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On the flux linkage between pancake coils in

resonance-type wireless power transfer systems

Mauro Parise, Daniele Romano, and Giulio Antonini

Abstract

This work presents a series representation for the mutual inductance of two co-axial pancake coils which remains

accurate in non-quasi-static regime under the hypothesis that the current in the source coil is uniformly distributed.

Making use of the Gegenbauer’s addition theorem, and a term-by-term analytical integration, the mutual inductance

between two generic turns belonging to distinct coils is expressed as a sum of spherical Hankel functions with

algebraic coefficients. The accuracy and efficiency of the resulting expression is proved through pertinent numerical

examples.

Index Terms
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I. INTRODUCTION

In the last decades, wireless power transfer (WPT) systems have attracted the interest of researchers

working in a variety of scientific fields [1]–[8]. In fact, WPT systems find application in automotive battery

[1] and consumer electronics’ charging [2], in pacemaker battery charging [3], and in inductive links for

low-power three-dimensional (3-D) integration systems [4]. Among all the WPT technologies, magnetic

resonance coupling (MRC) method is the one that offers better performances in terms of transfer distance

and efficiency. In particular, previous authors have experimentally shown that efficiency of MRC-WPT is

still reasonable even if transfer distances is slightly less than 10 times the radius of the coils [5], [6].

In the past years, an analytical formula has been presented that allows to predict the magnetic coupling

of two co-axial circular pancake coils [9]. However, the derived expression for the mutual inductance has

the disadvantage of being in integral form and, what is more, of being tailored to the quasi-static frequency

range only. As such, it can be used only if the effects of the displacement currents are negligible. Hence,

when the operating frequency exceeds a few tens of MHz, like in ISM Band applications, the overall size

of the whole two-coil system may not be any longer small enough for electromagnetic retardation to have

negligible effect on the field distribution, and the quasi-static approximation fails.

The scope of this work is to derive a series representation for the mutual inductance of two co-axial

pancake coils, which is valid in both the quasi-static and non-quasi-static frequency ranges of the two-coil

system, provided that the current in the source coil may be assumed to be uniformly distributed. This

occurs up to the frequency at which the length of the wire that constitutes the coil is approximately

one third of the free-space wavelength [10]. The expression comes from applying the integral form

of Gegenbauer’s addition theorem to the semi-infinite integral representation for the mutual inductance

between two generic turns belonging to distinct coils. This permits to convert the product of Bessel

functions of the integrand into the finite integral of a single Bessel function. Next, the semi-infinite

integration is carried out analytically, and the integrand of the remaining finite integral is expanded into

a power series of the cosine of the integration variable. This makes it possible to perform term-by-term

analytical integration, and express the mutual inductance as a sum of spherical Hankel functions with
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algebraic coefficients. The obtained formula holds as long as the thin-wire assumption, underlying the

present derivation, is valid. This means that the wire radius must be far smaller than the radii of the turns

that constitute the pancake coils. The advantages of the derived expression in terms of accuracy and time

cost are illustrated through numerical examples.

II. THEORY

Consider two thin-wire air-cored coaxial pancake coils separated by the distance d, as shown in Fig. 1.

If we denote by ai (i = 1, . . . , Na) the radii of the turns of the lower coil, and by bj (j = 1, . . . , Nb) the

radii of the turns of the upper coil, the flux linkage per unit current between the coils may be expressed

as

Mtot=
Na
∑

i=1

Nb
∑

j=1

M(ai, bj), (1)

where M(a, b) is the mutual inductance of two generic turns with radii a and b.
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Fig. 1: Sketch of two coaxial pancake coils.

The purpose of this section is to exactly evaluate the complete integral representation for M(a, b), given

by [9]

M(a, b) = πµ0ab
∫

∞

0

e−u0d

u0

J1(kρa) J1(kρb)kρ dkρ, (2)

being Jν(·) the νth-order Bessel function, and

u0=
√

k2
ρ − k2

0, k2
0=ω2µ0ǫ0, (3)

where µ0 and ǫ0 are, respectively, the magnetic permeability and dielectric permittivity of free space. To

accomplish this task, we first use the relation [11, 11.41.17]

J1(kρa) J1(kρb)=
1

π

∫ π

0
J0(kρq) cosφ dφ, (4)

with

q=
√

a2 + b2 − 2ab cosφ, (5)
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so as to express (2) as

M(a, b)=µ0ab
∫ π

0
cosφ

[

∫

∞

0

e−u0d

u0

J0 (kρq) kρdkρ

]

dφ. (6)

Sommerfeld Identity can now be applied to the evaluation of the improper integral within the square

brackets of (6). It reads [12, p. 9, no. 24]

∫

∞

0

e−u0d

u0

J0(kρq)kρdkρ =
e−jk0

√
q2+d2

√
q2 + d2

= − jk0h
(2)
0

(

k0
√

q2 + d2
)

