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a b s t r a c t

Deficiency of Receptor Activator of NF-kB Ligand (RANKL) prevents osteoclast formation causing
osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metal-
loproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D
hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in
diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers,
once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body
weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were
negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack
of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone
marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice
implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells,
with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data
demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-defi-
cient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine
deficiencies.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Systemic delivery of cytokines could be an innovative treatment
for genetic diseases characterized by failure in cytokine pathways
[1]. However, this treatment could be cumbersome for many rea-
sons. They include i) the lack of industrial interest to develop
pharmaceutical formulations of a cytokine that should be available
only for a limited number of patients, ii) the demanding compliance
because of the parenteral route of administration, and iii) the dif-
ficulty to adjust the dose according to the real status of the disease.

Long-lasting delivery of a cytokine through a regulated biolog-
ical system would be ideal to prevail over these inconveniences.
Several cytokines are released by cells originating from the
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mesenchymal stem cell family [2] under the control of local and
systemic regulating pathways, which makes this cell family a su-
perlative tool if transplanted in vivo. However, although intense
research is ongoing for the development of transplant procedures
for mesenchymal stem cells, so far, the experimental efforts did not
lead to satisfactory engraftment [3,4], therefore this option remains
currently unfeasible.

Some cytokines are membrane-bound proteins that require
cellecell contact or ectodomain shedding to exert their action. For
instance, the Receptor Activator of Nuclear Factor-kB transcription
factor Ligand (RANKL) is a trimeric cytokine belonging to the Tumor
Necrosis Factor (TNF) family [5], which exhibits potent osteoclas-
togenic properties [6]. In bone, it is expressed by the osteogenic
lineage [7] as a surface protein and is known to trigger osteoclast
formation upon exposure of bone marrowmononuclear cells to the
Macrophage-Colony Stimulating Factor (M-CSF) [8], another
essential cytokine that promotes proliferation of osteoclast pre-
cursors [9], and sensitizes them to RANKL inducing the expression
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of the RANKL receptor, RANK [10]. RANKL has also emerged to play
many roles in other organs [11]. It is produced by T-cells in response
to inflammatory stimuli, enhancing osteoclast activity in inflam-
matory diseases such as the rheumatoid arthritis [12,13]. It also
regulates mammary gland development [14] and is involved in
mammary gland tumorigenesis [15]. Finally, RANKL has been found
to be involved in the control of body temperature [16], therefore it
is now accepted that it has multifunctional roles in a variety of
pathophysiological conditions. The extracellular active domain of
RANKL can be enzymatically cleaved, affecting target cells in a
paracrine fashion [17]. Therefore, it is a translational challenge to
implement soluble (s)RANKL shedding in order to make its effects
systemic.

A severe genetic pathology, known to depend on mutations of
the TNFSF11 gene encoding RANKL [18], belongs to the autosomal
recessive osteopetrosis disease family, a bone disorder character-
ized by lack of osteoclast bone resorption [1] causing lethal skeletal,
hematological and neuronal failures. Several subtypes of osteo-
petrosis are known, classified as osteoclast-rich and osteoclast-
poor [19]. Osteoclast-rich osteopetroses present with fully differ-
entiated but non-functional osteoclasts due to mutations of genes
involved in the mechanism of bone resorption [19]. In osteoclast-
poor osteopetroses, osteoclasts do not form because of loss-of-
function mutations of genes involved in osteoclastogenesis, such
as TNFSF11, encoding RANKL [18], and TNFRSF11A, encoding its re-
ceptor RANK [20]. While RANK is an osteoclast lineage intrinsic
protein [21], RANKL ligand is expressed by other cell types
[7,12,13,22], therefore osteopetrosis induced by its deficiency is not
osteoclast-autonomous [18].

Osteoclasts belong to the myeloid lineage [23], therefore most
forms of osteopetrosis are treated by hematopoietic stem cell
transplantation, with increasing success of engraftments over the
last decade even for mismatched donors [24]. Unfortunately, given
that RANKL deficiency is caused by an osteoclast non-autonomous
defect, this treatment regimen cannot be applied to this form of
osteopetrosis and new therapies need to be developed.

Mouse models of RANKL deficiency were generated in 1999 and
2000 [25,26]. These models have been fully characterized and
shown to respond to RANKL by a recovery of osteoclastogenesis
[25]. Lo Iacono et al. [27] have recently demonstrated that infusion
of RANKL could indeed partially rescue the osteopetrotic pheno-
type of RANKL-deficient mice and hypothesized that treatment of
humans with the soluble cytokine could be feasible [1]. However,
there are several pitfalls in this treatment regimen [1], including
RANKL accumulation over time inducing severe overdose prob-
lems, which make it difficult to currently predict a translational
impact of this study.

