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Abstract: In this paper we prove local Hölder continuity of vectorial local minimizers of special classes of in-
tegral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure
assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is ob-
tained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about
the Hölder continuity. In the �nal section, we provide some non-trivial applications of our results.
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1 Introduction
In this paper we establish Hölder regularity for vector-valued minimizers of a class of integral functionals of
the Calculus of Variations. We shall apply such results to minimizers of quasiconvex integrands, therefore
satisfying the natural condition to ensure existence in the vectorial setting.

For equations and scalar integrals, such a topic is strictly related to the celebrated De Giorgi result in [1].
Several generalizations in the scalar case have then been given, let usmention the contribution of Giaquinta-
Giusti [2], establishing Hölder regularity for minima of non di�erentiable scalar functionals.

The question whether the previous theory and results extend to systems and vectorial integrals was
solved in [3] by De Giorgi himself constructing an example of a second order linear elliptic system with solu-
tion x

|x|γ , γ > 1 (see thenice survey [4];we also refer to thepaper [5] for themost recent result andanup-to-date
bibliography on the subject). Motivated by the above mentioned counterexamples, in the mathematical lit-
erature there are two di�erent research directions in the study of the regularity in the vector-valued setting:
partial regularity as introduced by Morrey in [6], i.e., smoothness of solutions up to a set of zero Lebesgue
measure, and everywhere regularity following Uhlenbeck [7]. For more exhaustive lists of references on such
topics see for example [8–10].

Let us now introduce our working assumptions. Given n, N ≥ 2, and a bounded open set Ω ⊆ Rn, let
f : Ω×RN×n → R be a function such that there exist Carathéodory functions Fα : Ω×Rn → R, α ∈ {1, . . . , N},
and G : Ω ×RN×n → R, such that for all ξ ∈ RN×n and for Ln-a.e. x ∈ Ω

f (x, ξ ) :=
N∑
α=1

Fα(x, ξ α) + G(x, ξ ). (1.1)
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Here, we have adopted the notation

ξ =


ξ1

...
ξN

 (1.2)

where ξ α ∈ Rn, α ∈ {1, . . . , N}, is the α-th row of the matrix ξ .
Furthermore, we assume on each function Fα the following growth conditions: there exist an exponent

p ∈ (1, n), constants k1, k2 > 0 and a non-negative function a ∈ Lσloc(Ω), σ > 1, such that for all α ∈
{1, . . . , N}, for all λ ∈ Rn and for Ln-a.e. x ∈ Ω

k1|λ|p − a(x) ≤ Fα(x, λ) ≤ k2|λ|p + a(x) . (1.3)

In addition, we assume that G is rank-one convex and satis�es for all ξ ∈ RN×n and for Ln-a.e. x ∈ Ω

|G(x, ξ )| ≤ k2|ξ |q + b(x) (1.4)

for some q ∈ [1, p), and a non-negative function b ∈ Lσloc(Ω) (for the precise de�nition of rank-one convexity
and other generalized convexity conditions see Section 2).

Consider the energy functional F de�ned for every map u ∈ W1,p
loc (Ω,RN) and for every measurable

subset E ⊂⊂ Ω by
F (u; E) :=

∫
E

f
(
x, Du(x)

)
dx .

The main result of the paper concerns the regularity of local minimizers of the functional F . We recall for
convenience that a function u ∈ W1,p

loc (Ω,RN) is a local minimizer of F if for all φ ∈ W1,p(Ω,RN) with
suppφ b Ω

F (u; suppφ) ≤ F (u + φ; suppφ).

Theorem 1.1. Let f satisfy (1.1) and the growth conditions (1.3), (1.4) with p ∈ (1, n). Assume further that

1 ≤ q < p
2

n and σ > np . (1.5)

Then the local minimizers u ∈ W1,p
loc (Ω;RN) of F are locally Hölder continuous.

Existence of local minimizers for F is not assured under the conditions of Theorem 1.1 since f might fail to
be quasiconvex under the given assumptions. In the statement we have chosen to underline the only condi-
tions needed to establish the regularity result. For the existence issue see [11–13]. Despite this, we shall give
some non-trivial applications of Theorem 1.1 in Section 5. In particular, by using the function introduced by
Zhang in [14], we construct examples of genuinely quasiconvex integrands f , which are not convex, and sat-
isfying (1.1)-(1.4). Furthermore, by considering the well-know Šverák’s example [15], we exhibit an example
of a convex energy density f satisfying the regularity assumptions with non-convex principal part F and with
the perturbation G rank-one convex but not quasiconvex. For more examples see Section 5.

The special structure of the energy density f in (1.1) permits to prove Hölder regularity by applying the
De Giorgi methods to each scalar component uα of the minimizer u. More precisely, inspired by [16], we show
that each component uα satis�es a Caccioppoli type inequality, and then it is local Hölder continuous by
applying the De Giorgi’s arguments; see [8, 17]. As regards the application of the techniques of De Giorgi
in the vector-valued case but in a di�erent framework we quote [18]; for related Hölder continuity results
for systems we quote [19–21]. We remark that in [22] local γ-Hölder continuity for every γ ∈ (0, 1) has been
proved for stationary points of similar variational integrals with rank-one convex lower order perturbations
G di�erentiable at every point and with principal part F(ξ ) = |ξ |p.

In Section 4 we consider the case of polyconvex integrands. Precisely, the Hölder continuity of local min-
imizers is obtained under the same structural assumptions on F and suitable polyconvex lower order pertur-
bations G depending only on the (N − 1) × (N − 1) minors of the gradient, see Theorem 4.1. The more rigid
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structure of the energy density f allows to obtain regularity results under weaker assumptions on the expo-
nents when compared to Theorem 1.1, see Remark 4.2 and Example 1 in Section 5. We notice that in the recent
papers [16, 23] the local boundedness ofminimizers has been established formore general energy functionals
F with polyconvex integrands and under less restrictive conditions on the growth exponents.

We remark that the assumption p < n is not restrictive. Indeed, it is well-known that the regularity results
still hold true if p ≥ n, even without assuming the special structure of f in (1.1). This is a consequence of the
p-growth satis�ed by f , the Sobolev embedding, if p > n, together with the higher integrability of the gradient
if p = n (see [8, Theorem 6.7]).

We �nally resume the contents of the paper. In Section 2we introduce the various convexity notions in the
vectorial setting of the Calculus of Variations andwe recall DeGiorgi’s regularity result. Section 3 is devoted to
the proof of Theorem 1.1. In Section 4 we deal with functionals with a polyconvex lower order term G. Finally,
in Section 5 we provide several non trivial examples of application of our regularity results.

