
Microprocessors and Microsystems 77 (2020) 103200

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

An early-stage statement-level metric for energy characterization of

emb e dde d processors

Vittoriano Muttillo

∗, Paolo Giammatteo , Vincenzo Stoico , Luigi Pomante

Università degli Studi dell’Aquila, Center of Excellence DEWS, Italy

a r t i c l e i n f o

Article history:

Received 8 November 2019

Revised 16 May 2020

Accepted 2 July 2020

Available online 8 July 2020

Keywords:

Embedded processor

Energy consumption

Profiling

Benchmarking

Metrics

a b s t r a c t

This work presents an early stage statement-level metric for energy characterization of embedded

processors. Definition and the framework for metric evaluation are provided. In particular, such a metric

is based on an existing assembly-level analysis and some profiling activities performed on a given C

benchmark, and it is related to the average energy consumption of a generic C statement, for a given

target processor. Its evaluation is performed with a one-time effort and, once available, it can be used

to rapidly estimate the energy consumption of a given C function for all the considered processors.

Two reference embedded processors are then considered in order to show an example of usage of the

proposed metric and framework.

© 2020 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

t

t

m

m

c

e

t

s

t

m

C

M

g

t

fl

F

t

d

k

p

(

m

p

c

t

s

l

t

y

t

m

e

t

(

m

d

a

a

m

t

s

C

t

c

h

0

(

. Introduction

Energy consumption is one of the most critical design issues in

he embedded systems domain. In particular, the need to guaran-

ee even longer life for all battery-powered devices is one of the

ain problems that affect the design activities. Indeed, the choices

ade by designers at the system-level of abstraction, can drasti-

ally influence the final system energy consumption, since differ-

nt optimizations can be considered in the whole Electronic Sys-

em Level (ESL) design flow [1] . Therefore, different energy con-

umption models can be taken into account in order to estimate

he energy consumption of the final system implementation. Such

odels can be related to processors, Application Specific Integrated

ircuit (ASIC), memories, and the interconnections among them.

oreover, the models can be at different levels of abstraction and

ranularity, mainly depending on the required estimation accuracy.

Since this work focuses on embedded processors, Fig. 1 shows

he typical abstraction levels involved in a classical ESL design

ow for embedded processors [2] . The first abstraction level, called

unctional , catches very few non-functional static processor fea-

ures, as average Clock cycles Per Instruction (CPI), static power

issipation, etc. The Architectural/ISS abstraction level involves the

nowledge of the Instruction Set Architecture (ISA) and it is nor-
∗ Corresponding author.

E-mail addresses: vittoriano.muttillo@univaq.it (V. Muttillo),

aolo.giammatteo@univaq.it (P. Giammatteo), vincenzo.stoico@student.univaq.it

V. Stoico), luigi.pomante@univaq.it (L. Pomante).

a

s

o

i

m

ttps://doi.org/10.1016/j.micpro.2020.103200

141-9331/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
ally supported by a so-called Instruction Set Simulator (ISS) to

erform several kinds of dynamic analysis. The Pipeline-accurate Ar-

hitectural/ISS abstraction level adds details about the behavior of

he pipeline into the simulator, providing a more refined proces-

or model. Finally, the Cycle-accurate Micro-Architectural abstraction

evel introduces further details about the processor architecture in

erms of Control Unit and Data Path , allowing a cycle-accurate anal-

sis of the final implementation. The following work is located be-

ween the first two levels of the design flow. Here, a statement-level

etric called J4CS (Joule for C Statement) is proposed, in order to

stimate the average energy consumption associated to the execu-

ion of a generic C statement by means of a given target processor

i.e., a hybrid functional/instruction level approach). However, two

ain issues must be firstly clarified. The first one is related to the

efinition of “generic C statement”. This work exploits the same

pproach presented in [3] , where it has been defined, by adopting

n empirical approach. In particular, it refers to the way a com-

on profiling tool as GCov [4] performs C statements identifica-

ion and counting, when profiling their execution. The second is-

ue is related to the fact that J4CS is influenced also by the used

 compiler (and the adopted optimization options) since the op-

imizations performed by a compiler can lead to different energy

onsumption value. Furthermore, there are several ways to man-

ge such an influence. One is to explicitate the used compiler, pos-

ibly giving rise to a J4CS for each processor/compiler pairs. An-

ther one is to consider the average of the results obtained by us-

ng the most diffused C compilers. In such a case, the issue can be

anaged through a statistical characterization of J4CS, considering
under the CC BY-NC-ND license.

https://doi.org/10.1016/j.micpro.2020.103200
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103200&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vittoriano.muttillo@univaq.it
mailto:paolo.giammatteo@univaq.it
mailto:vincenzo.stoico@student.univaq.it
mailto:luigi.pomante@univaq.it
https://doi.org/10.1016/j.micpro.2020.103200
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

Fig. 1. Classical ESL design flow for embedded processors.

e

f

(

p

[

g

t

s

t

a

t

I

(

a

p

y

t

i

[

t

f

p

f

P

m

t

e

s

t

w

s

v

n

t

w

i

t

fi

l

l

p

t

l

w

a

a

f

t

o

t

l

o

i

o

s

p

3

[

a

both different compilers and different compiler optimization op-

tions. This can be obtained by evaluating a set of values related to

Min, Max, Average, Standard Deviation and by also trying to identify

an associated statistical distribution. In such a context, this work

intends to explore the statistical characterization approach by pro-

viding a metric useful to estimate, at an early-stage design phase,

the energy consumption related to the execution of SW on a tar-

get embedded processor, so characterizing the processor itself. J4CS

is suitable for very fast estimation, comparison and selection ac-

tivities. J4CS evaluation considers the assembly-level analysis pre-

sented in [5] , as explained in Section 3 , and exploits the frame-

work developed in [3] . The obtained value can be assigned to each

statement of a given C function and exploited, with a host-based

source-level profiling, in order to estimate the total amount of en-

ergy consumed when the C function with specific inputs is exe-

cuted on the target embedded processor. According to this sce-

nario, this work intends to extend the ideas addressed in [6] by

providing in addition:

• a comparison of related works, with a focus on platforms and

accuracy;

• more detailed aspects about the proposed J4CS evaluation

framework;

• the addition of the Intel CISC 8051 micro-controller and the in-

troduction of new target boards;

• a statistical analysis considering different data types and the

correlation between assembly instructions and C statements;

• error estimation associated with a validation benchmark, and

the exploitation of the Affinity [7] metric value to increase J4CS

accuracy;

The remainder of the paper is organized as follows:

Section 2 describes some relevant works related to the

power/energy consumption estimation and evaluation prob-

lem. Section 3 formally defines the proposed J4CS metric.

