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Abstract: In this paper we prove local Holder continuity of vectorial local minimizers of special classes of in-
tegral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure
assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is ob-
tained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about
the Holder continuity. In the final section, we provide some non-trivial applications of our results.
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1 Introduction

In this paper we establish Holder regularity for vector-valued minimizers of a class of integral functionals of
the Calculus of Variations. We shall apply such results to minimizers of quasiconvex integrands, therefore
satisfying the natural condition to ensure existence in the vectorial setting.

For equations and scalar integrals, such a topic is strictly related to the celebrated De Giorgi result in [1].
Several generalizations in the scalar case have then been given, let us mention the contribution of Giaquinta-
Giusti [2], establishing Holder regularity for minima of non differentiable scalar functionals.

The question whether the previous theory and results extend to systems and vectorial integrals was
solved in [3] by De Giorgi himself constructing an example of a second order linear elliptic system with solu-
tion xLV’ y > 1 (see the nice survey [4]; we also refer to the paper [5] for the most recent result and an up-to-date
bibliography on the subject). Motivated by the above mentioned counterexamples, in the mathematical lit-
erature there are two different research directions in the study of the regularity in the vector-valued setting:
partial regularity as introduced by Morrey in [6], i.e., smoothness of solutions up to a set of zero Lebesgue
measure, and everywhere regularity following Uhlenbeck [7]. For more exhaustive lists of references on such
topics see for example [8-10].

Let us now introduce our working assumptions. Given n, N > 2, and a bounded open set Q C R", let
f:0x RN _, R be a function such that there exist Carathéodory functions Fq : QxR" — R,a € {1,..., N},
and G : Q x RV 5 R, such that for all ¢ € RV and for £"-a.e. x € Q

N
f(x, &) := ZFa(x, &+ Gx, &). (1.1

a=1
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Here, we have adopted the notation
61
&= 1.2)
{N
where £ € R", a € {1, ..., N}, is the a-th row of the matrix &.
Furthermore, we assume on each function F, the following growth conditions: there exist an exponent

p € (1,n), constants ki, k, > 0 and a non-negative function a € L .(Q), o > 1, such that forall a €
{1,...,N},forall A € R" and for £L™-a.e.x € Q

ki|A]P = a(x) < Fa(x, D) < ka|APP + a(x). 1.3)
In addition, we assume that G is rank-one convex and satisfies for all ¢ € RN*® and for £L"-a.e. x € Q
G(x, §)| < k218| + b(x) (1.4)

for some g € [1, p), and a non-negative function b € Ly, (Q) (for the precise definition of rank-one convexity
and other generalized convexity conditions see Section 2).

Consider the energy functional .# defined for every map u € Wllo’f (Q,RY) and for every measurable
subset E CC Q by

P E) = / £ (x, Du(x) dx .
E

The main result of the paper concerns the regularity of local minimizers of the functional .%. We recall for
convenience that a function u € Wllo’f (Q,RN) is a local minimizer of . if for all ¢ € W'P(Q,RN) with
suppy € Q

Z (u; supp @) < Z(u + @; supp ).

Theorem 1.1. Let f satisfy (1.1) and the growth conditions (1.3), (1.4) with p € (1, n). Assume further that

2

P n
1sq<n and 0>p. (1.5)

Then the local minimizers u € Wllo’f (Q; RN ) of F are locally Holder continuous.

Existence of local minimizers for .# is not assured under the conditions of Theorem 1.1 since f might fail to
be quasiconvex under the given assumptions. In the statement we have chosen to underline the only condi-
tions needed to establish the regularity result. For the existence issue see [11-13]. Despite this, we shall give
some non-trivial applications of Theorem 1.1 in Section 5. In particular, by using the function introduced by
Zhang in [14], we construct examples of genuinely quasiconvex integrands f, which are not convex, and sat-
isfying (1.1)-(1.4). Furthermore, by considering the well-know Sverak’s example [15], we exhibit an example
of a convex energy density f satisfying the regularity assumptions with non-convex principal part F and with
the perturbation G rank-one convex but not quasiconvex. For more examples see Section 5.

The special structure of the energy density f in (1.1) permits to prove Holder regularity by applying the
De Giorgi methods to each scalar component u® of the minimizer u. More precisely, inspired by [16], we show
that each component u“ satisfies a Caccioppoli type inequality, and then it is local Holder continuous by
applying the De Giorgi’s arguments; see [8, 17]. As regards the application of the techniques of De Giorgi
in the vector-valued case but in a different framework we quote [18]; for related H6lder continuity results
for systems we quote [19-21]. We remark that in [22] local y-Holder continuity for every y € (0, 1) has been
proved for stationary points of similar variational integrals with rank-one convex lower order perturbations
G differentiable at every point and with principal part F(¢) = |&|P.

In Section 4 we consider the case of polyconvex integrands. Precisely, the Holder continuity of local min-
imizers is obtained under the same structural assumptions on F and suitable polyconvex lower order pertur-
bations G depending only on the (N — 1) x (N - 1) minors of the gradient, see Theorem 4.1. The more rigid
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structure of the energy density f allows to obtain regularity results under weaker assumptions on the expo-
nents when compared to Theorem 1.1, see Remark 4.2 and Example 1in Section 5. We notice that in the recent
papers [16, 23] the local boundedness of minimizers has been established for more general energy functionals
Z with polyconvex integrands and under less restrictive conditions on the growth exponents.