, (7)

where h
(2)
l (ξ) is the lth-order spherical Hankel function of the second kind, and (7) is thus turned into

M(a, b)=− jµ0k0ab
∫ π

0
g0

(

k0
√

q2 + d2
)

cosφ dφ. (8)

with

gn (ξ) =
h(2)
n (ξ)

ξn
. (9)

Upon setting

r2=a2 + b2 + d2, (10)

equation (8) may be rewritten as

M(a, b)=− jµ0k0ab
∫ π

0
g0
(

k0
√
r2 + τ

)

cosφ dφ, (11)

being τ = −2ab cosφ, and the analytical evaluation of the finite integral may be carried out once g0, seen

as a function of τ , is replaced with its Maclaurin expansion. It yields [13]

g0
(

k0
√
r2 + τ

)

=
∞
∑

n=0

1

n!

(

−k2
0τ

2

)n

gn (k0r) , (12)

and (8) becomes

M(a, b)=− jµ0k0ab
∞
∑

n=0

(k2
0ab)

n

n!
gn (k0r)

∫ π

0
cosn+1 φ dφ. (13)

Finally, use the tabulated result [14, 2.512.2-2.512.3]

∫ π

0
cosn+1 φ=











π n!! /(n+ 1)!!, odd n

0, even n
(14)

makes it possible to obtain

M(a, b)=− jπµ0k0ab
∞
∑

l=0

1

22l+1l!(l + 1)!

(

k0ab

r

)2l+1

h
(2)
2l+1 (k0r) , (15)

where account has been taken of (9). A simplified expression for M(a, b) may be obtained under the

small-loop assumption, that is by setting a→0 and b→0. This means retaining only the first term (l=0)

of the sum in (15), and letting r→d. It yields

M(a, b)=− jπµ0 (k0ab)
2

2d
h
(2)
1 (k0d) , (16)
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and, after substituting the following identity [15]–[19]

h
(2)
l (k0d)=jl+1 e

−jk0d

k0d

l
∑

i=0

(l + i)!

i!(l − i)!
(2jk0d)

−i , (17)

one obtains

M(a, b)=
jπµ0k0

2

(

ab

d

)2 (

1 +
1

jk0d

)

e−jk0d. (18)

III. NUMERICAL RESULTS

As validation, the developed theory is applied to the computation of the amplitude of the mutual

inductance between two coils made up of three turns, with radii a1=b1=4 cm, a2=b2=6 cm, and a3=b3=8
cm. At first, the coil-to-coil spacing is assumed to be d=10 cm, and the inductance is computed against

frequency by using (1) in conjunction with (15), numerical integration of (2), and the well-known quasi-

static solution in terms of complete Elliptic Integrals in [9]. In particular, numerical integration is performed

by applying a G7-K15 Gauss-Kronrod quadrature scheme, arising from combining a 7-point Gauss rule

with a 15-point Kronrod rule, while (15) is truncated at the index L, which is taken as a parameter.

The obtained results, depicted in Fig. 2, point out how the outcomes from the G7-K15 scheme perfectly

agree with those resulting from (15) with L=4. Instead, the quasi-static formula does not depend on

frequency and, as a consequence, can generate accurate results only in the low-frequency range, up to

less than 10 MHz. Thereinafter, the whole two-coil system enters its non-quasi-static frequency region,

where the effects of the displacement currents cease to be negligible. Thus, starting from about 10 MHz

the system is no longer small enough for electromagnetic retardation to have negligible effect on the field

distribution. A glance at the curves plotted in Fig. 2 also allows to conclude that expression (15) for the
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Fig. 2: Mutual inductance between two pancake coils separated by the distance d=10 cm, calculated

versus frequency.

mutual inductance converges to the exact solution regardless of the operating frequency. Thus, if M is
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the exact value of the inductance at a given frequency, and {ML} is the sequence of partial sums that

originates from truncating (15) at the index L, it holds [20]

lim
L→∞

|ML+1 −M |
|ML −M |δ =c, (19)

where δ ≥ 1 and c are, respectively, the order of convergence (OC) and the asymptotic error constant

(AEC), which give information on the rate of convergence of {ML}. Estimates of δ and c may be obtained

by taking the limits of the sequences [20]

δL=
log (|ML+1 −ML|/|ML −ML−1|)
log (|ML −ML−1|/|ML−1 −ML−2|)

, (20)

cL=
|ML+1 −ML|
|ML −ML−1|δL

, (21)

as L→∞. As an example, Table I shows the values of δL and cL when L is comprised between 5 and

9, calculated for the considered geometrical configuration at the operating frequency of 30 MHz. As

TABLE I: Estimated OC and AEC for

the sequence {ML}.

L δL cL

5 0.955 0.462

6 0.971 0.424

7 0.986 0.415

8 0.990 0.388

9 0.992 0.372

TABLE II: CPU time comparisons for the computa-

tion of M .

