earliest arrival time while d(c, v) is the associated number of transfers.
Hence, the corresponding journey is the one having the smallest number of transfers among those
exhibiting the earliest arrival time: the structure of the journey again can be retrieved by applying
a recursive query procedure [13,21]. Note that, to achieve the fastest possible query times, PTL employs
some pruning mechanisms [13]. Notice also that, differently from basic PTL, no compact version
of shortest path labelings is known, that is there is no analog of stop labelings (see Section 3.3)
for multi-criteria queries.

5. Dynamic Public Transit Labeling

In this section, we introduce Dynamic Public Transit Labeling (D-PTL, for short), a new technique
that is able to maintain the PTL data structure under delays occurring in the given transit network.
In particular, we first show a dynamic algorithm (referred to as basic D-PTL) to update the basic
PTL framework, that is how to maintain both a RED-TE graph G = (V, A), the corresponding 2HC-R

labeling L and stop labeling SL under delays affecting connections, and then discuss on how to extend
this procedure to the multi-criteria setting.

Formally, a delay is an increase in the departure time of an elementary connection of a finite
quantity δ > 0. Hence, it is easy to see how a delay can induce an arbitrary number of changes to both
the graph and labelings [2,13], depending on the structure of the trip the connection belongs to, thus in
turn inducing arbitrarily wrong answers to queries.

A general strategy to achieve the purpose of updating both G, the 2HC-R labeling L and the stop
labeling SL, after a delay, while preserving the correctness of the queries, is to first update the graph
representing the timetable (via, e.g., the solutions in References [2,9,10]) and then reflect all these
changes on both L and SL by: (i) detecting and removing obsolete label entries; and (ii) adding
new updated label entries induced by the new graph, as done in other works on the subject [21,24].
However, this results in a quite high computational effort, as shown by preliminary experimentation
we conducted.
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In order to minimize the number of changes to both L and SL, we hence exploit the specific
structure of the RED-TE graph and design a dynamic algorithm that alternates phases of update of
the graph with phases of update of the labeling L through the procedures given in Reference [24].
At the end of such phases, changes to L are reflected onto its compact representation SL through
a dedicated routine. In particular, our algorithm is based on the following observation: a delay
affecting a connection of a trip might be propagated to all subsequent connections in the same trip,
if any. Hence, the impact of a given delay on both the graph and the labelings strongly depends on
δ, on the structure of the trip and, in particular, on the departure times of subsequent connections.
Therefore, D-PTL processes connections of a trip incrementally, and in order with respect to departure
time. In details, D-PTL comprises two sub-routines, called, respectively, removal phase (Algorithm
REM-D-PTL, see Algorithm 1) and insertion phase (Algorithm INS-D-PTL, see Algorithm 2) that update
L along with the graph. Such phases are then followed by a bundle update of SL by a suitable procedure
(Algorithm UPDATESTOPLAB, see Algorithm 3).

Algorithm 1: Algorithm REM-D-PTL.
Input: RED-TE graph G, a delay δ > 0 affecting a connection cm, the trip

TRIPi = (c0, c1, . . . , cm, . . . , ck) including the connection
Output: RED-TE graph G not including vertices of connections violating RED-TE constraints

and the 2HC-R labeling L of G
1 for j = m, m + 1, . . . , k− 1, k do
2 Let ss and st be departure and arrival, respectively, stops of cj;
3 PRED ← ∞;
4 SUCC ← ∞;

5 time(v
cj
d )← time(v

cj
d ) + δ;

6 time(v
cj
a )← time(v

cj
a ) + δ;

7 foreach v ∈ Nout(v
cj
d ) do // Outgoing arcs (if any)

8 if v ∈ DV[s] then SUCC ← v; // Waiting arc in the graph

9 if time(v
cj
d ) > time(SUCC) then

10 foreach v ∈ Nin(v
cj
d ) do // Incoming arcs (if any)

11 if v ∈ DV[s] then PRED ← v; // Waiting arc in the graph
12 if v ∈ AV[s] then A← A ∪ {v}; // Transfer arc in stop ss

13 V ← V \ {vcj
d };

14 L ← DEC-BU(G, L, v
cj
d );

15 if PRED 6= ∞ ∧ SUCC 6= ∞ then A← A ∪ {(PRED, SUCC)}; // Add waiting arc;
16 foreach w ∈ A do A ← A ∪ {(w, SUCC)}; // Add transfer arcs;
17 L ← INC-BU(G, L, SUCC);

18 foreach v ∈ Nout(v
cj
a ) do // Outgoing arcs (if any)

19 if v ∈ DV[t] ∧ time(v) < time(v
cj
a ) + MTTt then

20 V ← V \ {vcj
a };

21 L ← DEC-BU(G, L, v
cj
a );

22 if G has not changed then break;
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Algorithm 2: Algorithm INS-D-PTL.
Input: RED-TE graph G not including vertices of connections violating RED-TE constraints,

the 2HC-R labeling L of G, delay δ > 0, delayed connection cm, trip
TRIPi = (c0, c1, . . . , cm, . . . , ck)

Output: RED-TE graph G including vertices of connections affected by the delay, the 2HC-R

labeling L of G, the delay δ > 0 affecting the connection cm and the trip
TRIPi = (c0, c1, . . . , cm, . . . , ck) including the connection

1 for j = m, m + 1, . . . , k− 1, k do
2 Let ss and st be departure and arrival stops of cj, respectively.;
3 PRED ← ∞;
4 SUCC ← ∞;

5 foreach v ∈ Nout(v
cj
d ) do // Outgoing arcs (if any)

6 if v ∈ DV[s] then SUCC ← v; // Waiting arc in the graph

7 foreach v ∈ Nin(v
cj
d ) do // Incoming arcs (if any)

8 if v ∈ DV[s] then PRED ← v; // Waiting arc in the graph

9 if v
cj
d ∈ V ∧ v

cj
a ∈ V then // (Case I) - Both not removed

10 Execute REWIRETRANSFERDEP(G, v
cj
d , SUCC, ss) ; // i.e., Algorithm 4

11 if G has changed then
12 L ← INC-BU(G, L, v

cj
d );

13 else if v
cj
d 6∈ V ∧ v

cj
a 6∈ V then // (Case II) - Both Removed

14 V ← V ∪ {vcj
d }; // Add v

cj
d to G

15 Execute REWIREWAITINGDEP(G, v
cj
d , ss) ; // i.e., Algorithm 4

16 Execute REWIRETRANSFERDEP(G, v
cj
d , SUCC, ss) ; // i.e., Algorithm 5

17 L ← INC-BU(G, L, v
cj
d );

18 V ← V ∪ {vcj
a }; A ← A ∪ {(vcj

d , v
cj
a )}; // Add v

cj
a and connection arc to G

19 Execute REWIREARR(G, v
cj
a , TRIPi, st) ; // i.e., Algorithm 6

20 L ← INC-BU(G, L, v
cj
a );

21 else if v
cj
d 6∈ V ∧ v

cj
a ∈ V then // (Case III) - Only v

cj
d removed

22 V ← V ∪ {vcj
d };

23 A ← A ∪ {(vcj
d , v

cj
a )}; // Add v

cj
d and connection arc to G

24 Execute REWIREWAITINGDEP(G, v
cj
d , ss) ; // i.e., Algorithm 4

25 Execute REWIRETRANSFERDEP(G, v
cj
d , SUCC, ss) ; // i.e., Algorithm 5

26 L ← INC-BU(G, L, v
cj
d );

27 else // (Case IV) - Only v
cj
a removed

28 V ← V ∪ {vcj
a }; A ← A ∪ {(vcj

d , v
cj
a )}; // Add v

cj
a and connection arc to G

29 Execute REWIREARR(G, v
cj
a , TRIPi, st) ; // i.e., Algorithm 6

30 L ← INC-BU(G, L, v
cj
a );
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Algorithm 3: Algorithm UPDATESTOPLAB.
Input: Outdated stop labeling SL, 2HC-R labeling L of G, sets USout, USin
Output: Updated stop labeling SL of L

1 foreach si ∈ USout do
2 Q← ∅;
3 SLout(i)← ∅;
4 while {DV[s] \Q} 6= ∅ do
5 m← argmaxv∈DV[s] time(v);

6 foreach u ∈ Lout(m) do
7 if u /∈ SLout(i) then
8 SLout(i)← SLout(i) ∪ {(u, time(m))};
9 Q← Q ∪ {m};

10 Sort SLout(i) with respect to vertices ids;
11 foreach si ∈ USin do
12 Q← ∅;
13 SLin(i)← ∅;
14 while {AV[s] \Q} 6= ∅ do
15 m← argminv∈DV[s] time(v);

16 foreach u ∈ Lin(m) do
17 if u /∈ SLin(i) then
18 SLin(i)← SLin(i) ∪ {(u, time(m))};
19 Q← Q ∪ {m};
20 Sort SLin(i) with respect to vertices ids;

Algorithm 4: Algorithm REWIREWAITINGDEP.

Input: Graph G = (V, A), departure vertex v
cj
d , stop ss

1 if DV[s] \ {vcj
d } 6= ∅ then

2 m← argmaxv∈DV[s] time(v);

3 if time(v
cj
d ) ≥ time(m) then // Add waiting arc

4 A ← A ∪ {(m, v
cj
d )};

5 else
6 Let m1, m2 ∈ DV[s] be such that time(m1) ≤ time(v

cj
d ) ≤ time(m2);

7 A ← A \ {(m1, m2)}; // Remove outdated waiting arc

8 A ← A ∪ {(m1, v
cj
d ), (v

cj
d , m2)}; // Add new waiting arcs
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Algorithm 5: Algorithm REWIRETRANSFERDEP.

