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Abstract: Poultry is considered a major reservoir of human campylobacteriosis. It also been reported
that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to
be a risk of spreading the bacteria in the environment. To gain insight into the population structure
and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of
135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types
(STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most
prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the
bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall
we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid
(10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179
complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other
tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B))
and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance
level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin,
tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention
should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.

Keywords: Campylobacter jejuni; antimicrobial resistance; multidrug resistance; MLST; cgMLST;
AMR genes

1. Introduction

Campylobacter disease continues to be the leading cause of bacterial gastroenteritis worldwide
with a significant economic impact [1,2]. In human patients, apart from acute gastroenteritis,
campylobacteriosis may lead to more severe, occasionally long-term sequelae, such as Guillain-Barre’
syndrome, reactive arthritis, and irritable bowel syndrome [3,4]. It is well known that most livestock
species, carry C.jejuni asymptomatically [5], making control at the farm level difficult. However, some
clones may cause gastroenteritis and abortion in bovine or sheep [6]. It is estimated that 50–80% of
strains causing the disease in humans derived from the chicken reservoir, 20–30% from the cattle
reservoir, and the remaining part originated from other reservoirs, including environment and wild
animals [7]. Numerous findings suggest that wild birds, given their ability to fly long distances and
their ubiquity, play an important role in the epidemiology and evolution of Campylobacter spp. [8,9].
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In addition, some wild bird species have successfully adapted to anthropogenic environments and
routinely come into close contact with livestock, domestic animals, and people [9]. They are, therefore,
considered as reservoirs of farm animals and human infection [10,11]. In industrialized countries
C. jejuni represents the major cause of human bacterial gastroenteritis [12] and seems to be the most
prevalent species of Campylobacter isolated in wild birds [13–16]. It was observed that wild birds can
carry different lineages of C. jejuni [17]; however, it is not yet completely clear if they play a role in
the spread of Campylobacter strains to other hosts or can directly contribute to human disease acting
as natural reservoirs of pathogenic genotypes [18]. Controversial data about Campylobacter strains
isolated from wild birds potentially pathogenic for humans are known [18–23].

Transmission of C. jejuni from wild birds to humans can occur by direct contact, through
contaminated food or water, or indirect contact. Many public places, are natural habitats for wild birds
(mainly pigeons, starling or magpie), thus representing a risk of infection especially for people that
spending their time at these public resting places [24]. Molecular studies, showed some genotypes
strictly associated to a specific reservoir [25,26]. However, these host association studies have identified
not only host-associated CCs but also multi-host associated CCs, with some genotypes overlapping
wild birds, farm animals, poultry and human disease isolates [26,27]. Phylogenetically distinct lineages
of C. jejuni in several wild bird species have been identified, sometimes with a host association
particularly strong [17,25,28]. Furthermore, some authors reported that the association between
Campylobacter genotypes and host wild bird species seems to overtake that between genotypes and
geographic origin [17,29]. Multilocus sequence typing (MLST) is an effective molecular typing tool
providing a more comprehensive knowledge of C. jejuni STs circulating. However, MLST is limited
only to the characterization of the STs of the isolates [23,27,30]. In this context, more accurate methods
that permit to compare genetically related isolated, such as whole or core-genome MLST (wgMLST,
cgMLST), are increasingly being used [27,31]. Despite many studies conducted until now, the structure
population of C. jejuni isolated from wild birds, the species-specific characteristics or the temporal or
geographic stability are not yet fully understood.

Antimicrobial resistance, a high-priority global health challenge, has been increasingly in wild
birds, although they are not directly exposed to clinically relevant antimicrobials. Wild animals might
play a vital role in the worldwide spread of clinically relevant pathogens or resistance genes. This
underlies the complexity of bacterial resistance in wild birds and the possible interspecies transmission
between humans, wildlife, livestock and the environment [9,32].

The role that non-food-borne exposure plays in the epidemiology of C.jejuni is currently not well
defined. The aim of the current study was to perform a comprehensive population genetics and to
explore the antimicrobial resistance of C.jejuni detected in Italian wild birds. In addition, we researched
the presence of genomic features related to antimicrobial resistance between the wild bird isolates and
estimate their importance from a public health perspective.