RANKL deficiency is a paradigm of a disease due to lack of a
cytokine. Therefore, we believe that this model is ideal to inves-
tigate new biotechnological approaches to overcome, in the
future, the above-mentioned pitfalls for the treatment of these
types of diseases. However, before setting a specific translational
protocol, we need a proof-of-principle that such an approach
could work in an appropriate animal model. The tnfsf11 knockout
(KO) mice have the unique feature to generate no osteoclasts at all
[25,26], therefore any positive effect induced by innovative
methods of RANKL delivery could be easily validated by the
appearance of cells of the osteoclast lineage, whose detection can
straightforwardly be obtained by histochemical staining of the
osteoclast-specific marker Tartrate-Resistant Acid Phosphatase
(TRAcP) [28].

The prototype of our biotechnological device is the diffusion
chamber, which is a well-established tool to study several in vivo
biological processes, also in bone biology. It has largely been used in
several studies to investigate in vivo osteoblast and osteoclast
functions and regulation of bone formation and bone resorption
[29,30]. Moreover, it is suitable for studies concerning bone tissue
engineering [31], and for supplying hormonal factors to deficient
backgrounds [32].

Diffusion chambers are made by overlapping plexiglas rings and
porous durapore membranes (pore diameter 0.22 mm), that delimit
an internal space in which cells grow. The durapore membranes
provide high flow rates and throughput, low extractable and broad
chemical compatibility. Cells are inoculated in the chamber and,
through their pores, durapore membranes allow diffusion of water,
solutes and macromolecules into the microenvironment, but pre-
vent migration of cells outside the chamber, therefore, in vivo, cells
do not interact with the host immune system and do not elicit cell-
mediated immune response.

The aim of this study was to exploit the tnfsf11 KO mice to test
the principle that systemic delivery of a membrane-bound curative
cytokine is feasible using diffusion chambers carrying RANKL-
producing cells enzymatically manipulated to promote the active
ectodomain shedding. In vivo implant of our diffusion chambers in
tnfsf11 KO mice demonstrated that, by our biotechnological
approach, sRANKL can be released by cells into the circulation and
induce systemic effects, as assessed by the appearance of functional
osteoclasts in the bone of implanted mice.

2. Materials and methods

2.1. Animals

Procedures involving animal care were conducted in conformity with national
and international laws and policies (EEC Council Directive 86/609, OJ L 358, 1, Dec.
12,1987; Italian Legislative Decree (Gu n. 61,14/03/2014); NIH guide for the Care and
Use of Laboratory Animals, NIH Publication No. 85-23, 1985), and were approved by
the Institutional Review Board of the University of L'Aquila. At the end of the ex-
periments, mice were sacrificed by CO2 inhalation. Wild type (WT) mice used for
primary cell cultures were on CD1 background, while tnfsf11 KO mice and their WT
counterpart used for in vivo implants were on C57BL6/CD1 background.

2.2. Cell cultures

Mouse osteoblast cultures were derived from 8-to-10 day-old mice. Briefly,
calvariae were dissected and sequentially digested with 1 mg/ml Clostridium his-
tolyticum type IV collagenase (Sigma) and 0.025% trypsin (Becton Dickinson) in
Hank's buffered solution. Cells from second and third digestions were grown in
Dulbecco's modified Minimum Essential Medium (DMEM) with antibiotics and 10%
Fetal Bovine Serum (FBS). At confluence, cells were released by trypsin procedure,
counted and plated in appropriate vessels for further experiments. The osteoblast
phenotype was evaluated by histochemical analysis of ALP activity, using reagents
and protocols from the SigmaeAldrich kit 104-LS. Mineralization assay was per-
formed in osteoblasts cultured for 21 days in osteogenic medium [DMEM supple-
mented with FBS (10%), b-glycerophosphate (5 mM) and ascorbic acid (50 mg/ml)],
and evidenced by alizarin red in 4% formalin-fixed cell cultures. When required,
osteoblasts were treated with human recombinant ParaThyroid Hormone 1-34
[hrPTH(1-34)] (SigmaeAldrich, cat # P3796).

Bone marrow stromal cells were the adherent cells after 48 h from flashing out
and culturing the total bone marrow cells from long bones of 8-to-10 days old mice.

Bone marrow mesenchymal stem cells were obtained by immunomagnetic
sorting of mouse bone marrow cells, using antibodies recognizing the specific
markers STRO-1 and c-kit (Myilteny Biotech).

2.3. Cell culture support

Hydroxyapatite (HA) intact granulates and tridimensional (3D) HA scaffolds
(Scaffdex CellCeram™) were purchased from Sigma Aldrich (cat # 289396 and cat #
Z682012, respectively). They were used to culture primary osteoblasts obtained as
described above, according to the manufacturer's instruction.

2.4. Diffusion chambers

Diffusion chamber kits (Millipore) were used for both in vitro and in vivo ex-
periments, according to the manufacturer's instructions. They are made by two
Plexiglas® Rings with 0.59mmhole (Millipore cat # PR0001401) sealed using 13mm
durapore membrane filters, 0.22 micron pore size (Millipore cat # GSWP 013 00),
glued altogether with Membrane Filter Cement (Millipore cat # XX70 000 72).
Primary mouse calvarial osteoblasts were inoculated, with or without 3D HA, into
the chambers, which were then sealed as described. For in vivo studies, the diffusion
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chambers were implanted in the abdomen or in the flank of mice under deep
anesthesia (2.5 mg Ketamine þ 0.5 mg Xilazine in 100 ml saline solution/mouse).
2.5. sRANKL and osteoprotegerin (OPG)

sRANKL and OPG were quantified in cell conditioned media using the R&D
System ELISA kits, MTR00 and MOP00 respectively, according to the manufacturer's
instructions. Titration of free sRANKL was computed by the difference between
equivalent weight of sRANKL and OPG obtained from ELISA, assuming 1:1 as reactive
normality of sRANKL:OPG ratio.