We remark that the assumption p < n is not restrictive. Indeed, it is well-known that the regularity results
still hold true if p > n, even without assuming the special structure of f in (1.1). This is a consequence of the
p-growth satisfied by f, the Sobolev embedding, if p > n, together with the higher integrability of the gradient
if p = n (see [8, Theorem 6.7]).

We finally resume the contents of the paper. In Section 2 we introduce the various convexity notions in the
vectorial setting of the Calculus of Variations and we recall De Giorgi’s regularity result. Section 3 is devoted to
the proof of Theorem 1.1. In Section 4 we deal with functionals with a polyconvex lower order term G. Finally,
in Section 5 we provide several non trivial examples of application of our regularity results.

2 Preliminaries

2.1 Convexity conditions

Motivated by applications to nonlinear elasticity, J. Ball in 1977 pointed out in [11] that convexity of the energy
density is an unrealistic assumption in the vectorial case. Indeed, it conflicts, for instance, with the natural
requirement of frame-indifference for the elastic energy. Then, in the vector-valued setting N > 1, different
convexity notions with respect to the gradient variable ¢ play an important role. We recall all of them in what
follows.

Definition 2.1. A function f = f(x, &) : Q x RV" — R is said to be
(@) rank-one convex: if forall A € [0, 1] and for all &, n € RV with rank(¢ — 1) < 1

fOG A8+ (1 - M) < Af(x, §) + (1 - Df(x, n) 21

for L"a.e. x € O
(b) quasiconvex (in Morrey’ sense): if f is Carathéodory, f(x, -) is locally integrable, and

LMQf(x, &) < / f (x, & + Dg(y)) dy, 2.2)
Q

for every & € RV, ¢ € C° (Q, RN), and for L™ a.e. x € Q;
(c) polyconvex: if there exists a function g : Q x RT — R, with g(x, -) convex for L™ a.e. x € Q, such that

fo, &) =g(x, T(§)) . (2.3)

In the last item we have adopted the standard notation

T(¢) = (¢,adj,é, ..., adjé, ..., adjy,.¢) .

for every matrix ¢ € R¥", where adj;¢ is the adjugate matrix of order i € {2,..., N A n} of ¢, that is the

(1) % () matrix of all minors of order i of £. We will denote by (adj;&)* the a-row of such a matrix. In particular,

adj, ¢ := ¢if i = 1. Thus T(¢) is a vector in R”, with

NAn
T=1(N,n):= Z (7)

i=1

It is well-known that

f convex = f polyconvex = f quasiconvex = f rank-one convex,
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and that in the scalar case all these notions are equivalent (see for instance [13, Theorem 5.3]).

On the other hand, none of the previous implications can be reversed except for some particular cases.
We refer to [13, Chapter 5] for several examples and counterexamples. In particular, in Section 5 we shall
extensively deal with Sverak’s celebrated counterexample to the reverse of the last implication above.

2.2 De Giorgi classes
In this section we recall the well-known regularity result in the scalar case due to De Giorgi [1].

Definition 2.2. Let Q C R" be a bounded, open setand v : Q — R. We say that v € Wllo’f (2) belongs to the
De Giorgi class DG*(Q, p,y, y=,8), p > 1,yand § > 0, y« > 0 if

" -21pé
/ [D(v - k)+|P dx < m / (v -k dx + y« (Ln({v >k}n Bp(xo))>1 +p .4)
Bap(xo) BP(XO)

forallk € R, 0 € (0, 1) and all pair of balls Bgp(x) C Bp(xo) CC Q.
The De Giorgi class DG™(Q, p, y, y», 6) is defined similary with (v - k). replaced by (v - k)-.
Finally, we set DG(Q, p, y, y+, 8) = DG*(Q, p, y, y+, 8) N DG~ (Q, p, y, y=, 6).

(2.4) is a Caccioppoli type inequality on super-/sub-level sets and contains several informations on the
smoothness of the function u. Indeed, functions in the De Giorgi classes have remarkable regularity prop-
erties. In particular, they are locally bounded and locally Hélder continuous in Q (see [17, Theorems 2.1 and
3.1] and [8, Chapter 7]).

Theorem 2.3. Letv € DG(Q, p, y, y«, 6) and T € (0, 1). There exists a constant C > 1 depending only upon the
data and independent of v, such that for every pair of balls Brp(xo) C Bp(xo) CC Q

né, C 1 pd 117
Wt =m0 -7 - (g | 7))
Bp(Xo)

moreover, there exists & € (0, 1) depending only upon the data and independent of v, such that
ns, (P @
osc(v, Bp(xp)) < C max {y*p ; (R) osc(v, BR(xo))}

where osc(v, Bp(xo)) := ess SUPp, (x,) V — €S8 inpr(XO) v. Therefore, v € C?o’f"(.()) with &g := & A (né).

3 Proof of Theorem 1.1

The specific structure (1.1) of the energy density f yields a Caccioppoli inequality on every sub-/superlevel
set for any component u® of u. To provide the precise statement we introduce the following notation: given
Xo € 0,0 < t < dist(xg, 0Q2), and with fixed k e Rand a € {1, ..., N} set

Al txo = {x € Bt(x0) : u"(x) >k} and Bj,, = {x € Bi(xo) : u"(x) <k}. 3.1

Proposition 3.1 (Caccioppoli inequality on sub-/superlevel sets). Let f be as in (1.1), satisfying the growth
conditions (1.3), (1.4). Let u € Wllo’f (Q; RMN) be a local minimizer of F.