2. Results

We collected one hundred thirty-five C.jejuni from wild birds belonging to 15 species over
a five period (2015 to 2019) in two geographically separate area in Italy. Wild birds included 97
pigeons (Columba livia), 7 magpie (Pica pica), 12 crows (Corvus sp), 2 greenfinch (Chloris chloris),
1 whitewagtail (Motacilla alba), 3 Eurasian Scops owl (Otus Scops), 2 starling (Sturnus vulgaris),
2 mallards (Anas platyrhynchos), 2 blackbirds (Turdus merula), 2 buzzard (Buteo buteo), 1 jackdaw
(Corvus monedula), 1 jay (Cyanocitta), 1 seagull (Larus argentatus), 1 swift (Apus apus) and 1 trush
(Psophocichla litsitsirupa) Table 1.

One strain from a grey heron (Ardea cinerea) was not assigned to a specific Campylobacter
spp. by specific PCR. The sequence of the16s rDNA gene resulted in potential identification of
Campylobacter volucris. The genome assembly from the heron isolate confirmed the C. volucris species
by Genome-to-Genome Distance Calculator (GGDC), an in-silico DNA-DNA hybridization method
(DDH), using the DDH model “formula 2” as recommended for draft genomes.
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Table 1. C.jejuni wild bird isolates with MLST, resistances phenotype, resistances genotype and MDR profiles.
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Accipitridae Common Buzzard
(Buteo buteo) 11 (2) 45

4776 (1) ST-692 complex
Anatidae

Mallard (Anas
platyrhynchos) 4002 (1) na

10,211 * (1) na
10,212 * (2) na 1
10,214 * (1) na

1956 (1) ST-1034 complex
2116 (1) ST-353 complex
220 (24) ST-179 complex 1
2209 (17) ST-179 complex 1
2274 (1) na
2665 (1) na
3720 (1) ST-49 complex
3923 (1) na
400 (1) ST-353 complex

4028 (1) ST-952 complex
4447 (29) ST-179 complex 2 2 3 3 3 1

45 (9) ST-45 complex 1 1
51 (1) ST-443 complex

5528 (1) na
905 (2) na

Columbidae
Pigeon

(Columba livia)

952 (2) ST-952 complex 2 2
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10,213 * (2) na
10,216 * (1) na

177 (1) ST-177 complex
2655 (1) na
9732 (1) na
4755 (1) ST-1034 complex
356 (1) ST-353 complex

2111 (1) ST-952 complex
4447 (1) ST-179 complex
9114 (1) na

Crow
(Corvus sp.)

42 (1) ST-42 complex
45 (5) ST-45 complex 1 1

1224 (1) NaMagpie
(Pica pica)

1044 (1) ST-658 complex
Jackdaw (Corvus

onedula) 9746 (1) na

Corvidae

Eurasian jay
(Cyanocitta) 2538 (1) na

2197 (1) ST-45 complex
220 (1) ST-179 complexStrigidae Eurasian Scops Owl

(Otus scops)
45 (1) ST-45 complex

Fringillidae Greenfinch (Chloris
chloris) 45 (2) ST-45 complex 2 1 1
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Motacillidae Whitewagtail
(Motacilla alba) 2116 (1) ST-353 complex

45 (1) ST-45 complex
Sturnidae

European starling
(Sturnus vulgaris) 48 (1) ST-48 complex

Blackbirds (Turdus
merula)

9747 (1) na
267 (1) ST-283 complex

Turdidae Thrush (Psophocichla
litsitsirupa) 2538 (1) na

Laridae Seagul (Larus
argentatus) 2353 (1) na

Apodidae Swift (Apus apus) 9478 (1) ST-45 complex
gen = gentamicin; stm = streptomycin; cip = ciprofloxacin; Na = nalidixic acid; ery = erytromicin; tet = tetracycline.* = novel ST in this study; na = not assigned to a clonal complex.
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2.1. MLST and cgMLST