2 Preliminaries

2.1 Convexity conditions

Motivated by applications to nonlinear elasticity, J. Ball in 1977 pointed out in [11] that convexity of the energy
density is an unrealistic assumption in the vectorial case. Indeed, it con�icts, for instance, with the natural
requirement of frame-indi�erence for the elastic energy. Then, in the vector-valued setting N > 1, di�erent
convexity notions with respect to the gradient variable ξ play an important role. We recall all of them in what
follows.

De�nition 2.1. A function f = f (x, ξ ) : Ω ×RN×n → R is said to be
(a) rank-one convex: if for all λ ∈ [0, 1] and for all ξ , η ∈ RN×n with rank(ξ − η) ≤ 1

f (x, λξ + (1 − λ)η) ≤ λf (x, ξ ) + (1 − λ)f (x, η) (2.1)

for Ln a.e. x ∈ Ω;
(b) quasiconvex (in Morrey’ sense): if f is Carathéodory, f (x, ·) is locally integrable, and

Ln(Ω)f (x, ξ ) ≤
∫
Ω

f
(
x, ξ + Dφ(y)

)
dy, (2.2)

for every ξ ∈ RN×n, φ ∈ C∞c
(
Ω,RN

)
, and for Ln a.e. x ∈ Ω;

(c) polyconvex: if there exists a function g : Ω ×Rτ → R, with g(x, ·) convex for Ln a.e. x ∈ Ω, such that

f (x, ξ ) = g
(
x, T(ξ )

)
. (2.3)

In the last item we have adopted the standard notation

T(ξ ) =
(
ξ , adj2ξ , . . . , adjiξ , . . . , adjN∧nξ

)
.

for every matrix ξ ∈ RN×n, where adjiξ is the adjugate matrix of order i ∈ {2, . . . , N ∧ n} of ξ , that is the(N
i
)
×
(n
i
)
matrix of allminors of order i of ξ .Wewill denote by (adjiξ )α the α-rowof such amatrix. In particular,

adj1ξ := ξ if i = 1. Thus T(ξ ) is a vector in Rτ, with

τ = τ(N, n) :=
N∧n∑
i=1

(
N
i

)
It is well-known that

f convex =⇒ f polyconvex =⇒ f quasiconvex =⇒ f rank-one convex,
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and that in the scalar case all these notions are equivalent (see for instance [13, Theorem 5.3]).
On the other hand, none of the previous implications can be reversed except for some particular cases.

We refer to [13, Chapter 5] for several examples and counterexamples. In particular, in Section 5 we shall
extensively deal with Šverák’s celebrated counterexample to the reverse of the last implication above.

2.2 De Giorgi classes

In this section we recall the well-known regularity result in the scalar case due to De Giorgi [1].

De�nition 2.2. Let Ω ⊆ Rn be a bounded, open set and v : Ω → R. We say that v ∈ W1,p
loc (Ω) belongs to the

De Giorgi class DG+(Ω, p, γ, γ*, δ), p > 1, γ and δ > 0, γ* ≥ 0 if∫
Bσρ(x0)

|D(v − k)+|p dx ≤
γ

(1 − σ)pρp

∫
Bρ(x0)

(v − k)p+ dx + γ*
(
Ln({v > k} ∩ Bρ(x0))

)1− pn +pδ (2.4)

for all k ∈ R, σ ∈ (0, 1) and all pair of balls Bσρ(x0) ⊂ Bρ(x0) ⊂⊂ Ω.
The De Giorgi class DG−(Ω, p, γ, γ*, δ) is de�ned similary with (v − k)+ replaced by (v − k)−.
Finally, we set DG(Ω, p, γ, γ*, δ) = DG+(Ω, p, γ, γ*, δ) ∩ DG−(Ω, p, γ, γ*, δ).

(2.4) is a Caccioppoli type inequality on super-/sub-level sets and contains several informations on the
smoothness of the function u. Indeed, functions in the De Giorgi classes have remarkable regularity prop-
erties. In particular, they are locally bounded and locally Hölder continuous in Ω (see [17, Theorems 2.1 and
3.1] and [8, Chapter 7]).

Theorem 2.3. Let v ∈ DG(Ω, p, γ, γ*, δ) and τ ∈ (0, 1). There exists a constant C > 1 depending only upon the
data and independent of v, such that for every pair of balls Bτρ(x0) ⊂ Bρ(x0) ⊂⊂ Ω

‖v‖L∞(Bτρ(x0)) ≤ max
{
γ* ρnδ; C

(1 − τ) 1
δ

( 1
Ln(Bρ(x0))

∫
Bρ(x0)

|v|pdx
) 1

p
}
,

moreover, there exists α̃ ∈ (0, 1) depending only upon the data and independent of v, such that

osc(v, Bρ(x0)) ≤ Cmax
{
γ* ρnδ;

( ρ
R

)α̃
osc(v, BR(x0))

}
where osc(v, Bρ(x0)) := ess supBρ(x0) v − ess infBρ(x0) v. Therefore, v ∈ C0,α̃0

loc (Ω) with α̃0 := α̃ ∧ (nδ).

3 Proof of Theorem 1.1
The speci�c structure (1.1) of the energy density f yields a Caccioppoli inequality on every sub-/superlevel
set for any component uα of u. To provide the precise statement we introduce the following notation: given
x0 ∈ Ω, 0 < t < dist(x0, ∂Ω), and with �xed k ∈ R and α ∈ {1, . . . , N} set

Aαk,t,x0 := {x ∈ Bt(x0) : uα(x) > k} and Bαk,t,x0 := {x ∈ Bt(x0) : uα(x) < k} . (3.1)

Proposition 3.1 (Caccioppoli inequality on sub-/superlevel sets). Let f be as in (1.1), satisfying the growth
conditions (1.3), (1.4). Let u ∈ W1,p

loc (Ω;RN) be a local minimizer of F .
Then there exists c = c(k1, k2, p, q, n) > 0, such that for all x0 ∈ Ω and for every 0 < ρ < R < R0 ∧

dist(x0, ∂Ω), with Ln(BR0 ) ≤ 1, and α ∈ {1, . . . , N} we have∫
Aαk,ρ,x0

|Duα|p dx ≤ c
∫

Aαk,R,x0

(
|uα − k|
R − ρ

)p
dx
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+ c
(

1 + ‖a‖Lσ(BR(x0)) + ‖b‖Lσ(BR(x0)) + ‖Du‖qLp(BR(x0),RN×n)

)(
Ln(Aαk,R,x0 )

)ϑ (3.2)

where ϑ := min{1 − q
p , 1 − 1

σ }. The same inequality holds substituting Aαk,R,x0
with Bαk,R,x0

.

Proof. Without loss of generality we may assume α = 1. For the sake of notational convenience we drop
the x0-dependence in the notation of the corresponding sub-/superlevel set. We start o� with proving the
inequality on the super-level sets. Given 0 < ρ < s < t < R < R0 ∧ dist(x0, ∂Ω), with Ln(BR0 ) ≤ 1, consider a
smooth cut-o� function η ∈ C∞0 (Bt) satisfying

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2
t − s . (3.3)

With �xed k ∈ R, de�ne w ∈ W1,p
loc (Ω;RN) by

w1 := max(u1 − k, 0), wα := 0 α ∈ {2, . . . , N}

and
φ := −ηpw.