Then there exists ¢ = c(ky, k2, p, q,n) > 0, such that for all xo € Q and for every 0 < p < R < Ry A
dist(xo, 0Q), with L"(Bg,) < 1,and a € {1, ..., N} we have

a _ p
/ |Du®|? dx < ¢ / (|u kl) dx
Aa a R_p

k.p,xq k,R,xq
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9
+ C(l 1l LoBrio) + 1Pl Lo(Baxo)) + ”Dqup(BR(XO),Ran)) (£"(A% r.x,)) B2
where § := min{1 - £, 1 - 1}. The same inequality holds substituting A p , With Bf p .. .

Proof. Without loss of generality we may assume @ = 1. For the sake of notational convenience we drop
the xo-dependence in the notation of the corresponding sub-/superlevel set. We start off with proving the
inequality on the super-level sets. Given 0 < p <'s < t < R < Rg A dist(xq, 00Q), with £L™(Bg,) < 1, consider a
smooth cut-off function € C3(B;) satisfying

2

0<n<1, n=1inBsxo), |D)1\st_s. (33)

With fixed k € R, define w € Wllo’f (Q;RM) by
w! ;= max(@u' -k,0), w*:=0 ac {2,...,N}

and
¢ :=-nw.
We have ¢ = 0 £"-a.e.in Q\ ({5 > 0} N {u! > k}), thus

Du+Dp=Du  LMae.inQ\({n>0}n{u'>k}). (3.4)
Set
pn '(k-u")Dn
Du?
A= . . (3.5)
pu

Then notice that £"-a.e. in { > 0} N {u! > k}
(1-nP)Du’ + pnP~' (k- u')Dn
Du?
Du+Dg = ] =(1-nP)Du +nPA. (3.6)
Du¥
Thus, since Du — A is a rank-one matrix, the rank-one-convexity of G yields
G(x, Du+ Do) < (1 - n?)G(x, Du) + n” G(x, A) L"-a.e.in {n >0} n{u' > k}. (3.7)
By the local minimality of u, (3.4), (3.7) and taking into account that £"-a.e. in Q
Fo(x,(Du + Dp)*) = Fa(x,Du®)  a€{2,---,N}

we have

/ (Fl(x,Dul) + G(x,Du)) dx
A}{’[ﬂ{rpo}
< / (F1 (x, (Du + D)) + (1 - n¥)G(x, Du) + n G(x, A)) dx.

A N{n>0}

The latter inequality and (3.4) imply that

/ F1(x, Du') dx

1
Ak,t
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< /Fl(x, (Du + Dp)Y) dx + / n? (G(x, A) - G(x, Du)) dx. (3.8)
AL, AL N{n>0}

By (1.3), (3.6), the convexity of t — |t|P and (3.3), we get

/Fl(x, (Du + Do)Y) dx < / (k2|(Du+D(p)1\p+a(x)) dx

Air Aie
< / (kz(l - np)|Du1|p +Ik;|plk - ul)DrI|p + a(x)) dx
At
1_
<c / |DutP dx + ¢ / ((ut_ SI<>P + a(x)) dx
AfMis A

with ¢ = c(k;, p). Therefore, (3.8) implies

/Fl(x,Dul)dxsc / |Du’? dx+c/ ((utl__sk)p+a(x)) dx

Ak Al My Ak
+ / n” (G(x, A) - G(x, Du)) dx. (3.9)
A N{n>0}

We now estimate the last integral at the right hand side. The growth condition in (1.4) for G, H6lder’s and
Young’s inequalities imply, for some ¢ = c(k,, p, q) > 0,

/ n’ (G(x, A) -G (x, Du)) dx<c / ((utl_—sk)q +|Du|? + b(x)) dx

AL {0} AL,

ul - k\P neal
sc/ ( s ) dx+cl (Ak,t)

1
Ak,[

1

1-4 1-
+cl|Duld, g gy (LMAKD) 7+ CIbllLomy (LM(AKD) T ° - (3.10)

Hence, by taking into account estimates (1.3), (3.9) and (3.10), we obtain

1_
I<1/|Du1|pdxsc / \Du1|pdx+c/(u_sk)pdx+cL"(A,l<,t)

t
All(,s A11<,[\All<.s Ai,t

1-4 1-1
+ DU, 5 gy (E"AED)' 7+ (Ialloay * 1Blosy) (£"(ARD) '
for ¢ = c(k;, p, q@) > 0. By hole-filling, i.e. adding to both sides
c / |DuP dx,
All<,s

we obtain

T_k\p
/ |Dut? dx < k1C+c / |Du'|P dx + / (ut—sk) dx + L"(Ay,)
Al Al AL,

1-4 1-1
DUl g, gery (E"AD) P + (lallzogay + 1Blogzy) (£"(AkD) ']
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for ¢ = c(k,, p, @) > 0. By Lemma 3.2 below we get

- 1
u-—k\p 1-4
/ |Du'lP dx < c / ( R=p ) dx +cL"(Axgp) + c||Du\|‘L],,(BR’RM) (L"(A,l(,R)) »

Akr
1-1
+¢ (llallLog) + 1bllLosy) (LH(A}(,R)) % (3.11)
for ¢ = c(ky, k>, p, @) > 0. Estimate (3.2) follows at once from (3.11), by taking into account that L"(A,l(, R) <
Ln(BRO) <1.