Among 135 C.jejuni characterized by MLST, 41 different STs and 13 CCs were identified (Table 1,
Figure 1). Five novel STs, not previously represented in the PubMLST database (https://pubMLST.
org/campylobacter), were identified (ST-10211, ST-10212, ST-10213, ST-10214, ST-10215 and ST-10216)
(Figure 1). Eighteen STs resulted with not assigned clonal complex (Figure 1). ST-179 complex and
ST-45 complex were the most frequently CCs found in the 53.3% and in the 16.3% of the isolates,
respectively, confirming their association to the wild bird’s reservoir (Figure 1). They showed a wide
geographical distribution and were found present throughout the study period. ST-45 was isolated
from 4 different wild bird species (pigeons, magpies, starling and greenfinch) (Table 1). However,
a very few numbers of STs were shared among different species. In particular, ST-2655 and ST-4447
were isolated in pigeons and crow; ST-2538 was isolated in one jay and in one thrush; ST-2116 in one
pigeon and in one white wagtail, while ST-220 was isolated in many pigeons and in one owl (Table 1).
Differently, a great number of STs revealed to be species-specific (Table 1). For example 9 STs were
found only in crows; 14 different STs only in pigeons and 2 STs showed a host specificity toward
mallards (Table 1, Figure 1).
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Figure 2. Geographic distribution of Italian wild birds analyzed. Geographical mapping of wild birds
was obtained with Ridom SeqSphere+ v4.1.1 software using the geographical coordinates found from
“city” entries. Colors within the mapped circle correspond to the wild bird species reported in the legend.

The comparison of cgMLST allelic profiles using a cluster distance threshold of 13 different alleles
from ST-45 complex and ST-179 complex revealed the presence of five and 1 clusters respectively
(Figures 3 and 4). In detail, for the ST-45 complex we observed two distinct clusters with 6 and
3 pigeons; 1 cluster with 2 greenfinches, 1 cluster with 3 magpie and 1 cluster composed of two
buzzards (Figure 3). All the wild birds featured in the same clusters were captured in the same area.
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complexes with a distance of up to thirteen alleles are highlighted in grey.
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Differently, the clonal ST-179 complex showed the presence of 70 pigeons, 1 crow and 1 owl
(Figure 4). The pigeons were representative of all the districts analyzed in the study.
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2.2. Antimicrobial Resistance Phenotypes

Altogether, 20% of the C. jejuni strains from wild birds were resistant to at least one of the six
antibiotics tested. The MIC test revealed that 12.5% of the isolates were resistant to tetracycline, 10% of
the strains showed resistance to nalidixic acid and ciprofloxacin, while 6.7% and 4.2% were resistant to
streptomycin and erythromycin, respectively (Table 2). Few strains resulted resistant to gentamicin
(2.5%) (Table 2). The 33.3% of the strains resistant to nalidixic acid, and the 25% of strains resistant to
ciprofloxacin were assigned ST-179 complex. The 26.7% of C. jejuni resistant to tetracycline and the
16.7% of those resistant to ciprofloxacin and nalidixic acid were assigned to ST-353 complex. Finally,
the 20% of C. jejuni resistant to tetracycline was assigned to ST-952 complex and the 13.3% to ST-45
complex. We identified seven C. jejuni multidrug resistance pattern (MDR), indicated in Figure 1. One
C. jejuni strain isolated from a pigeon, showed resistance to all tested antibiotics (Figure 1). The most
common MDR pattern (cipNatet) was observed for C. jejuni isolated from 2 pigeons, 1 crow and 1 white
wagtail, while the other 2 (ciperygen) and (Naerystm) were observed in 2 pigeons (Figure 1).
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Table 2. Comparison of genotypic and phenotypic resistance to antibiotics in C. jejuni isolated from
Italian wild birds.

