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NUMERICAL INVERSE LAPLACE TRANSFORM

FOR CONVECTION-DIFFUSION EQUATIONS

NICOLA GUGLIELMI, MARÍA LÓPEZ-FERNÁNDEZ, AND GIANCARLO NINO

Abstract. In this paper a novel contour integral method is proposed for
linear convection-diffusion equations. The method is based on the inversion
of the Laplace transform and makes use of a contour given by an elliptic
arc joined symmetrically to two half-lines. The trapezoidal rule is the chosen
integration method for the numerical inversion of the Laplace transform, due to
its well-known fast convergence properties when applied to analytic functions.
Error estimates are provided as well as careful indications about the choice

of several involved parameters. The method selects the elliptic arc in the
integration contour by an algorithmic strategy based on the computation of
pseudospectral level sets of the discretized differential operator. In this sense
the method is general and can be applied to any linear convection-diffusion
equation without knowing any a priori information about its pseudospectral
geometry. Numerical experiments performed on the Black–Scholes (1D) and
Heston (2D) equations show that the method is competitive with other contour
integral methods available in the literature.

1. Introduction

We consider the time discretization of initial value problems for linear systems
of ODEs:

(1)
∂u

∂t
= Au+ b(t), u(0) = u0,

for t > 0, A a discrete version of an elliptic operator, and b a source term including
possibly boundary contributions. The solution u will thus be a time-dependent
vector, of dimension equal to the number of degrees of freedom in the spatial semi-
discretization of the reference problem. We are particularly interested in equations
arising in mathematical finance, such as Black–Scholes, Heston or Heston–Hull–
White equations [2, 5, 6].

Classical methods to approximate the solution u(t) to (1) include Runge–Kutta
and multistep integrators. Also splitting schemes, like ADI methods, have been
proposed to solve the continuous reference problem; see for example [7–10] for the
Heston equation. All these methods are of time-stepping type, and thus, in order
to approximate the solution at a certain time tn, approximations at certain smaller
times 0 < t1 < t2 < · · · < tn must be previously computed. For large times or high
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accuracy requirements this procedure can be extremely demanding in terms of CPU
time. An alternative to time-stepping methods to compute the solution at (a few)
given times, large or not, can be derived based on the Laplace transform and its
numerical inversion. This approach has been successfully developed in [4,14,15,18]
for linear evolutionary problems governed by a sectorial operator, this is, assuming
that A in (1) has a bounded resolvent outside a certain acute sector in the complex
half-plane {z ∈ C | Re(z) ≤ α}, for some α ∈ R. The magnitude of the resolvent

norm
∥∥∥(zI −A)

−1
∥∥∥ deeply impacts on the rate of convergence of the method. For

this reason, the integration contour must be chosen according to the pseudospectral
geometry of A. In particular, if A is nonnormal the pseudospectral geometry of A
can be difficult to estimate [20]. The spatial discretization of a convection-diffusion
operator typically leads to a nonnormal matrix [11, 17, 22]. In the present paper
we propose a novel contour integral method for (1), which includes a preliminary
study of the pseudospectral level curves of A.

In what follows we will assume that both the resolvent of A and the Laplace
transform of the source term b(t) exist, are available, and admit a bounded analytic
extension to a certain sector arg z < π − δ, for some 0 < δ < π

2 . The case of
more general sources is out of the scope of the present manuscript but has been
considered in the literature [18]. Notice also [13], where the inversion method for
the Laplace transform in [15] is used to derive a fast implementation of implicit
Runge–Kutta schemes applied to solve (1) at a required final time, allowing for
rather general inhomogeneity b. In the present paper we restrict our attention
to the direct application of the Laplace transform method to (1) and thus make
stronger hypotheses about b. In this way, we can apply the (unilateral) Laplace

transform L : f �→ f̂(z) :=
∫ +∞
0

e−ztf(t) dt to both the sides of the system in (1),
which leads to the following algebraic equation for û = L(u):

(2) û(z) = (zI −A)−1
(
u0 + b̂(z)

)
,

where b̂ = L(b) and I stands for the identity matrix. The inversion formula for the
Laplace transform provides the following representation of the unknown function
u:

(3) u(t) =
1

2πi

∫
G
eztû(z) dz,

where due to our hypotheses the integration contour G can be chosen as a defor-
mation of the vertical Bromwich contour, in such a way that it runs from −i∞ to
+i∞ and lays to the right of the singularities of û. These are the eigenvalues of

A and all possible singularities of b̂. The discretization of (3) by some quadrature
rule will provide an approximation of u(t), for a given t.

Under similar hypotheses about û(z), several authors have proposed different
contour profiles and parameterizations for G. The trapezoidal rule has then been
applied to discretize the resulting integrals (see, e.g., [21]). Probably the first rel-
evant reference is [19], where the author analyzes a cotangent mapping with hori-
zontal asymptotes. Much more recently, the cotangent contour have been improved
in [3]. Alternatively hyperbolic contours have been considered in [4,14,15,18], with
a focus on evolutionary problems governed by sectorial operators, whereas in [22] a
parabolic profile for G is chosen. In all these references, the resulting scheme con-
verges with spectral accuracy, with different rates of convergence according to the
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particular application and the range of times at which the inverse Laplace transform
is required. An application of the parabolic contour to solve precisely Black–Scholes
and Heston equations is studied in [11]. All these methods require in practice some
a priori knowledge of the pseudospectral geometry of A. This information is not
always analytically available, as is the case of Heston’s equation. In the present
work we combine a preliminary numerical investigation of the pseudospectral level
sets of A with the efficient inversion of the Laplace transform. The shape of the
observed pseudospectral level curves leads us to specifically choose the integration
contour G to be a section of an ellipse. Parabolic or hyperbolic contours can also
be improved from knowledge of the pseudospectrum of A which implies a recompu-
tation of their parametrization (according to the points outlined in Sections 3–4).
Preliminary experimental results and analysis with parabolic contours lead to very
similar results to the ones shown in Section 5.

Apart from being able to deal with more general problems than those considered
in [11, 15, 22], our new method enjoys the following important advantages:

(1) It provides an approximation within a prescribed target accuracy tol by
dynamically increasing the number of quadrature points on the integration
contour, without changing the integration profile and taking advantage of
previous computations. This feature is a novelty of our method compared
to the quoted alternatives in the literature, where the integration contour
depends on the number of quadrature nodes.

(2) It is able to approximate the solution of (1) uniformly for t belonging to
large time windows. A careful analysis of this property has only been
provided in [15].

(3) Round-off errors are controlled in a robust and systematic way. A care-
ful analysis of this property has only been provided in [15], although our
approach here is different

(4) Like all methods based on the numerical inversion of the Laplace transform
to solve (1), our method is highly parallellizable, it provides an approxima-
tion of the solution u to (1) at a desired time (or time window) without
computing any history, and its performance is not affected by the lack of
regularity (in space) of the initial data u0 in (1).

The article is organized as follows. In Section 2 we describe our integration
contour G and review the error estimate for the trapezoidal rule when applied to
exponentially decaying integrands. In Section 3 our new method is fully described
and analyzed. In Section 4 we provide details about the practical implementation
and the computational cost. In Section 5, after a first illustrative application of
the method to a canonical convection-diffusion equation, we test the method on
Black–Scholes and Heston equations. In Section 6 we compare our new method
with the methods in [11] and [15]. Finally, in Section 7 we extend our algorithm
to approximate the solution u(t) for t in a time window [t0, t1] by using a unique
integration contour.

2. Integration contour and the trapezoidal rule

We propose a contour G in (3) which is the union of two half-lines connected
with an open arc of an ellipse as shown in Figure 1.
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Figure 1. Shape of the general integration profile G

In particular, G is defined as {z(x) : x ∈ (−∞,∞)}, with

(4) z(x) =

⎧⎪⎨
⎪⎩

�1(x), x ∈
[
−∞,−π

2

]
,

Γ(x), x ∈
[
−π

2 ,
π
2

]
,

�2(x) , x ∈
[
π
2 ,+∞

]
,

where, for constant parameters A1, A2, A3 to be determined,

Γ(x) = A1 cosx+ iA2 sin x+A3

parametrizes the elliptic arc and

�1(x) = A3+x+
π

2
−i

(
A2 − d

(
x+

π

2

))
, �2(x) = A3−x+

π

2
+i

(
A2 + d

(
x− π

2

))

parametrize the half-lines.
We recall that the constants in the parametrization must be chosen so that the

resulting contour G leaves to its left the spectrum of A and the singularities of b̂.
There is quite some freedom in the choice of the two half-lines, as long as their real
part goes to minus infinity as z → ∞. Actually, the contribution of the half-lines
to the contour integral is expected to be small and will be neglected in practice, as
we explain in Subsection 3.3.