In conclusion, the analogous estimate with By p in place of A},  follows from (3.2) itself since —u is a local
minimizer of the integral functional with energy density fx, &) = f(x, -¢&). O

The following lemma finds an important application in the hole-filling method. The proof can be found for

example in [8, Lemma 6.1] .

Lemma3.2. Let h : [r, Ry] — R be a non-negative bounded function and 0 < 9 < 1, A,B 2 0and 8 > 0.

Assume that
A

h(s) < 9n(t) + 5P +B,

forallr <s <t<Rgy. Then

cA
h(r) < ®Ro 1P +cB,

where ¢ = c¢(9, ) > 0.
We are now ready to prove the local Holder continuity of local minimizers.

Proof of Theorem 1.1. We use Proposition 3.1 for u, with the exponents p, g satisfying (1.5) or, equivalently,
p
>1-=, 12
o (12)

recalling that § = min{1 - %’ 1- %}. Then inequality (2.4) holds for each u%, a € {1,..., N}, i.e. u® belongs
to a suitable De Giorgi’s class and Theorem 2.3 ensures that u“ is locally Hélder continuous. O

4 The polyconvex case

In this section we deal with the case of a suitable class of polyconvex functions G. We will exploit their specific
structure to obtain Holder continuity results not included in Theorem 1.1. We shall use extensively the notation
introduced in Section 2.1.

Foru ¢ Wllo’f (Q; RN) and E cc Q a measurable set, we shall consider functionals

FWE) := /f(x,Du(x)) dx,
E
with Carathéodory integrands f : Q x RN*™ — R, n = N = 3, satisfying

N
06,8 =3 Falx, €% + Glx, ). (4.1)
a=1

We assume that the functions F, are as in the previous section. In particular, we assume that

there exist p € (1, n), k1, k > 0 and a non-negative function a € L{, (Q), 0 > 1, such that

k1|AP — a(x) < Fa(x, A) < k2|APP + a(x) (4.2)
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forallA € R" and for L™-a.e.x € Q
Asfaras G : Q x RV — R is concerned, G depends only on (N — 1) x (N — 1) minors of ¢ as follows:

N
G(x, &) := ) Ga (x, (adjy_1£)%) . (4.3)
a=1
Foreverya € {1,---, N} we assume that G4 : Q x RY 5 Risa Carathéodory function, A — Gu(x, A) convex,

such that

there exist r € [1, p) and a non-negative function b € L{ .(Q), o > 1, such that

0< Ga(x,A) < kz|A|" + b(x) (4.4)

forall A € RN and for £™-a.e. x € Q.

Theorem 4.1. Let f be as in (4.1), and assume (4.2)—(4.4). If

2

b n
15r<(N—2)n+p and 0>p, (4.5)

then the local minimizers u € Wllo’f (Q; RN of .Z are locally Holder continuous.

Remark 4.2. A comparison between Theorem 4.1 and Theorem 1.1 is in order. We do it in the case n = N = 3.
By (4.3), the function

3
GO, &) =) Galx, (adj, £

a=1
is a polyconvex function, satisfying

0<Gx, &)< c(|§|2r+b(x)+1> vé e R*3

for a positive costant ¢ depending on p and k.

By Theorem 1.1 we get that if o > % and

pZ

? ]
then the Wllo’f (Q; R3)-local minimizers of % are Holder continuous.

The Hélder regularity of the local minimizers can be obtained by Theorem 4.1 under the following weaker
condition on r

1=<sr«<

p2

1< .
<r<p+3

The key result to establish Theorem 4.1 is, as in the case of Theorem 1.1, the following Caccioppoli’s type
inequality which improves Proposition 3.1. We state it only for the first component u* of u. We recall that the
super-(sub-)level sets are defined as in (3.1). Moreover, we use here the following notation:

=W u, -, u).
For the sake of simplicity, in the Lebesgue norms we will avoid to indicate the target space of the functions
involved.

Proposition 4.3 (Caccioppoli inequality on sub-/superlevel sets). Let f be as in (4.1), and assume that Fq and
G satisfy (4.2)-(4.4). Assume that

7]\]3 oL (4.6)
Ifuc Wllo’f (Q; RY) is a local minimizer of %, then there exists ¢ = c(n, N, p, k1, ka, 1) > 0, such that for all

Xo € Q and for every 0 < p < R < Rg A dist(xg, 0Q), with L"(Bg,) < 1, we have

, )
|Du'|P dx < c [’ ~ K dx
< R
1 1

k.p,xg kR.xg

1=r<
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(N-2)rp
Al por 9
e 10+ Bl * 1087 ) (8" )" (47)
where
.9:=min{l—(N_2)r,l—1}. (4.8)
p-r o

The same inequality holds substituting A} p . with By p . .
We limit ourselves to exhibit the proof of Proposition 4.3, given that Theorem 4.1 follows with the same lines
of the proof of Theorem 1.1.