Section 4 presents the J4CS metric evaluation framework ap-

plied to two reference embedded processors. Section 5 shows how

the obtained values can be used in order to estimate and compare

the energy consumption associated with the execution of a given

C function on a specific board. Finally, Section 6 closes the paper

with conclusions and future works description.

2. Related works

Different abstraction levels can be considered in order to de-

scribe a processor and its behavior. Accordingly, several energy
stimations can be performed [8] , as previously stated. Starting

rom lower-levels of abstraction, such as gate or Register-Transfer

RT) ones [9] , a lot of works consider the problem of estimate

ower/energy consumption by using time-consuming simulators

10–12] . Other works start from an accurate modeling of the tar-

et ISS [13,14] , but this still requires a considerable time both for

he modeling and the simulation activities.

Other studies present energy estimation approaches at (as-

embly) instructions level. These energy consumption estimation

echniques usually consider either ISS or low-level assembly code

nalysis in order to obtain power characterization of the applica-

ion, at the expense of a higher consumption of estimation time.

nstruction-level energy estimation can be divided into two types:

1) measurement-based techniques that do not consider processors

rchitectural details, while trying to extract an average energy cost

er instruction [15,16] ; (2) pipeline and accurate architectural anal-

sis that take into account pipeline stages and complex architec-

ural details [17–19] . The same problems arise in approaches that

nvolve the introduction of some kind of Virtual Instruction Set (e.g.,

20]), but that still require some explicit detailed knowledge of the

arget processors architecture.

Several works analyze the energy consumption of processor

unctional units, where the total energy consumption of a target

rocessor is obtained by the sum of energy dissipation of these

unctional components [21] . Also for the so called Functional-Level

ower Analysis (FLPA) methods, the energy model is derived by

eans of simulation or on-target measurements [22,23] . In order

o bring the gap between instruction and functional level power

stimation, Blume et al. [24] and Brandolese et al. [25] has pre-

ented a hybrid approach that combines these two methods to es-

imate energy consumption.

Other works try to rise the abstraction level, by going to-

ards the system level one. This is often done by directly con-

idering source-code [5] , but also this kind of analysis can in-

olve different time-consuming activities strictly related to the

eed of taking into account the peculiarities of the considered

arget processors. With respect to the source-code analysis, the

orks in [26,27] present a statement-level timing estimation that

s used to evaluate power/energy metrics directly on the base of

iming executions and profiling activities. A work that tries to

ll up the gap between the reduced simulation time of high-

evel dynamic analysis of source-code, with the accuracy of low-

evel dynamic analysis, is [28] , that introduces an intermediate

seudo instruction set for analyzing applications and HW architec-

ures, using an approach still similar to [20] . Finally, a statement-

evel energy estimation based on GCC has been proposed in [29] ,

here an higher absolute error was measured due to the simple

nd basic method used for the measurements. Table 1 presents

 comparison of the considered works according to several

eatures [30] .

In such a context, the work presented in this paper is close to

he work presented in [5] . The main difference is that the purpose

f this work is to reduce the time needed for estimation activi-

ies by means of a strategy that allows to quickly evaluate and se-

ect processors in an early-stage analysis. In fact, the estimation

f the energy consumed during SW execution is very fast since

t is based only on a host-based source-level profiling performed

ne-shot independently from the number of target processors con-

idered. More detailed ISA-related analysis, if needed, can be then

erformed by focusing only on the selected processors.

. Metric definition

The transistor-level power consumption of a microprocessor

14] during the execution of a given program can be evaluated

s:

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 3

Table 1

Comparison of considered power estimation works.

Work Year Target Simulator and/or Accuracy Abstraction Benchmark

Estimation Model Level

[10] 1999 ARM710a ARMulator 5% Cycle Level Dhrystone

[11] 2000 VLIW processor SimplePower 15% Cycle Level Custom

[12] 2002 ARM920 Armulator N.A. Cycle Level MPEG4

[13] 1994 Intel 486DX2-S Custom N.A. Cycle

Level

Custom

SPARClite 934

[14] 2001 StrongARM SA-1100 JouleTrack 2% ≤ acc ≤ 8% Cycle

Level

Custom

Hitachi SH-4

[15] 2001 ARM7TDMI Regression Model 2% ≤ acc ≤ 6% Instruction Level Custom

[16] 2002 ARM7TDMI Regression Model 2% ≤ acc ≤ 6% Instruction Level Custom

[17] 2000 VLIW Core Math Model 3% ≤ acc ≤ 16% Instruction Level Custom

[18] 2005 ARM7TDMI Math Model acc ≤ 5% Instruction Level Custom

[19] 2009 LEON3 Custom Framework N.A. Instruction Level Custom

[20] 2000 Motorola MC68000 TOSCA

OCCAM2

1% ≤ acc ≤ 20% Instruction

Level

ILC

16 ARM7TDMI

[24] 2007 ARM926EJ-S ARMulator 4% ≤ acc ≤ 9% Instr./Func.

Level

Digital Signal

C55x DSP XDS510PP Plus Processing Tasks

[25] 2002 Intel i960JF acc ≤ 9% Instr./Func.

Level

Custom

Intel i960HD Instruction

SPARClite MB86934 Characterization

ARM7TDMI

[21] 2002 TMS320C6201 Math

Model

acc ≤ 4.2% Functional

Level

Digital Signal

Processing Algorithms

[22] 2007 TMS320C6416 Functional Model acc ≤ 10% Functional Level Custom

[23] 2005 TMS320C6416 Functional Model acc ≤ 9% Functional Level FIR filter

[5] 2007 ARM9TDMI SystemC

Sim.

acc ≤ 11% System

Level

Custom

ARM TRM

[26] 2001 N.A. Math Model acc ≤ 11% System Level Custom

[27] 2010 ReISC III Math Model acc ≤ 6% System Level WCET suite

[28] 2002 Intel i486 Formal Model acc ≤ 5% System Level Custom

[29] 2016 Tiva

TM4C123G

Instruction acc ≤ 30% System

Level

Custom

Characterization

This

Work

2019 RTAX TSIM,

Dalton

1% ≤ acc ≤ 15% System

Level

Custom

UT699

AT89C51

P

w

a

f

c

v

d

N

c

a

g

s

f

g

a

E

w

f

t

c

p

t

s

s

E

w

e

t

r

t

i

(

c

f

t

p

e

a

e

c

t

t

r

s

t

3

s

c

s

b

t

C
 tot = P dyn + P stat = P switching + P short−circuit + P stat

= α · C L · V

2
dd · f + I sc · V dd + V dd · I leak (1)

here P tot is the total power consumption made up of dynamic

nd static power contributions, α is the node transition activity

actor (normally, α =

1
2), C L is the average switched capacitance per

lock cycle during the execution of the program, V dd is the supply

oltage, and f is the clock frequency. P short−circuit is related to the

irect-path short circuit current I sc , which arises when both the

MOS and PMOS transistors are simultaneously active, conducting

urrent directly from supply to ground. P static is related to the leak-

ge current I leak , i.e., the current that flows through the circuit to

round. The works [17,31] show that the switching activity repre-

ents 90% of the total power consumption, so estimations mainly

ocus on it.