Human recombinant sRANKL (Peprotech, cat # 310-01) was used for the in vitro
osteoclastogenic assay.
2.6. Western blot and RT-PCR

For Western blots, reagents were from Sigma Aldrich. Conditioned media pro-
teins resolved on a 12% SDS-PAGE were trans-blotted to nitrocellulose membranes
and probed with the primary RANKL antibody (R&D, cat # AF462, 1:200) overnight
at 4 �C, washed and incubated with the HRP-conjugated secondary antibody for 1 h
at room temperature. Protein bands were revealed by enhanced chemiluminescence
(ECL).

For Real-time RT-PCR, reagents were from Invitrogen. Total RNA was extracted
using the Trizol®, then 1 mg was reverse transcribed and the equivalent of 0.1 mg was
employed for the PCR reactions using the Brilliant® SYBR® Green QPCR master mix,
using primer pairs specific for murine RANKL and OPG.
2.7. Enzymatic activity and immobilization

MMP14, MMP7 and TACE catalytic domains were purchased from Biomol. Cat-
alytic activity was monitored by quenched fluorescent peptide substrate MCA
(Biomol), according to the manufacturer's instructions. Immobilization procedures
were performed with glutaraldehyde (10% v/v) (Sigma Aldrich).
Fig. 1. Release of sRANKL in conditioned media. (A) ELISA assays were performed to evalua
conditioned media from osteoblasts cultured for the indicated times, then the free sRANKL c
as described in (A) to calculate the free sRANKL concentration in conditioned media from (B
cultured for 5 days, in comparison with mouse calvarial osteoblasts. (D) Real-time RT-PCR o
Western blot analysis of sRANKL released in the osteoblast conditioned media pooled at th
densitometric units. Data are the mean ± s.d. of three independent experiments. Statistics:
2.8. Statistics

Data are expressed as mean ± standard deviation (s.d.). Statistical analysis was
performed by the unpaired Student's t test or by the one-way Analysis of Variance
(ANOVA). A p value <0.05 was considered statistically significant.

3. Results

3.1. Identification of cell type and culture condition to supply
sRANKL

In the perspective of a translational application, one of the main
strength of our approach could be the use of cells biologically
expressing RANKL in a regulated fashion. This would offer the
advantage of a “natural” control of the release of sRANKL which is
not achievable using transfected cells or infusion of the cytokine.
Therefore, the first part of the study had the aim to identify the best
cell type and culture conditions to supply sRANKL.

To this purpose, we have tested mouse primary calvarial oste-
oblasts, bonemarrow stromal cells and bonemarrowmesenchymal
stem cells. First, we evaluated different osteoblast densities to
obtain both long-term survival and optimal sRANKL release in
conditioned medium. We noted that the best cell density was
300,000 cells/cm2, with which the evaluation of sRANKL by ELISA
every five days showed a time-dependent free sRANKL accumula-
tion in the culture medium (Fig. 1A). In the same culture conditions,
bone marrow stromal cells showed lower release of sRANKL than
osteoblasts (Fig. 1B). In addition, the assessment of cell viability
demonstrated reduced cell survival with time. Therefore, we
te the concentrations of sRANKL and of the RANKL-decoy receptor osteoprotegerin in
oncentration was calculated on the basis of a RANKL/OPG 1:1 M ratio. (B, C) ELISA assays
) mouse bone marrow (BM) stromal cells and (C) mouse BM mesenchymal stem cells,
n RNA extracted from primary osteoblast cultures at the indicated times of culture. (E)
e indicated times of culture. Numbers below the bands represent the relative arbitrary
unpaired Student's t test.
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concluded that this cell type is not suitable for our research. We
then evaluated bone marrowmesenchymal stem cells. As shown in
Fig.1C, the sRANKLyield in these cultures was comparable to that of
osteoblasts. We also isolated primary osteocytes which are
considered the bone cells with the highest RANKL expression [33].
However, isolation procedure was time-consuming and prolifera-
tion rate of these cells in culture was low, making them unsuitable
for a large-scale use. Therefore, because calvarial osteoblasts were
more readily available and easy to handle, we considered them as
the best biological sRANKL source suitable for our purpose. RT-PCR
and Western blot analyses confirmed that these cells expressed
RANKL and OPG mRNAs (Fig. 1D) and released sRANKL into the
medium (Fig. 1E), therefore we decided to use them for improving
sRANKL shedding.
3.2. Osteoblast cultures on hydroxyapatite supports