Proof of Proposition 4.3. The proof is the same of that of Proposition 3.1 up to inequality (3.9). By keeping the
notation introduced there, (3.9) and the left inequality in (4.2) imply

1 -
k1 / nP|DutP dx < ¢ / \Du? dx+c/ ((ut_sk)p+a(x)) dx
Al N{n>0} A Mics At

+ / np(G(x,A)—G(x,Du))dx, (4.9)

Ay ,N{n>0}

with ¢ depending on p, k,. We exploit next the specific structure of G. Taking into account the definition of
A, see (3.5), we have
G1(x, (adjy_; A)1) = G1(x, (adjy_; DW)"),

therefore
N

G (6, A)-G(x,Du) = > (Ga (X, (adjy_1A)%) - Ga (X, (adjy_ Du)*)) .

a=2

Using the growth condition (4.4), that in particular implies that G, is non-negative, we get

N
(Ga (x, (adjy_1A)") - Ga (x, (adjy_, Du)*))
a=2
N N
<> Gu (x, (adj14)%) < ¢ Y (I(adiy_y A+ b00)
a=2 a=2
with ¢ depending on k.
Denote it := (u?,u?,--- ,u"). Foreverya € {2,--- , N} we have

@adjy_; A)Y| < C|A1H adjy_, Di|

with ¢ depending on n and N. Since r < p we can use the Young’s inequality with exponents £ and I%, o)
we have, £"-a.e.in Ay , N {n > 0},

r 7] 1_ p ~2)1]
(|A1|| adjy_, Dﬁ|) <c (|A1|P + |adiN_2Dﬁ|)Fpr) <c { (“t_ Sk) + Do } )

with ¢ = ¢(n, N, p, 1).
Collecting the above inequalities, we get

1 p
» i u -k
/ n (G(x,A) G(x,Du))dxsc / (t—s) dx
A} N{n>0} A} ,N{n>0}

A (N-2)rp
+c/ |Dit| 7 dx+c/b(x)dx, (4.10)
Al Al
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with ¢ = c(kp, n, N, p, r) > 0. By (4.6) % < 1 therefore by H6lder’s inequality we get

(N-2)r
pr
N-2)r

-2)1] _(
/|Dm(Np3”dxs /\Dﬁ|p dx (L"(AL )7
B

1
Ak,t

Analogously,
[ @00+ b dx = @+ bl ("4} ) 7.
Ak

Therefore by (4.9) and (4.10) we get

1 \P
kl/\Du1|pdxsc / |Du1|pdx+c/ <ut—sk> dx

A, AL )\AL Aie
@ e nal 3\ 175
+c| Dl g, (LM Ak D) 77 +clla+blogy(£"Ak)) 7, (4.11)

with ¢ = c(n, N, p, ky, 1) > 0.
We now proceed as in the proof of Proposition 3.2: adding to both sides of (4.11)

c/\Du1|p dx
Ay

and using Lemma 3.2 we obtain that

~ (leirp neal 9
v e {IDal e+ la+ bl b (£7(4L)

with asin (4.8) and c = c(n, N, p, k1, k>, 1) > 0.
In conclusion, the analogous estimate with By , in place of A; , follows from (4.7) itself since —u is a local
minimizer of the integral functional with energy density fx, &) :==f(x, -¢&). O

5 Examples

We provide some non trivial applications of Theorems 1.1 and 4.1. In particular, we infer Hélder continuity of
local minimizers to vectorial variational problems with quasiconvex integrands. The energy densities that we
consider satisfy (1.1)-(1.4) and have neither radial nor quasi-diagonal structure. More in details, the integrands
in Examples 1 and 2 are not convex, respectively they are polyconvex and quasiconvex, being F convex but
G only polyconvex in the first case, and quasiconvex in the second. In Example 3 we construct a convex
density though with non-convex principal part. Instead, the energy density f in Examples 4 and 5 is convex.
In particular, in the first one F is convex and G is the rank-one convex non-quasiconvex function introduced
by Sveréak in [15]; in the second we construct a non-convex integrand F by modifying F in Example 4, keeping
the same G.

Being in all cases the resulting f quasiconvex, existence of local minimizers for the corresponding func-
tional .# easily follows from the Direct Method of the Calculus of Variations.
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Example 1

Letn = N = 3 and consider f : R**3 = R,

3 r
@ =3 18P + (1+1(adiy§); - 1)

a=1

with p > 1 and r > 1. We recall that, for all £ € R*3, adj, ¢ € R denotes the adjugate matrix of £ of order
2, whose components are

& &
&

wherea, B € {1,2,3}\{y},a<B,and k,l € {1,2,3} \ {i}, k< L

We claim that f is a polyconvex, non-convex function satisfying the structure condition (4.1) with suitable
F, and G satisfying the growth conditions (4.2) and (4.4), respectively.

As far as the stucture is concerned, it is easy to see that (1.1) holds, if we define, for all @ € {1, 2, 3} and
AeR?

(adj, &)} = (-1)* det ( > y,ie{1,2,3},

Fa(A) = FQ) := [A]P

and, for all ¢ € R>*3,
G(¢) := h((adj, f)%) ,
with
h(e):=(1+]t-1))", teR.

The polyconvexity of f follows from the convexity of F and h (the latter holds true since r > 1), see e.g. [13].
Let us now prove that f is not convex. Consider the matrices &; := € and &; := -¢3, € > 0, where

0O 0 O
&= 01 0
0O 0 1
We shall prove that for € > 0 sufficiently small
1 1
(3G +8) > 5 (FE) + (&), (51)

thus establishing the claim. Indeed, on one hand the right hand side rewrites as

SIE)+&) = fE) = 27 + (1 + |2 = 1) == g(e),

while on the other hand the left hand side rewrites as
1
F(36+8) = = 000).

Note that ¢ € C?((-1, 1)) since p > 2. Simple computations show that ¢’(0) = 0 and ¢”(0) = -r 2" < 0. Thus,
for some 6 € (0, 1) and for all € € (0, §) we have ¢’(g) < ¢’(0) = 0. Thus @(e) < ¢(0), and inequality (5.1)
follows at once.