Approach average CPU time [s] Speed-Up

G7-K15 scheme 1.69 -

(15) with L = 2 3.49 · 10−6
4.84 · 105

(15) with L = 4 4.58 · 10−5
3.69 · 104

(15) with L = 6 7.26 · 10−4
2.33 · 103

(15) with L = 10 8.12 · 10−2
20.8

can be observed, as L is increased the estimate δL of the order of convergence approaches unity, thus

suggesting that the sequence of partial sums in (15) converges linearly. In addition, the small value of

the asymptotic error constant contributes to accelerate the convergence of the proposed solution, since it

implies a significant reduction of the remainder M−ML at any further iteration of the sequence {ML}.

Accuracy being equal, use of (15) in place of Gauss-Kronrod scheme allows to reduce significantly the

computation time. This aspect is illustrated by Table II, which shows the average CPU time taken by the

two approaches to calculate the amplitude-frequency spectra of M depicted in Fig. 2. Table II also shows

the ratio of the time taken by numerical integration to that required by (15), that is the speed-up exhibited

by the new method. As is seen, use the new method with L=10 instead of Gauss-Kronrod scheme permits

to reduce the time cost by at least 20 times.

It should be noted that (2) and, as a consequence, the developed theory, is valid subject to the condition

that the current in the source coil is uniform, which, in general, is a reasonable assumption as long as the

total length of the wire that constitutes the coil is less than λ/3, being λ the free-space wavelength [10].

This implies an upper limit on the frequency range of validity of (15), which, however, is always greater

than the limit of validity of the quasi-static field assumption underlying the previously published approach

[9]. This aspect is illustrated in Fig. 3, which depicts profiles of the amplitude of M as a function of

the total wire length ltot of the source coil, expressed in free-space wavelengths. The curves have been

obtained by using (15), Gauss-Kronrod integration of (2) and the quasi-static approach, assuming the

same two-coil system as in the preceding example. Three distinct values for the coil-to-coil spacing d
are considered. As is evident from the data in Fig. 3, the exact curve arising from (15) and numerical

integration of (2) starts to deviate from the quasi-static trend when ltot∼=0.02λ, that is well before the

failure of the assumption of electrically small coil. The plotted curves also point out that the upper
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Fig. 3: Mutual inductance between two pancake coils against the total wire length ltot, expressed in

free-space wavelengths. Three different values for the coil-to-coil spacing are considered.

frequency limit of validity of the quasi-static assumption decreases as the distance d between the coils is

increased. This is expected since, as d is increased, the frequency at which λ becomes comparable to it

diminishes. The effect of changing d on the accuracy of the quasi-static solution may better understood

by taking a glance at Fig. 4, which depicts d−profiles of |M | arising from both the solution in [9] and

(15). The geometrical configuration is still the same as in the previous examples, and different operating

frequencies are considered. As is noticed, for small values of d the results from the quasi-static approach

and (15) are overlapping, regardless of the operating frequency. Conversely, as the distance d grows up,

the exact solution becomes more and more sensitive to frequency changes, and the discrepancy between

any exact curve and the quasi-static trend becomes more and more pronounced. Since the data in Fig. 4

are in logarithmic scale, this implies that

log
|M(15)|
|Mqs|

=g (d) , (22)

where g (d) is an increasing function of d. Equation (22) makes it possible to acquire information on the

relative error ǫR arising from using the quasi-static approach instead of the proposed one. In fact, from

(22) it is found that

ǫR=
|M(15)| − |Mqs|

|M(15)|
=1− 10−g(d), (23)

which suggests us that the percent relative error generated by the quasi-static approach asymptotically

approaches 100% as d grows up. This conclusion is confirmed by Fig. 5, which shows plots of the relative

error against d, with the operating frequency taken as a parameter. As is seen, the slopes of the error

curves are steepest for low values of d, and dramatically reduce as d is increased. Finally, they tend

asymptotically to zero as soon as the error approaches unity.

IV. CONCLUSION

In this work, a series solution for the mutual inductance of two co-axial pancake coils is presented.

Gegenbauer addition theorem and term-by-term analytical integration allow to express the mutual induc-



7

10
-11

10
-10

10
-9

10
-8

10
-7

 20  40  60  80  100  120  140  160  180  200

A
m

p
lit

u
d

e
 o

f 
M

 (
H

)

d  (cm)

quasi-static
(15) - 10 MHz
(15) - 40 MHz
(15) - 80 MHz

(15) - 100 MHz

Fig. 4: Mutual inductance between two pancake coils against the axial distance d, calculated by taking

the operating frequency as a parameter.
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Fig. 5: Relative error of the quasi-static approximation as compared to (15), computed against d.

tance between two generic turns belonging to distinct coils as a sum of spherical Hankel functions with

algebraic coefficients. Numerical tests are performed to confirm the accuracy of the proposed formula,

and to illustrate its advantages in terms of computation time over standard numerical techniques that may

be used to calculate the mutual inductance.
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