We evaluated sRANKL shedding in mouse primary calvarial os-
teoblasts grown on biocompatible supports. The purpose was to
maintain cells in a situation closer to their in vivo setting and
provide a substrate compatible with their long-term survival and
enzymatic manipulation (see below). We used both granular hy-
droxyapatite (HA) and 3D HA scaffolds (Fig. 2AeD). Evaluation of
conditioned media showed a higher spontaneous sRANKL release
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independent experiments. Statistics: unpaired Student's t test.
by osteoblasts cultured on HA supports than by cells grown on
plastic dishes, with the 3D HA scaffolds better performing
compared to the other conditions (Fig. 2E).
3.3. Regulated expression of RANKL

Since in vivo RANKL production is regulated by PTH, which is
elevated in osteopetrosis, we assessed whether in our experi-
mental conditions this hormone could improve the rate of sRANKL
released by the osteoblasts. Consistent with this knowledge, we
observed that treatment of our cell cultures with 10�8

M human
recombinant (hr)PTH(1-34) increased the free sRANKL concen-
tration by ~2.5 fold compared to basal conditions (Fig. 2F), sug-
gesting that in vivo the hormone could regulate the yield of
sRANKL from the implanted cells. Taken together, these results
demonstrate that we have obtained a suitable cell source of
sRANKL which can be used for our biotechnological approach in a
manner physiologically regulated by hormonal factors, such as the
PTH.
3.4. Enhancement of sRANKL shedding by enzymatic manipulation

Since cells retain RANKL in large part as membrane-bound
protein, this could represent an important drawback in our
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translational application, which instead requires systemic delivery.
Enzymatic ectodomain shedding induces the release of the active
extracellular domain of membrane-bound cytokines, which
become soluble and can circulate. MMP14 is a metalloproteinase
known to have RANKL ectodomain shedding properties [34]. It is
commercially available as active catalytic domain corresponding to
the naturally-occurring active form of MMP14 which lacks the C-
terminal hemopexin domain [35]. To initially test whether pro-
teolytic shedding of sRANKL is feasible, we treated mouse primary
calvarial osteoblasts with vehicle or with 50e1000 ng/ml MMP14
for 5 days. Morphological analysis of cell cultures showed normal
cell viability and slight concentration-dependent decrease of
Alkaline Phosphatase (ALP) histochemical activity by treatment
with MMP14 (Fig. 3A). ELISA assay demonstrated a concentration-
dependent increase of free sRANKL in conditioned media from cells
treated with MMP14 versus control cultures (Fig. 3B). Furthermore,
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MMP14 did not impair osteoblast activity as demonstrated by
normal mineralization of extracellular matrix nodules (Fig. 3C).
Taken together, these results suggest that treatment withMMP14 is
safe and effective in shedding sRANKL from its membrane-bound
form even in long-term treatments.

Nevertheless, for our application, it is imperative to demonstrate
that the enzyme could remain stable in long-terms, to allow its use
also in in vivo experiments. To this aim we evaluated MMP14 cat-
alytic activity using the fluorescent substrate (7-Methoxycoumarin
-4-yl) acetyl-Pro-Leu-Gly-Leu-[3-(2,4-dinitrofenil)-L-2,3-diamino
proprionyl]-Ala-Arg-NH2 (MCA), keeping the enzyme at 37 �C and
5% CO2 atmosphere for 15 days. The results showed that in the
timeframe of our experiment, the enzyme retained its catalytic
ability intact (Fig. 3D).

Other proteolytic enzymes, including MMP7 [36] and TNF-a
Converting Enzyme (TACE) [37] also display RANKL shedding
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activity. Hence, we next tested whether there could be any
advantage in using these two enzymes instead of MMP14. Fig. 3E
shows that MMP14, MMP7 and TACE had similar RANKL shedding
activity. Thus, we decided to keep with MMP14.

3.5. MMP14 immobilization

To the purpose of our study, in vivo systemic effects of the
MMP14 are not desirable as it could affect various biological
pathways if released into the circulation. To sort out this problem,
we tested the possibility to immobilize the recombinant catalytic
domain of MMP14 on substrate, which will locally subject the cells
to the continuous action of the enzyme, preventing its egress into
the circulation. For the first evaluation, we absorbed MMP14 on
Glutatione-S-Transferase (GST)-agarose beads using glutaralde-
hyde. This aldehyde has the ability to form covalent bonds between
two molecules, interacting with the hydroxylic groups of serine/
tyrosine and causing molecule immobilization on substrate [38].
Assessment of degradation of the fluorescent peptide MCA showed
that in this condition the catalytic activity was low (Fig. 4A). We
hypothesized that this inconvenience could arise from chemical
alteration of the enzyme catalytic site caused by glutaraldehyde
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cross-links. We therefore decided to protect this site by pre-
incubation for 2 h with MCA (20 and 50 mM), namely the same
substrate used for determining the MMP14 catalytic activity. We
then washed out the MCA and incubated again the GST-agarose
bead-immobilized enzyme with MCA for re-testing the hydrolytic
activity. We observed that indeed this pre-incubation with MCA
was effective, resulting in a concentration-dependent protection
capacity of the substrate (Fig. 4A).