Considering the execution time associated to a given SW pro-

ram (�t), it is possible to evaluate the total energy consumption

s:

 tot = P tot · �t = α · C tot · V

2
dd

+ I sc · V dd · �t + V dd · I leak · �t (2)

here C tot is the total switched capacitance. Changing the clock

requency (and so decreasing/increasing the program execution

ime) doesn’t change C tot [14] and so the energy consumption de-

rease/increase linearly with the scaled frequency with the slope

roportional to the amount of leakage. Eq. (1) and Eq. (2) define

he power processor model at circuit level.

Then, by considering the assembly-level software model pre-

ented in [32] , it is possible to define the energy consumption as-

ociated with a given program also as:

¯
 =

∑

i (B i × N i) +

∑

i, j (O i, j × N i, j) +

∑

k (E k) (3)
here B i is the base cost (i.e., the energy cost associated to the

xecution of a specific assembly instruction), N i is the number of

imes a specific assembly instruction has been executed, O i,j rep-

esents the circuit state overhead (i.e., the energy overhead due

o the execution of two separated sequential instructions), and E k
s the energy contribution related to other inter-instruction effects

i.e. stalls or cache misses) [13] .

The higher the abstraction level, the lower the estimation ac-

uracy, but also the lower the timing simulation activities needed

or power estimation. Furthermore, at instruction level, considering

he average power consumed by a microprocessor while running a

rogram, it is possible to simplify Eq. (2) and Eq. (3) by consid-

ring P̄ = Ī × V dd , where Ī is the average current and V dd the volt-

ge supply. So, the average energy consumed by a program can be

xpressed by: Ē = P̄ × N × τ, where N is the number of program

lock cycles and τ is the clock period [32] .

Thus, while taking into account the formulas described above,

he approach proposed in this work exploits some benchmark ac-

ivities on a specific set of C functions in order to evaluate a metric

elated to the average energy consumption per C statement, as de-

cribed below, to estimate a statistical interval of energy consump-

ion.

.1. Main assumptions

As described in [5] , many embedded microprocessors have a

tatistical property of constant energy consumption for each exe-

uted assembly instruction. So, the proposed idea is to apply the

ame approach to a higher abstraction level (i.e., statement-level)

y characterizing the energy cost (e.g., probabilistic distribution in

erms of distribution parameters) associated to the execution of a

 statement. This is achieved by performing several simulations in

4 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

S

v

b

s

E

E

W

E

W

m

o

m

a{

E

w

e

D

b

E

w

q

w

p

t

I

I

w

e

t

t

fi

o

E

E
order to consider a meaningful number of execution paths depend-

ing on different inputs.

In order to perform statistical analysis, some assumptions must

be made:

• if the program has a huge amount of lines of code (LOC), then

the energy consumed for each instruction can be considered

constant without great loss of accuracy [14] ;

• each statement contributes with the same weight for the eval-

uation of the total energy consumption, since the analysis is

given from a statistical point of view, while the evaluation does

not consider the influence of operators and variables on the to-

tal energy cost;

• an average number of assembly instructions per C statement is

considered, since the number of instructions can vary depend-

ing on several factors (i.e., memory accesses, addressing modes,

register file size, branch mis-predictions, etc.);

• an average number of clock cycles for a pipeline stage divided

by the processor efficiency � is considered in order to evaluate

the mean energy consumed by each executed assembly instruc-

tion, as presented in [5] .

By these assumptions, it is possible to define the following en-

ergy model.

3.2. Proposed energy model

The approach proposed in this work performs statement-level

energy estimation using statistical analysis and approximate pre-

dictions.

Definition 3.1. Z = { z i | i = 1 , 2 , . . . , n } is a set of n software func-

tions, B = { b i,k | i = 1 , 2 , . . . , n ∧ k = 1 , 2 , . . . , t } is a set of t ran-

domly generated inputs for each function z i , and P = { p j | j =
1 , 2 , . . . , m } is a set of m processing units (i.e., processors that are

able to execute the considered software functions).

Definition 3.2. Total Energy Consumption for a Generic Software

Function :

Let CS (z i , b i,k) the number of statements executed for a generic

software function z i with input b i,k (evaluated by considering a

statement-level execution trace representing the sequence of the

executed statements), then the total energy consumed E T (p j , z i , b i,k)

to execute the whole function z i on processor p j with input b i,k is:

E T (p j , z i , b i,k) =

∑ CS(z i ,b i,k)

s =1
E s (p j , z i , b i,k) (4)

where E s (p j , z i , b i,k) is the amount of energy consumption related

to the statement s in the execution trace.

The energy consumption is different each time a generic state-

ment s inside the function z i is executed, because, depending on

involved data location (i.e., memory, cache or register), data type

size (i.e., 8, 16, 32, 64 bit), and statement complexity, the number

of needed assembly instructions is different.

If I s (p j , z i , b i,k) is the number of assembly instruction required

to execute statement s of function z i on processor p j with in-

put b i,k (evaluated by considering an assembly-level execution

trace representing the sequence of the executed instructions), and

E ′
l,s

(p j , z i , b i,k) is the corresponding energy consumed by each as-

sembly instruction l of statement s , then:

E s (p j , z i , b i,k) =

I s (p j ,z i ,b i,k) ∑

l=1

E ′ l,s (p j , z i , b i,k) (5)

E T (p j , z i , b i,k) =

CS(z i ,b i,k) ∑

s =1

I s (p j ,z i ,b i,k) ∑

l=1

E ′ l,s (p j , z i , b i,k) (6)
implify Eq. (6) , we can consider the mean energy consumption

alue E
′
s (p j , z i , b i,k) for assembly instruction in the execution trace

elonging to statement s inside the function z i executed on proces-

or p j with input b i,k in this manner:

′
s (p j , z i , b i,k) =

1

I s (p j , z i , b i,k)
·

I s (p j ,z i ,b i,k) ∑

l=1

E ′ l,s (p j , z i , b i,k) (7)

 s (p j , z i , b i,k) =

I s (p j ,z i ,b i,k) ∑

l=1

E ′ l,s (p j , z i , b i,k)

= I s (p j , z i , b i,k) · E
′
s (p j , z i , b i,k) (8)

e can re-write Eq. (6) in this way:

 T (p j , z i , b i,k) =

CS(z i ,b i,k) ∑

s =1

I s (p j , z i , b i,k) · E
′
s (p j , z i , b i,k) (9)

hen the executed code of function z i is longer enough, the

ean energy consumption E
′
s (p j , z i , b i,k) per assembly instruction

n statement s can be considered constant among different state-

ents without great loss of accuracy [14] . Under this assumption,

t system-level we have:

∀ l ∈ { 1 , 2 , . . . , I s (p j , z i , b i,k) } ∀ s ∈ { 1 , 2 , . . . , CS(z i , b i,k) }
}

⇒ E
′
s (p j , z i , b i,k) ∼=

E
′
(p j) (10)

 T (p j , z i , b i,k) =

CS(z i ,b i,k) ∑

s =1

I s (p j , z i , b i,k) · E
′
(p j) (11)

here E
′
(p j) is the approximate average assembly instruction en-

rgy consumption on processor p j defined as follow [5] :

efinition 3.3. Average Assembly Instruction Energy :

The average energy consumption associated to a generic assem-

ly instruction executed on a processor p j can be defined as:

¯

′ (p j) =

MP C (p j)

φ(p j) · f (p j)
(12)

here MP C (p j) is the Mean Power Consumption, f (p j) is the Fre-

uency , and φ(p j) is the Power Efficiency associated to processor p j ,

hile φ(p j) is related to the MIPS parameter, normally provided on

rocessors data-sheets [33] .

Simplify Eq. (11) using the average number of assembly instruc-

ion executed, we have:

′
(p j , z i , b i,k) =

1

CS(z i , b i,k)
·

CS(z i ,b i,k) ∑

i =1

I s (p j , z i , b i,k) (13)

(p j , z i , b i,k) =

CS(z i ,b i,k) ∑

s =1

I s (p j , z i , b i,k) = I
′
(p j , z i , b i,k) · CS(z i , b i,k)

(14)

here I
′
(p j , z i , b i,k) is the mean number of assembly instructions

xecuted for each generic statement C belonging on software func-

ion z i on the processor p j with input b i,k , while I (p j , z i , b i,k) is the

otal number of assembly instruction executed. Finally, we can de-

ne the total energy consumption of a software function z i running

n processor p j with input b i,k as follow:

 T (p j , z i , b i,k) = E
′
(p j) · I(p j , z i , b i,k) (15)

 T (p j , z i , b i,k) = E
′
(p j) · I

′
(p j , z i , b i,k) · CS(z i , b i,k) (16)

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 5

T

i

t

i

o

c

n

3

a

g

s

t

c

b

s

s

s

t

D

C

m

e

t

e

J

w

b

b

t

T

s

b

d

F

e

T

n

a

t

m

g

E

s

i

a

w

p

w

t

c

i

e

s

o

q

e

f

k

t

m

s

t

f

s

o

b

p

4

4

i

u

a

i

s

C

t

d

s

e

o

t

t

[

t

he evaluation of I (p j , z i , b i,k) in Eq. (15) is time consuming, since

t is needed to evaluate this value each time using an ISS execu-

ion, while CS (z i , b i,k) in Eq. (16) considers the use of static profil-

ng tools on host environment and does not need to have the real

r emulated target processor. Furthermore, the I
′
(p j , z i , b i,k) value

an be evaluated using a statistical approach, as presented in the

ext section.

.3. J4CS Metric

Starting from Eq. (16) , we need information about the aver-

ge number of assembly instruction executed I
′
(p j , z i , b i,k) for each

eneric statement C belonging to function z i executed on a proces-

or p j with input b i,k . This feature can be considered as a fixed dis-

ribution evaluated on a selected function set (as much as possible

haracterizing all the possible functionalities used to realize em-

edded software application) and re-used to evaluate energy con-

umption associated to a generic C function executed on a proces-

or p j . For this, it is possible to exploit two profiling activities on a

pecific selected benchmark:

• by means of an ISS to find the number of executed assembly

instructions I (p j , z i , b i,k);

• by means of GCov [3] on a host-based compilation it is possible

to find the number of executed C statements CS (z i , b i,k);

Then, it is possible to define a statement-level energy consump-

ion metric as follows below.

efinition 3.4. J4CS (Joule for C Statements) :

Let Z = { z i | i = 1 , 2 , . . . , n } a benchmark set of n reference leaf

 functions (i.e., no other internal nested function calls). The J4CS

etric is the ratio between the number of assembly instructions

xecuted by the target processor p j running the functions z i , and

he number of executed C statements multiplied by the average

nergy of an assembly instruction execution E
′
(p j) , i.e.:

4 CS (p j) =

{
E

′
(p j) · I

′
(p j , z i , b i,k)

= E
′
(p j) ·

I(p j , z i , b i,k)

CS (z i , b i,k)
, ∀ z i ∈ Z, b i,k ∈ B

}
(17)

here I (p j , z i , b i,k) is the number of assembly instructions executed

y the target processor p j to execute the function z i with inputs

 i,k , and the CS (z i , b i,k) is the number of executed C statements for

he function z i with inputs b i,k , evaluated with static host profiling.

he J 4 CS (p j) is a frequency distribution of assembly instructions, C

tatements and average power consumption, and it is represented

y meaningful statistical values (e.g., min, arithmetic mean, stan-

ard deviation, median, max, quartiles, percentiles).

The reference approach to evaluate J4CS metric is shown in

ig. 2 . The first step is the function selection, where all the ref-

rence functions, one at a time, are extracted from the benchmark.

he next step involves the input generation, where a fixed random
Fig. 2. J4CS evaluation approach.
umber of inputs for each considered function have been gener-

ted. Two parallel path evaluates the assembly instructions needed

o execute the functions and the “host-based” executed C state-

ents (i.e., they depends only on inputs and functions, not on tar-

et processing unit). Finally, it is possible to evaluate J4CS using

q. (17) with an iterative approach.

As said in the introduction, a first clarification is due with re-

pect to the concept of generic C statement. It could be generally

ntended as something that ends with a semicolon (other views

re possible too, e.g. Table 6.1 in [34]) but, to avoid ambiguity, this

ork adopts an empirical approach: it refers to the way a common

rofiling tool as GCov [4] performs the C statements identification

hen profiling their execution. Another clarification is related to

he fact that such a metric will be for sure influenced by the used

ompiler. Some ways to manage this issue could be: (1) to spec-

fy also the used compiler (possibly giving rise to a set of J4CS for

ach processor/compiler pair); (2) to report the average of the re-

ults obtained by using the most diffused compilers; (3) to report

nly the results related to the most diffused one. At this point, it is

uite clear that J4CS, as defined above, will be influenced by sev-

ral factors and that a J4CS-based estimation will be probably af-

ected by relevant errors. However, these can be still acceptable by

eeping in mind the following aspects: it is a straightforward way

o have an off-the-shelf metric (i.e., by defining a standard bench-

ark it would possible to report its value on a processor data-

heet like normally done for the MIPS metric); it can be applied

o several SW processor technologies; it is intended to be used

or very early performance analysis in SW domain. Anyway, as de-

cribed in the next section, J4CS can be also characterized by a set

f values related to Min, Max, Average , and Standard Deviation (i.e.,

y statistical distribution parameters). In this way, it is possible to

erform different analysis depending on the final goal.