We will apply the classical trapezoidal rule to approximate (3), after parametriza-
tion by (4). This leads to approximate an integral of the form

(5) I =

∫ ξ

−ξ

F (x) dx,

for some 0 < ξ < π/2 and with F satisfying the properties listed in Assumption 1
below.
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Assumption 1. The complex extension of the integrand function F in (5) satisfies
the following properties:

For some a > 0

(1) F (w) (w ∈ C) is analytic and bounded inside the strip [−π/2, π/2] ×
[−ia, ia].

(2) |F (w)| = |F (−w)| inside the strip [−π/2, π/2]× [−ia, ia].

(3) ∃η0 > 0 (η0 < ξ) and ∃B± > 0 such that ∀η ≤ η0 one has that

|F (x± ia)| ≤ B± ∀x ∈ [−ξ − η, ξ + η] .

(4) For the same η0 of the previous point, ∃S± > 0 such that ∀η ≤ η0

|F (x± ia)| ≤ S± ∀x ∈
[
−π

2
,−ξ − η

]
∪
[
ξ + η,

π

2

]
.

(5) ∀x ∈ R such that |x| ≥ ξ, one has |F (x)| ≤ θ, for a certain θ > 0.

Under these hypotheses it is possible to prove the following theorem.

Theorem 1. Consider the integral I in (5), N ≥ 1, and the discretization of I by
the quadrature formula

IN =
2ξ

N

N−1∑
j=1

F (xj) with xj = −ξ + j
2ξ

N
, j = 1, . . . , N − 1.

Assume that F satisfies Assumption 1 and take η = ξ/N . Then

|I − IN | ≤ 2(ξ + η) (B+ +B−) + 2 (π/2− δ − ξ − η) (S+ + S−)

e
aπN

ξ − 1
(6)

+4
(π
2
− ξ +

η

2

)
θ + 4

ξ log 2

Nπ
max

w∈[−a,a]
|F (−π/2 + δ + iw)| ,

with

(7) δ = π/2− (2k + 1)η − ξ , k =

⌊(π
2
− ξ − η

) 1

2η

⌋
.

Proof. The proof is a variant of the one in [1, Appendix] and the one in [12].
We consider the rectangle R = [−ξ − η, ξ + η] × [−ia, ia] and call Γ1 the union

of its horizontal sides, and Γ2 and Γ3 its vertical left and right sides, respectively
(see Figure 2). Consider the integral

Ĩ =

∫ ξ+η

−ξ−η

F (x) dx .

We have

(8)
∣∣∣I − Ĩ

∣∣∣ ≤ 2ηθ .

On the one hand, for w ∈ C,

g(w) =

{
− 1

2 , Im(w) > 0 ,

1
2 , Im(w) ≤ 0 ,

it follows that

Ĩ =

∫
∂R

g(w)F (w) dw .
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Figure 2. The rectangle R

On the other hand, define

ĨN =
2ξ

N

N∑
j=0

F (xj) , xj = −ξ +
2ξj

N
, j = 0, . . . , N .

One has ∣∣∣IN − ĨN

∣∣∣ ≤ 4ξ

N
θ = 4ηθ .

The function

m(w) :=
1

2

1 + e−i (w+ξ)Nπ
ξ

1− e−i (w+ξ)Nπ
ξ

satisfies by the residue theorem

ĨN =

∫
∂R

m(w)F (w) dw .

Observe that

errN = |I − IN | ≤
∣∣∣I − Ĩ

∣∣∣+ ∣∣∣Ĩ − ĨN

∣∣∣+ ∣∣∣ĨN − IN

∣∣∣ .
Let us consider

Ĩ− ĨN =

∫
∂R

(g(w)−m(w))F (w) dw=

(∫
Γ1

+

∫
Γ3

−
∫
Γ2

)
[(g(w)−m(w))F (w)] dw .

We estimate

(9)

∣∣∣∣
∫
Γ1

(g(w)−m(w))F (w) dw

∣∣∣∣ ≤ 2(ξ + η) (B+ +B−)

e
aπN

ξ − 1
.

We estimate the integrals over Γ2,Γ3. Take the rectangleR
L = [−π/2 + δ,−ξ − η]×

[−ia, ia] and call Γ5 its left vertical side and Γ4 the union of its horizontal sides.
We define δ as in the statement of the theorem, so that [−π/2 + δ,−ξ − η] is the
largest segment with length an even multiple of η. We have that

errLN :=

∫ −ξ−η

−π
2 +δ

F (x) dx− 2ξ

N

k∑
j=1

F (ηj) =

∫
∂RL

(g(w)−m(w))F (w) dw ,
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with ηj = −ξ − 2ξj
N , j = 1, . . . , k. In other words, errLN is the error of the same

trapezoidal quadrature rule applied on the integral on the interval [−π/2+δ,−ξ−η]
with the same spacing 2ξ/N . In this way, we get∫

Γ2

(g(w)−m(w))F (w) dw = errLN +

(
−

∫
Γ4

+

∫
Γ5

)
[(g(w)−m(w))F (w) dw] .

On the one hand, we estimate (with w = x+ iy)

(10)

∣∣∣∣
∫
Γ4

(g(w)−m(w))F (w) dw

∣∣∣∣ ≤ (π/2− δ − ξ − η) (S+ + S−)

e
aπN

ξ − 1
.

On the other hand, we estimate∣∣∣∣
∫
Γ5

(g(w)−m(w))F (w) dw

∣∣∣∣
≤

∫ a

−a

|(g(−π/2 + δ + iy)−m(−π/2 + δ + iy))F (−π/2 + δ + iy) dy|

≤ max
y∈[−a,a]

|F (−π/2 + δ + iy)|
∫ a

−a

|g(−π/2 + δ + iy)−m(−π/2 + δ + iy)| dy

and ∫ a

−a

|g(−π/2 + δ + iy)−m(−π/2 + δ + iy)| dy = 2

∫ a

0

1

1 + e
πwN

ξ

dy

≤ 2

∫ +∞

0

1

1 + e
πwN

ξ

dy =
2 log 2

π

ξ

N
,

so that

(11)

∣∣∣∣
∫
Γ5

(g(w)−m(w))F (w) dw

∣∣∣∣ ≤ max
y∈[−a,a]

|F (−π/2 + δ + iy)| 2 log 2
π

ξ

N
.

We finally obtain

∣∣errLN ∣∣ =
∣∣∣∣∣∣
∫ −ξ−η

−π
2 +δ

F (x) dx− 2ξ

N

k∑
j=1

F (ηj)

∣∣∣∣∣∣(12)

≤
∫ −ξ−η

−π
2 +δ

|F (x)| dx+
2ξ

N

k∑
j=1

|F (ηj)| ≤ 2θ
(π
2
− ξ − η

)
.

By point (2) in Assumption 1, the integral over Γ3 can be estimated in the same
way. The combination of estimates (8), (9), (10), (11), and (12) yields the stated
result. �

Remark 1. Observe that δ is defined in such a way that the segment [−π/2 + δ,−ξ]
is the largest one whose length is an odd multiple of η. This means that δ < 2η.

3. A new method

The only portion of the integration contour G as defined in (4) that we will use
in practice is the half ellipse. This elliptical profile is selected by constructing a
suitable conformal mapping z : [−π, π]× [−ia, ia] → C. This is analogous to what
is done in [11, 14, 15], where parabolas or hyperbolas of integration are defined by
some conformal mapping. In particular, we want to map horizontal segments onto
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ellipses in the complex plane (we will use the right half of these ellipses). Thus we
set

(13) z(x+ iy) = A1(y) cosx+ iA2(y) sinx+A3(y) .

We ask (13) to be holomorphic and impose the Cauchy–Riemann equations, getting
that A3 has to be constant and

A1(y) = a1e
y + a2e

−y,(14)

A2(y) = a2e
−y − a1e

y,

where a1, a2 are constants. The resulting mapping turns out to be entire, since
the partial derivatives of both the real and the imaginary parts are everywhere
continuous. It is thus invertible and the complex derivative cannot be zero.