3.6. Enzymatic shedding of sRANKL from cells cultured on 3D HA
scaffolds

To exploit the sRANKL shedding ability of MMP14, we engi-
neered the 3D HA scaffolds with MMP14, using the glutaraldehyde
treatment. We used different combinations of glutaraldehyde
(10e20%) and MCA (1e2 mg/ml), in order to improve the immobi-
lization efficiency. These combinations were successful but we
were unable to obtain an enzymatic efficiency of functionalized
scaffolds greater than ~50% compared to soluble MMP14 (Fig. 4B).

We therefore decided to test whether even 50% preserved cat-
alytic activity could suffice to increase sRANKL release from cells.
We cultured mouse calvarial osteoblasts on 3D HA scaffolds
free sRANKL (ng/ml)

%
TR

A
cP

 p
os

iti
ve

m
ul

tin
uc

le
at

ed
 c

el
ls

 

0

100

0 10 20 30 40 50 60

200

300

400 p=0.003

Time (days) 
0 3 6 9 12 15

Fl
uo

re
sc

en
ce

 U
ni

ts

0

1000

2000

3000

4000

5000

6000

Free MMP14 [1µg/ml]
Glu/MMP14 [10%/2µg/ml]
Glu/MMP14 [20%/1µg/ml]
Glu/MMP14 [10%/1µg/ml]
PBS

p<0.0001

D

B

orbed to GST-agarose (GST-A) beads by overnight incubation at 37 �C with 2.5% of the
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functionalized with MMP14 as described above. ELISA evaluation of
conditioned media showed that the yield of sRANKL from osteo-
blasts cultured on MMP14-functionalized scaffold was higher than
in conditioned media from osteoblasts cultured on intact scaffold
(Fig. 4C), confirming that MMP14 was correctly immobilized and
effective in shedding the RANKL active domain from themembrane
bound RANKL. We evaluated this enzymatic ability up to 30 days of
culture and observed that it was maintained intact for the time-
frame of this observation.

3.7. Osteoclastogenesis assay

The average concentration of sRANKL achieved in these exper-
imental conditions at 5 days of culture was greater than 2 ng/ml. To
verify whether this concentration was suitable to enhance osteo-
clast formation, we performed an osteoclastogenesis assay in the
presence of increasing concentrations of commercially available
sRANKL. In our culture conditions, we observed that 1 ng/ml
sRANKL induced osteoclast formation near the plateau level
(Fig. 4D), suggesting that with our strategy we achieved sRANKL
levels sufficient to support osteoclast formation in vitro.

3.8. In vivo implants

To assess the feasibility of our strategy in vivo, we first per-
formed preliminary tests to set up the conditions to implant the
diffusion chambers in mice. We implanted diffusion chambers
containing 1,000,000 mouse primary calvarial osteoblasts/chamber
Fig. 5. In vivo implants of Diffusion Chambers (DC) in young tnfsf11 knockout (KO) mice. (A)
harvested after 3 weeks. Cytochemical staining for the osteoblast-specific marker alkaline ph
tnfsf11 knockout mice treated with PBS (KO) or implanted at the age of 21 days (arrow) w
scaffold (KO þ DC). (C, D) Histological sections of proximal tibia histochemically stained for th
non-implanted KO mouse and (D) small TRAcP-positive cells (arrows) in a KO mouse implant
HA scaffold (Bar ¼ 50 mm). Results are representative (A, C, D) or (B) the mean ± s.d or thr
colour in this figure legend, the reader is referred to the web version of this article.)
without scaffold, subcutaneously, in the abdomen of 30-days old
wild-type (WT) C57BL6 mice and monitored animals for 3 weeks.
In this timeframe, we did not observe any sign of distress. We
euthanized the mice and gathered the diffusion chambers. We did
not observe obvious internal damages or signs of inflammation at
autopsy near the area of implant. Diffusion chambers contained
viable cells, which resulted positive to the osteoblast marker, ALP
(Fig. 5A).

We then tested the implant of diffusion chambers containing
MMP14-functionalised scaffold harboring osteoblasts in younger
WT C57BL6 mice (10e20 days of age). Wemade this choice in order
to verify that no damage occurred due to the presence of the
scaffold in the diffusion chamber, and to set up the implant pro-
cedure as early as possible. We observed that the hold of the
diffusion chambers in mice younger than 21 days was problematic
due to skin damage at the implant site. However, in mice in which
the diffusion chambers were successfully engrafted, after 3 weeks
from implant they contained viable cells on scaffold. These results
warn about the age of animals to be implanted, but confirm that the
scaffold and its enzymatic functionalization by MMP14 causes no
harm.