Input: Graph G = (V, A), departure vertex v
cj
d , successor vertex SUCC, stop ss

1 if SUCC = ∞ then // (Sub-case I.a)
2 CANDIDATES ← ∅;
3 foreach v ∈ AV[s] do
4 TO_ADD ← true;
5 foreach u ∈ Nout(v) do // Outgoing transfer arcs (if any)
6 if u ∈ DV[s] then // Has transfer arc
7 TO_ADD ← f alse;
8 break;

9 if TO_ADD ∧ time(v
cj
d ) ≥ time(v) + MTTs then

10 CANDIDATES ← CANDIDATES ∪ {v}
11 foreach v ∈ CANDIDATES do
12 A ← A ∪ {(v, v

cj
d )}

13 else // (Sub-case I.b)
14 T ← ∅;
15 foreach v ∈ AV[s] do
16 foreach u ∈ Nout(v) do // Outgoing transfer arcs (if any)
17 if u = SUCC ∧ time(v

cj
d ) ≥ time(v) + MTTs then

18 T ← T ∪ {(v, u)};
19 foreach (v, u) ∈ T do
20 A ← A \ {(v, u)};
21 A ← A ∪ {(v, v

cj
d )};

Algorithm 6: Algorithm REWIREARR.

Input: Graph G = (V, A), arrival vertex v
cj
a , trip TRIPi, stop st

1 MIN_NODE ← argmin
v∈DV[t] , time(v)≥time(v

cj
a )+MTTt

{time(v)};

2 A← A ∪ {(vcj
a , MIN_NODE)}; // Add proper transfer arc

3 if j > 0 then // Not first connection of the trip
4 A← A ∪ {(vcj−1

a , v
cj
a )}; // Add bypass arc

5 if j < k then // Not last connection of the trip
6 A← A ∪ {(vcj

a , v
cj+1
a )} ; // Add bypass arc

In the removal phase, we first remove from G vertices and arcs that are associated with the delayed
connection that violate the RED-TE constraints. We say a vertex (arc, respectively) violates the RED-TE

constraints whenever the associated time (the difference of the times of the endpoints, respectively)
does not satisfy at least one of the inequalities imposed by the RED-TE model discussed in Section 2.
Note that, vertices and arcs of the above kind can be: (i) departure and arrival vertices of the delayed
connection; (ii) departure and arrival vertices following the delayed connection in the same trip;
(iii) arcs adjacent to vertices in (i) and (ii).

Once the above is done, we might have that G is no longer a RED-TE graph, since the removal of
the above vertices and arcs can, in turn, induce some other vertex/arc to violate RED-TE constraints.
Hence, we first reflect such removals onto L by running the decremental algorithm DEC-BU of
Reference [24] and then check if we need to insert into G some new arcs to let it be again a RED-TE

graph. Accordingly, if this is the case, we add label entries induced by these insertions by using
the incremental algorithm INC-BU of Reference [24]. At this point, the graph G is a RED-TE graph of
a timetable that does not include the delayed connection. Then, if some changes has been applied to
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G (and L) in the above step, we proceed by analyzing the connections following the delayed one in
the same trip, one by one, and by removing vertices and arcs that violate the RED-TE graph. At the end
of these iterations, we have that G is a RED-TE graph of a timetable that does not include neither
the delayed connection nor those following it in the same trip that have violated the RED-TE constraints
because of δ.

After completing the above, we perform the insertion phase, where we check whether we need to
insert back into G some vertices and arcs, with updated associated times, to let the graph be a RED-TE

graph of the updated timetable. This might require to execute algorithm INC-BU to add label entries
induced by such insertions. Once both G and L have been updated, we reflect the changes onto
the stop labeling via a suited routine (see Algorithm 3). In the next sections we describe in detail
the above sub-routines.

5.1. Removal Phase

In the negative case, we do not remove v
cj
d since, after updating time(v

cj
d ), all vertices of DV[s] do

not violate the time inequalities imposed by waiting arcs. In the affirmative case (see Line 9), instead,

v
cj
d must be removed and the arcs adjacent to vertices in DV[s] and AV[s] must be rewired. In particular,

we proceed as follows: if there exists some waiting arc (v
cj
d , v) in A, that is, there is some other

v ∈ DV[s] whose time was larger than or equal to that of v
cj
d before the delay), and time(v

cj
d ) > time(v)

(thus the ordering imposed by waiting arcs is violated), then we compute a set A of vertices that will
be wired at v, given by A = {w : (w, v

cj
d ) ∈ A : w ∈ AV[s]}. Note that the time of said vertex v is

necessarily larger than the time of vertices w ∈ AV[s] such that (w, v
cj
d ) ∈ A plus MTTs, thus satisfy

the RED-TE inequality for transfer arcs.
Moreover, we search for two vertices, named PRED and SUCC respectively, defined as follows:

• PRED is the unique vertex (if any) such that PRED ∈ DV[s] and (PRED, v
cj
d ) ∈ A;

• SUCC is the unique vertex (if any) such that SUCC ∈ DV[s] and (v
cj
d , SUCC) ∈ A.

These are the vertices adjacent to the waiting arcs having v
cj
d as one endpoint, that we will need

to rewire to preserve the RED-TE properties. Then, we remove v
cj
d from V, and run DEC-BU to obtain

an updated version of the 2HC-R labeling (see Line 14). Note that the removal of a vertex v
cj
d also

removes all arcs (v, v
cj
d ) and (v

cj
d , v) (if any) from A. Finally, we add: a waiting arc (PRED, SUCC) to A,

if both PRED and SUCC are vertices in the graph, and a transfer arc for each entry in A. In particular,
for each vertex w ∈ A, we add a new transfer arc (w, SUCC). To reflect such changes on L, we run
INC-BU (see Line 16).

Regarding vertex v
cj
a , graph G remains unchanged either if there is no transfer arc in A having

v
cj
a as endpoint, or if there is a transfer arc (v

cj
a , v) but such arc is not affected by the delay, that

is, when time(v) ≥ time(v
cj
a ) + MTTt. In all other cases, we proceed by removing v

cj
a from G and by

updating L via DEC-BU (see Line 21). An example of execution of the removal phase is shown in
Figure 2.



Algorithms 2020, 13, 2 17 of 39

Figure 2. The RED-TE graph obtained after performing Algorithm REM-D-PTL (Algorithm 1)
on the graph of Figure 1, as a consequence of a delay δ of 10 min occurring on the first connection of
Trip b. The time associated to the departure vertex (filled in orange) of said connection is updated, but
the vertex and its corresponding transfer arc (drawn in orange) are not removed, since the ordering
and the RED-TE properties are not broken. Arrival and departure vertices of the connections following
the one affected by the delay in the same trip are filled in red. Since they break the RED-TE

properties (e.g., 35 becomes larger than 30 in Stop Y) they are removed from the graph, along with
the corresponding adjacent arcs, shown via dashed red arrows. A waiting arc, in blue, is added during
the removal phase to connect departure vertices that remain in DV[Y] to restore the RED-TE properties.

As a final remark on this part, notice that (see Figure 2) the removal phase is stopped at a given
connection ci of trip TRIPi = (c0, c1, . . . , cm, . . . , ci, . . . , ck), with m ≤ i ≤ k whenever the delay does not
induce a change neither in the time associated to vci

a and vci
d nor in their adjacent arcs, as this trivially

implies that no change will be performed on all vertices v
cj
a and v

cj
d (and their adjacent arcs) for all j,

with i < j ≤ k. This can be detected by comparing the status of vertices (namely time and set of
adjacent arcs) before and after performing the procedure for a given connection. In the remainder of
the paper, for the sake of brevity, we denote this test by writing either “the graph has changed” or not.

5.2. Insertion Phase

In this section, we discuss in details Algorithm INS-D-PTL whose aim is adding to G vertices
and arcs according to the delayed connection in such a way G is a RED-TE graph properly
representing the updated timetable, and then to update accordingly L (see Algorithm 2). In particular,
once Algorithm 1 has been executed, the following four cases can occur, for each connection
cj , j = m to k in trip TRIPi = (c0, c1, . . . , cm, . . . , ck) that has been affected by the delay, depending on
whether the vertices associated have been removed or not from the graph:

(a) v
cj
d ∈ V and v

cj
a ∈ V;

(b) v
cj
d 6∈ V and v

cj
a 6∈ V;

(c) v
cj
d 6∈ V and v

cj
a ∈ V;

(d) v
cj
d ∈ V and v

cj
a 6∈ V.

In what follows we describe in detail how Algorithm INS-D-PTL manage each of these cases.
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5.2.1. Discussion on Case I

In this case, when both vertices have remained in G (see Line 9 of Algorithm 2), we only check
whether some transfer arcs have to be updated. This process is summarized in Algorithm 5 which is
called as sub-routine by Algorithm 2. In particular, if v

cj
d is the last vertex in DV[s] (see Line 2 of

Algorithm 5—Sub-case I.a), i.e., there is no waiting arc outgoing v
cj
d then we compute the subset

CANDIDATES of vertices in AV[s] that do not have any adjacent transfer arc and would not violate
the RED-TE constraints, i.e., we add a vertex v ∈ AV[s] to CANDIDATES if and only if time(v

cj
d ) ≥

time(v) + MTTs and v does not have any adjacent transfer arc.

Then, for each vertex v ∈ CANDIDATES we add a new arc (v, v
cj
d ) to A.

If, instead, v
cj
d is not the last vertex in DV[s] (see Line 14 of Algorithm 5—Sub-case I.b),

i.e., there exists some waiting arc connecting v
cj
d to a vertex SUCC ∈ DV[s], then some of the transfer

arcs having SUCC as endpoint in G may need to be updated and connected to v
cj
d (i.e., rewired to v

cj
d ).

To this purpose, we first determine the subset TA of transfer arcs in A having w as endpoint and then,
for each arc (v, w) in TA, if time(v

cj
d ) ≥ time(v) + MTTs we replace arc (v, w) by a new arc (v, v

cj
d ).

Notice that, for replaced transfer arcs we do not need to update L, since any two vertices that were
reachable before such update remain reachable afterward. Moreover, also vertices in DV[s] remain
in ordered form, therefore we do not need to add/replace any waiting arc of A. On the contrary, if
some modification has been applied to the topology of G or to the ordering of the vertices, then we run
INC-BU to obtain an updated version of the 2HC-R labeling (see Line 11).