Antibiotic Class Antibiotics Genes a % Resistances
(Phenotypes) b

% Resistance
(Genotypes) c

Concordance
rate d

Aminoglycosides
Gentamicin (gen) - 2.5

Streptomycin (stm) aad 6.7 28.6 23.3

Beta-lactams e - blaOXA-61,
blaOXA-184 - 10, 86.7 -

Fluoroquinolones/
Quinolones

Ciprofloxacin (cip)/
Nalidixic acid (Na) gyrA 10 33.3 30.0

Macrolides Erytromicin (ery) erm(B), 23S
rRNA 4.2 - -

Tetracyclines Tertracycline (tet) Tet(O) 12.5 53.3 23.4

Multidrug CmeABC efflux system and
cmeR

cmeA, cmeB,
cmeC, cmeR - 100, 100, 99.2,

100 -

a Accession numbers from the resistant genes can be accessed through the database Card https://card.mcmaster.ca/,
point mutations were searched according to point finder database (https://bitbucket.org/genomicepidemiology/
pointfinder_db/src/master/campylobacter/resistens-overview.txt); b Percentages of isolates expressing the resistance
phenotype for the corresponding antibiotic; c Percentages of isolates expressing the resistance phenotype for
the corresponding antibiotic, that have the indicated gene; d Concordance rate among the two resistances (%),
e Antibiotic class not tested for resistance phenotype.

2.3. Detection of Resistance Genes, Mutations and Levels of Concordance Among the Two Type of Resistances

The following genes of antimicrobial resistance were investigated: tet(O), cmeA, cmeB, cmeC, cmeR,
aad, oxa184, oxa61 and erm(B). The tet (O) gene, encoding tetracycline resistance ribosomal protection
protein (TetO), was detected in 53.4% of wild bird strains. The multidrug efflux pump (CmeABC) and
its regulator (CmeR), conferring resistance to a wide range of antimicrobials, were found in all the
isolates; while aad gene, known to confer streptomycin resistance, was present in the 28.6% of wild
bird isolates. The two major B-lactamase genes were differently observed, with a prevalence of oxa-184
(86.7%) versus oxa-61 (10%). Differently, erm(B) gene and point mutations on 23s rRNA regarded to be
associated with erythromycin resistance, were not identified in any isolate.

C. jejuni strains showing resistance to quinolones and fluoroquinolones, were tested for point
mutations in gyrA gene. Two types of mutations linked to ciprofloxacin and nalidixic acid resistance
were detected in the analyzed wild bird populations on gyrA gene.

In the detail, 25% possessed the C257T point mutation (2 pigeons and 1 crow), resulting in
a T86I substitution in the gyrA gene, while 8.3% presented the A256G point mutation (1 pigeon)
producing a T86V substitution. Weak correlations were found for phenotypic and genotypic resistances,
reaching levels of concordance of 23.3%, 23.4% and of 30% for streptomycin, tetracycline and
quinolones/fluoroquinolones, respectively (Table 2).

3. Discussion

Reducing the occurrence of campylobacteriosis is a food safety issue of high priority in European
Union; however, continuing invasion on wildlife habitat by humans through a massive urbanization
and intensive agriculture increases the opportunities for contact between wild birds, domestic animals,
and people [9]. Wild birds, being natural reservoir of Campylobacter, thus represent a serious risk
for public health, either directly through the consumption of wild bird game meat, or indirectly,
by disseminating Campylobacter into the environment and domestic livestock [14]. The aim of this
study was to assess the genomic characterization of circulating wild bird species in Italy and indagate
their capability to disseminate in the environment important antimicrobials factors, in order to evaluate
their influence on public health. Wild birds are usually considered to have a marginal role in human
illness. However, specific STs and generalist lineages of C. jejuni found in hospitalized patients

