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Abstract: “Egg pasta” is a kind of pasta prepared by adding eggs in the dough; the color of this
product is often associated to its quality, as it is proportional to the quantity of egg present in the
dough. A possible adulteration on this product is represented by the addition of turmeric (not
reported in the label) in the dough. The inclusion of this ingredient (which is minimal, given the
strong coloring power of this spice) fraudulently accentuates the yellow color of the product, making
it more attractive to the consumer. Given this scenario, the aim of the present work is to develop
an analytical approach suitable at detecting the presence of turmeric as an adulterant in egg pasta.
One hundred samples of traditional and adulterated egg pasta were analyzed by NIR spectroscopy
and PLS-DA (Partial Least Squares Discriminant Analysis) in order to discriminate adulterated and
compliant pasta. The classification model provided a total correct classification rate of 97.5% in
external validation (40 samples). Eventually, the adulterant was quantified by PLS. This strategy
provided satisfying results, achieving a RMSEP (Root Mean Square Error in Prediction) of 0.112
(%-w/w) in external validation.
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1. Introduction

Pasta is a staple food in several Mediterranean Countries and it is consumed and appreciated all
over the world [1]. “Egg pasta” is pasta prepared by adding eggs to the dough. This aliment presents
special physical, chemical and organoleptic characteristics, which differentiate it from common durum
pasta [2–4]. From the physical point of view, one of the main differences between these two close
products is represented by the bright yellow color provided by the presence of egg yolks. Since the
presence of eggs positively influences taste, flavor and texture of egg pasta, a bright yellow color of
the product is perceived by the consumers as an indication of the quality of the egg-pasta. Standing
these considerations, it may happen that fraudulent pasta makers could add dyeing compounds
(without declaring it on the label) to enhance the color of the product, in order to deceive colorimetric
quality controls, and to make it more attractive to the eye of the consumers. In this context, a common
adulterant is Curcuma longa, a zingiberaceæ spice better known as turmeric. This is due to the fact even
a small amount of this spice provides a bright yellow color and it is non-toxic and relatively cheap.
The active ingredient of this spice, curcumin, is a natural dye often used in different contexts such as
fabrics, cosmetics, textiles but also in the food industry (E100) [5].

In the light of these considerations, the aim of the present work is to develop a non-destructive
analytical methodology to detect fraudulent addition of turmeric in egg pasta. For this reason,
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law-conformant and adulterated samples of egg pasta were prepared in the lab (following a traditional
accredited recipe) and analyzed by Near Infrared Spectroscopy (NIR). This instrument was considered
a suitable tool because it is non-destructive, and, consequently, it avoids any loss of product. Spectra
were handled by two different chemometric techniques; Partial Least Squares Discriminant Analysis
(PLS-DA) with the aim of distinguishing adulterated and pure samples, and Partial Least Squares
(PLS) in order to quantify turmeric in counterfeited samples. These strategies were chosen because
both of them are very efficient, and they are often used for the analysis of food products [6–9],
in particular in combination with NIR. Since this strategy is non-destructive, it is especially suitable for
high-value-added food [10–14].

2. Materials and Methods

2.1. Preparation of Samples

Law-conformant egg pasta doughs were prepared following the traditional procedure used by
egg-pasta masters. Samples were prepared by mixing 100 g of durum semolina and 1 egg. Adulterated
samples were obtained by addition of 19 different percentages of turmeric powder from 0.01% to
1% (weight turmeric powder/weight final dough sample); adulteration percentage are reported in
Table 1. Four adulterated dough samples were prepared for each adulteration percentage (for a total of
19 × 4 = 76 adulterated doughs). In total, twenty-four law-conformant and seventy-six adulterated
doughs were available for the analysis. Eventually, each sample was spread by means of a clean rolling
pin into strips of the desired thickness (resembling the “pappardelle” shape).

Table 1. Percentage of turmeric powder added to the doughs.

Adulteration (%w/w)

0.01
0.025
0.05
0.075
0.085
0.090
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.75
0.85
1.00

2.2. NIR Analysis

NIR spectra were collected using a Nicolet 6700 FT-NIR (Thermo Scientific Inc., Madison, WI)
connected to an integrating sphere (Thermo Scientific Inc., Madison, WI). The investigated spectral
range was between 4000 and 10,000 cm−1 (nominal resolution: 4 cm−1). Each egg-pasta sample was
analysed in 6 replicates (collecting a spectrum in three different position of the stripe on each side of
it) for a total of 600 NIR signals. Spectra were recorded by the OMNIC software (Thermo Scientific
Inc., Madison, WI) and exported in MATLAB 2015b (The Mathworks, Natick, MA). Once imported
in Matlab, NIR signals (collected in reflection mode and registered as per cent reflectance, R) were
transformed into pseudo-absorbance (log(1/R)); finally, replicates were averaged.
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2.3. Chemometric Modeling

2.3.1. Classification Approach

Partial Least Squares-Discriminant Analysis (PLS-DA) is a discriminant classifier developed in
order to overcome the issued encountered by Fishers Linear Discriminant Analysis when handling
ill-conditioned data matrices [15]. This approach exploits PLS [16,17] and a so-called Dummy Y (a
response matrix binary encoding the class-belonging) in order to convert a classification problem into
a regression one (whose solution is achieved by PLS).