We have φ = 0 Ln-a.e. in Ω \ ({η > 0} ∩ {u1 > k}), thus

Du + Dφ = Du Ln-a.e. in Ω \ ({η > 0} ∩ {u1 > k}). (3.4)

Set

A :=


pη−1(k − u1)Dη

Du2

...
DuN

 . (3.5)

Then notice that Ln-a.e. in {η > 0} ∩ {u1 > k}

Du + Dφ =


(1 − ηp)Du1 + pηp−1(k − u1)Dη

Du2

...
DuN

 = (1 − ηp)Du + ηpA. (3.6)

Thus, since Du −A is a rank-one matrix, the rank-one-convexity of G yields

G(x, Du + Dφ) ≤ (1 − ηp)G(x, Du) + ηpG(x,A) Ln-a.e. in {η > 0} ∩ {u1 > k}. (3.7)

By the local minimality of u, (3.4), (3.7) and taking into account that Ln-a.e. in Ω

Fα(x, (Du + Dφ)α) = Fα(x, Duα) α ∈ {2, · · · , N}

we have ∫
A1
k,t∩{η>0}

(
F1(x, Du1) + G(x, Du)

)
dx

≤
∫

A1
k,t∩{η>0}

(
F1(x, (Du + Dφ)1) + (1 − ηp)G(x, Du) + ηpG(x,A)

)
dx .

The latter inequality and (3.4) imply that∫
A1
k,t

F1(x, Du1) dx
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≤
∫
A1
k,t

F1(x, (Du + Dφ)1) dx +
∫

A1
k,t∩{η>0}

ηp
(
G(x,A) − G(x, Du)

)
dx . (3.8)

By (1.3), (3.6), the convexity of t 7→ |t|p and (3.3), we get∫
A1
k,t

F1(x, (Du + Dφ)1) dx ≤
∫
A1
k,t

(
k2|(Du + Dφ)1|p + a(x)

)
dx

≤
∫
A1
k,t

(
k2(1 − ηp)|Du1|p + k2|p(k − u1)Dη|p + a(x)

)
dx

≤ c
∫

A1
k,t\A

1
k,s

|Du1|p dx + c
∫
A1
k,t

((u1 − k
t − s

)p
+ a(x)

)
dx

with c = c(k2, p). Therefore, (3.8) implies∫
A1
k,t

F1(x, Du1) dx ≤ c
∫

A1
k,t\A

1
k,s

|Du1|p dx + c
∫
A1
k,t

((u1 − k
t − s

)p
+ a(x)

)
dx

+
∫

A1
k,t∩{η>0}

ηp
(
G(x,A) − G(x, Du)

)
dx . (3.9)

We now estimate the last integral at the right hand side. The growth condition in (1.4) for G, Hölder’s and
Young’s inequalities imply, for some c = c(k2, p, q) > 0,∫

A1
k,t∩{η>0}

ηp
(
G (x,A) − G (x, Du)

)
dx ≤ c

∫
A1
k,t

((u1 − k
t − s

)q
+ |Du|q + b(x)

)
dx

≤c
∫
A1
k,t

(u1 − k
t − s

)p
dx + cLn(A1

k,t)

+ c‖Du‖qLp(Bt ,RN×n)
(
Ln(A1

k,t)
)1− qp + c ‖b‖Lσ(Bt)

(
Ln(A1

k,t)
)1− 1

σ . (3.10)

Hence, by taking into account estimates (1.3), (3.9) and (3.10), we obtain

k1

∫
A1
k,s

|Du1|p dx ≤ c
∫

A1
k,t\A

1
k,s

|Du1|p dx + c
∫
A1
k,t

(u1 − k
t − s

)p
dx + cLn(A1

k,t)

+ c‖Du‖qLp(Bt ,RN×n)
(
Ln(A1

k,t)
)1− qp + c

(
‖a‖Lσ(Bt) + ‖b‖Lσ(Bt)

) (
Ln(A1

k,t)
)1− 1

σ

for c = c(k2, p, q) > 0. By hole-�lling, i.e. adding to both sides

c
∫
A1
k,s

|Du1|p dx,

we obtain

∫
A1
k,s

|Du1|p dx ≤ c
k1 + c

∫
A1
k,t

|Du1|p dx +
∫
A1
k,t

(u1 − k
t − s

)p
dx + Ln(A1

k,t)

+‖Du‖qLp(Bt ,RN×n)
(
Ln(A1

k,t)
)1− qp +

(
‖a‖Lσ(Bt) + ‖b‖Lσ(Bt)

) (
Ln(A1

k,t)
)1− 1

σ
]
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for c = c(k2, p, q) > 0. By Lemma 3.2 below we get∫
A1
k,ρ

|Du1|p dx ≤ c
∫
A1
k,R

(u1 − k
R − ρ

)p
dx + cLn(A1

k,R) + c‖Du‖qLp(BR ,RN×n)
(
Ln(A1

k,R)
)1− qp

+ c
(
‖a‖Lσ(BR) + ‖b‖Lσ(BR)

) (
Ln(A1

k,R)
)1− 1

σ , (3.11)

for c = c(k1, k2, p, q) > 0. Estimate (3.2) follows at once from (3.11), by taking into account that Ln(A1
k,R) ≤

Ln(BR0 ) ≤ 1.
In conclusion, the analogous estimatewith B1

k,R in place of A1
k,R follows from (3.2) itself since −u is a local

minimizer of the integral functional with energy density f̃ (x, ξ ) := f (x, −ξ ).

The following lemma �nds an important application in the hole-�lling method. The proof can be found for
example in [8, Lemma 6.1] .

Lemma 3.2. Let h : [r, R0] → R be a non-negative bounded function and 0 < ϑ < 1, A, B ≥ 0 and β > 0.
Assume that

h(s) ≤ ϑh(t) + A
(t − s)β

+ B,

for all r ≤ s < t ≤ R0. Then
h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.

We are now ready to prove the local Hölder continuity of local minimizers.

Proof of Theorem 1.1. We use Proposition 3.1 for u, with the exponents p, q satisfying (1.5) or, equivalently,

ϑ > 1 − pn , (3.12)

recalling that ϑ = min{1 − q
p , 1 − 1

σ }. Then inequality (2.4) holds for each uα, α ∈ {1, . . . , N}, i.e. uα belongs
to a suitable De Giorgi’s class and Theorem 2.3 ensures that uα is locally Hölder continuous.

4 The polyconvex case
In this sectionwedealwith the case of a suitable class of polyconvex functions G.Wewill exploit their speci�c
structure to obtainHölder continuity results not included inTheorem1.1.We shall use extensively thenotation
introduced in Section 2.1.