The core idea of using the mapping (13) is to let y vary in the segment [−a, a],
for a suitable a, while the integrand function

(15) G(w) = ez(w)t (z(w)I −A)−1
(
u0 + b̂(z(w))

)
z′(w)

stays bounded for every w = x + iy, x ∈ [−π/2, π/2], y ∈ [−a, a]. In particular,
we will use the mapping (13) to efficiently bound the exponential term ez(w)t and

the norm of the resolvent (z(w)I − A)−1. We are doing this by constructing two
external half ellipses Γ+,Γ− delimiting the part of the complex plane where the
integrand is bounded. The mapping (13) is required to map the segment from
(−π/2,−ia) to (π/2,−ia) onto Γ− and the segment from (−π/2, ia) to (π/2, ia)
onto Γ+. Then, we will use as the integration profile Γ the image of the real
interval [−π/2, π/2]. In formulas, the actual profile of integration that we use is
parameterized as

(16) Γ : x �→ (a1 + a2) cosx+ i(a2 − a1) sinx+A3, x ∈
[
−π

2
,
π

2

]
.

In Figure 3 we show how z maps the horizontal strip [−π/2, π/2]× [−a, a] into
the region limited by Γ+ and Γ−.

Let us focus first on the resolvent. In order to bound it, we will use a half-ellipse
whose construction is described in Section 4.1. For the moment, we will resume its
technical features (that we will use to prove the final error estimate) in the following
assumptions.

Figure 3. Action of the conformal mapping z(w): it transforms
horizontal segments in the complex plane (left) into ellipses (right).
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Assumption 2. Assume that the matrix A and the time t > 0 are fixed. We
assume that an ellipse Γ̃ of center zl ∈ R, axis along the coordinate directions, and
right intersection with the real axis zr is given in such a way that:

(1) its right half, that from now on we call Γ+, leaves to its left the spectrum

of A, σ(A), and the set of the singularities of the function b̂;
(2) ezlt < ε, ε being the working precision.

Assumption 2.2 ensures that the integration ellipse (whose center will be zl as
well) is extended enough in the left half complex plane to make the values of the
integrand function in (15) negligible when evaluated for points z on the ellipse of
integration with �(z) ≈ zl. Basically the integrand function is “almost supported”
in the half ellipse of integration.

Γ+ is uniquely defined by zl, zr and the length of its vertical semiaxis Sv.
In general, an ellipse satisfying Assumption 2 for a given matrix A and vector

b̂ is not known a priori. Assume that a closed curve C surrounding the spectrum

of A and the possible singularities of b̂ is known. Moreover, we assume that C
encloses the portion of the complex plane where the resolvent norm

∥∥∥(zI − A)−1
∥∥∥

is large. Based on C, a general algorithmic strategy for numerically computing
Γ+ is proposed in Section 4.1. Since for a general matrix A we do not have any
information about its pseudospectral geometry, we approximate C by using eigtool
[23]. The construction is general and does not require any a priori information about
the spectral behaviour of A. Moreover, for the applications under consideration we
show that a low resolution when approximating C might be enough for our purposes;
see Section 4.2. Notice that if more information about the pseudospectral behaviour
of A is available, the use of eigtool can be avoided.

Once Γ+ is given, we want (13) to map the segment [−π/2 + ia, π/2 + ia], for
an a to be fixed, onto Γ+. Imposing the ellipse z(·+ia) to be centred at zl, to pass
through the point zr, and to have vertical semiaxis of length Sv, we get

(17) a1e
a + a2e

−a = zr − zl, a2e
−a − a1e

a = Sv, A3 = zl.

Solving (17) for a1, a2, A3 we get

a1 =
e−a

2
(zr − zl − Sv) ,(18)

a2 =
ea

2
(zr − zl + Sv) ,(19)

A3 = zl,(20)

which only depend on the real parameter a.

3.1. Quadrature error estimates for the new integration contour. Assume
we are interested in approximating the unknown function u up to a certain precision
that we call tol. Because of the presence of the exponential, we expect the integrand
function G (15) to become smaller in modulus as z moves from the right to the left
on the profile of integration. For this reason, we would like to truncate the integral
once the function |G| reaches the value tol. The motivation for fixing zl as in point
(2) of Assumption 2 is that we are assuming that the center of the half ellipse Γ+

(that is, also the center of the integration ellipse Γ) is negative enough to make
the integrand function close to the working precision at z(π/2). In this way, for
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every tol greater than the working precision, we can efficiently use the half-ellipse
of integration Γ in order to recover approximations of the solution of order tol. In
practice, we assume that there exists a truncation parameter c ∈]0, 1/2[, defined as

(21) |G(cπ)| = tol .

The integrand we want to approximate is

I =

∫ cπ

−cπ

G(x) dx = u(t) +O(tol).

In other words, we are neglecting not only the two half-lines of profile (4), but also
the contribution to the integral coming from the portions of the ellipse parameter-
ized in the intervals [−π/2,−cπ] and [cπ, π/2], as on these intervals the modulus
of the integrand function is expected to be lower than the precision tol because
of the rapidly decaying behaviour of the exponential. Applying the trapezoidal
quadrature rule to I, we get the sum

IN =
c

iN

N−1∑
j=1

ez(xj)t (z(xj)I −A)−1
(
u0 + b̂(z(xj))

)
z′(xj) , xj = −cπ + j

2cπ

N
.

We remark that, since the profile of integration is symmetric w.r.t. the real axis

and A ∈ Rn×n, if b̂(z) = b̂(z) the quadrature sum can be simplified to
(22)

IN =
2c

N
Im

⎛
⎜⎝

N−1∑’

j=N
2 �

ez(xj)t(z(xj)I−A)−1
(
u0+b̂(z(xj))

)
z′(xj)

⎞
⎟⎠, xj=−cπ+j

2cπ

N
,

where the symbol
∑’

indicates that the term for j =
⌈
N
2

⌉
(xj = 0) is halved for N

even.
From Theorem 1 we get the follow ing result.

Theorem 2. Assume that the function (15) is analytic and bounded on the rec-
tangle

[
−π

2 ,
π
2

]
× [−ia, ia] for a certain a > 0, with z(w) = (a1 + a2) cosw +

i (a2 − a1) sinw + A3 and a1, a2, A3 given by (18), (19), (20). Assume, moreover,
that the ellipse of integration has foci on the real axis. Set

M+=
1

2π
max

x∈[−π/2,π/2]

∣∣∣ez(x+ia)t (z(x+ ia)I −A)
−1

(
u0+b̂ (z(x+ ia))

)
z′(x+ ia)

∣∣∣,
(23)

M−=
1

2π
max

|x|∈[0,cπ+cπ/N ]

∣∣∣ez(x−ia)t (z(x− ia)I −A)−1
(
u0+b̂ (z(!−ia))

)
z′(x− ia)

∣∣∣,
(24)

S−=
1

2π
max

|x|∈[cπ+cπ/N,π/2]

∣∣∣ez(x−ia)t (z(x− ia)I−A)
−1

(
u0+b̂ (z(x−ia))

)
z′(x−ia)

∣∣∣.
(25)

Finally, we assume that the integrand function |G(w)| ≤ tol for all w ∈ [−π/2,−cπ]
∪ [cπ, π/2] and take N large enough s.t. c(1 + 1/N) < 1/2. Then the quadrature
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error can be estimated by

errN := |I − IN | ≤
2πc

(
1 + 1

N

)
M− + 2(π/2− cπ − cπ/N)S− + πM+

e
a
c N − 1

+4
(π
2
− cπ +

cπ

2N

)
tol +Δ

2c log 2

Nπ
e((a1e

−a+a2e
a) cos(π/2−δ)+A3)t(26)

with ‖û (z(π/2− δ ± ia)) z′(π/2− δ ± ia)‖ ≤ Δ and δ given by (7) (with ξ = cπ).

Proof. The result follows immediately from Theorem 1 with ξ = cπ. Following the
notation of Theorem 1, we set B+ = S+ = M+ and B− = M−. In particular,
we observe that F (w) = ez(w)tû(z(w))z′(w) satisfies Assumption 1. Now, let us
estimate |F (π/2− δ + iy)| for y ∈ [−a, a]. We have∣∣∣ez(π/2−δ+iy)tû (z (π/2−δ+iy)) z′ (π/2−δ+iy)

∣∣∣≤Δe((a1e
y+a2e

−y) cos(π/2−δ)+A3)t.

We observe that, from the hypothesis that both the foci are real, the horizontal semi-
axis of the ellipse is longer than the vertical one, and so a1 + a2 > a2 − a1. Then
a1 is positive and so is a2 (as from its definition in (19)). So, it is straightforward
to prove that the maximum of the exponential is attained for y = −a. Indeed,
consider the function f(y) = a1e

y + a2e
−y. Its derivative is f ′(y) = a1e

y − a2e
−y

and it is positive if and only if
e2y >

a2
a1

.