Having established that implanted mice cannot be younger than
21 days, we tested tnfsf11 KOmice at this age, implanting themwith
diffusion chambers containing MMP14 functionalized scaffold
harboring osteoblasts. Unfortunately, due to their body size much
lower than the WT counterpart, only some tnfsf11 KO mice suc-
ceeded to retain the diffusion chambers. At the end of the experi-
ment, their bodyweight was similar to that of the control tnfsf11 KO
DCs containing primary calvarial osteoblasts implanted in a 1 month-old WT mice and
osphatase (Bar ¼ 1 mm). (B) Body weight expressed in grams (gr) of wild type (WT) and
ith one DC containing primary calvarial osteoblasts on MMP14-functionalized 3D HA
e Tartrate-Resistant Acid Phosphatase (TRAcP), showing (C) no TRAcP-positive cells in a
ed for 1 month with a DC containing primary calvarial osteoblasts on functionalized 3D
ee mice per group. Statistics: one-way ANOVA. (For interpretation of the references to
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mice (Fig. 5B). However, the implanted mice were more active and
lively while the untreated tnfsf11 KO counterparts were generally
apathetic. Mice were euthanized between 15 and 30 days from the
implants (age 36e51 days) and long bones were histochemically
evaluated for the osteoclast-specific enzyme TRAcP. We noticed the
presence of small TRAcP-positive cells, presumably mononuclear
precursors belonging to the osteoclast lineage, in tibias of all ani-
mals of the implanted group. TRAcP staining was instead totally
absent in all control animals histologically evaluated in the study
(Fig. 5C,D). Furthermore, in some tnfsf11 KO animals of this group
Fig. 6. In vivo implant of Diffusion Chambers (DC) in adult tnfsf11 knockout (KO) mice. Bo
treated with PBS (KO) or implanted with 1 (KO þ 1DC), 3 (KO þ 3DC) or 4 (KO þ 4DC) diffusi
scaffold. Arrows: time of first (1 or 2 DC) and second (2 DC) implants (BeE) Histological se
phatase (TRAcP) (arrows) showing TRAcP-positive cells in KO mice implanted with (C) 1, (D
sitting on bone in histological section of proximal tibia of a KO mouse implanted with 4 DCs
of the number of osteoclasts/tibia. (H) Quantification of the mean osteoclast area. Results are
one-way ANOVA; (G, H) unpaired Student's t test).
we experienced again the loss of diffusion chambers between 3 and
14 days from surgery. Therefore, the success of retaining of the
implant in the abdomen of 21 days-old tnfsf11 KO mice was still
problematic.

To overcome this problem we grew the tnfsf11 KO mice to
adulthood through the administration of a soft diet, which pre-
vented the insufficient nutrition due to the lack of tooth eruption
[25,26]. This allowed us to implant tnfsf11 KO mice with 1 diffu-
sion chamber between 36 and 42 days of life. Mice did not show
any distress due to the implant. However, they did not exhibit
dy weight expressed in grams (gr) of wild type (WT) mice and tnfsf11 knockout mice
on chambers containing primary calvarial osteoblasts on MMP14-functionalized 3D HA
ctions of proximal tibias histochemically stained for the Tartrate-Resistant Acid Phos-
) 3 and (E) 4 DCs (Bar ¼ 50 mm). (F) High magnification of a TRAcP-positive osteoclast
in which nuclei (arrows) have been stained with DAPI (Bar ¼ 10 mm). (G) Quantification
(BeF) representative or (A, G, H) the mean ± s.d of three mice per group. Statistics: (A)



Fig. 7. Bone resorption and trabecular bone structural variable in tnfsf11 knockout (KO)
mice implanted with Diffusion Chambers (DC). (A) Representative osteoclast of a KO
mouse implanted with 4 DCs showing Tartrate-Resistant Acid Phosphatase (TRAcP)-
positivity (purple staining), multinuclearity (DAPI blue staining) and ability to excavate
Howship lacuna (yellow dotted line) (Bar ¼ 10 mm). (B) Quantification of the trabecular
bone volume over the total tissue volume (BV/TV) in proximal tibias of WT and KO
mice treated with PBS or implanted with 3 or 4 DCs. Results are (A) representative or
(B) the mean ± s.d of 3 mice per group. Statistics: unpaired Student's t test.
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increase of their weight compared to control mice (Fig. 6A). They
were sacrificed after one month from implant. Notably, histo-
chemical evaluation of tibias confirmed the appearance of TRAcP-
positive cells in the implanted mice compared to controls
(Fig. 6B,C).

In further groups of tnfsf11 KO we implanted 1 or 2 diffusion
chambers at 36 days of life. After 1 month (age 72 days) they were
replaced with two fresh diffusion chambers and mice were sacri-
ficed 1month later (age 102 days). While mice implanted with total
3 diffusion chambers still did not show any growth improvement,
those implanted with 4 diffusion chambers exhibited an increase of
body weight. Moreover, in histological sections, we observed
TRAcP-positive cells (Fig. 6D,E) that, in the group implanted with 4
diffusion chambers, adhered to the bone surface and were
morphologically very similar to mature osteoclasts (Fig. 6E). In
addition, histochemical staining for TRAcP and nuclear co-staining
with DAPI, unraveled that these cells were multinucleated (Fig. 6F).
These data were confirmed quantitatively. In fact, in the group
implanted with 4 diffusion chambers we observed a higher number
of TRAcP-positive cells (Fig. 6G) and a greater TRAcP-positive cell
area (Fig. 6H), suggesting that, with this strategy, we obtained full
osteoclastogenesis.