For u ∈ W1,p
loc (Ω;RN) and E ⊂⊂ Ω a measurable set, we shall consider functionals

F (u; E) :=
∫
E

f
(
x, Du(x)

)
dx ,

with Carathéodory integrands f : Ω ×RN×n → R, n ≥ N ≥ 3, satisfying

f (x, ξ ) :=
N∑
α=1

Fα(x, ξ α) + G(x, ξ ). (4.1)

We assume that the functions Fα are as in the previous section. In particular, we assume that

there exist p ∈ (1, n), k1, k2 > 0 and a non-negative function a ∈ Lσloc(Ω), σ > 1, such that

k1|λ|p − a(x) ≤ Fα(x, λ) ≤ k2|λ|p + a(x) (4.2)
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for all λ ∈ Rn and for Ln-a.e. x ∈ Ω
As far as G : Ω ×RN×n → R is concerned, G depends only on (N − 1) × (N − 1) minors of ξ as follows:

G(x, ξ ) :=
N∑
α=1

Gα
(
x, (adjN−1ξ )α

)
. (4.3)

For every α ∈ {1, · · · , N}we assume that Gα : Ω ×RN → R is a Carathéodory function, λ 7→ Gα(x, λ) convex,
such that

there exist r ∈ [1, p) and a non-negative function b ∈ Lσloc(Ω), σ > 1, such that

0 ≤ Gα (x, λ) ≤ k2|λ|r + b(x) (4.4)

for all λ ∈ RN and for Ln-a.e. x ∈ Ω.

Theorem 4.1. Let f be as in (4.1), and assume (4.2)–(4.4). If

1 ≤ r < p2

(N − 2)n + p and σ > np , (4.5)

then the local minimizers u ∈ W1,p
loc (Ω;RN) of F are locally Hölder continuous.

Remark 4.2. A comparison between Theorem 4.1 and Theorem 1.1 is in order. We do it in the case n = N = 3.
By (4.3), the function

G(x, ξ ) :=
3∑
α=1

Gα(x, (adj2 ξ )α)

is a polyconvex function, satisfying

0 ≤ G(x, ξ ) ≤ c
(
|ξ |2r + b(x) + 1

)
∀ξ ∈ R3×3

for a positive costant c depending on p and k2.
By Theorem 1.1 we get that if σ > 3

p and

1 ≤ r < p
2

6 ,

then theW1,p
loc (Ω;R3)-local minimizers of F are Hölder continuous.

The Hölder regularity of the local minimizers can be obtained by Theorem 4.1 under the following weaker
condition on r

1 ≤ r < p2

p + 3 .

The key result to establish Theorem 4.1 is, as in the case of Theorem 1.1, the following Caccioppoli’s type
inequality which improves Proposition 3.1. We state it only for the �rst component u1 of u. We recall that the
super-(sub-)level sets are de�ned as in (3.1). Moreover, we use here the following notation:

û := (u2, u3, · · · , uN).

For the sake of simplicity, in the Lebesgue norms we will avoid to indicate the target space of the functions
involved.

Proposition 4.3 (Caccioppoli inequality on sub-/superlevel sets). Let f be as in (4.1), and assume that Fα and
G satisfy (4.2)–(4.4). Assume that

1 ≤ r < p
N − 1 , σ > 1. (4.6)

If u ∈ W1,p
loc (Ω;RN) is a local minimizer of F , then there exists c = c(n, N, p, k1, k2, r) > 0, such that for all

x0 ∈ Ω and for every 0 < ρ < R < R0 ∧ dist(x0, ∂Ω), with Ln(BR0 ) ≤ 1, we have∫
A1
k,ρ,x0

|Du1|p dx ≤ c
∫

A1
k,R,x0

(
|u1 − k|
R − ρ

)p
dx



1016 | Giovanni Cupini et al., On the Hölder continuity for a class of vectorial problems

+ c
(
‖a + b‖Lσ(BR(x0)) + ‖Dû‖

(N−2)rp
p−r

Lp(BR)

)(
Ln(A1

k,R,x0 )
)ϑ , (4.7)

where
ϑ := min

{
1 − (N − 2)r

p − r , 1 − 1
σ

}
. (4.8)

The same inequality holds substituting A1
k,R,x0

with B1
k,R,x0

.

We limit ourselves to exhibit the proof of Proposition 4.3, given that Theorem 4.1 follows with the same lines
of the proof of Theorem 1.1.

Proof of Proposition 4.3. The proof is the same of that of Proposition 3.1 up to inequality (3.9). By keeping the
notation introduced there, (3.9) and the left inequality in (4.2) imply

k1

∫
A1
k,t∩{η>0}

ηp|Du1|p dx ≤ c
∫

A1
k,t\A

1
k,s

|Du1|p dx + c
∫
A1
k,t

((u1 − k
t − s

)p
+ a(x)

)
dx

+
∫

A1
k,t∩{η>0}

ηp
(
G (x,A) − G (x, Du)

)
dx , (4.9)

with c depending on p, k2. We exploit next the speci�c structure of G. Taking into account the de�nition of
A, see (3.5), we have

G1(x, (adjN−1 A)1) = G1(x, (adjN−1 Du)1),

therefore

G (x,A) − G (x, Du) =
N∑
α=2

(
Gα
(
x, (adjN−1A)α

)
− Gα

(
x, (adjN−1Du)α

))
.

Using the growth condition (4.4), that in particular implies that Gα is non-negative, we get

N∑
α=2

(
Gα
(
x, (adjN−1A)α

)
− Gα

(
x, (adjN−1Du)α

))
≤

N∑
α=2

Gα
(
x, (adjN−1A)α

)
≤ c

N∑
α=2

(
|(adjN−1 A)α|r + b(x)

)
with c depending on k2.

Denote û := (u2, u3, · · · , uN). For every α ∈ {2, · · · , N} we have

|(adjN−1 A)α| ≤ c|A1|| adjN−2 Dû|

with c depending on n and N. Since r < p we can use the Young’s inequality with exponents p
r and p

p−r , so
we have, Ln-a.e. in A1

k,t ∩ {η > 0},

(
|A1|| adjN−2 Dû|

)r
≤ c
(
|A1|p + | adjN−2 Dû|)

rp
p−r
)
≤ c
{(

u1 − k
t − s

)p
+ |Dû|

(N−2)rp
p−r

}
,

with c = c(n, N, p, r).
Collecting the above inequalities, we get∫

A1
k,t∩{η>0}

ηp
(
G (x,A) − G (x, Du)

)
dx ≤ c

∫
A1
k,t∩{η>0}

(
u1 − k
t − s

)p
dx

+ c
∫
A1
k,t

|Dû|
(N−2)rp
p−r dx + c

∫
A1
k,t

b(x) dx, (4.10)
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with c = c(k2, n, N, p, r) > 0. By (4.6) (N−2)r
p−r < 1 therefore by Hölder’s inequality we get

∫
A1
k,t

|Dû|
(N−2)rp
p−r dx ≤

∫
Bt

|Dû|p dx


(N−2)r
p−r (

Ln(A1
k,t)
)1− (N−2)r

p−r .