5.2.2. Discussion on Case II

In this case, occurring when both vertices have been removed from V (see Line 13), we know that
the affected connection has no counterpart in G in terms of departure and arrival vertices. Thus, to make
G reflect the updated network as a correct RED-TE model, we proceed as follows.

First, we add a vertex v
cj
d to V and to DV[s] and set its associated time to be equal to

the new departure time of the (delayed) connection. After that, we add arcs adjacent to v
cj
d ,

depending on the presence of other vertices in DV[s] and AV[s] and on their times. In particular,
if time(v

cj
d ) ≥ time(v) ∀ v ∈ DV[s] and DV[s] \ {vcj

d } 6= ∅, i.e., there is no waiting arc outgoing vertex
m = argmaxv∈DV[s] time(v) and there exists another departure vertex besides v

cj
d in DV[s], we need to

add a waiting arc incoming into v
cj
d , in particular we insert arc (m, v

cj
d ) into A.

On the other hand, if there exist some vertices m1, m2 ∈ DV[s] such that time(m1) ≤ time(v
cj
d ) ≤

time(m2), then we remove waiting arc (m1, m2) and add two new waiting arcs (m1, v
cj
d ) and (v

cj
d , m2)

to A. It is worth to remark here that v
cj
d cannot be such that time(v

cj
d ) < time(v) ∀ v ∈ DV[s] since

otherwise the original vertex v
cj
d would have not been removed by Algorithm 1. The pseudo-code

of this part of the insertion phase is shown in Algorithm 4 which is again executed as sub-routine of

Algorithm 2. Regarding transfer arcs, after v
cj
d is inserted we execute Algorithm 5, as already discussed

for case I. Finally, we run INC-BU to update the 2HC-R labeling L (see Line 17).

Once vertex v
cj
d has been handled, we focus on the arrival stop st and insert a vertex v

cj
a into V

and AV[t], and a connection arc (v
cj
d , v

cj
a ) to A. Then, to properly set transfer arcs induced by such

connection arc, we search for the vertex v in DV[t] such that: (i) time(v) ≥ time(v
cj
a ) + δ and (ii) time(v)

is minimum among vertices satisfying (i). If such a vertex v exists, then we add arc (v
cj
a , v) to A.

Moreover, to properly set bypass arcs, if j ≥ 1 we add an arc (v
cj−1
a , v

cj
a ), where we remark that v

cj−1
a is

the arrival vertex of connection cj−1 of TRIPi. Similarly, j ≤ k− 1 we add an arc (v
cj
a , cj+1) where v

cj+1
a

is the arrival vertex of connection cj+1 of TRIPi (see Algorithm 6 for the pseudo-code of this phase).

Again, we run INC-BU to update L (see Line 20).
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5.2.3. Discussion on Case III

In this case, when v
cj
d has been removed while v

cj
a is in V (see Line 21 of Algorithm 2), we first

add a vertex v
cj
d to V and to DV[s] and a connection arc (v

cj
d , v

cj
a ) to A. This is followed by the wiring of

suited transfer and waiting arcs to v
cj
d , in order to preserve the RED-TE properties. As in the previous

cases, this is achieved by Algorithms 4 and 5, discussed above. Algorithm INC-BU is also run to reflect
changes on the 2HC-R labeling (see Line 26).

5.2.4. Discussion on Case IV

In this case, occurring when v
cj
d is part of V while v

cj
a has been removed by the removal phase

(see Line 27), we insert a vertex v
cj
a into V and AV[t], and the corresponding connection arc (v

cj
d , v

cj
a )

into A. This is followed by the addition of bypass and transfer arcs adjacent to v
cj
a , achieved again by

Algorithm 6. Furthermore, we obtain the final version L of the 2HC-R labeling (see Line 30).
An example of execution of the insertion phase is shown in Figure 3. In addition, for the sake

of simplicity in understanding, we show an example of execution of the procedures for: (i) rewiring
transfer arcs (Algorithm 5) and waiting arcs (Algorithm 4) to a departure vertex in Figure 4;
and (ii) rewiring arcs to an arrival vertex (Algorithm 6) in Figure 5.

Figure 3. The RED-TE graph obtained after performing Algorithm INS-D-PTL (Algorithm 2) on
the graph of Figure 2. Newly added vertices (arcs, respectively) are drawn in green (blue, respectively).
The dashed arc drawn in red is the waiting arc of Figure 2 that is removed in the insertion phase.
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Figure 4. An example of execution of the procedure for rewiring transfer and waiting arcs given in
Algorithms 4 and 5, respectively. On the left we show part of a sample graph, relative to a stop P with

the assumption that MTTP = 5 min, that is violating the RED-TE properties. In particular, no waiting
and transfer arcs are associated with the vertex colored in green. To restore the RED-TE properties
both transfer and waiting arcs must be added. Concerning the former, Algorithm 5 is executed
and the resulting graph is shown in the middle, where dashed arcs in red (arcs in blue, respectively)
are the removed arcs (newly inserted arcs, respectively). Regarding the latter, instead, Algorithm 4 is
executed. The resulting RED-TE graph (on the right side) is the final outcome. Dashed arcs in red are
the removed arcs, while arcs in blue are the newly added ones.

Figure 5. Part of a sample graph, relative to three stops, namely P, Q and R, is shown on the left
side, where the minimum transfer time is assumed to be, for the sake of simplicity, MTTP = MTTQ =

MTTR = 5 min for all stops. Both transfer and bypass arcs for the vertex of AV[Q] highlighted in
green must be rewired, in order to restore RED-TE properties. To this end, Algorithm 6 is executed,
and the result is shown on the right, with newly added arcs are highlighted in blue.

5.3. Updating the Stop Labeling

Once both the graph and the 2HC-R labeling have been updated, if a corresponding compressed
stop labeling SL is available and one wants to reflect the mentioned updates on said compressed
structure, a straightforward way would be that of recomputing the stop labeling from scratch, via
for example, the routine in Reference [13]. This computational effort is not large as that required for
recomputing the 2HC-R labeling. However, we propose a alternative routine that is incorporated in
D-PTL and avoids (and it is faster than) the recomputation from scratch of the stop labeling. Our routine
requires, during the execution of Algorithms 1 and 2, to compute two sets of so–called updated stops,
denoted, respectively, by USout and USin. These are defined as the stops si ∈ S such that vertices
in DV[i] (AV[i], respectively) had their time value or forward label (backward label, respectively)
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changed during Algorithm REM-D-PTL or during Algorithm INS-D-PTL. Sets USout and USin can be
easily determined by inserting stops satisfying the property in said sets during the execution of
Algorithms 1 and 2, after each update to times or labels.

Once this is done we update the stop labeling SL by recomputing only the entries of SLout(i)
(SLin(i), respectively) for each si ∈ USout (for each si ∈ USin, respectively). To this aim, for each
stop si ∈ USout (si ∈ USin, respectively) we first reset SLout(i) (SLin(i), respectively) to the emptyset.
Then, we scan departure (arrival, respectively) vertices in decreasing (increasing, respectively) order
with respect to time and add entries to SLout(i) (SLin(i), respectively) accordingly. In particular, for
all departure (arrival, respectively) vertices v of si in the above mentioned order, we add a pair
(u, stoptimei(v)) for each u in SLout(i) (SLin(i), respectively) only if there is no pair SLout(i) (SLin(i),
respectively) having u as hub vertex. This guarantees that each pair contains latest departure (earliest
arrival, respectively) times. After updating the stop labels, we sort both SLout(i) and SLin(i) to restore
the ordering according to the hub vertices [13]. Details on how to update the stop labeling by executing
the procedure are given in Algorithm 3.

We are now ready to give the following results.

Theorem 1 (Correctness of Basic D-PTL). Given an input timetable and a corresponding RED-TE graph G,
let L be a 2HC-R labeling of G and let SL be a stop labeling associated to L. Assume δ > 0 is a delay occurring
on a connection, that is, an increase of δ on its departure time. Let G′, L′, and SL′ be the output of D-PTL when
applied to G, L and SL, respectively, by considering the delay. Then: (i) G′ is a RED-TE graph for the updated
timetable; (ii) L′ is a 2HC-R labeling for G′; (iii) SL′ is a stop labeling for L′.

Notice that, the above theorem is based on the correctness of the approaches in References [2,13,24].
In particular, it is easy to see that whenever we update the graph, we do it by preserving the constraints
imposed by the RED-TE model on both vertices, by suitably modifying connection arcs and associated
waiting, bypass, and transfer arcs. In more details, it is easy to prove, by contradiction, that after
the execution of Algorithms 1 and 2, G is a RED-TE graph. Concerning the labeling data structures,
observe that after each change to G we use either DEC-BU or INC-BU, depending on the type of
performed modification. These algorithms have been shown to compute a labeling that is a 2HC-R

labeling for the modified graph [24]. Hence, at the end of Algorithm 2, L is a 2HC-R labeling for
G. Finally, Algorithm 3 applies the definition of stop labeling, by updating the entry of a stop with
the proper hub vertices and times values. Hence, after the execution of Algorithm 3, SL is a stop
labeling of L and the theorem follows.

Theorem 2 (Complexity of Basic D-PTL). Algorithm D-PTL takes O(|C|3 log |C|) computational time in
the worst case.

Proof. The complexity of Algorithm D-PTL is given by the sum of the complexities of Algorithms 1, 2
and 3. In what follows, we analyze separately the three algorithms.

Concerning Algorithm 1, we first bound the cost of executing Lines 1–21, that is, the amount of
computational time per connection. Lines 1–8 require a time that is linear in the number of neighbors
(incoming and outgoing) of v

cj
d , which is a constant in RED-TE graphs, while lines 9–21 spend a time

that grows as said number of neighbors times the time required for performing the dynamic algorithms
DEC-BU and INC-BU. Each execution of these algorithms takes O(|V|2 log |V|) in the worst case [24].
Thus, lines 1–21 require O(|V|2 log |V|) time in the worst case. These lines are repeated for all stops
traversed by the vehicle of the trip from connection cm to ck, therefore in the worst case for all stops of
the transit network, which are |S| ≤ |C|. Since |V| ∈ O(|C|), we have that Algorithm REM-D-PTL runs
in O(|C|3 log |C|) worst case time.