Next, we assessed in histological sections whether the newly
formed osteoclasts were functional. To this end, we measured the
eroded bone surface underneath the TRAcP-positive cells and
observed that, at variance with non-implanted tnfsf11 KO mice, in
which there were no osteoclasts and eroded surface, in the 4
diffusion chambers implanted mice eroded surface underneath the
TRAcP-positive multinuclear cells was quantifiable (Fig. 7A). Finally,
to assess whether this level of bone resorption could induce any
benefit on the structure of the bone, we measured the proximal
tibia trabecular bone volume over total tissue volume and observed
a significant decrease compared to the non-implanted tnfsf11 KO
mice (Fig. 7B). Taken together, these results demonstrated that with
the implant of 4 diffusion chambers total, we obtained functional
osteoclasts capable of eroding the bone surface and reduce the
trabecular bone mass in tibias.

Finally, to assess whether our strategy could induce adverse
effects, we performed histological evaluation of lungs, which were
reported to undergo worsening of lymphoid infiltrations in tnfsf11
KO mice treated with sRANKL [27]. Our analysis demonstrated no
changes in number and size of lymphoid aggregates in implanted
KO mice compared to their non-implanted counterpart (Fig. 8),
suggesting that at least this variable is not aggravated by our
treatment.

4. Discussion

In this study, we were able to demonstrate that a biotechno-
logical approach allows the release of the active ectodomain of
membrane-bound RANKL from mouse primary calvarial osteo-
blasts in an amount that induced the formation of functional os-
teoclasts. We showed that, among the RANKL cell sources tested,
calvarial osteoblasts were the most efficient and easy to handle.
Bone marrow stromal cells produced about half of the sRANKL
amount produced by osteoblasts, while bone marrow mesen-
chymal stem cells, although as efficient as osteoblasts in sRANKL
yield, required time and effort to be isolated. Likewise, osteocytes
needed time-consuming isolation procedures and showed low
yield and slow proliferation rate in culture, therefore, although they
are great RANKL producers [33], they are currently not suitable for
biotechnological purposes.

We also demonstrated that substrate and culture conditions are
important factors to improve the yield of sRANKL. In fact, HA
supports were more efficient than plastic dishes to stimulate
cytokine release by osteoblasts, and 3D cultures on HA scaffolds
were more efficient than 2D cultures on HA granulate. HA is a
natural substrate for osteoblasts that could contribute to create a
more physiologic environment. In addition, in vivo osteoblasts sit
on 3D bone structures, therefore, not surprisingly, the 3D HA
scaffolds supported the best yield of sRANKL, that was double
compared to osteoblasts cultured on plastic, and 1.5 fold more than
in osteoblasts cultured on HA granulate. This was a fortunate
circumstance because it allowed us to immobilize a RANKL-
shedding enzyme on 3D scaffolds and improve the efficiency of
sRANKL discharge in the conditioned medium.

In fact, the active domain of RANKL is displayed extracellularly
and, in certain circumstances, it can be released in the microenvi-
ronment through enzymatic cleavage [39]. RANKL deficiency in-
duces a systemic disease, which cannot be cured by local
procedures. Major effects of RANKL in bone are exerted in a para-
crine manner, and the bound of the cytokine to the osteoblast
plasma membrane ensures a controlled regulatory activity on
osteoclast precursors through cell-to-cell contact [40]. Unfortu-
nately, this physiologic circumstance limits the use of cell implants
when a membrane-bound cytokine is desirable to exert systemic
effects. We overwhelmed this inconvenience testing various



Fig. 8. Lymphoid aggregates in lungs. (A) Histological sections of lungs from WT and tnfsf11 knockout mice untreated (KO) or subjected to implants of 4 DC total (KO 4DC), stained
with hematoxylin/eosin, showing lymphoid aggregates (arrows). (Bar ¼ 100 mm). (B, C) Quantification of (B) number and (C) area of lymphoid aggregates in lungs. Results are (A)
representative or (B, C) the mean ± s.d of 3 mice per group. Statistics: unpaired Student's t test. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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RANKL-shedding enzymes, MMP14 [34], MMP7 [36] and TACE [37],
which were equally efficient in releasing the RANKL ectodomain in
the conditioned medium. We focused on MMP14 and were able to
immobilize its commercially available catalytic domain on the 3D
HA scaffolds. The MMP14 enzymatic activity was stable over time
and enabled a significant enhancement of sRANKL shedding
compared to intact scaffolds. Altogether, these maneuvers resulted
in a sRANKL yield sufficient to induce osteoclastogenesis in vitro
and in vivo.