Analogously, ∫
A1
k,t

(a(x) + b(x)) dx ≤ ‖a + b‖Lσ(Bt)
(
Ln(A1

k,t)
)1− 1

σ .

Therefore by (4.9) and (4.10) we get

k1

∫
A1
k,s

|Du1|p dx ≤ c
∫

A1
k,t\A

1
k,s

|Du1|p dx + c
∫
A1
k,t

(
u1 − k
t − s

)p
dx

+ c‖Dû‖
(N−2)rp
p−r

Lp(Bt)
(
Ln(A1

k,t)
)1− (N−2)r

p−r + c‖a + b‖Lσ(Bt)
(
Ln(A1

k,t)
)1− 1

σ , (4.11)

with c = c(n, N, p, k2, r) > 0.
We now proceed as in the proof of Proposition 3.2: adding to both sides of (4.11)

c
∫
A1
k,s

|Du1|p dx

and using Lemma 3.2 we obtain that∫
A1
k,ρ

|Du1|p dx ≤ c
∫
A1
k,R

(
u1 − k
R − ρ

)p
dx

+ c
{
‖Dû‖

(N−2)rp
p−r

Lp(BR) + ‖a + b‖Lσ(BR)

}(
Ln(A1

k,R)
)ϑ

with ϑ as in (4.8) and c = c(n, N, p, k1, k2, r) > 0.
In conclusion, the analogous estimate with B1

k,t in place of A1
k,t follows from (4.7) itself since −u is a local

minimizer of the integral functional with energy density f̃ (x, ξ ) := f (x, −ξ ).

5 Examples
We provide some non trivial applications of Theorems 1.1 and 4.1. In particular, we infer Hölder continuity of
local minimizers to vectorial variational problemswith quasiconvex integrands. The energy densities that we
consider satisfy (1.1)-(1.4) andhaveneither radial nor quasi-diagonal structure.More indetails, the integrands
in Examples 1 and 2 are not convex, respectively they are polyconvex and quasiconvex, being F convex but
G only polyconvex in the �rst case, and quasiconvex in the second. In Example 3 we construct a convex
density though with non-convex principal part. Instead, the energy density f in Examples 4 and 5 is convex.
In particular, in the �rst one F is convex and G is the rank-one convex non-quasiconvex function introduced
by Šverák in [15]; in the secondwe construct a non-convex integrand F̃ bymodifying F in Example 4, keeping
the same G.

Being in all cases the resulting f quasiconvex, existence of local minimizers for the corresponding func-
tional F easily follows from the Direct Method of the Calculus of Variations.
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Example 1

Let n = N = 3 and consider f : R3×3 → R,

f (ξ ) :=
3∑
α=1
|ξ α|p +

(
1 + |

(
adj2 ξ

)1
1 − 1|

)r
,

with p ≥ 1 and r ≥ 1. We recall that, for all ξ ∈ R3×3, adj2 ξ ∈ R3×3 denotes the adjugate matrix of ξ of order
2, whose components are

(adj2 ξ )γi = (−1)γ+i det
(
ξ αk ξ αl
ξ βk ξ βl

)
γ, i ∈ {1, 2, 3},

where α, β ∈ {1, 2, 3} \ {γ}, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l.
We claim that f is a polyconvex, non-convex function satisfying the structure condition (4.1) with suitable

Fα and G satisfying the growth conditions (4.2) and (4.4), respectively.
As far as the stucture is concerned, it is easy to see that (1.1) holds, if we de�ne, for all α ∈ {1, 2, 3} and

λ ∈ R3

Fα(λ) = F(λ) := |λ|p

and, for all ξ ∈ R3×3,
G(ξ ) := h

(
(adj2 ξ )1

1
)
,

with
h(t) :=

(
1 + |t − 1|

)r , t ∈ R.

The polyconvexity of f follows from the convexity of F and h (the latter holds true since r ≥ 1), see e.g. [13].
Let us now prove that f is not convex. Consider the matrices ξ1 := εξ̃ and ξ2 := −ξ1, ε > 0, where

ξ̃ :=

 0 0 0
0 1 0
0 0 1

 .

We shall prove that for ε > 0 su�ciently small

f
(1

2 (ξ1 + ξ2)
)
> 1

2
(
f (ξ1) + f (ξ2)

)
, (5.1)

thus establishing the claim. Indeed, on one hand the right hand side rewrites as

1
2
(
f (ξ1) + f (ξ2)

)
= f (ξ1) = 2 εp + (1 + |ε2 − 1|)r =: φ(ε) ,

while on the other hand the left hand side rewrites as

f
(1

2 (ξ1 + ξ2)
)

= f (0) = φ(0) .

Note that φ ∈ C2((−1, 1)) since p > 2. Simple computations show that φ′(0) = 0 and φ′′(0) = −r 2r < 0. Thus,
for some δ ∈ (0, 1) and for all ε ∈ (0, δ) we have φ′(ε) < φ′(0) = 0. Thus φ(ε) < φ(0), and inequality (5.1)
follows at once.

By using Theorem 4.1 we have that, if p ∈
(1

2 (1 +
√

13), 3
)
and r ∈

[
1, p2

3+p
)
, then the W1,p

loc -local mini-
mizers of the corresponding functional F are locally Hölder continuous.

We note that the arguments in [22, Theorem 1] do not apply since the function G is not di�erentiable.
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Example 2

Let n, N ≥ 2. Given two matrices ξ1, ξ2 in RN×n such that rank(ξ1 − ξ2) > 1, de�ne

K := {ξ1, ξ2}.

Denoting Qdist(·, K) the quasiconvex envelope of the distance function from K, we de�ne, for q ≥ 1, the
quasiconvex function G : RN×n → [0, +∞) by

G(ξ ) := Qdist(ξ , K) ∨
(

dist(ξ , coK)
)q
,

where coK is the convex envelope of the set K. For all ϱ ∈ [0, 1] de�ne the energy density fϱ : RN×n → R,

fϱ(ξ ) := ϱ
n∑
α=1
|ξ α|p + (1 − ϱ)G(ξ ),

and note that fϱ satis�es (1.1)-(1.4) and it is quasiconvex.
We claim that, �xed p ≥ 1, there exists ϱ0 > 0 such that, for every ϱ ∈ (0, ϱ0), fϱ is quasiconvex, but not

convex. Given this for granted, by Theorem 1.1 we have that the W1,p
loc -local minimizers of the corresponding

functional F are locally Hölder continuous provided that 1 ≤ q < p2

n .
To prove the claim, we �rst observe that the function G is not convex, since G−1((−∞, 0]) turns out to be

the set K, which is non-empty and non-convex. Indeed, by [14, Theorem 1.1, Example 4.3], the zero set of the
quasiconvex function with linear growth ξ 7→ Qdist(ξ , K) is K. This implies G−1((−∞, 0]) = K.