Concerning Algorithm 2, notice that all sub-routines require a time that is linear in the size of
the processed stop (i.e., in the number of associated arcs). Hence, by summing up the contribution for
all considered stops (those traversed by the trip from connection cm to ck), we obtain that updating



Algorithms 2020, 13, 2 22 of 39

the graph via Algorithm INS-D-PTL takes O(|C|), as |C| ≥ max{|S|, |Z|} and, in the worst case,
the affected trip can traverse all stops of the network. On top of that, we need again to consider
the time for executing DEC-BU and INC-BU, which are performed again |S| ≤ |C| times in the worst
case. Since |V| ∈ O(|C|), we have that Algorithm INS-D-PTL runs in O(|C|3 log |C|) worst case time.

Concerning Algorithm 3, it scans label entries of vertices in both USin and USout in non–increasing
and non–decreasing order, respectively (thus requiring either to sort them or to use a priority queue).
In both cases, we have an additional logarithmic factor in terms of computational time per vertex.
Since all vertices for all stops can be O(|C|), and since sorting stop labels with respect to hub vertices
at the end of the procedure requires O(|C| log |C|) worst-case time, it follows that the worst case
time of Algorithm 3 is O(|C| log |C|). If we sum up the complexities of Algorithms 1, 2 and 3,
the claim follows.

Notice that, Theorem 2 implies that D-PTL, in the worst case, is slower than the reprocessing from
scratch via PTL, whose worst case running time is cubic in the size of the graph due to the recomputation
of the labeling [20].

However, our experimental study, which is described in Section 7, clearly shows that D-PTL

always outperforms PTL in practice.

6. Dynamic Multi-Criteria Public Transit Labeling

In this section, we extend D-PTL to handle the multi-criteria setting. We refer to the extended
version as multi-criteria D-PTL.

We remark that, to update the data structures employed by the basic PTL framework, D-PTL

exploits the structure of the RED-TE graph and alternates phases of modifications of the graph itself with
corresponding updates of the reachability labeling via the procedures given in [24]. These phases are
bundled in two blocks, namely the removal phase (Algorithm REM-D-PTL, see Algorithm 1) and insertion
phase (Algorithm INS-D-PTL, see Algorithm 2) that update the labeling along with the graph.

The above two routines, however, cannot be directly employed within the multi-criteria PTL

approach, that relies on a shortest path labeling rather than on a reachability one. In particular, while
the modifications to the graph applied by the two routines are almost same for WRED-TE graphs
(the only exception is that whenever we add a transfer arc we need also to add a suited intermediate
vertex for modeling a transfer, whenever the two vertices are associated to connections of different
trips.), we cannot use algorithm BUTTERFLY, which is designed for reachability labelings, to update
the shortest path labeling at hand. Hence, we need to replace DEC-BU (in lines 14 and 21 of Algorithm 1)
and INC-BU (in lines 11, 17, 20, 26, and 30 of Algorithm 2) with decremental and incremental algorithms
that are suited to update the 2HC-SP labeling. To this regard, we can employ the decremental algorithm
DECPLL of Reference [21] and the incremental algorithm INCPLL of Reference [15], respectively, that
are designed to update 2HC-SP in general graphs.

Unfortunately, by preliminary experiments we conducted on some relevant instances of
the problem (we recall the reader that graphs treated in this paper are specifically DAGs), we observed
that, while INCPLL is quite fast and updates the labeling within few seconds even in very large graphs,
DECPLL is painfully slow, and sometimes its computational time is comparable with that required for
recomputing the labeling from scratch. This is most likely due to the sparse nature of the RED-TE graph
and to how DECPLL updates 2HC-SP labelings. In more details, DECPLL works in three phases whose
running time depends proportionally on the cardinality of the set of vertices that contain at least a label
entry that is incorrect. It is easy to see that this cardinality tends to the number of vertices of the graph
in DAGs in most of the cases (see Reference [21] for more details on this part of the computation).

For such reasons, in what follows we propose an extension of algorithm DEC-BU, named
DAG-DECPLL, that is explicitly designed to update shortest path labelings in DAGs, instead of
reachability labelings, as a consequence of decremental updates to the graph. The main intuition
behind DAG-DECPLL is to exploit the specific relationships between shortest paths in DAGs, which are
instead neglected by DECPLL, which is designed for general graphs.
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Given a graph G = (V, A), we discuss the new approach by focusing on how to handle
the removal of a vertex, say x ∈ V, which is the decremental operation of interest in our scenario.
Note that, the routine can be easily extended to handle arc removals or arc weight increases,
as discussed at the end of this section. In what follows, we call G′ = (V′, A′) the graph obtained
by removing vertex x from V. Furthermore, we denote by dS(u, v) the distance (i.e., the weight of
a shortest path) between two vertices u and v of a graph, say S. and define two subsets of vertices of V,
namely RIGHTx and LEFTx, as follows:

• RIGHTx: the set of vertices of V that are reachable from x in G, i.e., u ∈ RIGHTx if and only if there
exists a path from x to u in G;

• LEFTx: the set of vertices of V that can reach x in G, i.e., u ∈ LEFTx if and only if there exists a path
from u to x in G.

Since G is a DAG, it is easy to see that RIGHTx and LEFTx are inherently disjoint, that is RIGHTx ∩
LEFTx = ∅. Additionally, given the above definitions, we say a label entry (h, δvh) ∈ Lout(v) of some
vertex v ∈ V is affected by the removal of a vertex x ∈ V only if x lies on a shortest path between v
and h induced by L. Similarly, a label entry (h, δhv) ∈ Lin(v) is affected by the removal of a vertex x ∈ V
only if x lies on a shortest path between h and v induced by L.

In what follows, given a vertex x ∈ V, we highlight some simple yet important properties of
the two sets RIGHTx and LEFTx that are easily derived by the structure of DAGs.

Property 1. For any vertex v ∈ V such that v /∈ RIGHTx ∪ {x} no label entry in Lin(v) is affected by
the removal of x from G.

Corollary 1. For any vertex v ∈ RIGHTx, a label entry (h, δhv) in Lin(v) may be affected only if h ∈ LEFTx or
if v = x.

Property 2. For any vertex v ∈ V such that v /∈ LEFTx ∪ {x} no label entry in Lout(v) is affected by
the removal of x from G.

Corollary 2. For any vertex v ∈ LEFTx, a label entry (h, δvh) in Lout(v) may be affected only if h ∈ RIGHTx

or if v = x.

Lemma 3. For any pair of vertices u, v in V, if u ∈ LEFTx and v /∈ RIGHTx, then QUERY(u, v, L) = dG′(u, v).
Symmetrically, if v ∈ RIGHTx and u /∈ LEFTx then QUERY(v, u, L) = dG′(v, u).

Proof. The above easily follows by Properties 1 and 2. Notice that, when h 6∈ LEFTx ∪ {x} (h 6∈
RIGHTx ∪ {x}, respectively), the shortest path from h to v (from v to h, respectively) cannot pass
through x by the definition of LEFTx (RIGHTx, respectively).

According to the previous observations, we now provide a strategy to carefully identify the label
entries that are affected by the removal of a vertex x from G. In particular, for each vertex v ∈ RIGHTx

(v ∈ LEFTx, respectively) we know that Lin(v) (Lout(v), respectively) can contain affected label entries,
which must be either removed or updated in order to preserve the correctness of the query algorithm.
The routine to achieve the update is based on the notion of marking label entries, that is we assume
to store an additional boolean field, attached to each label entry, encoding the information “the label
entry is marked or not”. We assume initially all these bits are set to false.

Given the additional boolean field, we define a so–called marked query between two vertices u
and v, denoted as MQUERY(u, v, L), that behaves as a regular query on the labeling with the difference
that it considers only those label entries that are either marked or such that their associated vertices do
not belong to either LEFTx or RIGHTx. This is done with the purpose of distinguishing label entries that
have already been updated with the correct distance or such that the attached distance is not changed
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by the removal of x. We will show later in the section how this modified query is used to retrieve
correct distances during the update.

Algorithm DAG-DECPLL, whose pseudocode is given in Algorithm 7, exploits the above properties
and definitions and works as follows. Given the vertex x, the algorithm first computes a topological
order Tof the graph in linear time. Then, sets RIGHTx and LEFTx are determined, again in linear time
via a forward and backward, respectively, execution of the well known breadth-first search (BFS, for
short) algorithm, starting from x. This is followed by the removal of x from G. Now, if either RIGHTx

or LEFTx are empty, the algorithm simply removes all entries that have x as first field in the labeling
L, by linearly scanning it, and terminates. Note that, it is very unlikely for RIGHTx or LEFTx to be
empty, therefore the removal of x from L is done in the trivial way, rather than employing explicitly
some data structure storing an inverted index for each label entry in L. Otherwise, the algorithm
proceeds in two phases, called forward update and backward update, that scan vertices that can contain
obsolete label entries (namely vertices in LEFTx and RIGHTx, respectively) with the purpose of either
removing them or updating the associated distances. The two phases are described in details separately
in the following sections. At the end of the two, DAG-DECPLL removes Lout(x) and Lin(x) from L

and returns the updated label set. In the pseudocode, we denote by NG
out(v) (NG

in(v), respectively)
the out-neighbors (in-neighbors, respectively) of the generic vertex v of graph G.