https://card.mcmaster.ca/
https://bitbucket.org/genomicepidemiology/pointfinder_db/src/master/campylobacter/resistens-overview.txt
https://bitbucket.org/genomicepidemiology/pointfinder_db/src/master/campylobacter/resistens-overview.txt
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with gastroenteritis have been reported in several species of wild bird [13,15–17,21], indicating their
potentiality as reservoirs of human infection. ST-45 and ST-267, isolated in humans, have been found
among both blackbird and chicken isolates from Sweden, magpies, greenfinches, starling, pigeons,
owl and blackbird in Italy [26,33,34]. In a previous study [26] other STs (ST-48, 2116 and 1044) from
Italian human patients, were shared with starling, magpies and white wagtail circulating in Italy.
Differently, the high occurrence (73.2%) of species-specific STs, would confirm the existence of particular
C. jejuni lineages for specific wild bird species. ST-1224 that we isolated in one magpie, has only
been found in wild birds from USA and in environmental water in Canada, confirming on one side a
species-specificity, on the other side the bacteria dissemination in environmental waters through wild
birds acting as vectors [35,36]. Moreover, ST-2353 isolated in a seagull, has been found only in a gull in
New Zealand in 2008 so far, as well as in environmental water in the same area (www.pubMLST.org),
reinforcing the idea that gulls are not a major source of C. jejuni in human infections. In our study,
two major CCs were reported in 53.3% (ST-179 complex) and in 16.3% (ST-45 complex) of wild bird
population; thus, in order to analyze the genomic diversity within the most detected clonal complexes,
a comparative genomics using cgMLST was performed. The minimum spanning tree based on the
cgMLST of ST-179 complex clearly indicates that although the isolates clustered in three groups
defined by different STs, they form a cohesive single population with only 1 or 2 allelic differences.
Furthermore, in addition to 70 pigeons, we found a crow and an owl within the cluster, confirming the
idea that these STs are commonly shared between different animal host species. In detail, the crow
belonged to the same town of the pigeons, while the owl was collected from a sampling site 400 km
away. Otherwise, the ST-45 complex, comprised seven different species, nonetheless the isolates were
more closely related to those of the same species, independently from the sampling site or time of
isolation. In our study, the sampling size and the variety of species were defined by the use of passive
surveillance without active case finding, therefore, it is not possible to make a general conclusion on
the whole wild bird population. Nonetheless, the results aided several other studies and seem to
corroborate the idea that wild birds not only can disseminate C. jejuni in different regions, but they
can harbor different lineages of C. jejuni. Our results are in line with a recent study demonstrating
the existence of certain sub lineages of ST-45 forming genetically isolated clades containing C. jejuni
strains with extremely similar genomes regardless of time and location of sampling [27]. In addition to
the highly mobile nature of many wild bird species to disseminate bacteria in the environment [32],
the World Health Organization in 2017 (World Health Organization, 2017) showed that many of these
microorganisms exhibited resistance to antimicrobials considered of highest importance to human
medicine [37,38]. Interestingly, C.jejuni strains isolated in this study showed a moderate percentage
resistance to tetracycline, to ciprofloxacin and nalidixic acid, suggesting that the antimicrobial resistance
could be acquired by horizontal gene transfer [39] or, to the usage antibiotics as a therapeutic agent
in dairy cattle and poultry farms [40]. Lower resistance rates have been observed for streptomycin,
erythromycin and gentamicin. The prevalence observed in our study is partially in line with data
obtained by Aksomaitiene at al. [41] for tetracycline and erythromycin in Lithuania. A low number
of streptomycin-resistant C.jejuni from wild birds has been previously described [42]. In contrast,
a worrying resistance rate for quinolones, fluoroquinolones and tetracyclines has been detected in
the same C. jejuni strains. Krawiek et al, shows higher level of resistance, respect to our data, for all
antibiotics with the exception of nalidixic acid, slightly lower than that reported from us probably
related to different environmental features [24].

We also studied our wild birds in the context of MDR, defined as resistance to at least three
different antimicrobials [43]. Antimicrobial resistance is a complex problem and the wildlife role
could be underestimated. In our dataset we found only 5.2% of wild birds resistant to three different
antibiotic classes. However, one C.jejuni from a bird usually living strictly with human people (pigeon)
showed a worrying MDR to all the antimicrobials tested in the study, reinforcing the idea that wild
birds represent a real risk in spreading resistant bacteria. Wild bird studies depend on opportunistic
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sample collection; therefore, some birds are more likely to be sampled than others, as happen in this
study with the pigeons that are the majority in this set of wild birds analyzed.