Very briefly, for a two-class problem (as the one discussed in the present study), given a data
matrix X (e.g., constituted by the Ntr instrumental measures used as calibration set), the dummy y is a
partitioned binary vector made of Ntr elements: each object belonging to Class 1 is represented by the
value y1 = 1, while samples belonging to Class 2 are encoded by y2 = 0 [18].

Once the dummy response vector y is generated, the model is built by solving Equation (1) and
estimating the regression coefficients b:

y = ŷ + e = Xb + e (1)

ŷ being the vector of predicted responses and e collecting the residuals.
After solving the regression problem in Equation (1) by PLS, a further step is needed to achieve

classification, since the predicted response ŷ is not binary anymore but real-valued: accordingly,
a suitable classification rule has to be built based on the values of ŷ. For a two-class problem, such as
the one in the present study, this usually translates in setting a threshold ythr to ŷ, so that if ŷi > ythr,
the sample is assigned to class 1, and otherwise it is predicted to be class 2. In particular, in the
present work the threshold was calculated based on the probabilistic approach proposed by Perez and
coworkers [19].

When new, unknown, samples have be to classified, their predicted responses ŷnew are calculated
based on the measurements Xnew and the regression coefficients b estimated on the training set, and the
classification rule described above is then applied to assign each individual to one of the categories
under study.

2.3.2. Regression Approaches: PLS

Partial Least Squares (PLS) is a well-known and widely applied regression method. It allows
fitting response matrix (or vector) Y (or y) to a predictor matrix X. This approach is widely used with
different aims in various contexts. In the present study, a PLS model was built on NIR data in order to
quantify turmeric in the adulterated doughs. The reader is addressed to [16,17] for more details on the
algorithm of PLS.

3. Results

3.1. Detection of Adulterated Egg Pasta Samples

NIR spectra were collected for all the available samples as described in Section 2.2; average spectra
for “Class Conformant” (blue line) and “Class Adulterated” (red line) are shown in Figure 1. The mean
raw spectra for the two categories look alike (Figure 1a); even after the 1st derivative (Figure 1b) no
relevant differences could be observed.
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Figure 1. (a) Average raw spectra and (b) average spectra after the 1st derivative. Legend: “Class 
Conformant”: blue line and “Class Adulterated”: red line. 
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in Table 2.  

Table 2. Division of samples into calibration and validation sets. 

x Calibration Set Validation Set 
 Class 

Law-Conformant 
Class 

Adulterated 
Class 

Law-Conformant 
Class 

Adulterated 
No. of samples 17 43 7 33 
Total samples 60 40 

Training samples were used to define model parameters (number of latent variables (LVs) and 
the optimal data pretreatment) into a 7-fold cross-validation procedure; test objects were left out as 
external validation set and used to estimate the reliability of the calibration model. 

Different preprocessing approaches (aimed at removing possible uninformative information) 
were tested; pretreated data were used to build PLS-DA models and then the most suitable solution 
was defined on the basis of the Correct Classification Rate in Cross-Validation (%CV). Tested 
pretreatments were: mean centering, 1st and 2nd derivative (following the Savitzky–Golay approach 
with a 19 points window and a third order interpolating polynomial [21]), Standard Normal Variate 
(SNV) [22], Multiplicative Scatter Correction (MSC) [23] and their combination (see Table 3). 
  

Figure 1. (a) Average raw spectra and (b) average spectra after the 1st derivative. Legend: “Class
Conformant”: blue line and “Class Adulterated”: red line.

In order to perform external validation of the classification model, samples were divided into
calibration (training) and validation (test) set by the Duplex algorithm [20]; more details are reported
in Table 2.

Table 2. Division of samples into calibration and validation sets.

x Calibration Set Validation Set

Class
Law-Conformant

Class
Adulterated

Class
Law-Conformant

Class
Adulterated

No. of samples 17 43 7 33
Total samples 60 40

Training samples were used to define model parameters (number of latent variables (LVs) and
the optimal data pretreatment) into a 7-fold cross-validation procedure; test objects were left out as
external validation set and used to estimate the reliability of the calibration model.

Different preprocessing approaches (aimed at removing possible uninformative information) were
tested; pretreated data were used to build PLS-DA models and then the most suitable solution was
defined on the basis of the Correct Classification Rate in Cross-Validation (%CV). Tested pretreatments
were: mean centering, 1st and 2nd derivative (following the Savitzky–Golay approach with a 19
points window and a third order interpolating polynomial [21]), Standard Normal Variate (SNV) [22],
Multiplicative Scatter Correction (MSC) [23] and their combination (see Table 3).

Table 3. Partial Least Squares Discriminant Analysis (PLS-DA) results on the calibration set.