. Evaluation of J4CS

.1. Generic framework

In order to evaluate the metric for a given target processor, it

s needed, at least, to: define a set of relevant C functions to be

sed as benchmark (ideally a standard benchmark to be used for

ll the processors) [3] ; identify a way to stimulate (i.e., to execute)

t by means of relevant input data sets; identify a tool to perform

tatement-level profiling in order to count the number of executed

 statements for each input; identify tools to compile the C func-

ion for the target processor and to simulate its execution in or-

er to obtain total number of executed assembly instructions, as

hown in Fig. 3 .

It is worth noting that only the last step must be applied for

ach different processors that have to be characterized. Indeed, the

thers are independent. Moreover, J4CS is an one-time effort since

his metric, once evaluated, is available “for free” for any estima-

ion activity. So, to support J4CS evaluation, a proper framework

3] has been adapted. Additionally, such a framework is also able

o evaluate statistics on the metric itself.
Fig. 3. J4CS evaluation methodology.

6 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

The overall flow of the J4CS evaluation can be summarized into

three phases.

• Energy Data Acquisition: collect energy information useful to

evaluate J4CS metrics (i.e., assembly line executed, C statement

executed).

• Energy Model Characterization: calculate the parameter related

to energy consumption [5]

• Energy Estimation: execute profiling and substitute this re-

sults into the energy model to calculate the total energy

consumption.

The advantage of this approach relies on a statistical analy-

sis able to extract as-much-as-possible energy/power pattern be-

havior, without an exhaustive instruction-level energy estimation

for software that often need to perform deep architectural soft-

ware analysis (i.e., control-flow analysis, loop bound analysis, path

analysis).

It is possible, for instance, to consider the real number of exe-

cuted assembly line, and correlate them with the number of exe-

cuted C statement. The higher the correlation between these two

parameters, the higher the accuracy in power consumption estima-

tion inside a specific fixed interval. The whole framework is shown

in Fig. 4 . The following paragraphs describe the main features of

this generic framework, meanwhile processor specific features are

described later.

4.1.1. Reference benchmark

A simple benchmark composed of 14 well-known functions (i.e.,

C leaf functions z i in Eq. (17)) has been realized. The functions of

the benchmark are the following ones:

• Quicksort : the sorting algorithm that follows the divide et im-

pera approach. The algorithm recursively divides the input array

until many small 1-length arrays was obtained. An array and its

length have been passed as parameters.

• Mergesort : a sorting algorithm that follows the divide et impera

approach. The array is recursively split until the sub-lists are

composed by a single element. Then, two adjacent sub-lists are

compared and merged sorting the inner elements.
Fig. 4. J4CS evaluatio
• Matrix Multiplication : an algorithm that multiplies rows by

columns of two-dimensional array.

• Kruskal : it is used to find the minimum spanning tree of a non-

oriented graph that does not contains negative edges. It is a

greedy algorithm and, in this case, the greedy choice consists

in taking always the edge with minimum cost between among

those available.

• Floyd-Warshall : it calculates the distances between all pairs of

vertices of a weighed graph with no negative loops. The costs

of the edges may be negative values as long as these are not

part of a negative loop.

• Dijkstra : it calculates the minimum paths from a starting node x

towards all nodes accessible by x . The graph must be oriented,

can contain loops and must have edges with positive costs. This

algorithm uses the concept of relaxation in order to obtain dis-

tances.

• Breadth First Search and Depth First Search : two algorithms for

traversing a graph. In the first function, the nodes that must be

visited are inserted in a queue, while in the second one in a

stack.

• Banker’s Algorithm : it is used in the operating systems to avoid

deadlock situations during the allocation of resources to a pro-

cess.

• A

∗: a graph-searching algorithm that identifies a path from an

initial node x to a final node y . It is similar to the Dijkstra al-

gorithm that for each node takes into account all possible di-

rections and then chooses the one with lower cost. Instead, A

∗

avoids to visit all edges connected to a node using a heuristic

function that estimates the cost to the destination node.

• Bubble Sort : Sorting algorithm that repeatedly steps through the

list, compares adjacent elements and swaps them if they are in

the wrong order.

• Selection Sort : it divides the input list into two parts, the subset

of items already sorted, and the subset of items remaining to

be sorted that occupy the rest of the array.

• Insertion Sort : it builds the final sorted array one item at a time.

• Greatest Common Divisor (GCD) : the classical greatest common

divisor algorithm.
n framework.

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 7

Table 2

Benchmark functions characterization.

Functions Decision Global Loop GOTO Assignment Exit Total Distinct Total Distinct

Point Variables Point Operators Operators Operands Operands

A ∗ 19 13 7 3 39 10 372 41 205 34

Banker’s Algorithm 6 12 4 1 20 4 247 33 119 44

Bellman Ford 14 7 7 2 28 5 352 34 168 52

Binary Search 6 6 3 1 19 4 195 35 75 25

Bubble Sort 4 5 2 0 17 4 243 29 105 57

Dijkstra 15 12 6 2 35 6 331 39 161 35

Floyd-Warshall 4 5 3 0 11 3 266 26 140 88

GCD 6 6 2 1 13 4 164 25 55 21

Insertion sort 3 7 2 0 12 3 164 30 59 20

Kruskal 23 14 12 1 46 11 394 34 194 38

Matrix Multiplication 4 6 3 0 16 3 207 33 80 35

Mergesort 10 6 6 0 41 5 271 36 133 45

Quicksort 6 5 4 0 27 5 238 36 118 33

Selection Sort 3 7 2 0 14 4 163 28 62 22

t

a

G

e

a

i

o

e

8

4

b

b

d

d

a

c

s

t

q

i

a

p

d

a

g

r

u

a

n

fi

4

e

v

t

T

a

t

c

t

t

s

a

c

fi

g

i

e

o

p

4

b

e

E

s

4

s

h

[

4

c

p

d

s

o

L

a

c

i

i

v

e

(

(

o

e

t

b
• Binary Search : it finds the position of a target value within a

sorted array.

• Bellman Ford : it computes shortest paths from a single source

vertex to all of the other vertices in a weighted graph.

The source-code is available on [35] . Tables 2 and 3 summarizes

he main features of the whole benchmark. Functions are char-

cterized by decision points (i.e., control flow statements), loops,

OTO (i.e., unconditional jumps), variables assignments, functions

xit points, operators and operands (total and distinct). Moreover,

ll the functions are leaf ones. Functions source-code is character-

zed by source lines of code (SLOC), data types, inputs types (scalar

r vector) and their values. SLOC do not include comment lines or

mpty lines. The scalar values range have been chosen related to

051 internal memory size (128 KB), to prevent buffer overflows.