Recalling (18), (19) this reads as
e2y > Ce2a,

where C = zr−zl+r/ sin ỹ
zr−zl−r/ sin ỹ > 1. Then, f is increasing if and only if y > a+ logC

2 and,

since y ∈ [−a, a], f attains its maximum for y = −a. �
Remark 2. In considering the term

(27) B =
2c log 2

Nπ
e((a1e

−a+a2e
a) cos(π/2−δ)+A3)t,

we have that for δ ≤ 2cπ/N , cos(π/2 − δ) → 0 for N → ∞. Moreover, as from
equation (20), A3 is chosen in order to have eA3t smaller than the working precision.
In the end, we expect B to be much smaller than tol, at least for N large enough.
In practice, B is very small (and negligible) also for very small values of N . To
show this, we report in the following tables the size of the error B (27) that we
observe in the numerical experiments displayed in Section 5. The term B, which is
computed for N = 5, is much smaller than the accuracy tol in every case.

Black-Scholes
t = 1 t = 10

tol = 5e− 3 1.1431e− 18 tol = 5e− 2 1.5555e− 17
tol = 5e− 6 4.8763e− 18 tol = 5e− 4 3.8418e− 17
tol = 5e− 9 4.1133e− 14 tol = 5e− 6 3.4109e− 14
tol = 5e− 11 1.6566e− 17 tol = 5e− 9 2.0858e− 14

Heston
t = 1 t = 10

tol = 5e− 2 1.5409e− 16 tol = 5e− 2 2.8627e− 16
tol = 5e− 4 3.3070e− 16 tol = 5e− 4 5.7855e− 14
tol = 5e− 6 2.0416e− 16 tol = 5e− 5 1.3791e− 16
tol = 5e− 8 1.5943e− 14 tol = 5e− 6 3.7098e− 12
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Remark 3. It is possible to select a positive ν and consider the trapezoidal rule with
a quadrature step (π+2ν)/M for some natural number M , and to change the proof
of Theorem 1 in order to make B as defined in (27), by evaluating the modulus of
the integrand function along boundary of the rectangle [−π/2, π/2]× [−ia, ia].

In this way, the double exponential appearing in (27) vanishes because of the
multiplication by cos(π/2), and the term B is even smaller. This change will make
the length of the interval used to select the quadrature step dependent on the
number of the nodes, and so it will no longer be possible to double this number
saving the information computed on the previous nodes.

3.2. Selection of the optimal integration contour. Once a is fixed, the profile
of integration Γ is uniquely defined by equations (18), (19), (20). To complete our
construction, we need to ask the exponential part in the integrand G to be bounded
on the external half ellipse Γ− = z ([−π/2, π/2]× {−ia}). We have

eRe(ζ)t ≤ eRe(z(−ia)) ∀ζ ∈ Γ− .

Then, setting z(−ia) = D, being D > 0, we get that

ezt ≤ eDt ∀z ∈ Γ− .

Using (13), (14), (15), we get

(28) a1e
−a + a2e

a +A3 = D

and, recalling equations (18), (19), (20), we get

(29) D =
e−2a

2

(
zr − zl −

r

sin w̃

)
+

e2a

2

(
zr − zl +

r

sin w̃

)
+ zl.

The term D is made dependent on a so that it is not fixed a priori but it results
from the optimization process of the parameter a. The construction summarized by
the equations (18), (19), (20), (29) is still theoretical. In order to have it working,
we need to find a parameter a (and, consequently, the truncation parameter c as
defined in (21)) giving us the actual rate of convergence of the quadrature rule.
We notice that the profile of integration z is given once a is fixed by formulas
(18), (19). The tool we use to make the selection is the estimate (26). In order
to simplify this estimate, we identify a leading term and neglect all the remaining
ones, whose contribution is expected to be smaller. First of all, we notice that
we expect M+ < M− (defined in (23), (24)): this is due to the rapid decaying
property of the exponential part in the integrand function, and, in practice, it
holds in most cases. Moreover, we assume S− � M− (where S− is the one in (25)),
since the exponential ezt is larger for z parameterized in [−cπ, cπ] than the one in
[−π/2,−cπ]∪ [cπ, π/2]. In the end, we neglect the contribution of the term of order
tol (2

(
π
2 − cπ + 2cπ

N

)
tol), and the one of the term B (27) that is expected to be

small (see Remark 2). Finally we simplify the error estimate (26) to

(30) errN ≈ 2πcM−
e

a
c N − 1

.

Recalling (24), we roughly estimate M− ≈ eDt. Since we are interested in the order
of magnitude of M−, the estimate is precise enough for our purposes. In the end,
within the accuracy, the quadrature error is

(31) errN � 2πceDt−a
c N .
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Assuming we seek approximation of u(t) with a prescribed precision tol, we impose
(31) to equal the precision. Solving for N , we compute

(32) N =
c

a

(
Dt− log

(
tol

2πc

))

as the (theoretical) minimum number of quadrature nodes letting us reach the
fixed accuracy. We aim to minimize N in order to make the convergence as fast
as possible. The minimization of the function in (32) appears to be technically
complicated since it depends on two variables (a, c), and the truncation parameter
c depends on the profile of integration by the nonlinear constraint (21). For this
reason, recalling that c ≤ 1/2, we estimate

(33) N =
c

a

(
Dt− log

(
tol

2πc

))
≤ 1

2a

(
Dt− log

(
tol

π

))
.

The best that we can do to minimize N is to minimize the function

(34) f(a) =
1

2a

(
Dt− log

(
tol

π

))
.

We fix an upper bound aM and we seek minimizers of f in the interval [0, aM ]. In
the numerical experiments we use aM = 1. Once the minimizer value a has been
computed, it uniquely defines the profile of integration by formulas (16), (18), (19),
(20). Recall that D is a function of a by formula (29).

3.3. Truncation error. The profile (4) that we use to apply the Bromwich inver-
sion formula is never used in practice: we just use a “small” portion of the ellipse
contained in it. How much this portion is “small” depends on the fixed precision
tol. In practice, we disregard all the points of (4) whose contribution is estimated to
be smaller than tol. We resume the global error analysis in the following theorem.

Theorem 3. Consider the integration profile defined in (4), where the elliptical part
Γ is constructed as in Section 3.2. We denote �1, �2 as in (4), the parametrization
of the two half-lines making part of G, whose slope is assumed to be such that G
encloses all the singularities of the integrand function. Moreover, assume that

‖û(z(x))z′(x)‖ ≤ K� , for z(x) = �1(x) and z(x) = �2(x).

We assume that all the hypotheses of Theorem 2 are satisfied. Then, the total error
of our approximation of (3) is given by

|u(t)− IN | ≤ errN + errT ,

where errN is bounded by (26) and the truncation error errT is bounded by

|errT | ≤ K�
ezlt

πt
+

(
1

2
− c

)
tol

and does not depend on N .

Proof. Recall that we are approximating the integral

1

2πi

∫
G
eztû(z) dz =

1

2πi

∫ ∞

−∞
ez(x)tû(z(x))z′(x) dx,
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with z(x) defined by (4). First of all, we estimate the contribution of the two
half-lines parameterized by the mappings �1 and �2. Choosing �1 as in (4), we have
(35)∣∣∣∣∣ 1

2πi

∫ −π
2

−∞
e(A3+x+π

2 −i(A2−d(x+π
2 )))tû(z(x))z′(x) dx

∣∣∣∣∣≤K�

2π

∫ 0

−∞
eA3t+xt dx=K�

ezlt

2πt
,

with our choice A3 = zl in (17). An analogous bound follows for z(x) = �2(x).
We notice that the same estimate is not valid if we choose the two half-lines to be
vertical.

Next we notice that the only portion of the ellipse that we approximate by using
the quadrature formula (22) is the one parameterized on the interval [−cπ, cπ].
We now estimate the contribution of the other two intervals [−π/2,−cπ], [cπ, π/2].
Recalling that we assume |G(cπ)| = tol and |G(w)| ≤ tol for all w ∈ [−π/2,−cπ] ∪
[cπ, π/2] as in Theorem 2, we have∣∣∣∣∣ 1

2πi

∫ −cπ

−π
2

ez(w)tû(z(w))z′(w) dw

∣∣∣∣∣ ≤ 1

2

(
1

2
− c

)
tol

and analogously for the integral on [cπ, π/2]. In the end the error∣∣∣∣ 1

2πi

∫ cπ

−cπ

ez(w)tû(z(w))z′(w) dw − IN

∣∣∣∣ ,
where IN is defined in (22), is estimated by Theorem 2. The thesis then follows. �

3.4. Stability of the method. One of the most attractive features of the method
is its stability. In particular, we are able to compute the stability constant of the
method.