To investigate the impact of our biotechnological device in vivo,
we took advantage of the tnfsf11 KO mouse model that is charac-
terized by the total absence of the osteoclast lineage and by com-
plete TRAcP negativity in histological sections. We observed that
diffusion chambers, inoculated with osteoblasts on MMP14-
engineered 3D HA scaffolds and implanted in vivo in tnfsf11 KO
mice, were able to support long-term osteoblast survival and to
induce TRAcP activity in tibia sections, suggesting that our sRANKL
could enter the circulation and reach the skeleton. In our best
implant conditions, we also observed an increase of tnfsf11 KO
mouse body weight over untreated controls, suggesting an
improvement of somatic growth. Control tnfsf11 KO mice were
instead completely negative to the histochemical detection of
TRAcP, showed severe growth retardation and, with a few excep-
tions, died within the 50th day of life. Most interestingly, in our
experimental conditions, we noted the appearance of TRAcP-
positive cells on bone surface morphologically and functionally
resembling mature osteoclasts. We believe that these results pro-
vide a strong background for future studies aimed at addressing the
curative effect of the in vivo implants of RANKL-producing cells into
a RANKL-deficient mouse model.

Compared to other experimental therapies, our proposed
approach could have several advantages. It could replace pharma-
cological treatments that over time could cause problems of
compliance. In fact, since RANKL is a protein, only parenteral
administration can be foreseen for this type of therapy, which for
chronic administrations is known to be poorly tolerated by pa-
tients. Another problemwith the pharmacological treatment is the
dosage. Administration of 1mg/kg sRANKL every 2 days for 5weeks
has already been implemented in RANKL KO mice [27], with good
responses and phenotypic improvements, but with incomplete
disease rescue. Mice still showed growth retardation and partial
recovery of hypocalcemia, while tooth eruption and lymph node
genesis remained impaired. Furthermore, in this study, sRANKL
overdose was experienced after 3 months of treatment. In fact,
while growth retardation, tooth eruption and lymph node genesis
were not improved, bone mass was severely decreased below the
levels of the wild type littermates, inducing an osteopenic pheno-
type. Moreover, overstimulation of developing T-cells was observed
that could potentially induce self-reactive clones escaping the se-
lection process. Large lymphoid aggregates appeared in lungs and
gut, along with hepatization of the lung parenchyma. Lungs pre-
sented extensive exudates and their function was severely
impaired, probably representing the cause of death of some mice.
Consistently, treatment with 2 mg/kg sRANKL resulted in a potent
toxic effect, with even larger lymphoid expansion in lungs and
death occurring at the 2nd week of treatment. Based on these re-
sults, we believe that a biotechnological device containing sRANKL
cell sources regulated physiologically, as demonstrated in this study
for instance by PTH, could bypass the overdose problems and be
more tolerated in long-term treatments. In fact, PTH, which is
elevated in osteopetrosis due to the hypocalcemic condition
[41,42], could play a central role in the control of RANKL expression
in osteoblasts implanted in vivo for therapeutic purposes. It could
induce a burst of sRANKL release in the first phase of treatment
then, being attenuated by the stabilization of calcemia, it could
contribute to a more physiologic release of the cytokine according
to the calcemic status of the subject.

The use of diffusion chambers that isolate the implanted cells
from the host tissue could represent another advantage compared
to traditional cell implants. In fact, while consenting the flow of
soluble factors, the durapore membrane prevents the contact of the
implanted cells with the host tissue. Although T lymphogenesis is
impaired in RANKL KO mice, the reaction to allografts has not been
evaluated and it could be a prudent maneuver to isolate implanted
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cells from the host immune system. Of course, immune response
could still occur against the cytokine itself. However, this would be
a problem also for pharmacological therapy or for conventional cell
transplantation. In the case of RANKL, however, we predict that this
is likely not to occur due to the fact that both the animal model of
RANKL deficiency [25,26] and patients affected by mutations of the
TNFSF11 gene [18] carry non-functional proteins which could
induce immune tolerance, thus preventing immune response to the
exogenous intact RANKL.

Finally, we believe that our strategy could be applied also
beyond osteopetrosis. In fact, similar devices could be employed for
deficiencies of other cytokines. In this case, the prevention of the
immune response by isolating the curative cells from the host tis-
sue could be even more important if the disease did not show
immune failure.

5. Conclusions

In this work, we have provided the proof-of-principle that
diffusion chambers could be used to induce active ectodomain
shedding of a membrane-bound cytokine. Indeed, we have
demonstrated that the osteoclastogenic cytokine, RANKL, was
released by osteoblasts, and that appropriate culture conditions,
osteoblast adhesion to 3D HA scaffold and functionalization of
scaffold with MMP14 enhanced its shedding making it measurable
in conditioned media to a concentration compatible with the in-
duction of osteoclastogenesis. We also demonstrated that, in vivo,
sRANKL released through the permeant diffusion chambers entered
the circulation and triggered systemic effects, inducing osteoclas-
togenesis and improving the bone phenotype of tnfsf11 KO mice.
Considering the overdose adverse effects demonstrated for the
administration of sRANKL in tnfsf11 KO mice [27], we believe that
our approach could tender the advantage of a “physiologic” regu-
lation according to the hormonal status of the recipient. Our
method could therefore open up a new avenue for future experi-
mentation that could influence the treatment of currently incurable
diseases, including the osteopetrosis due to RANKL deficiency.
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