.1.2. Inputs generation

A module that (semi)automatically generates inputs for the

enchmark functions has been used in order to evaluate J4CS (i.e.,

 i,k in Eq. (17)). In particular, for each function they have been ran-

omly generated 10 0 0 input data sets. Moreover, for each function,

ifferent data types have been considered (i.e., int8, int16, int32,

nd float) to analyze the results with respect to the internal ar-

hitecture of the considered processor. Each input data set is then

tored in a header file to be included in the function at compile

ime.

The module needs to know what variables the function re-

uires. For this purpose, the user must define a prototype of the

mplemented function. This prototype contains the function name

nd the name and type of each input variable. The input generator

arses the prototype file to find its name and to find out proper

ata for the function. For each variable, the user is asked to insert

 values range (as shown in Table 3) and then the module will

enerate the number of values accordingly. With a function that

equires more then one variable, it performs the Cartesian prod-

ct of generated values. For each combination obtained, it creates

 header file that contains the values of a single combination. Fi-

ally, the module creates a directory that contains every header

le.

.1.3. Profiling on the host architecture (Host Profiling)

After the inputs generation phase, a tool to count the number of

xecuted C statements is needed (i.e., CS (z i , b i,k) in Eq. (17))). This

alue is obtained by performing a profiling of the benchmark func-

ions by means of the GCov [4] profiler for each generated input.

he functions have been compiled with GCC, using -fprofile-arcs

nd -ftest-coverage compilation flags. These flags tell the compiler

o generate other information needed by GCov in order to make
orrect profiling. The first flag allows the generation of a .gcda file

hat has more information for each branch of the program, while

he second one adds information to count the number of times a

tatement has been executed. The compilation will trigger the cre-

tion of a .gcno file and generate the corresponding .gcda file. To

omplete the task, the GCov command has been executed. The pro-

ling will be done correctly only if the above-described files were

enerated and reachable.

The total number of executed C statements for each function

s simply the sum of the single profiling numbers associated with

ach statement. It is worth noting that such profiling is performed

ne-time on the host platform since it is independent of the target

rocessor.

.1.4. Profiling on the target processor (ISS Execution)

The last data needed to calculate the J4CS metric is the num-

er of assembly instructions executed by the target processor for

ach function and input set in the benchmark (i.e., I (p j , z i , b i,k) in

q. (17)). So, for each target processor there is the need for an In-

truction Set Simulator (ISS).

.2. Processor specific framework: two examples

J4CS has been evaluated by considering some specific proces-

ors (i.e., p j in Eq. (17)). In this work, as done in [3] , two processors

ave been analyzed: the Cobham Gaisler LEON3 micro-processor

36] , and the Intel 8051 micro-controller [37] .

.2.1. LEON3 micro-processor

LEON3 [36] is a 32-bit synthesizable soft-processor that is

ompatible with SPARC V8 architecture: it has a seven-stage

ipeline and Harvard architecture, uses separate instruction and

ata caches and supports multiprocessor configurations. It repre-

ents a soft-processor for aerospace applications. Cobham Gaisler

ffers TSIM System Emulator [38] as an accurate emulator of

EON3 processors. A free evaluation version of TSIM/LEON3 is

vailable on Gobham website [38] , but it does not support code

overage, configuration of caches, memories and so on. Anyway,

t has been chosen as the reference ISS for first analysis since

t provides the information needed to evaluate J4CS. The LEON3

ersion has a default simulated system clock of 50 MHz. The

valuation version of TSIM/LEON3 implements 2 ∗4 KiB caches

not removable), with 16 bytes per line with Least-Recently-Used

LRU) replacement algorithm. It has 8 register windows, a RAM size

f 4096 KiB and a ROM size of 2048 KiB. By default, TSIM/LEON3

mulates the FPU. Benchmark functions have been compiled, with

he Bare-C Cross-Compiler (BCC) for LEON3 processors [39] . It is

ased on the GNU compiler tools and the New-lib standalone

8 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

Table 3

Source-level characteristics.

Functions SLOC

Data Scalar Range Array Range

Type Inputs Scalar Values Inputs Array Values

A ∗ 105 int8 s,

g

s ∈ [2, 9], g ∈ [0, 8] a[s][s] [−128,127]

int s ∈ [2, 6], g ∈ [0, 5] [−32768,32767]

long s ∈ [2, 3], g ∈ [0, 2] [−2147483648,2147483647]

float s ∈ [2, 3], g ∈ [0, 2] [−2147483648.0,2147483647.0]

Banker’s

Algorithm

46 int8 nr,

np

nr ∈ [1, 5], np ∈ [1, 5] available[nr]

allocated[np][nr]

max[np][nr]

[0,255]

int nr ∈ [1, 3], np ∈ [1, 3] [0,65535]

long nr ∈ [1, 2], np ∈ [1, 2] [0,4294967295]

float nr ∈ [1, 2], np ∈ [1, 2] [0.0,4294967295.0]

Bellman Ford 75 int8 s s ∈ [2, 10] a[s][s] [−128,127]

int s ∈ [2, 7] [−32768,32767]

long s ∈ [2, 4] [−2147483648,2147483647]

float s ∈ [2, 4] [−2147483648.0,2147483647.0]

Binary search 44 int8 n n ∈ [2, 116] a[n] [−128,127]

int n ∈ [2, 54] [−32768,32767]

long n ∈ [2, 23] [−2147483648,2147483647]

float n ∈ [2, 23] [−2147483648.0,2147483647.0]

Bubble Sort 35 int8 n n ∈ [1, 116] a[n] [−128,127]

int n ∈ [1, 54] [−32768,32767]

long n ∈ [1, 23] [−2147483648,2147483647]

float n ∈ [1, 23] [−2147483648.0,2147483647.0]

Dijkstra 82 int8 s s ∈ [2, 9] a[s][s] [−128,127]

int s ∈ [2, 5] [−32768,32767]

long s ∈ [2, 3] [−2147483648,2147483647]

float s ∈ [2, 3] [−2147483648.0,2147483647.0]

Floyd-

Warshall

29 int8 s s ∈ [1, 10] a[s][s] [0,255]

int s ∈ [1, 7] [0,65535]

long s ∈ [1, 5] [0,4294967295]

float s ∈ [1, 5] [0.0,4294967295.0]

GCD 32 int8 n,

m

n ∈ [2, 120], m ∈ [2, 120] - -

int n ∈ [2, 32768], m ∈ [2, 32768]

long n ∈ [2, 2147483647], m ∈ [2, 2147483647]

float n ∈ [2, 2147483647], m ∈ [2, 2147483647]