In practice, we approximate the exact solution u(t) by the linear combination

(36) ĨN =
c

N i

N−1∑
j=1

ez(xj)tûjz
′(xj),

where ûj = û(z(xj)) + ρj and ρj is the error in the numerical solution of the linear
system

(37) (z(xj)I −A) û = u0 + b̂(z(xj)),

for xj our quadrature nodes. We assume that the quadrature nodes xj , the parame-
trization z(x), and its derivative z′(x) are computed exactly. We state the following
result.

Proposition 1. The described method is numerically stable and the stability con-
stant is given by

(38) 2a2c e
(a1+a2+zl)t,

with a1, a2 given by formulas (18), (19).

Proof. The actual error in our computation is given by

˜errN =
∣∣∣u(t)− ĨN

∣∣∣ .
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We can estimate it in the following way:

˜errN =

∣∣∣∣∣∣u(t)−
c

N i

N−1∑
j=1

ez(xj)tûjz
′(xj)

∣∣∣∣∣∣ ≤ errN + errT + errnumN ,

with errN and errT as in Theorem 3 and

errnumN =

∣∣∣∣∣∣
c

N i

N−1∑
j=1

ez(xj)t (û(z(xj))− ûj) z
′(xj)

∣∣∣∣∣∣ .
Recalling that the integration contour Γ is parameterized as z(x) = A1 cosx +
iA2 sinx+A3, with A1 = a1 + a2 , A2 = a2 − a1 positive and A3 = zl, we have

errnumN ≤ c

N

N−1∑
j=1

e(A1 cosxj+A3)t|ρj | |−A1 sin xj +A2i cosxj |

≤ c

N
(|A1|+ |A2|) e(A1+A3)tρN = c (A1 +A2) e

(A1+A3)tρ,

where ρ = maxj |ρj |. �
Remark 4. Given an integration contour Γ it is possible to compute the maximal
precision we can get along Γ depending on the working precision,. First we compute
the condition number of the matrix z(xj)I − A, for a set of xj ∈ [−cπ, cπ]. Then
we use this information to estimate the numerical error ρ introduced when solving
(37). At this point the computation of (38) is straightforward. We can incorporate
this feasibility check in our algorithm, asking the user, in case the required precision
is too high, to adjust the parameter tol by choosing a larger value.

3.5. The approximation of the integrand tail. Once the integration contour
is computed, we need to approximate the truncation parameter c as defined in (21).
Let us recast (21) into the system

KeRe(z(cπ))t = tol,(39)

K =
1

2π
‖û(z(cπ))z′(cπ)‖ .(40)

Observe that, once the profile of integration is fixed, considering its parametrization
z(x) = A1 cosx+ iA2 sin x+A3, from (39) one has

(41) c =
1

π
arccos

(
1

A1t
log

(
tol

K

)
− A3

A1

)
.

We suggest Algorithm 1 to iteratively compute c,K (where prec is the precision we
ask for the constant K).

Algorithm 1: Numerical algorithm for approximating c,K.

Data: K(1) given, K(0) = K(1) − 2prec, j = 0
while

∣∣K(j+1) −K(j)
∣∣ ≥ prec do

c(j) = 1
π arccos

(
1

A1t
log

(
tol
K(j)

)
− A3

A1

)
;

K(j+1) = 1
2π

∥∥û (
z(c(j)π)

)
z′(c(j)π)

∥∥ ;
j = j + 1 ;
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In all our numerical tests we observe that Algorithm 1 converges quickly to the
sought values of c,K. We fix prec = 10−1, and in at most 4−5 iterations Algorithm
1 approximates the constant K with a precision approximately equal to 10−3.

4. Practical implementation and computational cost

4.1. Construction of the inner ellipse Γ+. In the described method, it is crucial
to properly construct the inner ellipse Γ+. It is conceived to bound the resolvent

norm
∥∥∥(zI −A)

−1
∥∥∥ and it must be adjusted in order to leave to its left all the

possible singularities of the vector b̂. Let us focus, for the moment, on the resolvent
norm: Γ+ should be far enough from the spectrum of A but, if it’s too far, it will
produce a slowdown of the rate of convergence of the numerical scheme. For this
reason, we decided to construct the ellipse by a procedure based on the computation
of some pseudospectral level curve associated to the matrix A. Here we approximate
these curves by using eigtool [23]. If some theoretical information about these
curves is already known, we can skip the computation by eigtool and directly
construct Γ+ from it. An alternative approach to eigtool for the approximation
of pseudospectral level sets has been developed in [16], where Newton’s method
is combined with an efficient computation of extremal singular values of possibly
large and sparse matrices.

First of all, we define the region were we need to “place” our ellipse. This region
is defined as {z ∈ C | zl ≤ Re(z) ≤ zr}, where zl, zr are real parameters to be chosen.
This choice is partially heuristic and we ask the user to make a selection of these
two values. We suggest the following criteria:

(i) Choice of zl: once the time t is fixed, we need to have ezlt smaller than
the working precision. This is due to the fact that we use zl as the center
of the ellipse and, having in mind formula (35), we need to be sure that
the contribution of the two lines of the profile (4) is negligible. In our
experiments we choose zl ≈ 1

t log(10
−18).

(ii) Choice of zr: this point is going to be the right intersection of our half-
ellipse with the real axis. We can choose zr as the rightmost intersection of
the pseudospectral boundary ∂σε(A) with the real axis taking, for example,

ε = 10−9. In case b̂ has some singularity to the right of this point, we need
to move zr as to be sure that all these singularities are to the left of the half

ellipse. In our examples b̂ has a singularity in the origin. For this reason
we take zr as a small positive number. Several values of zr are tested in
the numerical examples.

Now we need to estimate the resolvent norm in the strip zl < Re(z) < zr. We do
this by computing some suitable pseudospectral level curve of the matrix A. We
recall that, given ε > 0, the ε-pseudospectral level curve of A is defined as

(42) σε(A) =

{
z ∈ C :

∥∥∥(zI −A)
−1

∥∥∥ =
1

ε

}
.

Moreover, we call a weighted ε-pseudospectral level curve as the set of points

(43) σε,ω(A) :=

{
z ∈ C : eRe(z)t

∥∥∥(zI −A)
−1

∥∥∥ =
1

ε

}
.

Let us fix two positive values ε1, ε2 (we use ε−1
1 , ε−1

2 as bounding constants). We
define C1 as the weighted ε1-pseudospectral level curve and C2 the ε2-pseudospectral
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level curve. We compute C1, C2 in the strip zl < Re(z) < zr. We notice that both
C1, C2 are symmetric w.r.t. the real axis (and then we can just compute the two
curves in the upper complex plane). For using our algorithm, we need the two level
curves to be defined in the whole strip {z ∈ C : zl ≤ Re(z) ≤ zr}. For this reason,
if it happens that for some x ∈ [zl, zr] there is no y ∈ R such that x+ iy is on the
curve, we set y = 0 and we add the point x to the curve. After that, we define

(44) C = {x+ iy ∈ C |x+ iy1 ∈ C1 , x+ iy2 ∈ C2 and |y| = max (|y1|, |y2|)} .