Algorithm 7: Algorithm DAG-DECPLL.
Input: Directed Acyclic Graph G, 2HC-SP labeling L of G, vertex x to be removed from G
Output: Directed Acyclic Graph G′ = G \ {x}, 2HC-SP labeling L of G \ {x}

1 Compute a topological ordering Tof G;
2 Let t(u) be the position of vertex u ∈ V according to T;
3 Compute LEFTx and RIGHTx via BFSs;
4 G′ ← G \ {x};
5 if LEFTx = ∅ or RIGHTx = ∅ then
6 Remove all label entries containing x from L;
7 else
8 FORWARD(G′, L, x, RIGHTx, LEFTx);
9 BACKWARD(G′, L, x, RIGHTx, LEFTx);

10 L ← L \ {Lin(x), Lout(x)};

6.1. Forward Update

The procedure processes vertices in LEFTx in decreasing order with respect to a topological
ordering Tof G. Assume we are processing a given vertex, say v. If v has a maximum value in
Tas compared to that for the rest of vertices in LEFTx, then we know by the definition of Tthat no
vertex in NG′

out(v) belongs to LEFTx. We also know that a label entry (h, δvh) ∈ Lout(v) may be affected if
h = x and h ∈ RIGHTx (see Corollary 1). Moreover, it can be easily seen that, for any vertex u ∈ NG′

out(v)
with u /∈ LEFTx, no label entry in Lout(u) is affected by the removal of x from G (see Corollary 2).
Additionally, for the rest of cases where u ∈ NG′

out(v) and u ∈ LEFTx, by definition of T, u must have
been processed before v.

The routine hence proceeds by removing all affected label entries from Lout(v). Notice that,
after removing such label entries, we can retrieve the correct distance in the new graph dG′(v, w)

for any vertex w ∈ V′ such that w /∈ RIGHTx, by performing a query QUERY(v, w, L), since the path
induced by the labeling does not contain x in these cases. However, to guarantee that the cover
property of L is satisfied with respect to all pairs of vertices of the new graph G′, we may need to add
new label entries to Lout(v) and possibly to backward label sets of vertices in RIGHTx. To this aim,
we exploit the notion of superset of hubs, originally presented in Reference [24], and incorporate it
in the DAG-DECPLL update procedure after suitably adapting it in order to make it compatible with
2HC-SP labeling.
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In more details, the superset of hubs for a forward label Lout(v), denoted by Cout(v), is defined
as the union of the hub vertices, belonging to RIGHTx, in all forward label sets of all vertices in NG′

out(v).
More formally:

Cout(v) =
⋃

∀u∈NG′
out(v)

{k | (k, δuk) ∈ Lout(u) ∧ h ∈ RIGHTx}.

In the case of reachability labeling one can exploit the notion of superset of hubs to update
the reachability properties of a given vertex v: if a neighbor of v is reachable from a given vertex,
so is v. Here, instead, we exploit it to simplify the update of the distances stored in the label entries.
In details, since we are updating a 2HC-SP labeling, to achieve the update of the label of a given vertex
v, we need to compute dG′(v, h) for all h ∈ Cout(v) and use it to update entries δvh ∈ Lout(v) so that
they correspond to distances in the new graph.

One way to do this is to execute a baseline algorithm for computing shortest paths in DAGs.
However, even if it is well known that this costs linear time with respect to the graph size, this can
easily become a computational bottleneck when dealing with medium to large scale graphs, since
we need to compute many distances during an update.

To overcome this limit, we propose a hybrid approach that exploits G′ and L to compute distances
faster. In more details, it is easy to observe that for any h ∈ Cout(v) and for any w ∈ V′ such that
w /∈ LEFTx, the correct distance dG′(w, h) can be computed via a query on the labeling QUERY(w, h, L),
since the path induced by the labeling from w to h cannot include x (see Lemma 3). Moreover, for
any h ∈ Cout(v) the path between v and h must pass through at least a vertex in RIGHTx. This implies
that, if we have the set of vertices S = {v ∈ V | v /∈ LEFTx ∧ ∃u ∈ NG′

in (u) : u ∈ LEFTx}, that are
reachable from v in G′, then dG′(v, h) is given by the minimum value between δvu + QUERY(u, h, L)

among all vertices u ∈ S (note that δvu can be retrieved from L). Therefore, to compute dG′(v, h) for all
h ∈ Cout(v), we run a pruned BFS starting from v (see sub-routine shown in Algorithm 8).

Algorithm 8: Algorithm CUSTOMBFS.
Input: Directed acyclic graph G, a vertex s of G, sets RIGHTx and LEFTx

Output: Set of pairs of vertices and relative distances from s
1 Q← ∅ ;
2 As ← ∅;
3 foreach u ∈ V do
4 VISIT[u]← 0;
5 Q.insert(s, 0);
6 VISIT[s]← 1;
7 while Q 6= ∅ do
8 (u, δvu)← Q.extractMin();
9 VISIT[u] = 2;

10 if u /∈ LEFTx then
11 As ← As ∪ {(u, δvu)} ;
12 else
13 foreach v ∈ NG

out(u) do
14 if VISIT[v] = 0 then
15 Q.insert(v, δvu + w(u, k));
16 else if VISIT[v] = 1 and Q.key(v) > δvu + w(u, k) then
17 Q.decreaseKey(v, δvu + w(u, k));
18 return As // List of pairs of vertices in rightx along with distances from

s

Once all distances are available, we process the vertices in Cout(v) in increasing order with respect
to topological sorting. In particular, for each w ∈ Cout(v) in increasing order of t(w), we update the label
entries by using the computed distances, the notion of superset, and the labeling L (see Lines 11–21 of
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Algorithm 9). Whenever we add a new label entry or update an existing one, we mark the entry so
that we keep trace of distances that have already been checked. On top of that, after the first iteration,
we exploit the marked query every time we need to check whether a discovered distance d, passing
through a vertex, is already encoded in the labeling or not. Finally, notice that, whenever we add a new
label entry to the 2HC-SP labeling, we insert it in order to preserve the well-ordered property [26].
This property guarantees that the labeling is minimal in size (i.e., if a single entry is removed, the cover
property is broken). To achieve it, vertices are sorted according to any reasonable criterion before
the initial preprocessing takes place and, whenever a label entry associated with an hub h has to be
added to the label set of a vertex v, this is done if and only if h preceedes v in the established order
(we refer the reader to Reference [21,26] for more details). We denote by l(v) the position of a vertex
v ∈ V according to the established order.

Algorithm 9: Procedure FORWARD.
Input: Directed Acyclic Graph G, 2HC-SP labeling L of G, vertex x to be removed from

G, sets RIGHTx and LEFTx

1 foreach v ∈ LEFTx in decreasing order of t(v) do
2 Cout(v)← ∅ ;
3 foreach (h, δvh) ∈ Lout(v) do
4 if h ∈ RIGHTx or h = x then
5 Lout(v)← Lout(v) \ {(h, δvh)} ;
6 foreach u ∈ NG

out(v) do
7 foreach (h, δuh) ∈ Lout(u) do
8 if h ∈ RIGHTx and h 6∈ Cout(v) then
9 Cout(v)← Cout(v) ∪ {h};

10 Av ← CUSTOMBFS(G, v, RIGHTx, LEFTx);
11 foreach w ∈ Cout(v) in increasing order of t(w) do
12 d← min

(u,δvu)∈Av
{δvu + QUERY(u, w, L)} ;

13 if MQUERY(v, w, L) > d then
14 if l(v) < l(w) then
15 Lout(v)← Lout(v) ∪ {(w, d)};
16 else
17 if (v, δvw) ∈ Lin(w) then
18 δvw ← d;
19 else
20 Lin(w)← Lin(w) ∪ {(v, d)};
21 Mark (v, δvw) in Lin(h);

6.2. Backward Update

The procedure processes vertices in RIGHTx in increasing order with respect to the same
topological ordering Tof G. Assume we are processing a given vertex, say v. We know that a label entry
(h, δvh) ∈ Lin(v) is affected if h = x and h ∈ LEFTx (see Lemma 3). However, in this case, there may
be marked label entries, for example, (h, δvh) ∈ Lin(v) such that h ∈ LEFTx, that have been added in
the forward update phase and that are therefore not considered as affected (they have already been
updated). Moreover, it can be easily seen that, for any vertex u ∈ NG′

in (v) with u ∈ RIGHTx, no label
entry in Lin(u) is affected by the removal of x from G (see again Lemma 3). Additionally, for the rest
of cases where u ∈ NG′

in (v) and u ∈ RIGHTx, by definition of T, u must have been processed before v.
Hence, we proceed by removing all affected entries from Lin(v), where a label entry (h, δhv) ∈ Lin(v)
now is affected only if h = x or h ∈ LEFTx and (h, δhv) is not marked.
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Notice that, after removing affected label entries from Lin(v), we can compute correct values
of dG′(w, v) for any w ∈ V′ such that w /∈ LEFTx, via a query QUERY(w, v, L). However, to restore
the cover property for other vertices, we may need to add new label entries to Lin(v) and possibly to
forward label sets of some of the vertices in LEFTx. To this end, symmetrically to the forward update
case, we compute the superset of hubs, this time for the backward label Lin(v), denoted as Cin(v),
as the union of the hub vertices, belonging to LEFTx, for all backward label sets of all vertices in NG′

in (v),
that is:

Cin(v) =
⋃

∀u∈NG′
in (v)

{k | (k, δku) ∈ Lin(u) ∧ h ∈ LEFTx}.

Observe that, for any w ∈ Cin(v), the path between w and v in G′ must pass through one of
the vertex in NG′

in (v), by the structure of the DAG G. Moreover, we also know that for any w ∈ V′

and for any u ∈ NG′
in (v), the distance dG′(w, u) can be correctly computed via a query QUERY(w, v, L).

In particular, it is given by the minimum value we obtain for QUERY(w, u, L) + QUERY(u, v, L) among
all vertices u ∈ NG′

in (v). If this value is not encoded in the labeling, we add (u, δuv) to Lin(v) if
l(v) > l(u), otherwise we add (v, δuv) to Lout(u).

We are now ready to discuss on the correcntess of the newly proposed approach.

Theorem 4 (Correctness of DAG-DECPLL). Let G be a DAG, let L be a 2HC-SP labeling of G, and let x be
a vertex of G. Let G′ = G \ {x} and L′ be the output of algorithm DAG-DECPLL when applied to G, L and x.
Then: a) G′ = G \ {x} is a DAG and b) L′ is a 2HC-SP labeling of G′.