Insertion Sort 35 int8 n n ∈ [2, 116] a[n] [−128,127]

int n ∈ [2, 54] [−32768,32767]

long n ∈ [2, 23] [−2147483648,2147483647]

float n ∈ [2, 23] [−2147483648.0,2147483647.0]

Kruskal 129 int8 s s ∈ [2, 10] a[s][s] [−128,127]

int s ∈ [2, 6] [−32768,32767]

long s ∈ [2, 4] [−2147483648,2147483647]

float s ∈ [2, 3] [−2147483648.0,2147483647.0]

Matrix

Multiplication

34 int8 [1,6] [−128,127]

int rowA, colA [1,4] a[rowA][colA] [−32768,32767]

long rowB, colB [1,2] b[rowB][colB] [−2147483648,2147483647]

float [1,2] [−2147483648.0,2147483647.0]

Mergesort 84 int8 n n ∈ [1, 57] a[n] [−128,127]

int n ∈ [1, 25] [−32768,32767]

long n ∈ [1, 11] [−2147483648,2147483647]

float n ∈ [1, 6] [−2147483648.0,2147483647.0]

Quicksort 55 int8 n n ∈ [1, 36] a[n] [−128,127]

int n ∈ [1, 17] [−32768,32767]

long n ∈ [1, 6] [−2147483648,2147483647]

float n ∈ [1, 5] [−2147483648.0,2147483647.0]

Selection Sort 29 int8 n n ∈ [2, 116] a[n] [0,255]

int n ∈ [2, 54] [0,65535]

long n ∈ [2, 23] [0,4294967295]

float n ∈ [2, 23] [0.0,4294967295.0]

d

a

T

s

r

p

e

f

p

e

t

o

C-library. BCC is composed by GNU GCC C/C++ compiler 4.4.2,

GNU Binutils 2.19.51 and Newlib C-library 1.13.1. After the simu-

lation, the framework is ready to calculate the metric and some

statistics by considering all the inputs used to stimulate the

functions.

4.2.2. LEON3 Statistical analysis

Table 4 shows the Pearson correlation and slope values between

executed assembly instructions and executed C statements. It is

possible to note that the correlation is close to 1, while the slope

indicates that the estimation uncertainty depends on the number

of data input bits. Furthermore, some specific functions are more

sensitive to data types compared to other ones. These last results
epend on functions implementation (number of branches, loop,

nd complex arithmetic operations).

Fig. 5 shows the scatter plot related to the Pearson correlation.

he plots show a strict correlation between C statements and As-

embly instructions, due to the Sparc-V8 RISC ISA architecture, as

eported in [5] . Regarding to the other points (the ones under the

rincipal linear regression line), the deviation depends on differ-

nt data types and functions implementations that introduce dif-

erent behaviors compared to the prominent distribution. These

oints contribute to the introduction of errors inside the energy

stimation activity, and are dependent on the LEON3 processor in-

ernal micro-architecture (i.e., 32 bit architecture, pipeline, number

f registers).

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 9

Table 4

LEON3 statistical analysis results.

Data Type Corr. 1 Data Type Slope 3

Function int8 int16 int32 float Corr. Tot. 2 int8 int16 int32 float Slope Tot. 4

A ∗ 0.997130176 0.995528883 0.997342958 0.999199314 0.997558728 0.0890 0.0854 0.0818 0.0698 0.0878

Banker’s Algorithm 0.976985991 0.971856389 0.973122344 0.983442876 0.979447788 0.0730 0.0736 0.0774 0.0729 0.0738

Bellman Ford 0.996911126 0.994174207 0.999111052 0.999758625 0.993600677 0.0694 0.0943 0.1162 0.0733 0.0697

Binary Search 0.999249964 0.998686622 0.997520361 0.993549505 0.904750109 0.1545 0.2294 0.2226 0.1692 0.1529

Bubble Sort 0.999886591 0.99998281 0.999912836 0.999845827 0.999198011 0.1266 0.1484 0.1517 0.1128 0.1270

Dijkstra 0.999239588 0.998580215 0.99865452 0.999434198 0.998348213 0.0892 0.0947 0.0879 0.0798 0.0908

Floyd Warshall 0.997867119 0.999069696 0.994619228 0.997353347 0.997684756 0.0659 0.0605 0.0693 0.0642 0.0661

GCD 0.999986897 0.997729568 0.999092395 - 0.958592379 0.1534 0.2003 0.1981 - 0.1415

Insertion Sort 0.999899431 0.999667128 0.998299365 0.99743627 0.998106672 0.1075 0.1397 0.1496 0.1177 0.1083

Kruskal 0.999692859 0.999778195 0.999659212 0.999766269 0.999700213 0.1007 0.1068 0.1151 0.0970 0.1013

Matrix Mult. 0.991026869 0.987504129 0.986854719 0.99465194 0.990567396 0.0570 0.0510 0.0714 0.1265 0.0584

Merge Sort 0.999806391 0.999832814 0.999806429 0.999840959 0.994096345 0.0957 0.1275 0.1225 0.0886 0.0979

Quick Sort 0.999577773 0.999652397 0.999680258 0.999595041 0.999137649 0.1174 0.1279 0.1321 0.1099 0.1192

Selection Sort 0.999924321 0.999882252 0.999821454 0.999667636 0.997105498 0.1151 0.1560 0.1675 0.1287 0.1161

Tot. 5 0.99361 0.98178 0.96865 0.98326 0.992487927 0.1218 0.1391 0.1289 0.1049 0.1215

1 Corr.: Pearson Correlation; 2 Corr. Tot.: Total Pearson Correlation considering all data types; 3 Slope: Regression Slope Parameter; 4 Slope Tot.: Total Regression Slope

considering all data types; 4 Tot.: Total data set (considering all functions)

Fig. 5. Pearson correlation plot for LEON3.