By using Theorem 4.1 we have that, if p € (%(1 +v13),3) andr € [1, %), then the Wllo’f-local mini-
mizers of the corresponding functional .# are locally Hélder continuous.

We note that the arguments in [22, Theorem 1] do not apply since the function G is not differentiable.
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Example 2

Let n, N = 2. Given two matrices &1, &, in RN*™ such that rank(¢; - &) > 1, define

K :={&1,8}.

Denoting Qdist(-, K) the quasiconvex envelope of the distance function from K, we define, for g > 1, the
quasiconvex function G : RN*™ — [0, +o0) by
q

G(&) := Qdist(¢, K) v (dist(g, coK))

where coK is the convex envelope of the set K. For all g < [0, 1] define the energy density f, : RV ® — R,

n
fo® =0 [EF +(1-0)G(),
a=1
and note that f, satisfies (1.1)-(1.4) and it is quasiconvex.

We claim that, fixed p = 1, there exists po > 0 such that, for every p € (0, o), fp is quasiconvex, but not
convex. Given this for granted, by Theorem 1.1 we have that the Wllo’cp -local minimizers of the corresponding
functional .# are locally Holder continuous provided that 1 < g < % .

To prove the claim, we first observe that the function G is not convex, since G~ ((—oo, 0]) turns out to be
the set K, which is non-empty and non-convex. Indeed, by [14, Theorem 1.1, Example 4.3], the zero set of the
quasiconvex function with linear growth & — Qdist(¢, K) is K. This implies G™*((~e, 0]) = K.

Next we consider theset ] := {p € [0, 1] : f, is convex} and note that J is non-empty, as 1 € J, and closed,
since convexity is stable under pointwise convergence. Since 0 ¢ J we can find go > O such that [0, go)NJ = 0.
Hence, we conclude that f, is non-convex for g € [0, o).

Example 3

We give an example of an overall convex function f having non-convex principal part and convex lower order
term.

Let2<g<p<n,u>0,andB; := {zcR": |z| < 1}. Given ¢ € CZ(B1, [0, 1]) with ¢(0) = 1 and D?¢(0)
negative definite, let

N
F(&):=) Fa(§)

a=1

where Fg(A) = h(A) := (u + |/l\2)% fora € {2,...,N}, A € R", F1(A) := h(A) + M ¢(A), M > O to be chosen in
what follows.
We claim that it is possible to find My, > 0 such that for every M > M), and for all n' € R" \ {0}

(D*F1(0)n*, n") <o0. (5.2)

With this aim we first compute the Hessian matrices of F, and F. Simple computations yield forall A, { € R".

(DG, §) = pu-+ APYE (Gu+ PGP + (0 - (1, 6)?) (53)
Hence, if we set Fy(A) := h(A) and F'(¢) := Z{Ll Fa(é%) = Zﬁ’=1 h(¢%), being p > 2, we get that
N N
(D’F @)1, n) = Y (D’ Fal€n%n®) 2 p > (u+ 182D P 2 pp ). (5.4)
a=1 a=1

We are now ready to show that F; is not convex. Indeed, we have

G3)

(D*F1 0", n*) = pp ' P + M(D*@(O)n", n*) < put M n' 1 + MA' P, (5.5)
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where A < 0 is the maximum eigenvalue of D?¢(0). Hence, (5.2) follows at once provided that M > My :=
p_ _
ppz A
In particular, the function F is not convex on R"*", since it is not convex with respect to the variable & 1
Indeed, if 7 € R¥*" is such that 7 = 0 fora € {2, ..., N} and |f}}| > O we conclude that

Nxn

(DXFO), 7) = (D*F, @71, 7') < 0.

Let ¢ > 0 and set
q
G(&) :=t(t + €72,
and recall that for all &, n € RV" (cf. (5.4)) being q > 2

(D*GE, 1) = i+ 1§ (@ + 1§71 + (g - D& 0)%) = attinP

To show that f := F + G is convex we compute its Hessian, being clearly f € C2(RN*"). We have

(5.4) p_ q
(D*f&n,m) = put i+ M(D?p(E"n", n') + g Inf?
s (put gt )P -M sup  [(D?@(EY)z,2)||nt)?
|€1]<1,]2]<1
Flegtt oM sup (D@, 2)])In'f 20,
|€1]<1,|2]<1

(o
2
if, for instance, ¢ > (q’lM SUP|g1 (1, 211 [(D*P(EN)z, z)\) ..

In conclusion, since f satisfies (1.1)-(1.4), its convexity assures the existence of Wllo’f -local minimizers of
the corresponding functional .%, which, in view of Theorem 1.1, are locally H6lder continuous.