Proof. Concerning (a), the proof is trivial. In fact, if the topological ordering property is true on
the arcs of G, then it will hold on G′, as we only remove a vertex and its adjacent edges. Regarding (b),
we need to show that the cover property holds for all pairs of vertices of the new graph. To this end,
first observe that we remove all label entries that induce paths that include the removed vertex x.
Then, notice that, in both forward and backward procedures, we test the property for all and only
the vertices that are affected by the removal of x (sets RIGHTx and LEFTx) and that the algorithm adds
new label entries to vertices by considering them in the order imposed by the topological sorting.
The addition of new label entries is done incrementally, by either relying on distances that are: (i) either
computed in the new graph via the CUSTOMBFS; or (ii) obtained by combining distances encoded
in the labeling that have surely not changed because of the removal of x; or (iii) marked, and hence
already updated by previous iterations of the two procedures.

Theorem 5 (Complexity of DAG-DECPLL). Algorithm DAG-DECPLL takes O(|V|3) in the worst case.

Proof. Concerning (a), the proof is trivial. In fact, if the topological ordering property is true on
the arcs of G, then it will hold on G′, as we only remove a vertex and its adjacent edges. Regarding (b),
we need to show that the cover property holds for all pairs of vertices of the new graph. To this end,
first observe that we remove all label entries that induce paths that include the removed vertex x.
Then, notice that, in both forward and backward procedures, we test the property for all and only
the vertices that are affected by the removal of x (sets RIGHTx and LEFTx) and that the algorithm adds
new label entries to vertices by considering them in the order imposed by the topological sorting.
The addition of new label entries is done incrementally, by either relying on distances that are: (i) either
computed in the new graph via the CUSTOMBFS; or (ii) obtained by combining distances encoded
in the labeling that have surely not changed because of the removal of x; or (iii) marked, and hence
already updated by previous iterations of the two procedures.

Theorem 6 (Complexity of DAG-DECPLL). Algorithm DAG-DECPLL takes O(|V|3) in the worst case.
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Proof. Note that, for each vertex in LEFTx, the algorithm: (i) scans the neighbors and analyzes
the label sets of such neighbors (possibly removing some entries); (ii) executes procedure CUSTOMBFS;
(iii) processes vertices in Cout(v) and for each one of them possibly performs a marked query.
Concerning (i), asymptotically this costs overall quadratic time in the size of G, since the graph
is acyclic and the worst case label size is |V|. Concerning (ii), again we have an asymptotical time
complexity that is quadratic with respect to. |V|, since CUSTOMBFS must explore the whole graph
in the worst case. Finally, the asymptotical time complexity for executing (iii) can be bounded by
observing that vertices in Cout(v) can be at most |V| and that for each of them we may execute a constant
number of queries, which take O(|V|) each. Similar considerations can be done to bound the time spent
by the algorithm for each vertex in RIGHTx, with the exception of procedure CUSTOMBFS which is not
executed, as vertices in LEFTx have already been processed. Therefore the claim follows.

6.3. On Handling Arc Removals or Arc Weight Increases by DAG-DECPLL

In this section, we provide an overview on how to extend DAG-DECPLL to handle arc removals
and arc weight increases. In details, given an arc (u, v) to be removed from G, then to update a 2HC-SP

labeling L via DAG-DECPLL, we model the removal as the removal of a virtual vertex, say x′, having arcs
(u, x′) and (x′, v) in G. In particular, we remove (u, v) from G and run the DAG-DECPLL procedure
by considering x′ as the vertex to be removed. It is easy to observe that this has the same effect of
updating L after the removal of (u, v) from G. It is important to mention that as x′ is a virtual vertex in
G′, therefore no label set exists that is associated to x′. To handle an arc weight increase for a generic
arc (u, v), as a first step, we remove (u, v) and then update L using the approach mentioned above.
We then insert a new arc (u, v) with the updated arc weight value, and run INCPLL which update L by
possibly adding new label entries to L.

6.4. Compacting a Multi-Criteria Public Transit Labeling

In this section, we propose an extension of the notion of stop labeling SL, named extended stop
labeling (shortly, E-SL), suited for answering to multi-criteria queries. In particular, given a 2HC-SP

labeling L of a WRED-TE graph G, we associate to each stop si ∈ S two sets, namely a forward stop label
E-SLout(i) and a backward stop label E-SLin(i) where, in this case, the forward (backward, respectively)
stop label is a list of triples of the form (v, stoptimei(v), trans f ersi(v)) where

• v is a hub vertex reachable from (that reaches, respectively) at least one vertex in DV[i] (AV[i],
respectively);

• stoptimei(v) encodes the latest departure (earliest arrival, respectively) time to reach hub vertex v
from one vertex in DV[i] (to reach a vertex in AV[i] from vertex v, respectively);

• trans f ersi(v) encodes the minimum number of transfers to reach hub vertex v from one vertex in
DV[i] (to reach a vertex in AV[i] from vertex v, respectively).

Our approach to compact a labeling for multi-criteria queries is as follows. To compute E-SLout(i),
we process vertices in DV[i] in decreasing order with respect to departure time. In particular, let v
be the vertex under consideration. Then, for each (h, δvh) ∈ Lout(v), we add (h, stoptimei(h) =

time(v), trans f ersi(h) = δvh) to E-SLout(i) only if one of the following conditions hold:

1. there is no entry (h, stoptimei(h), trans f ersi(h)) in E-SLout(i);
2. there exists an entry (h, stoptimei(h), trans f ersi(h)) in E-SLout(i) but δvh < MT where

MT = min
(h,stoptimei(h),trans f ersi(h))∈E-SLout(i)

trans f ersi(h).

To compute E-SLin(i), symmetrically, we process vertices in AV[i] in increasing order with
respect to arrival times. If v is the vertex under consideration then, for each (h, δhv) ∈ Lin(v),
we add (h, stoptimei(h) = time(v), trans f ersi(h) = δhv) to E-SLin(i) only if one of the following
conditions hold:
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1. there is no entry (h, stoptimei(h), trans f ersi(h)) in E-SLin(i);
2. there exists an entry (h, stoptimei(h), trans f ersi(h)) in E-SLin(i) but δhv < MT where

MT = min
(h,stoptimei(h),trans f ersi(h))∈E-SLin(i)

trans f ersi(h).

Note that the above second conditions are necessary since, differently from the original stop
labeling, here a generic hub h can be added more than once to E-SLin(i) or E-SLin(i), since we might
have more paths toward h (or from h) having different number of transfers.

Notice that, for the sake of efficiency, we sort entries in E-SLout(i) and E-SLin(i) with respect to
the first, second and third fields, in this order, similarly to what is done in Reference [13] for the stop
labeling. The detailed procedure for computing the extended stop labeling is shown in Algorithm 10.

Algorithm 10: Algorithm E-SL Computation.
Input: WRED-TE graph G, 2HC-SP labeling L of G
Output: Extended stop labeling E-SL

1 foreach si ∈ S do
2 E-SLin(i)← ∅;
3 E-SLout(i)← ∅;
4 foreach v ∈ V do
5 Visit[v] = 0;
6 MT[v] = ∞;
7 foreach v ∈ AV[i] in increasing order of arrival time do
8 foreach (h, δhv) ∈ Lin(v) do
9 if Visit[v] = 0 then

10 E-SLin(i)← E-SLin(i) ∪ {(h, time(v), δhv)};
11 MT[v]← δhv;
12 Visit[v]← 1;
13 else if MT[v] > δhv then
14 E-SLin(i)← E-SLin(i) ∪ {(h, time(v), δhv)};
15 MT[v]← δhv;
16 Sort E-SLin(i) with respect to. first, second and third field in each

label entry;
17 foreach v ∈ V do
18 Visit[v] = 0;
19 MT[v] = ∞;
20 foreach v ∈ DV[i] in decreasing order of departure time do
21 foreach (h, δvh) ∈ Lout(v) do
22 if Visit[v] = 0 then
23 E-SLout(i)← E-SLout(i) ∪ {(h, time(v), δhv)};
24 MT[v]← δvh;
25 Visit[v]← 1;
26 else if MT[v] > δvh then
27 E-SLout(i)← E-SLout(i) ∪ {(h, time(v), δvh)};
28 MT[v]← δhv;
29 Sort E-SLin(i) with respect to. first, second and third field in each

label entry;
30 return E-SL;
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6.5. Answering to Multi-criteria Queries via Extended Stop Labeling

For answering a multi-criteria query MC-EA(si, sj, τ) via extended stop labeling, we proceed as
follows. Note that E-SLout(i) and E-SLin(j) are arrays sorted with respect to ids, the algorithm as a first
step finds the vertex v in E-SLout(i) (E-SLin(j), respectively) whose time is greater than or equal to τ.
Assume that said vertex is in position p (q, respectively) in such arrays.

Then, a linear sweep, starting from location p, is performed on SLout(i) to find the first entry
(v, stoptimei(v), trans f ersi(v)) satisfying the condition that stoptimei(v) ≥ τ. Let us assume this entry
is stored in location p′ ≥ p. This part of the computation is known as the process of computing relevant
hubs and it is followed by the computation of all hubs that are both E-SLout(i) and E-SLin(j), stored
at locations greater than p′ and q in E-SLout(i) and E-SLin(j), respectively. We then perform a linear
sweep on both E-SLout(i) and E-SLin(j) starting from p′ and q, respectively. While performing the linear
sweep, we add the corresponding journey for each matched hub we found to a temporary set, say
M. Once M is computed, we order the journeys in M with respect to their arrival times. Finally, we
process journeys in M sequentially, and add a journey J to PROFILE only if the accumulated number
of transfers in J is less than the number of transfers for journeys added so far to PROFILE. Finally, we
return PROFILE as the answer to the profile query MC-EA(si, sj, τ).

6.6. Updating the Extended Stop Labeling

If an extended stop labeling E-SL is available and the network undergoes a delay then,
after updating both the WRED-TE graph and the 2HC-SP labeling, the trivial way to update E-SL

is to recompute it from scratch. However, to reduce the required computational effort, in what follows
we propose a procedure that is able to exploit the information about the changed part of the graph
and the 2HC-SP labeling to update the corresponding extended stop labeling in very short time.