We call C a critical curve. The meaning of the computation of C is the following:

we approximate C1 in order to have a bound of
∥∥∥ezt (zI −A)−1

∥∥∥ and then of the

integrand function (15), while on C2 we require that the norm of the resolvent is
not too high in order to ensure that the condition number of the system (2) on
the points of the curve Γ+ (and then of the ellipse Γ) is not too large to cause
a loss of accuracy. Defining C as in (44) will ensure that both the conditions are
satisfied. From a practical point of view, we computed the value of the resolvent
norm on a grid in the strip zl < Re(z) < zr using the Matlab code eigtool, [23].
It is straightforward to compute an approximation of C1, C2, and then C from it. In
particular, we end up with a set of points PC := {xi + iyi | yi ≥ 0 , i = 1, . . . ,mC}
approximating the upper part of the critical curve C. The ellipse Γ+ should be
chosen in order to approximate in the sharpest way the curve C. Moreover, since
it may happen that the grid chosen by eigtool is too coarse, the critical curve
may not capture some of the eigenvalues of A (in the case where the pseudospectral
level curve near those are very small closed curves surrounding the eigenvalues). In

addition, we also have to consider the possible singularities of b̂ (that we assume
to form a finite set). We call λk + iηk, k = 1, . . . ,mA, the eigenvalues of A and

sj + irj , j = 1, . . . ,mb, the singularities of b̂. Now define

Φ = {ρn + iσn |n = 1, . . . ,m} = PC ∪ σ(A) ∪ {sj + irj | j = 1, . . . ,mb} .
The ellipse Γ+ has to be chosen in order to enclose all the points of Φ. In practice,
for the bounds ∥∥∥(zI −A)−1

∥∥∥ ≤ R+ for all z ∈ Γ+,

eRe(z)t
∥∥∥(zI −A)

−1
∥∥∥ ≤ W+ for all z ∈ Γ+

we set W+ = ε−1
1 and R+ = ε−1

2 .
In order to compute Γ+, let us identify C with R

2. The interior of a general
ellipse can be expressed by

(45)
{
x ∈ R

2 | (x− c̃)TE(x− c̃) ≤ 1
}
,

where E ∈ R2×2 is positive definite and c̃ = (zl, 0) is the center of the ellipse
(which is fixed). From Assumption 2 the axes of the ellipse are aligned with the
coordinate directions. This implies that E is diagonal. Imposing that the ellipse
passes through the point (zr, 0), we get E1,1 = 1/(zr − zl)

2. Now let us require
that (45) is the minimal volume set containing all the computed points of Φ. To do
that, let us write E2,2 = 1/S2

v , with Sv > 0 being the length of vertical semiaxis.
The minimal volume ellipsoid is recovered by minimizing Sv under the constraints

(x1 − zl)
2

(zr − zl)2
+

x2
2

S2
v

≤ 1 , (x1, x2) ∈ Φ,
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Table 1. Execution time for eigtool

Black-Scholes Heston
t = 1

Box = [−40, 0.05] 15.251361 sec
×[−10, 10]

t = 10
Box = [−4, 0.01] 15.523646 sec

×[−6, 6]

t = 1
Box = [−40, 0.09] 53.806976 sec

×[−10, 10]
t = 10

Box = [−4, 0.06] 41.270690 sec
×[−6, 6]

which leads to

(46) Sv = min
(x1,x2)∈Φ

|x2|√
1− (x1−zl)2

(zr−zl)2

.

We would like to choose the right half of the boundary of the resulting ellipsoid
as Γ+. We observe that this boundary contains at least a point of Φ. If this
point is an eigenvalue of A, Theorem 2 might not hold anymore (since the resolvent
function fails to be analytic on Γ+). To avoid this, instead of the original eigenvalues
λj = sj + irj j = 1, . . . ,m, we put in Φ the points

λ̃j = sj + i(rj + ν),

ν being a small positive number (ν = 0.1 for example). In this way the true
eigenvalues λj will always be contained in the interior of the ellipsoid. Then, we
choose Γ+ as the right half-ellipse uniquely defined by zl, zr, and Sv computed by
(46). With this choice, the hypothesis of Theorem 2 are always satisfied.

4.2. Computational cost. The method consists of two main parts: the precom-
puting part, where we construct the ellipse Γ+ (see Section 4.1) and compute the
actual ellipse of integration Γ (Section 3.1), and the computing part, where the
quadrature formula (22) is applied to get the approximation of the unknown func-
tion u(t). The precomputing part is essential in order to make the algorithm general,
since by means of it all the pseudospectral information about the matrix A is ap-
proximated and, then, used to set the optimal profile of integration. In particular,
in this part the software eigtool is employed. This software allows us to compute
an approximation of the resolvent norm at the points of a rectangular grid in the
complex plane. As a byproduct, eigtool also computes the eigenvalues of A. In
Table 1, we report the time employed by eigtool in computing the approximations
for both the Black–Scholes and Heston operators (the software is run on a laptop
with a 2,4 GHz Intel Core i5 processor, using Matlab R2016b). In each case, we
report the region of the complex plane (Box ) where we seek the approximation. For
Black–Scholes (size 200×200), the number of points defining the rectangular grid is
set to 200, while it is set to 50 in the case of the Heston equation (size 2500×2500).
The computation of the pseudospectral information is used to compute the critical
curve C (44). The ellipse Γ+ is selected by the algorithm explained in Section 4.1.
We remark that the use of eigtool produces a larger computational cost w.r.t.
other methods [11, 14, 15, 22]. However, we remark that these methods can be ef-
ficiently applied only if some pseudospectral information on A is already known.

The choice of an algorithmic approach to investigate the behaviour of
∥∥∥(zI − A)

−1
∥∥∥
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Table 2. Execution time for Black–Scholes.

Select. Γ+ Algorithm 1 Numerical # Solved
quadrature linear systems

t = 1, tol = 5e− 6 0.0498 sec
zl = −40, zr = 0.05 0.6850 sec 4 iterations 0.1254 sec 34
t = 10, tol = 5e− 6 0.0263 sec
zl = −4, zr = 0.01 0.3203 sec 4 iterations 0.1048 sec 34

Table 3. Execution time for Heston.

Select. Γ+ Algorithm 1 Numerical # Solved
quadrature linear systems

t = 1, tol = 5e− 6 4.1404 sec
zl = −40, zr = 0.09 0.5360 sec 4 iterations 15.7459 sec 34
t = 10, tol = 5e− 6 5.0225 sec
zl = −4, zr = 0.06 0.1315 sec 4 iterations 17.6780 sec 34

makes our method ready to be used for every system of ODEs of the form (1). In
the case A is normal or some curve C bounding the region where the resolvent norm
of A grows unboundedly is already known, the use of eigtool can be avoided.

For the computation of the truncation parameter c, we apply Algorithm 1. Every
iteration of this procedure requires the evaluation of the function∥∥∥(zI −A)−1

(
u0 + b̂(z)

)
z′
∥∥∥ .

The cost of this evaluation depends on the size of A. We observe that for every
iteration of Algorithm 1 the linear system

(47) (ζI −A) û(ζ) = u0 + b̂(ζ)

is solved for ζ = z(cπ).
Concerning the integration part, i.e., the computation of the quadrature sum

(22), the execution time depends on the size of the matrix A and the number of
quadrature nodes that are used to get the desired accuracy. In order to save time,
it is possible to precompute in parallel the integrand function at the quadrature
nodes. Assuming the critical curve C already computed by eigtool, in Tables 2, 3
we report the time needed to select the profile Γ+, to approximate the truncation
parameter c by Algorithm 1 of Section 3.2 and to apply the quadrature sum (22)
for n = 30 nodes. In all cases the resolution of the system (47) is done using the
backslash command of Matlab. We also report the total number of solved linear
systems.

We notice that it is possible to save the computation done for n when approximat-
ing the solution on 2n nodes (taking an extra node between each pair of consecutive
points). In this way the execution time is halved, doubling the number of nodes.

An extra computational cost is needed for the feasibility check : it is possible,
indeed, to approximate the stability constant of the method by computing the
condition number of the system (37) for a set of points on the integration ellipse Γ,
as explained in Section 3.4. However, this feasibility check can be skipped, and it
is not necessary in order to run the algorithm even if it is useful to make a forecast
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Table 4. CPU time for eigtool w.r.t. the number of grid points used.

Points Execution time Error w.r.t. reference solution
1000 247.435454 sec 0
500 60.914193 sec 1.3927e− 12
250 18.149750 sec 0
100 4.917106 sec 0
50 2.684333 sec 9.7751e− 07
25 2.675066 sec 9.6867e− 07

on the maximal precision attainable on the computed Γ and to check whether the
chosen tolerance is too sharp w.r.t. the working precision. It is worth noticing that
the execution time needed to run eigtool strongly depends on the fixed number
N of grid points. How to set this number? Numerical experiments suggest that
we need a very low resolution of the computed pseudospectral level curves and the
algorithm is robust w.r.t. the choice of N . For example, for the Black–Scholes case,
with t = 1, tol = 5 · 10−6, we seek approximations of the resolvent norm in the
box [−40, 0.05] × [−10, 10]. Then, we compute a reference solution corresponding
to N = 1000 and we measure the error w.r.t. this approximation of the solutions
computed using N = 500, 250, 100, 50, 25. We also report the time employed by
eigtool to perform the approximation. The results are listed in Table 4.

4.3. Summary of the method. The main parts of our method are: construction
of the inner ellipse Γ+, selection of the optimal integration contour Γ, and truncation
of the profile Γ. In the end, the trapezoidal quadrature rule is applied to the selected
portion of the ellipse to get the sought approximation of the solution to (1). For the
sake of clarity, we briefly list the sequential steps which are needed to implement
the method:

(1) Given A, b, and u0 in (1), a time t, and a precision tol, the method provides
an approximation of the unknown solution u(t) of (1) with accuracy tol.