Example 4

In what follows we construct an example of a convex energy density f satisfying (1.1)-(1.4) with G rank-one
convex but not quasiconvex. With this aim we recall next the construction of Sverak’s celebrated example in
[15] in some details, following the presentation given in the book [13]. With this aim consider

x 0
L:=<{e R>? . (=10 vy wherex,y,zc R } , (5.6)
z z
and let h : L — R be given by
x 0
h| 0 y | =-xyz.
z z
Let P : R¥2 — [ be defined as
¢ 0
P({) := 0 & ,

3G +3) HE+8)
and set
Zey () = h(P() +€[¢|” + €¢|* +yI{ - P

One can prove that there exists £y > 0 such that g,y is not quasiconvex if € € (0, &) for every y = 0 (cf. [13,
Theorem 5.50, Step 3]). In addition, for every € > 0 one can find y(¢) > 0 such that 8e,y(¢) is rank-one convex
(cf. [13, Theorem 5.50, Steps 4, 4 and 4]).
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It is convenient to recall more details of the proof of the rank-one convexity of g, (). To begin with, since
h is a homogeneous polynomial of degree three we have

(D*h(P(D)z, 2) = ~9|¢]|2I* (5.7)
for some § > Oand forall {, z € R3*2_ 1t turns then out that
(D?ge,y({)z, 2) = (D*h(P({)z, 2)
+2e|z|* + 4e|¢ %)z + 8e((, 2)% + 2y|z - P(2)[%.
forall {, z € R**2. In particular, we conclude that foralle > 0and y > 0

9+1 2
||

e (5.8)

(D*gey(Q)z, 2) = (4el¢| - (|21 2

for all z € R**? provided that { € R>? is such that [{| > 1. Note that the last inequality holds true inde-
pendently of the fact that rank(z) = 1. Therefore, the uniform convexity of g¢,, on R \ B% follows (cf.
[13, Theorem 5.50, Step 4’]). The appropriate choice of y(e) establishes the rank-one convexity ofe 8e,y(e) O the
bounded set B g
We set 8¢ 1= 8, (), fore € (0, £9), in a way that g; is rank-one convex but not quasiconvex.
Letn=2and N = 3, let 7 : RV — R*? be the projection

1 1
1 2
n&=\| & & |,
3 3
{1 2

and set

Ge(8) := ge(n(&))

where g; : R>? — Ris defined above. Then G is rank-one convex and not quasiconvex (cf. [13, Theorem 5.50,
Step 1]).
Let u > 0and Fa(A) := (u + |A]?)? forallA € R"and a € {1, ..., N}. We claim that the function

N
f(f) = Zth(fa) + Gs(f)

a=1

is convex for u = pe > 0 large enough. Given this for granted, f satisfies (1.1)-(1.4) with ¢ = 4 and p € (2/n, n)
if n = 5. Therefore, we conclude in view of Theorem 1.1 that the Wlt’f -local minimizers of the corresponding
functional .# are locally Holder continuous.

To prove the claim, since f € C2(RN*") we shall compute its Hessian. First note that F(¢) := 2221 Fa(&%)
is uniformly convex on R¥*™ in view of (5.4), which, together with (5.8), yields

(D*f(&)n,n) =0 (59)

for all & € RM" such that |(¢)| = %21 and for all n € R¥*". In addition, using again that p > 2, by (5.7) we
have

(D*f(&)n, n) = (D*FE)n, 1) - I[a(@)||a(m)|)? = (p ™t - 9|7(&)|) |n(m) 2. (5.10)

Hence, the Hessian of f at & with |7(¢&)| < % is non-negative provided that

8(8+1)),%.

ipe (5.11)

yzyg:=(
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Example 5

Finally, we give an example that exploits the full strength of the assumptions of Theorem 1.1 on the leading
term. By keeping the notation introduced in Example 4, we shall modify F; there to get a non-convex function
so that the resulting principal term F is non-convex. On the other hand, the sum F + G, turns out to be convex
exploiting the uniform convexity of G¢ on the subspace L for large values of the variable 71(¢) (cf. (5.6) and
(5.8)).

Consider a function ¢ : R" — [0, 2], ¢ € CZ(B3), with ¢(0) = 2,

Dz(p@ =-2 Idnxn (5.12)
and
sup sup |(D*@(N)z,2)|= sup [(D*p(0)z,2)| =2 = || (5.13)
XER" zeRn, |z|<1 zeR", |z|<1
where A := -2 < 0 is the (unique) eigenvalue of D?@(0) (see Lemma 5.1 below for the existence of such a

function ¢). Let

N
F@) =3 Fal£9)
a=1
where
Fy=Fgforae{2,...,N},and F; :=F1 + Moo,

M > 0 to be chosen in what follows, and ¢ : R" — R" defined by

o(&Y) := (&, 0,...,0).

Note that F € C2(R¥"). In particular, F; = F; for all ¢ € RN\ ¢~ (supp¢), and for such points D?F;(¢1) =
D?F;(&'). Moreover, it is possible to find M, > 0 such that for every M>M, and for some /! € R"\ {0}
(independent of M)

(D®F,(0)7t, 7%) < 0. (5.14)

Indeed, arguing as to obtain (5.5), and using (5.12), for all ;* € R" such that |7;}| = |o(77')| > O we get

p_
2

(D’F1(0n", ") < (pu2 ™' + AM)|o(@"))* < 0, (5.15)

provided that
M > M, == pu? YA (5.16)

In particular, the function F is not convex on RV, since it is not convex with respect to the variable &t
Indeed, if 7 € RN*is such that 7* = O fora € {2, ..., N} and |i}}| = |o(77')| > O we conclude that

5.15
(<)O.

(D’F(0)7, 7) = (D*F1(0)7*, 7%)
For fix € € (0, &) consider z¢ € R" given by z¢ := (51 +3,0,...,0).
Let G¢ be the rank-one convex, non-quasiconvex function introduced in Example 4, we claim that the
integrand

N

&) = F&) + Ge(€" - ze, &, ..., &%) = S+ [E9))% + Mo(0(6") + Ge(¢! - 26, &2,..., €M)

a=1

9(9+1)
4pe

is convex for all u > pe = ( )ﬁ and forall M < My + |A|‘1% (the value of y. has been introduced in
(5.11)).