Nextwe consider the set J := {ϱ ∈ [0, 1] : fϱ is convex} andnote that J is non-empty, as1 ∈ J, and closed,
since convexity is stable under pointwise convergence. Since 0 ∈ ̸ J we can �nd ϱ0 > 0 such that [0, ϱ0)∩ J = ∅.
Hence, we conclude that fϱ is non-convex for ϱ ∈ [0, ϱ0).

Example 3

We give an example of an overall convex function f having non-convex principal part and convex lower order
term.

Let 2 ≤ q < p < n, µ > 0, and B1 := {z ∈ Rn : |z| < 1}. Given φ ∈ C∞c (B1, [0, 1]) with φ(0) = 1 and D2φ(0)
negative de�nite, let

F(ξ ) :=
N∑
α=1

Fα(ξ α)

where Fα(λ) = h(λ) := (µ + |λ|2)
p
2 for α ∈ {2, . . . , N}, λ ∈ Rn, F1(λ) := h(λ) + M φ(λ), M > 0 to be chosen in

what follows.
We claim that it is possible to �nd Mµ > 0 such that for every M ≥ Mµ and for all η1 ∈ Rn \ {0}

〈D2F1(0)η1, η1〉 < 0. (5.2)

With this aimwe �rst compute the Hessianmatrices of Fα and F. Simple computations yield for all λ, ζ ∈ Rn.

〈D2h(λ)ζ , ζ 〉 = p(µ + |λ|2)
p
2 −2
(

(µ + |λ|2)|ζ |2 + (p − 2)〈λ, ζ 〉2
)
. (5.3)

Hence, if we set F*α(λ) := h(λ) and F*(ξ ) :=
∑N

α=1 F*α(ξ α) =
∑N

α=1 h(ξ α), being p > 2, we get that

〈D2F*(ξ )η, η〉 =
N∑
α=1
〈D2F*α(ξ α)ηα , ηα〉 ≥ p

N∑
α=1

(µ + |ξ α|2)
p
2 −1|ηα|2 ≥ p µ

p
2 −1|η|2 . (5.4)

We are now ready to show that F1 is not convex. Indeed, we have

〈D2F1(0)η1, η1〉 (5.3)= pµ
p
2 −1|η1|2 + M〈D2φ(0)η1, η1〉 ≤ pµ

p
2 −1|η1|2 + MΛ|η1|2, (5.5)
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where Λ < 0 is the maximum eigenvalue of D2φ(0). Hence, (5.2) follows at once provided that M > Mµ :=
pµ

p
2 −1|Λ|−1.
In particular, the function F is not convex on RN×n, since it is not convex with respect to the variable ξ1.

Indeed, if η̄ ∈ RN×n is such that η̄α = 0 for α ∈ {2, . . . , N} and |η̄1| > 0 we conclude that

〈D2F(0)η̄, η̄〉 = 〈D2F1(0)η̄1, η̄1〉
(5.2)
< 0 .

Let ` > 0 and set
G(ξ ) := `(` + |ξ |2)

q
2 ,

and recall that for all ξ , η ∈ RN×n (cf. (5.4)) being q ≥ 2

〈D2G(ξ )η, η〉 = q`(` + |ξ |2)
q
2 −2
(

(` + |ξ |2)|η|2 + (q − 2)〈ξ , η〉2
)
≥ q`

q
2 |η|2 .

To show that f := F + G is convex we compute its Hessian, being clearly f ∈ C2(RN×n). We have

〈D2f (ξ )η, η〉
(5.4)
≥ pµ

p
2 −1|η|2 + M〈D2φ(ξ1)η1, η1〉 + q`

q
2 |η|2

≥
(
pµ

p
2 −1 + q`

q
2
)
|η|2 −M sup

|ξ1|≤1,|z|≤1
|〈D2φ(ξ1)z, z〉||η1|2

≥
(
pµ

p
2 −1 + q`

q
2 −M sup

|ξ1|≤1,|z|≤1
|〈D2φ(ξ1)z, z〉|

)
|η1|2 ≥ 0 ,

if, for instance, ` >
(
q−1M sup|ξ1|≤1,|z|≤1 |〈D2φ(ξ1)z, z〉|

) 2
q .

In conclusion, since f satis�es (1.1)-(1.4), its convexity assures the existence of W1,p
loc -local minimizers of

the corresponding functional F , which, in view of Theorem 1.1, are locally Hölder continuous.

Example 4

In what follows we construct an example of a convex energy density f satisfying (1.1)-(1.4) with G rank-one
convex but not quasiconvex. With this aim we recall next the construction of Šverák’s celebrated example in
[15] in some details, following the presentation given in the book [13]. With this aim consider

L :=

ζ ∈ R3×2 : ζ =

 x 0
0 y
z z

 where x, y, z ∈ R

 , (5.6)

and let h : L → R be given by

h

 x 0
0 y
z z

 = −xyz .

Let P : R3×2 → L be de�ned as

P(ζ ) :=

 ζ 1
1 0
0 ζ 2

2
1
2 (ζ 3

1 + ζ 3
2 ) 1

2 (ζ 3
1 + ζ 3

2 )

 ,

and set
gε,γ(ζ ) := h(P(ζ )) + ε|ζ |2 + ε|ζ |4 + γ|ζ − P(ζ )|2 .

One can prove that there exists ε0 > 0 such that gε,γ is not quasiconvex if ε ∈ (0, ε0) for every γ ≥ 0 (cf. [13,
Theorem 5.50, Step 3]). In addition, for every ε > 0 one can �nd γ(ε) > 0 such that gε,γ(ε) is rank-one convex
(cf. [13, Theorem 5.50, Steps 4, 4’ and 4”]).
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It is convenient to recall more details of the proof of the rank-one convexity of gε,γ(ε). To begin with, since
h is a homogeneous polynomial of degree three we have

〈D2h(P(ζ ))z, z〉 ≥ −ϑ|ζ ||z|2 (5.7)

for some ϑ > 0 and for all ζ , z ∈ R3×2. It turns then out that

〈D2gε,γ(ζ )z, z〉 = 〈D2h(P(ζ ))z, z〉
+ 2ε|z|2 + 4ε|ζ |2|z|2 + 8ε〈ζ , z〉2 + 2γ|z − P(z)|2.

for all ζ , z ∈ R3×2. In particular, we conclude that for all ε > 0 and γ ≥ 0

〈D2gε,γ(ζ )z, z〉 ≥ (4ε|ζ | − ϑ)|ζ ||z|2 ≥ ϑ + 1
4ε |z|

2 (5.8)

for all z ∈ R3×2 provided that ζ ∈ R3×2 is such that |ζ | ≥ ϑ+1
4ε . Note that the last inequality holds true inde-

pendently of the fact that rank(z) = 1. Therefore, the uniform convexity of gε,γ on R3×2 \ B ϑ+1
4ε

follows (cf.
[13, Theorem 5.50, Step 4’]). The appropriate choice of γ(ε) establishes the rank-one convexity of gε,γ(ε) on the
bounded set B ϑ+1

4ε
.