C.jejuni isolates resistant to cip and Na were screened for the presence of the mutations in the
quinolone resistance-determining regions (QRDR) of the gyrA gene. We found T86I amino acid
substitution as the most common (25% of pigeons and crow isolates), followed by only a pigeon with
T86V aminoacid substitution. The rest of wild birds resulted without mutations, confirming other
mechanisms of resistance such as pump efflux system, as reported previously [44]. We found the genes
involved in this multidrug CmeABC efflux system, together to his repressor cmeR, present in all wild
bird isolates. However, our wild strains miss the known genetic mechanisms for the ery resistance,
implying that resistance to ery could be the result of another unknown system in our strains.

These findings are in line with the study of Yao et al. that revealed the existence of a “super”
CmeABC variant used by these bacteria to enhance multidrug resistance, desensitizing Campylobacter
to many antimicrobials and conferring a high-level resistance to fluoroquinolone in association with
the C257T mutation in gyrA [45].

We screened for other anti-resistant factors such as blaoxa-184 and blaoxa-61 gene, described to
confer beta-lactam resistance in C.jejuni strains by Alfredson et al 2005 [46]. We found the 86.7% and the
10% of the genes respectively presents, in line with other studies [45,47]. This is worth to investigate
further because this antimicrobial class usually is not used for the Campylobacter infections. Finally,
in this study we found a low correlation between phenotypic resistance to tetracycline, streptomycin
and quinolones/fluoroquinolones and the existence of resistance genes or nucleotide polymorphisms.

In conclusion, our study demonstrated that wild birds are mostly colonized by host-adapted
STs, possessing a minor set of STs shared with further hosts, including poultry, livestock and humans.
Although, we found a low and moderate prevalence of antibiotic resistance in our data set, it is
extremely important to monitor the situation also in wild birds. Understanding of the prevalence of
these potentially dangerous bacteria in wild birds is necessary to guide public health policies about the
control of foodborne illness in humans. Similarly, the occurrence of resistant bacteria in wildlife has
been detected in many animal species across different geographical areas, highlighting the importance
and complexity of wild animals, in the transmission of resistant bacteria, even if they are not usually
exposed directly to antimicrobials. Thus, continued surveillance of multi-resistant bacteria in wild
animals is warranted.

4. Materials and Methods

4.1. Bacterial Strains and Species Identification

A total of 135 wild bird isolates from Piedmont and Veneto regions were included in the study.
In particular, 67/135 were previously analyzed for antimicrobial susceptibility [44] and added to
the others sixtyeight. Strains were isolated during five years (2015–2019) via passive surveillance
monitoring by the Istituti Zooprofilattici Sperimenatali (IIZZSS) network and/or sent to the National
Laboratory Reference of Campylobacter (NRL, http://www.izs.it/IZS/Eccellenza/Centri_nazionali/LNR-
Campylobacter), for species identification or molecular characterization. The strains were cultured
on Columbia blood agar plates in microaerobic atmosphere at 42 ◦C for 48h and stored at −80 ◦C in
Microbank™ until further analysis. After an initial phenotypic characterization, suspected colonies
confirmed as thermotolerant Campylobacter and identified to species level using a multiplex and
a simplex PCR, as described previously (Marotta 2019). Strains used as positive controls were
Campylobacter coli NCTC 11353, Campylobacter fetus ATCC 19438, Campylobacter jejuni ATCC 33291,
Campylobacter upsaliensis NCTC 11541 and Campylobacter lari NCTC 11552. DNA was extracted using
Maxwell instrument (Promega Corporation, Madison, WI, USA) according to the manufacturer’s
instructions and quantified using a Nanodrop Spectrophotometer (Nanodrop Technologies, Celbio Srl.,
Milan, Italy).

http://www.izs.it/IZS/Eccellenza/Centri_nazionali/LNR-Campylobacter
http://www.izs.it/IZS/Eccellenza/Centri_nazionali/LNR-Campylobacter
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4.2. Sequence Analysis and Identification of Antibiotic Resistance Genes

Total genomic DNA was used to prepare sequencing libraries using Nextera XT Library Preparation
Kit (Illumina, Inc., San Diego, CA, USA). The libraries were then sequenced using Illumina NextSeq
500 sequencer. Sequence reads (150-bp, pair-end) were demultiplexed and the adapters were removed.
Subsequently the reads were trimmed with Trimmomatic tool (version 0.36) and de novo assembled
using SPAdes version 3.11.1 with the ‘careful’ option selected [48]. The sequence reads generated
in this study were deposited in NCBI Sequence Read Archive (SRA) in Bioproject PRJNA623711.
Additionally, 15 previously published sequences used in the analysis can be found in NCBI Bioproject
PRJNA510785 [49].