With this aim, it suffices to check the Hessian of f being}NC € C2(RM*™), First note that]Nr coincides with a
variant of the function f in Example 3 on the open set & := {¢ € RN™ : 0(¢') ¢ suppg}. More precisely, if
feX

F(&) = F(&) + Ge(&' ~ 2, &%,..., &Y).
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Then its convexity for all & € RN such that |(&" - z¢, &2, ..., &V)| = 9L follows at once from (5.8) and (5.4).

Instead, if |(&! - z¢, &%, ..., &V)| < %L, arguing as in (5.10), we get
DO, 1) (D F@n, 1) - I€” 26,2, ..., € 2 (ppt ™~ 021 G2 =

thanks to the choice y = pe.
On the other hand, by the convexity of each F, with respect to &% (cf. (5.3)) and by taking into account
that 0(¢1) € suppy C B yields (¢ - z¢)| 2 |&] - 922 - 3| = %1, we have

DO, 1) % put T nl? + MD (0 EN, 1Y) + (D2Ge(E - ze, €2,..., )

= pu 2 + M(D*@(a(¢M))a(n"), o(n )>+<DzGe(fl—zE,€2,.-. &, n)

ot P -M sup 0200z 2) 0P + L int)P?

[o(&1)[<3, |z]<1
> (pylf)’1 -M sup  |[(D*@(0(¢Y))z, 2)| + 4e >|O‘( h2.

|o(é1)|<3, |z|<1

Thus, the Hessian of f at such &’s is nonnegative provided that

%_1+|9+1

:M  sup  |[(D?@(0(¢Y)z,z)|.

pu
4e |o(§V)|<3, |2|<1

In conclusion, we have to ensure the following two inequalities

M= ppE AT <M< ( sup D2z ) ot O L),

(5.17)
|o(&1)|<3, |z|<1 4

Since by (5.13)
sup  |(D*p(0(¢")z,2)] = 141,
lo(§1)[<3, |z|<1
then (5.17) holds for every M such that My < M < My + || 5.2
In conclusion, since f satisfies (1.1)-(1.4) with ¢ = 4 and p € (2+/n, n) if n > 5, its convexity assures the
existence of Wllgf -local minimizers of the corresponding functional F , Which, in view of Theorem 1.1, are
locally Holder continuous.

Lemma 5.1. There exists a function ¢ : R" — [0, 2], ¢ € CZ(Bs3), with ¢(0) = 2,
Dz(p(g) = —2 Idnxn

and

sup sup [(D’@()n,n)|= sup [(D*p(O)n,n)| =
XERM neR", |n|<1 neRrn, |n|<1

Proof. Define ¢ : R — [0, o0),

(t+2)? if te[-2,-1]
2-t2  ifte(-1,1)
(t-2)? iftel1,2]

0 elsewhere.

We have that ¢ € CV1(R), ¢ € C“(R\{—Z, -1,1,2}) and

(1) :=

maX{\cp”(t)l |} vt e R\{-2,-1,0,1,2}. (5.18)
Let us define @ : R" — [0, 2], by @(x) := ¢p(|x|). Then @ € C*(R™\ {x : |x| € {1, 2}}),

DO©0) =0, D)= ¢’(|x\)& if [x| # 0,
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and

Do) - LD g, (q[)"(\x\) - ‘i’/("")) X o X if|]x]£0,1,2

x| Xl ) x| x|
and DZ(D(Q) = ¢”(0) Idnxn.
In particular, ¢'(0) is the only eigenvalue of D?@(0). Moreover, we claim that if |x| # O then the eigen-

A
o'(|x]) and ¢"(|x|). Indeed, if |x| # 0,

values of D?®(x) are ]

2 _¢'(IxD)
D D(x)v = Tv

foreveryv e R", v L ﬁ; moreover, if |x| # 0, 1, 2,

D*®(x)x = ¢"(|x|)x

Therefore, using (5.18), if |x| ¢ {0, 1, 2}

sup  |(D2OCON, 1) < max{|¢”(|x|)|, 1" (D) } <2,

neRrn, |njs1 ‘X|
that, taking into account that supy |4 |(D2®(0)n, n)| = |¢"(0)| = 2, implies

ess-sup sup  |(D’®(n, m)| = 2 = ¢"(0)].
x€R"  neRn, |n|<1
Let us now consider a family of positive radial symmetric mollifiers p € CZ°(Be), € € (0, 1), such that
Jan Pe(x) dx = 1. Consider @¢ := @ * p.. It is easy to check that @: € CZ(B,.¢) and, since @ € CV(R"), for
all x € R™ we get
DZ@e(X) = (DZCD * pe) ().

Moreover, for all x, n € R" it holds

(D2 D00, 1) = / (D2®(x - y)n, n)pe(y) dy
RYI

then we have

sup |<D2<Ds(X)n,n>|5/ sup  [(D*®(x - y)n, n)|pe(y) dy < 2.
neER™, )<t o MERT Inl<1

Since D?@(x) = —2 Idn«n if |X| < 1, there exists £y € (0, 1) small enough so that D?>®¢,(0) = -2 Idnxn. Thus,

sup sup [(D°@, (), M) = sup |[(D*@c,(0)n, )| = 2.
xeR" neRn, |nj<1 neRrn, |nl<1

The conclusion then follows on setting ¢ := @, . O
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