We set gε := gε,γ(ε), for ε ∈ (0, ε0), in a way that gε is rank-one convex but not quasiconvex.
Let n ≥ 2 and N ≥ 3, let π : RN×n → R3×2 be the projection

π(ξ ) =

 ξ1
1 ξ1

2
ξ2

1 ξ2
2

ξ3
1 ξ3

2

 ,

and set
Gε(ξ ) := gε(π(ξ ))

where gε : R3×2 → R is de�ned above. ThenGε is rank-one convex andnot quasiconvex (cf. [13, Theorem5.50,
Step 1]).

Let µ > 0 and Fα(λ) := (µ + |λ|2)
p
2 for all λ ∈ Rn and α ∈ {1, . . . , N}. We claim that the function

f (ξ ) :=
N∑
α=1

Fα(ξ α) + Gε(ξ )

is convex for µ ≥ µε > 0 large enough. Given this for granted, f satis�es (1.1)-(1.4) with q = 4 and p ∈ (2
√
n, n)

if n ≥ 5. Therefore, we conclude in view of Theorem 1.1 that the W1,p
loc -local minimizers of the corresponding

functional F are locally Hölder continuous.
To prove the claim, since f ∈ C2(RN×n) we shall compute its Hessian. First note that F(ξ ) :=

∑N
α=1 Fα(ξ α)

is uniformly convex on RN×n in view of (5.4), which, together with (5.8), yields

〈D2f (ξ )η, η〉 ≥ 0 (5.9)

for all ξ ∈ RN×n such that |π(ξ )| ≥ ϑ+1
4ε and for all η ∈ RN×n. In addition, using again that p > 2, by (5.7) we

have

〈D2f (ξ )η, η〉 ≥ 〈D2F(ξ )η, η〉 − ϑ|π(ξ )||π(η)|2 ≥
(
p µ

p
2 −1 − ϑ|π(ξ )|

)
|π(η)|2. (5.10)

Hence, the Hessian of f at ξ with |π(ξ )| < ϑ+1
4ε is non-negative provided that

µ ≥ µε :=
( ϑ(ϑ + 1)

4pε

) 2
p−2 . (5.11)
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Example 5

Finally, we give an example that exploits the full strength of the assumptions of Theorem 1.1 on the leading
term. By keeping the notation introduced in Example 4, we shallmodify F1 there to get a non-convex function
so that the resulting principal term F̃ is non-convex. On the other hand, the sum F̃+Gε turns out to be convex
exploiting the uniform convexity of Gε on the subspace L for large values of the variable π(ξ ) (cf. (5.6) and
(5.8)).

Consider a function φ : Rn → [0, 2], φ ∈ C∞c (B3), with φ(0) = 2,

D2φ(0) = −2 Idn×n (5.12)

and
sup
x∈Rn

sup
z∈Rn , |z|≤1

|〈D2φ(x)z, z〉| = sup
z∈Rn , |z|≤1

|〈D2φ(0)z, z〉| = 2 = |Λ| (5.13)

where Λ := −2 < 0 is the (unique) eigenvalue of D2φ(0) (see Lemma 5.1 below for the existence of such a
function φ). Let

F̃(ξ ) :=
N∑
α=1

F̃α(ξ α)

where
F̃α = Fα for α ∈ {2, . . . , N}, and F̃1 := F1 + M φ ◦ σ,

M > 0 to be chosen in what follows, and σ : Rn → Rn de�ned by

σ(ξ1) := (ξ1
1 , 0, . . . , 0) .

Note that F̃ ∈ C2(RN×n). In particular, F̃1 = F1 for all ξ ∈ RN×n \ σ−1(suppφ), and for such points D2F̃1(ξ1) =
D2F1(ξ1). Moreover, it is possible to �nd Mµ > 0 such that for every M>Mµ and for some η̄1 ∈ Rn \ {0}
(independent of M)

〈D2F̃1(0)η̄1, η̄1〉 < 0. (5.14)

Indeed, arguing as to obtain (5.5), and using (5.12), for all η̄1 ∈ Rn such that |η̄1| = |σ(η̄1)| > 0 we get

〈D2F̃1(0)η̄1, η̄1〉 ≤
(
pµ

p
2 −1 + ΛM

)
|σ(η̄1)|2 < 0, (5.15)

provided that
M > Mµ := pµ

p
2 −1|Λ|−1. (5.16)

In particular, the function F̃ is not convex on RN×n, since it is not convex with respect to the variable ξ1.
Indeed, if η̄ ∈ RN×n is such that η̄α = 0 for α ∈ {2, . . . , N} and |η̄1| = |σ(η̄1)| > 0 we conclude that

〈D2F̃(0)η̄, η̄〉 = 〈D2F̃1(0)η̄1, η̄1〉
(5.15)
< 0 .

For �x ε ∈ (0, ε0) consider zε ∈ Rn given by zε :=
( ϑ+1

4ε + 3, 0, . . . , 0
)
.

Let Gε be the rank-one convex, non-quasiconvex function introduced in Example 4, we claim that the
integrand

f̃ (ξ ) := F̃(ξ ) + Gε(ξ1 − zε , ξ2, . . . , ξN) =
N∑
α=1

(µ + |ξ α|2)
p
2 + Mφ(σ(ξ1)) + Gε(ξ1 − zε , ξ2, . . . , ξN)

is convex for all µ ≥ µε =
( ϑ(ϑ+1)

4pε
) 2
p−2 and for all M ≤ Mµ + |Λ|−1 ϑ+1

4ε (the value of µε has been introduced in
(5.11)).

With this aim, it su�ces to check the Hessian of f̃ being f̃ ∈ C2(RN×n). First note that f̃ coincides with a
variant of the function f in Example 3 on the open set Σ := {ξ ∈ RN×n : σ(ξ1) ∈ ̸ suppφ}. More precisely, if
ξ ∈ Σ

f̃ (ξ ) = F(ξ ) + Gε(ξ1 − zε , ξ2, . . . , ξN) .
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Then its convexity for all ξ ∈ RN×n such that |(ξ1 − zε , ξ2, . . . , ξN)| ≥ ϑ+1
4ε follows at once from (5.8) and (5.4).