C.jejuni genome assemblies, were genotyped by using MLST and cgMLST. The assemblies were
also investigated for the genomic AMR traits. Gene-by-gene analysis was performed using the
SeqSphere+ v4.1.1 software (RidomGmbH, Münster, Germany). The MLST profiles were assigned
using a C.jejuni/coli task template MLST 7 loci, schema available at https://pubmlst.org/campylobacter/
accessible through in Ridom SeqSphere+ software. The cgMLST profiles were assigned using C.jejuni
task template with 949 target core genomes available in the Ridom SeqSphere+ database (https:
//www.ridom.de/seqsphere/u/Task_Template_Sphere.html). A Neighbor joining tree was generated
for MLST profiles, while a Minimum spanning tree (MST) was generated by pairwise comparison of
cgMLST target genes using default settings parameters of Ridom. Missing alleles were ignored in the
pairwise comparisons.

AMR genes were identified in silico using PointFinder v. 3.1.0 and ABRicate v. 0.8 (https://github.
com/tseemann/abricate/) by querying the publicly available Comprehensive Antibiotic Resistance
Database (CARD) [50,51]. Prokka v1.13 [52] was used to annotate the assemblies and gyrA sequences
were extracted applying the query_pan_genome function in Roary v3.12.0 [53]. gyrA genes were
aligned using Uniprot UGENE v1.18.0 [54], from which the gene variants were identified. Only
mutations in the quinolone resistance-determining region (QRDR) of gyrA were assessed to be the
determinants of resistance, as only these loci have been linked with phenotypic resistance to quinolones.
In particular we analyzed the amino acid changes at position 86.

4.3. Antimicrobial Susceptibility

A total of 68/135 wild bird strains were subjected to the antimicrobial test and added to the
previously analyzed [44]. Susceptibility to antimicrobials was evaluated with the microdilution method
using the Sensititre automated system (TREK Diagnostic Systems, Venice, Italy). Colonies were sub
cultured on Columbia agar for 24 hours and then seeded in Mueller Hinton Broth supplemented with
blood (Oxoid, Basingstoke, UK). Subsequently, they were dispensed into Eucamp2 microtiter plates
(TREK Diagnostic Systems, Venice, Italy), containing known scalar concentrations of the following
antibiotics, indicating the distribution % of Minimum Inhibitory Concentration (MIC): ciprofloxacin
(0.12–16 µg/mL), erythromycin (1–128 µg/mL), gentamicin (0.12–16 µg/mL), nalidixic acid (1–64 µg/mL),
streptomycin (0.25–16 µg/mL), and tetracycline (0.5–64 µg/mL). After inoculation, the plates were
incubated at 42 ◦C in microaerobic atmosphere for 24 h and then screened. Campylobacter jejuni strain
NCTC 11351 was used as control. The strains were classified as resistant (R), and susceptible (S) to
the examined antimicrobials based on MIC breakpoints, by using Swin v3.3 Software (Thermo Fisher
Scientific) in accordance with the epidemiological cutoff values (ECOFFs) as defined by EUCAST
(European Committee on antimicrobial breakpoints) (www.eucast.org) to interpret their antimicrobial
susceptibilities. MIC breakpoints of resistance were ≥0.5 µg/mL for ciprofloxacin, ≥4 µg/mL for
streptomycin, ≥4 µg/mL for erythromycin, ≥2 µg/mL for gentamicin, ≥16 µg/mL for nalidixic acid and
≥1 µg/mL for tetracycline. Details of the wild bird isolates are summarized in supplementary Table S1.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/2076-0817/9/4/
304/s1. Table S1: Minimum Inhibitory Concentration (MIC) for the isolates tested.

https://pubmlst.org/campylobacter/
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