In details, the procedure for dynamically updating the extended stop labeling requires,
during the execution of Algorithms 7–11, to compute two sets of so–called updated stops, denoted,
respectively, by USout and USin. In the multi-criteria case these two sets are defined as the stops si ∈ S
such that vertices in DV[i] (AV[i], respectively) had their time value or forward label (backward label,
respectively) changed during Algorithm DAG-DECPLL. Once this is done we update the extended
stop labeling E-SL by recomputing only those entries of E-SLout(i) (E-SLin(i), respectively) for each
si ∈ USout (for each si ∈ USin, respectively).

We are now ready to provide the following results.

Theorem 7 (Correctness of Multi-criteria D-PTL). Given an input timetable and a corresponding WRED-TE

graph G. Let L be a 2HC-SP labeling of G and let E-SL be an extended stop labeling associated to L Assume
δ > 0 is a delay occurring on a connection, i.e. an increase of δ on its departure time. Let G′, L′, and E-SL′ be
the output of D-PTL when applied to G, L and E-SL, respectively, by considering the delay, in the multi-criteria
setting. Then: (i) G′ is a WRED-TE graph for the updated timetable; (ii) L′ is a 2HC-SP labeling for G′; (iii) E-SL′

is an extended stop labeling for L′.

Proof. The correctness of D-PTL in the multi-criteria case is based on that of the approach in [15]
and on Theorem 4. In particular observe that, whenever we update the graph, we do it by preserving
the constraints imposed by the WRED-TE model on both vertices, by suitably modifying connection arcs
and associated waiting, bypass, and transfer arcs. In more details, it is easy to prove, by contradiction,
that after the execution of the D-PTL algorithm for the multi-criteria case, G is a WRED-TE graph.
Concerning the labeling data structures, observe that after each change to G we use either DAG-DECPLL

or INCPLL, depending on the type of performed modification. These algorithms have been shown
to compute a labeling that is a 2HC-SP labeling for the modified graph (see Theorem 4 or the proof
in [24]). Hence, at the end of Algorithm 2, L is a 2HC-SP labeling for G. Finally, note that the algorithm
described in Section 6.6 applies the definition of extended stop labeling, by updating the entry of a stop
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with the proper hub vertices, times and distances values. Hence, after the execution of algorithm
described in Section 6.6, E-SL is still an extended stop labeling of L.

Algorithm 11: Procedure BACKWARD.
Input: Directed Acyclic Graph G, 2HC-SP labeling L of G, vertex x to be removed from

G, sets LEFTx and RIGHTx.
1 foreach v ∈ RIGHTx in increasing order of t(v) do
2 Cout(v)← ∅ ;
3 foreach (u, δuv) ∈ Lin(v) do
4 if u 6= v then
5 if (u ∈ LEFTx and (u, δuv) is not marked) or u = x then
6 Lin(v)← Lin(v) \ {(u, δuv)};
7 foreach u ∈ NG

in(v) do
8 foreach (h, δhv) ∈ Lin(u) do
9 if h ∈ LEFTx and h 6∈ Cin(v) then

10 Cin(v)← Cin(v) ∪ {h} ;
11 foreach w ∈ Cin(v) in increasing order of t(w) do
12 d← min

u∈NG
in(v)
{QUERY(w, u, L) + QUERY(u, v, L)} ;

13 if QUERY(w, v, L) > d then
14 if l(v) < l(w) then
15 Lin(v)← Lin(v) ∪ {(w, d)};
16 else
17 Lout(w)← Lout(w) ∪ {(v, d)};

Theorem 8 (Complexity of Multi-criteria D-PTL). Algorithm D-PTL in the multi-criteria setting takes
O(|C|4) computational time in the worst case.

Proof. The proof can be derived by the argument given in the proof of Theorem 2. In particular,
we know that the worst case time complexity of both INCPLL and DAG-DECPLL is O(|V|3) for a graph
with |V| vertices and that these routines, in Algorithm D-PTL, can be executed, in the worst case,
for all stops, which are |S| ≤ |C|. Since |V| ∈ O(|C|) for any WRED-TE graph, the claim follows.

7. Experimental Study

In this section, we present our experimental study to assess the performance of D-PTL. In particular,
we implemented, in C++, both PTL and D-PTL, and developed a simulation environment to evaluate
the two algorithms on given input transit networks. Our entire framework is based on NetworKit [30],
a widely adopted open-source toolkit for graph algorithms and interactive large-scale network analysis.
Our code has been compiled with GNU g++ v.4.8.5 (O3 opt. level) under Linux (Kernel 4.4.0-148)
and all tests have been executed on a workstation equipped with an Intel Xeon c© CPU and 128 GB of
main memory.

7.1. Experimental Setup

Our experimental evaluation is divided in two parts. The first part deals with the basic version
of PTL and single criterion queries and thus aims at evaluating the performance of D-PTL in its basic
version, that updates the RED-TE graph, the 2HC-R labeling and the stop labeling. The second part,
on the other hand, focuses on the multi-criteria version of PTL and hence on the performance of D-PTL

in this latter case, that has to update the WRED-TE graph, the 2HC-SP labeling and the extended stop
labeling. We remark that in this paper we provide a compacted version of the data structure used by
multi-criteria PTL, namely the extended stop labeling, and a new dynamic (decremental) algorithm for
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updating 2HC-SP labelings in DAGS. Both are experimentally evaluated to assess their performance in
terms of query time and update time, respectively.

Our experimental study is structured as follows: depending on the considered setting (either basic
or multi-criteria) for each input, we build either the RED-TE graph G or the WRED-TE one, and execute
PTL to compute corresponding labelings, namely:

• in the basic case: a 2HC-R labeling L, and a stop labeling SL of G;
• in the multi-criteria case: a 2HC-SP labeling L, and an extended stop labeling E-SL of G.

Then, we select a connection cj of the timetable uniformly at random and delay it by δ minutes,

where δ is randomly chosen within [5, time(m) − time(v
cj
d ) + 10] and m = argmaxv∈DV[s] time(v).

Choosing δ in such a way ensures the occurrence of all meaningful cases, that is the corresponding
departure and arrival vertices can be shifted through the whole set of departure and arrival vertices of
the corresponding stop.

Finally, we run D-PTL to update both the graph and the labelings. In particular, the specific
version to handle either the basic or the multi-criteria setting are executed. In parallel, we run PTL to
recompute graph and labelings from scratch (again, we recompute the specific basic or multi-criteria
version). After each execution, we measure both the update time of D-PTL and the computational time
taken by PTL for the recomputation from scratch.

Moreover, we also measure the average size of the labelings and the average query time. The former is
the average space occupancy, in megabytes, of the different labelings employed by the approaches.
The latter, instead, is obtained by computing the average time to answer to 100, 000 queries, of both
earliest arrival, profile and multi-criteria type via the corresponding query algorithms described in
Sections 5 and 6. This is done to evaluate the quality of the data structures when updated via D-PTL

against that of the data structures recomputed from scratch and to show that using D-PTL to update
the graph and the labelings does not affect the performance of the framework. The two most important
quality metrics in this context are space occupancy and query time (which are also somehow related).
Note that, for the above queries, stops and departure times (ranges for profile queries, respectively)
are chosen uniformly at random. For each query, for the sake of validity, we compare the result
by comparing the two outputs with the result of an exhaustive Dijkstra’s-like visit on the graph [9].
We repeat the above process for 50 connections, in order to compute average values and collect
statistically significant results.

As inputs to our experiments, we considered, as other studies of this kind [2,4,10,13], real-world
transit networks whose data is publicly available (Public Transit Feeds Archive—https://transitfeeds.
com/.) and is formatted according to the General Transit Feeds Specification (shortly, GTFS). In particular,
GTFS is a data specification standard for transit datasets, which enforces uniformity in the structure of
data coming from different sources in order to be consumed by a wide variety of software applications,
such as journey planners. For more details about GTFS, see https://gtfs.org/ and https://developers.
google.com/transit/gtfs/. Details on the used inputs for basic PTL are given in Table 2 while those of
the inputs considered for the multi-criteria setting are given in Table 3.

We remark here that we were forced to use smaller inputs in the latter case with respect to
the basic one, since: (i) the preprocessing phase is much more time consuming with respect to basic
case; and (ii) the labelings require several GB of main memory to be stored. Hence, we were unable to
test on the same large instances considered for the basic setting due to the limitations of our hardware.

In each table we report, for each network, the number of stops, the size of the corresponding
RED-TE graph (WRED-TE graph, respectively) in terms of vertices and arcs, the time for preprocessing
the network to compute the labelings L and SL (either 2HC-R and stop labeling or 2HC-SP and extended
stop labeling, respectively). Finally, we report of both L and SL, in megabytes.

https://transitfeeds.com/
https://transitfeeds.com/
https://gtfs.org/
https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/
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Table 2. Details of input datasets for the basic setting: preprocessing time is expressed in seconds,
labeling size in megabytes.

Network # Stops
Graph Preprocessing Time Labeling Size

|V | |A| L SL L SL

London 5221 3,066,852 5,957,246 4494.00 5.19 5856 529
Madrid 4698 3,971,870 7,859,375 10,559.10 13.66 12,295 2653
Rome 9273 5,502,796 10,893,752 17,081.05 30.18 18,531 5262

Melbourne 27,237 9,757,352 18,389,454 3774.00 12.79 8293 1136

Table 3. Details of input datasets for the multi-criteria setting: preprocessing time is expressed in
seconds, labeling size in megabytes.

Network # Stops
Graph Preprocessing Time Labeling Size

|V | |A| L E-SL L E-SL

Palermo 1714 563,064 1,112,110 7828.00 3.43 4687 372
Barcelona 3232 1,201,256 2,075,005 14,207.00 7.99 4219 359

Luxembourg 2802 1,239,870 2,438,413 42,701.70 11.75 30,491 1129
Prague 4940 1,755,078 2,475,801 29,288.60 18.57 4243 694
Venice 2173 1,373,674 2,526,500 19,114.03 5.87 7426 189

7.2. Analysis

The main results of our experiments are summarized in Tables 4 and 5, where we report
the average time taken by D-PTL to update L and SL, respectively (cf 2nd and 3rd columns), the average
time taken by PTL for recomputing from scratch L and SL, respectively, (cf 4th and 5th columns)
and the average speed-up obtained by using D-PTL instead of PTL (cf 6th column). This is given by
the ratio of the average total time taken by PTL to the average total update time of D-PTL.