Instead, if |(ξ1 − zε , ξ2, . . . , ξN)| < ϑ+1
4ε , arguing as in (5.10), we get

〈D2 f̃ (ξ )η, η〉 ≥〈D2F(ξ )η, η〉 − ϑ|π(ξ1 − zε , ξ2, . . . , ξN)||π(η)|2
(5.4)
≥
(
p µ

p
2 −1 − ϑ ϑ + 1

4ε

)
|π(η)|2 ≥ 0

thanks to the choice µ ≥ µε.
On the other hand, by the convexity of each Fα with respect to ξ α (cf. (5.3)) and by taking into account

that σ(ξ1) ∈ suppφ ⊂ B3 yields |π(ξ1 − zε)| ≥ |ξ1
1 − ϑ+1

4ε − 3| ≥ ϑ+1
4ε , we have

〈D2 f̃ (ξ )η, η〉
(5.4)
≥ pµ

p
2 −1|η|2 + M〈D2(φ ◦ σ)(ξ1)η1, η1〉 + 〈D2Gε(ξ1 − zε , ξ2, . . . , ξN)η, η〉

= pµ
p
2 −1|η|2 + M〈D2φ(σ(ξ1))σ(η1), σ(η1)〉 + 〈D2Gε(ξ1 − zε , ξ2, . . . , ξN)η, η〉

(5.8)
≥ pµ

p
2 −1|η|2 −M sup

|σ(ξ1)|≤3, |z|≤1
|〈D2φ(σ(ξ1))z, z〉||σ(η1)|2 + ϑ + 1

4ε |π(η)|2

≥
(
pµ

p
2 −1 −M sup

|σ(ξ1)|≤3, |z|≤1
|〈D2φ(σ(ξ1))z, z〉| + ϑ + 1

4ε

)
|σ(η1)|2 .

Thus, the Hessian of f̃ at such ξ ’s is nonnegative provided that

pµ
p
2 −1 + ϑ + 1

4ε ≥ M sup
|σ(ξ1)|≤3, |z|≤1

|〈D2φ(σ(ξ1))z, z〉| .

In conclusion, we have to ensure the following two inequalities

Mµ = pµ
p
2 −1|Λ|−1 < M ≤ ( sup

|σ(ξ1)|≤3, |z|≤1
|〈D2φ(σ(ξ1))z, z〉|)−1(pµ p

2 −1 + ϑ + 1
4ε

)
. (5.17)

Since by (5.13)
sup

|σ(ξ1)|≤3, |z|≤1
|〈D2φ(σ(ξ1))z, z〉| = |Λ| ,

then (5.17) holds for every M such that Mµ < M ≤ Mµ + |Λ|−1 ϑ+1
4ε .

In conclusion, since f̃ satis�es (1.1)-(1.4) with q = 4 and p ∈ (2
√
n, n) if n ≥ 5, its convexity assures the

existence of W1,p
loc -local minimizers of the corresponding functional F̃ , which, in view of Theorem 1.1, are

locally Hölder continuous.

Lemma 5.1. There exists a function φ : Rn → [0, 2], φ ∈ C∞c (B3), with φ(0) = 2,

D2φ(0) = −2 Idn×n

and
sup
x∈Rn

sup
η∈Rn , |η|≤1

|〈D2φ(x)η, η〉| = sup
η∈Rn , |η|≤1

|〈D2φ(0)η, η〉| = 2.

Proof. De�ne ϕ : R→ [0,∞),

ϕ(t) :=


(t + 2)2 if t ∈ [−2, −1]
2 − t2 if t ∈ (−1, 1)
(t − 2)2 if t ∈ [1, 2]
0 elsewhere.

We have that ϕ ∈ C1,1(R), ϕ ∈ C∞(R \ {−2, −1, 1, 2}) and

max
{
|ϕ′′(t)|,

∣∣ϕ′(t)
t
∣∣} ≤ 2 ∀t ∈ R \ {−2, −1, 0, 1, 2}. (5.18)

Let us de�ne Φ : Rn → [0, 2], by Φ(x) := ϕ(|x|). Then Φ ∈ C2(Rn \ {x : |x| ∈ {1, 2}}),

DΦ(0) = 0, DΦ(x) = ϕ′(|x|) x|x| if |x| = ̸ 0,
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and
D2Φ(x) = ϕ′(|x|)

|x| Idn×n +
(
ϕ′′(|x|) − ϕ

′(|x|)
|x|

)
x
|x| ⊗

x
|x| if |x| ≠ 0, 1, 2

and D2Φ(0) = ϕ′′(0) Idn×n.
In particular, ϕ′′(0) is the only eigenvalue of D2Φ(0). Moreover, we claim that if |x| ≠ 0 then the eigen-

values of D2Φ(x) are ϕ
′(|x|)
|x| and ϕ′′(|x|). Indeed, if |x| ≠ 0,

D2Φ(x)v = ϕ′(|x|)
|x| v

for every v ∈ Rn, v ⊥ x
|x| ; moreover, if |x| ≠ 0, 1, 2,

D2Φ(x)x = ϕ′′(|x|)x

Therefore, using (5.18), if |x| ∈ ̸ {0, 1, 2}

sup
η∈Rn , |η|≤1

|〈D2Φ(x)η, η〉| ≤ max
{
|ϕ′′(|x|)|, |ϕ

′(|x|)|
|x|

}
≤ 2,

that, taking into account that sup|η|≤1 |〈D2Φ(0)η, η〉| = |ϕ′′(0)| = 2, implies

ess- sup
x∈Rn

sup
η∈Rn , |η|≤1

|〈D2Φ(x)η, η〉| = 2 = |ϕ′′(0)|.

Let us now consider a family of positive radial symmetric molli�ers ρε ∈ C∞c (Bε), ε ∈ (0, 1), such that∫
Rn ρε(x) dx = 1. Consider Φε := Φ * ρε. It is easy to check that Φε ∈ C∞c (B2+ε) and, since Φ ∈ C1,1(Rn), for

all x ∈ Rn we get
D2Φε(x) = (D2Φ * ρε)(x).

Moreover, for all x, η ∈ Rn it holds

〈D2Φε(x)η, η〉 =
∫
Rn

〈D2Φ(x − y)η, η〉ρε(y) dy ,

then we have
sup

η∈Rn , |η|≤1
|〈D2Φε(x)η, η〉| ≤

∫
Rn

sup
η∈Rn , |η|≤1

|〈D2Φ(x − y)η, η〉|ρε(y) dy ≤ 2.

Since D2Φ(x) = −2 Idn×n if |x| < 1, there exists ε0 ∈ (0, 1) small enough so that D2Φε0 (0) = −2 Idn×n. Thus,

sup
x∈Rn

sup
η∈Rn , |η|≤1

|〈D2Φε0 (x)η, η〉| = sup
η∈Rn , |η|≤1

|〈D2Φε0 (0)η, η〉| = 2.

The conclusion then follows on setting φ := Φε0 .
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