(2) Computation of the inner ellipse Γ+. As explained in Section 4.1, the user
is asked to choose the values of zl, zr (respectively, the center of Γ+ and its
right intersection with the real axis). This choice is partially heuristic but
it is guided by (i), (ii) on page 1176. The procedure of Section 4.1 returns a
point d+ir which uniquely defines the profile Γ+, together with zl, zr. The
construction uses eigtool for the computation of the pseudospectral sets
σε2(A), σε1,ω(A) (as defined in (42), (43)). In all our numerical experiments
we found the choices ε1 = 10−9, ε2 = 10−13 to be effective.

(3) Computation of the integration profile as explained in Section 3.2. In par-
ticular, the ellipse of integration is parameterized as

Γ : z(x) = (a1 + a2) cosx+ i(a2 − a1) sinx+A3,

with coefficients a1, a2, A3 depending on just one free parameter a by for-
mulas (18), (19), (20). In order to find the optimal profile of integration we
minimize the scalar function of a in (34).

(4) Truncation of the Bromwich integral: since we are interested in approxi-
mating u(t) within the precision tol, we only consider the portion of the
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Bromwich integral parameterized in [−cπ, cπ], for a certain truncation pa-
rameter c. The computation of c is performed by Algorithm 1 as explained
in Section 3.2.

(5) Apply quadrature formula (22) to get the sought approximation of u(t).

5. Numerical results

In this section, we collect some numerical results of our method. We first consider
a canonical convection-diffusion equation, used as an academic test. We then test
our approach with the Black–Scholes and Heston equations. The Black–Scholes
model here is the same as the one considered in [11], while for the Heston model
we consider a slightly different boundary condition from that in [11], following [7].
In all our numerical experiments we compute the absolute error w.r.t. a reference
solution and use the standard Euclidean vector norm in Rn. We show the absolute
error rather than the relative error in order to check the match with the target
accuracy tol.

Similarly to what is done in the other publications presented in the literature, we
compute the error in the Cauchy problem while we do not address specific estimates
of the spatial discretization error, which plays an important role in the considered
PDEs. However, in deciding the error tolerances we take into account the order of
magnitude of the discretization error, which is O(Δx2) in the cases of Black and
Scholes and Heston equations.

The function (34) is minimized by means of the built-in Matlab function fminbnd.
In all the examples, we construct the inner ellipse Γ+ as explained in Subsection
4.1, taking ε1 = 10−9, ε2 = 10−13.

5.1. A canonical convection-diffusion operator. As a first illustration of our
method we apply it, as in [22], to

(48) ut = uxx + ux , t ≥ 0 , x ∈ [0, d],

with initial and boundary conditions

(49) u(x, 0) = 0 , u(0, t) = 0 , u(d, t) = 1 , t ≥ 0, x ∈ [0, d] .

We consider d = 400 and follow the steps outlined in Section 4.3:

• Initial data: as done in [22], we discretize (48), (49) by a Chebyshev spectral
method. The Chebyshev differentiation matrix used is of size 64× 64. We
fix t = 1, tol = 5 · 10−8.

• Computation of the inner ellipse Γ+: following (i), (ii) of page 1176, we
choose zl = −40 and zr = 0.09. We remark that in this case the vector b
in (1) is constant and then b̂(z) = b

z has a singularity in the origin. For
this reason, we must select zr > 0. The procedure in Section 4.1 returns
the point d + ir = −0.1071 + 0.3075i. The ellipse Γ+ is plotted in Figure
4 together with the critical parabola in [22] (x = −y2). The green line
represents C in Section 4.1 and is computed by eigtool.

• Computation of the integration profile: once the parameters zl, zr, d, r are
fixed, we minimize the function (34). It reaches its minimum at a = 0.4543.
The minimization is done numerically by using the built-in MATLAB func-
tion fminbnd.
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• Truncation of the Bromwich integral: we apply Algorithm 1 of Section 3.5
to compute the values of the truncation parameter c and the constant K
defined by equations (39), (40). We fix prec = 10−2 and K(1) = 100. In
three iterations Algorithm 1 computes K = 0.2251 and c = 0.3160.

• We apply quadrature formula (22). We apply it on n nodes, for n =
5, . . . , 30. We compare the resulting approximation of u(t) with the one
computed by direct evaluation of the exponential matrix (expm function in
Matlab). The results are plotted in Figure 4.
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Figure 4. Top Left: comparison between Γ+ and the theoretical
critical parabola used in [22]. Top Right: plot of Γ+ and truncated
Γ. In green the critical parabola x = −y2 and in blue the parabolic
profile selected for n = 10 by the method [11]. Bottom: Error vs.
number of nodes.

5.2. Black–Scholes equation. The well known (deterministic) Black–Scholes
equation [2] has the following form:

(50)
∂u

∂τ
=

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru , s > L , 0 < τ ≤ t,

for L, t given, where the unknown function u(s, τ ) stands for the fair price of the
option when the corresponding asset price at time t − τ is s and t is the maturity
time of the option. Moreover, r ≥ 0, σ > 0 are given constants (representing the
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interest rate and the volatility, respectively). In practice, for the sake of numerical
approximation, we consider a bounded spatial domain, considering

L < s < S

for a sufficiently large S. We take (50) together with the following conditions,
typical for the European option call:

u(s, 0) = max(0, s−K),

u(L, τ ) = 0 , 0 ≤ τ ≤ t,

u(S, τ ) = S − e−rτK , 0 ≤ τ ≤ t .

Following the same strategy adopted in [11], we discretize in space on a uniform
space grid of n = 200 points in [L, S], for L = 0, S = 200, using the classical centred
finite difference scheme.

We choose r = 0.06, σ = 0.05, and K = 80. We plot the error for a selection of
tolerances for the cases t = 1 and t = 10 (Figure 5).

Figure 5. Error vs number of nodes for Black–Scholes. Left: t =
1 (zl = −40, zr = 0.05). Right: t = 10 (zl = −4, zr = 0.01).

5.3. Heston equation. The Heston equation [5] is

(51)
∂u

∂τ
=

1

2
s2v

∂2u

∂s2
+ρσsv

∂2u

∂s∂v
+
1

2
σ2v

∂2u

∂v2
+(rd−rf )s

∂u

∂s
+κ(η−v)

∂u

∂v
−rdu .

The unknown function u(s, v, τ ) represents the price of a European option when
at time t − τ the corresponding asset price is equal to s and its variance is v. We
consider the equation on the unbounded domain

0 ≤ τ ≤ t , s > 0 , v > 0,

where the time t is fixed. The parameters κ > 0, σ > 0, and ρ ∈ [−1, 1] are given.
Moreover, equation (51) is usually considered under the condition 2κη > σ2 that
is known as the Feller condition. We take equation (51) together with the initial
condition

u(s, v, 0) = max(0, s−K),

where K > 0 is fixed a priori (and represents the strike price of the option), and
boundary conditions

u(L, v, τ ) = 0 , 0 ≤ τ ≤ t .
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For the numerical solution of (51), we need to choose a bounded domain of integra-
tion. In particular, we fix two positive constants S, V and we let the two variables
s, v vary in the set

0 ≤ s ≤ S , 0 ≤ v ≤ V .

On the new boundary, we need to add two more conditions (specific for the Euro-
pean call option),

∂u

∂s
(S, v, τ ) = e−rfτ , 0 ≤ τ ≤ t,(52)

u(s, V, τ ) = se−rfτ , 0 ≤ τ ≤ t .

The spatial discretization we adopted is the one introduced in [7]. We take κ =
1.5, η = 0.04, σ = 0.3, ρ = −0.9, rd = 0.025, rf = 0,K = 100, L = 0, S = 8K,V = 5.
We plot the error for a selection of tolerances for the cases t = 1 and t = 10 (Figure
6).

Figure 6. Error vs. number of nodes for Heston. Left: t = 1
(zl = −40, zr = 0.09). Right: t = 10 (zl = −4, zr = 0.06).

6. Comparison with other methods

6.1. Comparison with parabolic contours. A direct comparison with the
method in [11] is not possible, since our algorithm works with the goal of a fixed ac-
curacy while the one reported in [11] aims to reduce the error as N grows. Anyway,
for the sake of comparison, we can run our algorithm as follows:

- for a set of target precisions (tol = 10−1, 10−2, . . . for example), we run our
algorithm;

- for each tolerance we save the smallest number of quadrature nodes N for
which tol is reached;

- for each tolerance we save the corresponding error err(N).