Model Pretreatment LVs
Correct Classification Rate in

Cross-validation (%)

Class Law-Conformant Class Adulterated

Model I Mean Centering (MC) 3 100.0 83.7
Model II 1st derivative (+MC) 4 94.1 88.4
Model III 2nd derivative (+MC) 9 76.5 100.0
Model IV SNV (+MC) 8 100.0 90.7
Model V SNV+1st derivative (+MC) 4 94.1 93.0
Model VI SNV+2nd derivative (+MC) 9 70.6 100.0
Model VII MSC (+MC) 9 100.0 95.3

From Table 3, it was evident that the PLS-DA model providing the highest correct classification
rate in cross-validation was the one built on data preprocessed by MSC (Model VII), which
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provided a total classification rate of 97.65%. Consequently, this model was used to predict the
test samples and it provided correct classification rates of 100% and 97% for “Class Conformant” “Class
Adulterated”, respectively.

A graphical representation of these results is displayed in Figure 2, where the values of the
predicted response for both the training and the test samples are shown. In the plot, the black dashed
line is the delimiter between the two categories: a sample fallowing above it will be assigned by
the model to “Class Conformant”, while the objects below the delimiter are predicted as belonging
to “Class Adulterated”. In the plot, all the analyzed samples are displayed: both the calibration
(empty symbols) and the validation (full symbols) objects. From this representation it is clear all the
law-conformant objects (blue squares) have been properly classified, while only one adulterated test
sample (full red diamonds) was assigned to the wrong category.
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Figure 2. PLS-DA analysis: predicted Y vs sample index. Legend: “Class Conformant: Blue
Squares; “Class Adulterated”: Red diamonds. Empty and filled symbols represent training and test
samples, respectively.

In order to deeply investigate the system under study, Variable Importance in Projection (VIP) [24]
was used to define which spectral variables provide the greater contribution to the discrimination.
Customarily, variables exhibiting VIP indices higher than 1 are considered relevant for the solution
of the investigated problem [25]. A graphical representation of the outcome of the VIP analysis is
reported in Figure 3.
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Figure 3. Variable Importance in Projection (VIP) analysis. Averaged spectrum (blue line). Selected
variables are bolded in red.

In the plot, the blue line represents the average spectrum; variables having VIP > 1 are highlighted
in red. From the figure, it appeared the variables contributing the most to the discrimination were
those between 7610 and 6738 cm−1, ascribable to the 1st overtone of the O–H stretching; those between
5392 and 5097 cm−1 associable to the 2nd overtone of the C=O stretching and to the 1st overtone of
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the C-H stretching and spectral features between 4387 and 4000 cm−1, probably related to the C–H
stretching and to the effects of C–H deformations [26,27].

3.2. Quantification of the Adulterant

Eventually, the possibility of quantifying the adulterant in the analyzed samples has been
investigated. In this case, the study was restricted to the only adulterated samples; consequently,
76 samples were used for this part of the analysis. Additionally, in this case, spectra were divided
into two sets, the calibration one, made of 43 objects, and the validation set, constituted by 33 samples.
The same preprocessing approaches reported above were used for PLS analysis; results from the
different (7-fold cross-validated) models are reported in Table 4.

Table 4. PLS analysis. Cross-validated results on the calibration set.

Model Pretreatment LVs
Root Mean Square Error in

Cross-Validation (RMSECV, %w/w)

Model I Mean Centering (MC) 9 0.128
Model II 1st derivative (+MC) 9 0.123
Model III 2nd derivative (+MC) 8 0.130
Model IV SNV (+MC) 8 0.112
Model V SNV+1st derivative (+MC) 8 0.112
Model VI SNV+2nd derivative (+MC) 8 0.740
Model VII MSC (+MC) 6 0.123

On the basis of the RMSECV, Model IV was considered the optimal one and, consequently, it was
applied to predict the adulterant percentages in test samples (pretreated by SNV). Taking into account
the low percentages of turmeric powder present in each sample, the results were quite acceptable;
in fact, Model IV led to a Root Mean Square Error in Prediction (on the test set) of 0.112 (%w/w).

4. Discussion

The present work highlighted NIR coupled with PLS-DA was a suitable tool for detecting egg pasta
adulterated by turmeric. Additionally, the PLS analysis of spectra allowed a satisfying quantification
of the adulterant even when present in very low quantity (<3% of the total weight). In conclusion,
the proposed strategies demonstrated to be effective tools for fraud detection in traditional egg pasta.
Due to the nature of the analytical technique involved (NIR), these approaches can find different
applications; among the others, they could be used in factories in online systems for quality control.

5. Conclusions

The present work aimed at developing a NIR-based analytical methodology to detect fraudulent
addition of turmeric in egg pasta. Law-conformant and adulterated egg pasta samples were prepared
in the lab and analyzed by Near Infrared Spectroscopy (NIR). Eventually, spectra were handled
by two different chemometric techniques: PLS-DA, in order to discriminate adulterated and pure
samples, and PLS, to quantify turmeric in counterfeited samples. Both approaches performed well,
demonstrating the investigated approaches are definitely suitable for the inspected goal. In fact,
PLS-DA analysis provided correct classification rates of 100% and 97% for “Class Conformant” and
“Class Adulterated”, respectively (corresponding to 1 misclassified object over 40 test samples), whereas
PLS led to a Root Mean Square Error in Prediction (on the test set) of 0.112 (%w/w).
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