Table 4. Comparison between D-PTL and PTL in the basic setting, in terms of computational time.
The first column shows the considered network while the 2nd and the 3rd columns show the average
time taken by D-PTL to update the labeling and the stop labeling, respectively, after a delay occurs in
the network. The 4th and the 5th columns show the average time taken by PTL to recompute from
scratch the labeling and the stop labeling, respectively, after a delay occurs in the network. Finally,
the 6th column shows the speed-up, that is the ratio of the sum of the values in the 2nd and the 3rd
columns to the sum of the values in the 4th and the 5th columns.

Network

(Basic) D-PTL
Avg. Update Time

(seconds)

(Basic) PTL
Avg. Reprocessing Time

(seconds) Speed-up

L SL L SL

London 8.64 2.48 4417.65 5.50 397.77
Madrid 17.47 7.76 10,495.40 14.20 416.55
Rome 12.36 14.49 16,847.00 29.50 628.55

Melbourne 4.08 7.25 3807.00 11.50 337.03
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Table 5. Comparison between D-PTL and PTL in the multi-criteria setting, in terms of computational
time. The first column shows the considered network while the 2nd, the 3rd, and the 4th columns show
the average time taken by D-PTL to update the labeling and the extended stop labeling, respectively,
after a delay occurs in the network. The time taken to update the labeling, in this case, is divided in two
fields to highlight which of the two components of D-PTL is more time consuming. The 5th and the 6th
columns show the average time taken by PTL to update the WRED-TE graph and recompute from scratch
the labeling and the extended stop labeling, respectively, after a delay occurs in the network. Finally,
the 7th column shows the speed-up, that is the ratio of the sum of the values in the 2nd, 3rd and 4th
columns to the sum of the values in the 5th and the 6th columns.

Network

(Multi-Criteria) D-PTL
Avg. Update Time

(seconds)

(Multi-Criteria) PTL
Avg. Reprocessing Time

(seconds) Speed-up
L

E-SL L E-SL
INCPLL DAG-DECPLL

Palermo 210.37 135.86 3.01 7807.14 3.39 22.36
Barcelona 25.19 2.50 5.65 14,156.90 7.62 424.85

Luxembourg 617.44 348.92 6.57 43,275.70 11.50 44.49
Venice 167.67 3.10 3.50 19,146.60 5.69 109.90
Prague 597.93 22.92 10.16 29,435.90 20.84 40.86

In both cases we observe that D-PTL is able to update the labeling (either 2HC-R or 2HC-SP)
and the (extended) stop labeling in a time that is always more than an order of magnitude smaller
than that taken by the recomputation from scratch via PTL (up to more than 600 times smaller).
This is true in both the basic and the multi-criteria cases. In this latter case, we notice that the newly
proposed decremental algorithm DAG-DECPLL is very effective, since it is tailored for DAGs, and is
always faster than the general incremental algorithm INCPLL, which is designed to work for any
graph. This is somehow a novel result with respect to Reference [21], where DECPLL is always by far
slower than INCPLL, that might drive further investigation on updating 2HC-SP labeling in general
graphs. Furthermore, the experiments show that graphs and labelings updated via D-PTL and those
recomputed from scratch via PTL are equivalent in terms of both query time and space overhead (cf
Tables 6–9). In particular, both sizes and query times are very similar, as expected, thus suggesting that
the use of D-PTL does not induce any degradation in the performance of the data structures. This is
most likely due to the fact that D-PTL preserves by design the minimality of the labeling, an important
property that has been shown to be tied to performance in labelings [20,21,26]. On top of that, a further
consideration that can be done by analyzing the data in Table 8 is that the newly proposed extended
stop labeling is at least as effective as the original stop labeling in accelerating the query algorithm
and reducing the corresponding query time in the multi-criteria case (see Reference [13] for a detailed
comparison with the reduction provided by the original stop labeling).
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Table 6. Comparison between D-PTL and PTL in the basic setting, in terms of query time. The first column
shows the considered network. The 2nd and 4th columns (3rd and 5th, respectively) show the average
computational time for performing an earliest arrival (profile, respectively) query. In particular, columns
2nd and 3rd refer to average query times obtained from the labelings updated via D-PTL, while columns
4th and 5th refer to those obtained from the labelings recomputed from scratch via PTL.

Network

(Basic) D-PTL
Avg. Query Time

(milli-seconds)

(Basic) PTL
Avg. Query Time

(milli-seconds)

EAQ PQ EAQ PQ

London 0.01 0.10 0.01 0.14
Madrid 0.03 0.35 0.03 0.34
Rome 0.04 0.18 0.04 0.19

Melbourne 0.05 0.26 0.06 0.27

Table 7. Comparison between D-PTL and PTL in the basic setting, in terms of space overhead. The first
column shows the considered network. The 2nd and the 3rd columns show the average size of the 2HC-R

labeling and the stop labeling, respectively, updated via D-PTL. The 4th and the 5th columns, instead,
show the average size of the 2HC-R labeling and the stop labeling, respectively, when recomputed from
scratch via PTL.

Network

(Basic) D-PTL
Avg. Space

(MB)

(Basic) PTL
Avg. Space

(MB)

L SL L SL

London 5894 533 5902 532
Madrid 12,391 2669 12,395 2663
Rome 18,531 5260 18,512 5252

Melbourne 8298 1140 8300 1138

To summarize, all the above observations and data give a strong evidence of the following facts:

• D-PTL is a very effective and practical option for journey planning when dynamic, delay-prone
networks have to be handled, especially when they are of very large size and yet require fast
query answering;

• DAG-DECPLL is a prominent solution to update 2HC-SP labelings in DAGs, faster than algorithm
DECPLL, which is designed for general graphs;

• the newly proposed extended stop labeling is an effective compact version of the data structures
used by PTL in the multi-criteria case that allows a significant reduction in the average query time.
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Table 8. Comparison between D-PTL and PTL in the multi-criteria setting, in terms of query time.
The first column shows the considered network. The 2nd and the 4th (3rd and 5th, respectively)
columns show the average computational time for performing a multi-criteria query by the two
approaches without (with, respectively) extended stop labelings. Columns 2nd and 3rd refer to average
query times obtained from the labelings updated via D-PTL, while columns 4th and 5th refer to those
obtained from the labeling recomputed from scratch, respectively.

Network

(Multi-criteria) D-PTL
Avg. Query Time

(milli-seconds)

(Multi-criteria) PTL
Avg. Query Time

(milli-seconds)

MC-EA MC-EA with E-SL MC-EA MC-EA with E-SL

Palermo 1.25 0.52 1.25 0.53
Barcelona 0.09 0.01 0.08 0.01

Luxembourg 2.64 1.10 2.66 1.10
Venice 0.81 0.06 0.76 0.06
Prague 2.93 0.03 3.54 0.35

Table 9. Comparison between D-PTL and PTL in the multi-criteria setting, in terms of space overhead.
The first column shows the considered network. The 2nd and the 3rd columns show the average
size of the 2HC-SP labeling and the extended stop labeling, respectively, when updated via D-PTL,
while the 4th and the 5th columns show the average size of the 2HC-SP labeling and the extended
stop labeling, respectively, when recomputed from scratch. Note that, regarding the extended stop
labeling (cf 3rd and 5th column), the update is done by the procedure given in this paper (cf Section 6.6)
while the recomputation from scratch is done by Algorithm 10, that is also not originally included in
the PTL framework.

Network

(Multi-Criteria) D-PTL
Avg. Space

(MB)

(Multi-Criteria) PTL
Avg. Space

(MB)

L E-SL L E-SL

Palermo 4764 372 4737 373
Barcelona 4253 360 4219 360

Luxembourg 30,557 1129 30,519 1126
Venice 7443 190 7413 190
Prague 4250 694 4251 695

8. Conclusions

In this paper we have studied the journey planning problem in the context transit networks,
with a specific focus on tolerance to disruptions and scalability. The problem asks to answer to various
types of queries, seeking journeys exhibiting optimality with respect to. different metrics, on suitable
data structures representing timetables of schedule-based transportation system (consisting of buses, trains,
and trams, for example).

We have analyzed the state-of-the-art solution, in terms of query time, for this problem,
that is Public Transit Labeling (PTL). We have attacked what can be considered the main limitation
of this preprocessing-based approach, that is not being natively designed to tolerate updates in
the schedule, which are instead very frequent in real-world applications. We have hence introduced
a new framework, called D-PTL, that extends PTL to function under delays. In particular, we have
provided a new algorithm able to update the employed data structures efficiently whenever a delay
affects the network, without performing any recomputation from scratch. We have demonstrated
the effectiveness of our new solution through an extensive experimental evaluation conducted on
real-world networks. Our experiments show that the time required by the new algorithm is, on average,
always at least an order of magnitude smaller than that required by the recomputation from scratch, in
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both flavours of PTL, that is basic and multi-criteria. As byproducts of our investigation, to handle
the multi-criteria case we have presented: (i) a new algorithm for updating 2HC-SP labelings in directed
acyclic graphs as a consequence of decremental updates and (ii) a new compact version of the data
structure employed by PTL in the multi-criteria setting. Concerning (i), the new method has been
shown to be, empirically, much faster than the only known solution DECPLL [21]. For the sake of
fairness, we recall that the latter works also for general graphs. Regarding (ii), we have provided strong
experimental evidences of the effectiveness of the compact representation in reducing the required
query times.

Several research directions deserve further investigation. Perhaps the most relevant one is to
extend the experimentation to larger and more diverse inputs, to strengthen the obtained conclusions.
Another line of research that might be pursued could be that of designing an improved version of
the proposed solution able to provide higher speedups, especially for those networks where D-PTL

exhibits a speedup in the order of few tens. This could require a more refined analysis of D-PTL

performance and of its relationship with the structure of the pathological inputs.
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