Once we get the array [N, err(N)], we can compare it with the correspond-
ing error coming from the method of [11]. We make our experiments both for
Black–Scholes and for Heston equations, for a selection of times t. In Figure 7 the
comparison for Black–Scholes is depicted.

For the comparison in the case of the Heston equation, we recall that the bound-
ary condition considered in [11] is slightly different from (52). However, the spec-
trum of the matrix A is quite similar, and thus we implement the method in [11]
using the same inner parabola. Qualitatively, the numerical results we get for t = 1
are the same as the one in [11]. The comparison is showed in Figure 8.
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Figure 7. Black–Scholes equation, comparison between [11], and
our method. Top left: t = 1, zl = −40, zr = 0.05. Top right:
t = 10, zl = −4, zr = 0.01. Bottom: t = 100, zl = −0.5, zr =
0.001.

Figure 8. Heston equation, comparison between [11], and our
method. Left: t = 1, zl = −40, zr = 0.09. Right: t = 10, zl = −4,
zr = 0.06.

6.2. Comparison with hyperbolic contours. By using the same startegy as
the previous subsection, we build the array [N, err(N)]. We compare these results
with the method in [15] for both the cases of Black–Scholes and Heston equations.
We set α = 0.4, d = 0.4 as geometric parameters to bound the resolvent norm,
as explained in [15]. This choice turns out to be effective and the method seems
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to converge. However, in [15] no optimality criteria are given to select α, d, and
they necessarily depend on the spectral geometry of A. Since [15] works on time
intervals of the form [t0,Λt0], we provide a comparison for a selection of time ratios
Λ and for the times t = 1, 10. The results are reported in Figures 9, 10, 11 and 12.

5 10 15 20
N

10-10

10-5

100

er
r

=1

Elliptic contour
Hyperbolic contour

Figure 9. Black–Scholes equation, comparison between [15], and
our method for t = 1 zl = −40, zr = 0.05. Left: Λ = 1. Right:
Λ = 1.5.

Figure 10. Black–Scholes equation, comparison between [15], and
our method for t = 10 zl = −4, zr = 0.01. Left: Λ = 1. Right:
Λ = 1.5.

7. Extension to the case of time intervals

We notice that the most expensive computation when evaluating (15) is the
inversion of the matrix zI − A at the quadrature nodes. This inversion does not
involve the time t that appears only in the exponential part. For this reason, a great
improvement to the efficiency of the method comes from the possibility of using a
unique integration contour for a whole time interval [t0, t1]. In this section we
suggest a strategy for computing a unique profile of integration, uniquely defined
by the parameter a by (16), (18), (19), (20). By doing that, for a general time
t ∈ [t0, t1], we just need to compute the corresponding truncation parameter c and
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Figure 11. Heston equation, comparison between [15], and our
method for t = 1 zl = −40, zr = 0.09. Left: Λ = 1. Right:
Λ = 1.5.
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Figure 12. Heston equation, comparison between [15], and our
method for t = 10 zl = −4, zr = 0.06. Left: Λ = 1. Right:
Λ = 1.5.

the constant K in (39), (40). We would like to get an uniform error estimate like
(30) for the whole interval [t0, t1]. Recalling (31) and the fact that c ≤ 1

2 , we
estimate

(53) sup
t∈[t0,t1]

‖IN − I‖ � πeD(a)t1e−2aN .

Using estimate (53), we recover the (theoretical) value of quadrature nodes sufficient
to reach a prescribed precision tol. In particular, we get

(54) N =
1

2a

(
D(a)t1 − log

(
tol

π

))
.

Fix t = t0. We construct Γ+ as explained in Section 4.1 for the time t0 (lower
time of the interval). The choice of the smaller time t0 reflects in the setting of the
center of the integration ellipse zl as explained in (i) of page 1176. In this way, we
expect the contribution of the two half-lines in (4) to be negligible for all the times
t ∈ [t0, t1]. An application of the construction of Section 4.1 gives the parameters
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zl, zr, d+ ir uniquely defining Γ+. At this point, we minimize the function

(55) f(a) =
1

2a

(
D(a)t1 − log

(
tol

π

))
,

where D(a) is given by (29). We end up with the optimal a defining uniquely the
profile of integration by (16), (18), (19), (20). We will use this profile for every
time t ∈ [t0, t1].

Even if the profile of integration is the same for all times, when t changes we
need to truncate it in a different point. For a general t ∈ [t0, t1] we can compute the
corresponding values ct,Kt using Algorithm 1 of Section 3.5. In case we need to
evaluate our integral for many times t, Algorithm 1 can be too expensive. Indeed,
every iteration of this method requires the evaluation of the resolvent function. To
save computational cost, we do as follows:

• we compute the pairs (c0,K0) and (c1,K1) corresponding to the times t0, t1;

• calling Kt the constant (40) for the general time t ∈ (t0, t1) we make the
assumption that Kt is linear, i.e., we assume that

(56) Kt = K0 + (K1 −K0)
t− t0
t1 − t0

.

The corresponding value of ct is given by (41). This assumption turns out
to be effective in the numerical experiments.

We show some numerical experiments for both Black–Scholes and Heston equa-
tions. Since the case of very large times is not really interesting (because the solution
rapidly becomes stationary), we consider the case of intervals of the form [t0,Λt0]
with Λ = 10. In particular, we make the experiments on the intervals [0.1, 1], [1, 10].
In this way, we approximate the solution on the whole time interval [0.1, 10] and
the computation is competitive with respect to the classical PDEs integrators. In
the plots of Figures 13, 14, we show the numerical results for Black–Scholes and
Heston equations. The target tolerance we choose is tol = 5 ·10−8 for Black–Scholes
and tol = 5 ·10−4 for Heston. We also fix zr = 0.01 for Black–Scholes and zr = 0.06
for Heston. A slowdown of the convergence rate as t decreases is observed. This
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Figure 13. Black–Scholes equation, tol = 10−8. Left: time in-
terval [0.1, 1], zl = −400, zr = 0.01. Right: time interval [1, 10],
zl = −40, zr = 0.01.
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Figure 14. Heston equation, tol = 10−4. Left: time interval
[0.1, 1], zl = −400, zr = 0.06. Right: time interval [1, 10], zl =
−40, zr = 0.06.

is due to the fact that c is decreasing w.r.t. time and the rate of convergence is
O(e−

a
c N ). It is interesting to compare those performances with the one obtained

by [15] since this method is also conceived to work on time intervals. In Figures
15, 16 the results are plotted (in both cases we take α = 0.4 , d = 0.4).

Figure 15. Black–Scholes equation using [15]. Left: time interval
[0.1, 1]. Right: time interval [1, 10].
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Figure 16. Heston equation using [15]. Left: time interval [0.1, 1].
Right: time interval [1, 10].
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8. Conclusions

In this paper we have proposed a new method for the numerical inversion of the
Laplace transform of functions with specific properties arising in the space-time
approximation of linear convection-diffusion equations.

Our method is based on a preliminary investigation of some pseudospectral level
sets of A. In this way, the method can be directly applied to any linear system of
ODEs with constant coefficient matrix, and no other a priori information about the
matrix A is needed. This first step is not considered systematically in [11,14,15,22].
In our applications, the computation of the pseudospectral level curves is performed
by eigtool. The computational cost of the approximation made by using eigtool

is reported in Subsection 4.2, where we also show that a low resolution in this
approximation might be enough to construct a good integration contour.

We recap the main advantages of our method:

(i) It is designed in order to achieve a prescribed precision as fast as possible.
(ii) It is stable: adding quadrature nodes never deteriorates the quality of the

approximation. As shown in [15] and [22], this can be a delicate issue in
the numerical inversion of the Laplace transform.

The stability constant of the method can be computed to carry out an
a priori feasibility check to detect if the prescribed accuracy is too high.

(iii) It is easily adapted to approximate the solution to (1) on relatively large
time intervals of the form [t0,Λt0], with Λ > 1.

(iv) Once the target accuracy tol and the time t are fixed, our algorithm selects
the profile of integration independently of the number of quadrature nodes.
Thus, the cost of adding quadrature nodes to reach the target accuracy
is low in comparison to the algorithms in [11, 15], where the integration
contour does depend on the number of quadrature nodes.

Future research will be devoted to reducing the dependence on eigtool, which
can be prohibitively expensive for large matrices arising from the spatial discretiza-
tion of 2D and, specially, 3D convection-diffusion equations. The resolution of
the linear systems with nonnormal matrices zI − A should also be more carefully
studied.
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