10 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

Table 5

8051 Statistical analysis results.

Data Type Corr. 1 Data Type Slope 3

Function int8 int16 int32 float Corr. Tot. 2 int8 int16 int32 float Slope Tot. 4

A ∗ 0.999018373 0.84914453 0.998332704 0.999596943 0.830460356 0.1955 0.0582 0.1048 0.0546 0.1376

Banker’s Algorithm 0.966167708 0.961797134 0.950479804 0.971077972 0.340041773 0.1596 0.1060 0.0634 0.0201 0.0106

Bellman Ford 0.99794459 0.99543516 0.948538448 0.999616672 0.852702454 0.1098 0.0633 0.0363 0.0222 0.0976

Binary Search 0.999560803 0.999687367 0.999743356 0.985202744 −0.08002339 0.2128 0.1353 0.0783 0.0183 −0.002

Bubble Sort 0.999655934 0.999585159 0.998940075 0.596901958 0.974990261 0.1923 0.1405 0.0814 0.0215 0.1905

Dijkstra 0.99971141 0.9995696 0.998715493 0.998811434 0.539663795 0.1714 0.1316 0.0901 0.0295 0.0759

Floyd Warshall 0.999881657 0.999075444 0.999106673 0.99911282 0.810045772 0.0913 0.0827 0.0506 0.0171 0.0632

GCD 0.890585301 0.899892026 0.952382673 - 0.68826302 0.1734 0.1601 0.1212 - 0.1466

Insertion Sort 0.999950396 0.999902786 0.999545234 0.994771407 0.973606759 0.2592 0.1414 0.0759 0.0925 0.2503

Kruskal 0.999856993 0.999892487 0.999837653 0.999267543 0.991654051 0.2277 0.1709 0.1255 0.0533 0.2334

Matrix Mult. 0.99952095 0.995791004 0.987974866 0.956583715 0.869857949 0.1322 0.0619 0.0398 0.0206 0.1039

Merge Sort 0.999623696 0.999613733 0.999572569 0.9993614 0.71989699 0.1485 0.1001 0.0656 0.0122 0.0979

Quick Sort 0.999646522 0.999695728 0.999281295 0.997228213 0.905400216 0.1354 0.0919 0.0568 0.0242 0.1249

Selection Sort 0.999717704 0.999385492 0.998837314 0.99584793 0.966448824 0.2041 0.1098 0.0591 0.1083 0.1927

Tot. 5 0.99293 0.98799 0.92563 0.74391 0.960083884 0.1937 0.1384 0.0732 0.0245 0.1783

1 Corr.: Pearson Correlation; 2 Corr. Tot.: Total Pearson Correlation considering all data types; 3 Slope: Regression Slope Parameter; 4 Slope Tot.: Total Regression Slope

considering all data types; 4 Tot.: Total data set (considering all functions)

Fig. 6. Pearson correlation plot for 8051.

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 11

Fig. 7. Pearson correlation plot for 8051.

Fig. 8. J4CS BoxPlot results for LEON3 (LEON3FT-RTAX board).

Fig. 9. J4CS BoxPlot results for LEON3 (UT699 board).

12 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

Fig. 10. J4CS BoxPlot results for 8051 (AT89C51 board).

Table 6

Board characteristics.

Parameters RTAX UT699 AT89C51

Clock 25 MHz 66 MHz 12 MHz

V dd 3,3 V 3,6 V 6,0 V

P̄ 500 mW 178,2 mW 600 mW

MIPS 20 75 2

φ 0,025 0,002376 0,3

a

s

o

s

a

s

c

f

c

d

i

t

g

t

s

w

p

i

I

l

t

t

fi

s

4.2.3. 8051 Micro-controller

The Intel 8051 micro-controller is built around an 8-bit CPU.

Architectural model used is the Harvard Architecture, and there-

fore it partitions data and instruction by the use of two memories

and two buses; indeed 8051 presents a PROM non-volatile mem-

ory which contains program instruction and a RAM memory for

data. Furthermore, it presents an 8-bit Data Bus and a 16-bit Ad-

dress Bus. I8051 registers are 8-bit registers. ALU works with 8-

bit words and is provided with an accumulator register and com-

municates with four I/O 8-bit ports. The University of California

has developed a project centered on 8051 microprocessor, which

provides a number of tools useful for simulating C code on Intel

8051 microprocessor. The project name is Dalton and was devel-

oped by the Department of Computer Science of the University of

California [40] . The Dalton Instruction Set Simulator (ISS) allows
Table 7

J4CS measured on LEON3FT-RTAX, UT699 and AT89C51 Board (in nJ).

Data Type Min Q 1 1 Median Q 2 3 Max

LEON3FT-RTAX int8 1 17 36 148 869

LEON3FT-RTAX int16 1 32 67 202 868

LEON3FT-RTAX int32 4 58 129 299 868

LEON3FT-RTAX float 4 86 202 452 869

LEON3FT-RTAX AVG 5 48.25 108.5 241.5 869

UT699 int8 1 25 51 211 1234

UT699 int16 5 46 95 286 1233

UT699 int32 5 83 184 424 1233

UT699 float 5 123 287 642 1235

UT699 AVG 4 69.25 154.25 390.75 1233.75

AT89C51 int8 1 2 2 3 14

AT89C51 int16 1 2 2 3 19

AT89C51 int32 2 3 3 5 24

AT89C51 float 3 5 6 11 43

AT89C51 AVG 1.75 3 3.25 5.5 25

1 Q 1 : First Quartile; 2 Q 3 : Third Quartile; 3 AM: Arithmetic Mean; 4 SD: Standard Deviation; 5
 user to simulate programs written for the 8051 and provides

tatistics on instructions executed, instructions executed per sec-

nd, clock cycles required by the 8051, and average instructions per

econd for an 8051 executing the same program. For these char-

cteristics, it has been chosen as the reference ISS for the mea-

urement of the J4CS for 8051 microprocessor. The functions were

ompiled, with SDCC (Small Device C Compiler) [41] . SDCC is a

ree open source C compiler suite designed for 8 bit Micropro-

essors. The entire source-code for the compiler is distributed un-

er GPL and has extensive language extensions suitable for utiliz-

ng various micro-controllers and underlying hardware. The Dal-

on ISS needs a.hex to do the simulation. This kind of file was

enerated with SDCC. In order to do a proper simulation, during

he compilation two options was specified: –mmcs51 and –iram-

ize 128 . The first one refers to the family of the microprocessor

hile the second to the dimension of the internal RAM. The com-

ilation generates an .ihx file that can be converted to .hex file us-

ng the packihx command. At the end, it is possible to execute the

SS. It generates a file that contains information about the simu-

ation. After the simulation, the framework is ready to calculate

he metric and some statistics on all input generated for the func-

ions. These calculations are made with a program that returns two

les containing metric values, for each input, and statistics on the

ample.
AM

3 SD 4 Var 5 GM

6 85% 7 95% 8

100.73 137.03 18779 48.33 220 338

140.66 173.38 30061 75.33 312 523

213.11 208.60 43513 131.98 451 814

270.45 240.16 57676 173.18 597 814

181.24 189.79 37507 107.20 348.25 622.25

143.07 194.63 37882 68.549 312 481

199.79 246.29 60661 106.9 359 743

302.72 296.29 87789 187.45 564 1156

384.22 341.13 1.1637e + 05 246.1 743 1157

257.45 269.58 68530.25 152.25 494.5 884.25

2.2705 1.2716 1.6169 2.0124 3 5

2.9666 1.413 1.9967 2.7245 4 6

5.3924 5.2433 27.492 4.1399 8 23

9.8238 8.3489 69.704 7.7229 13 33

5.1133 4.0692 25.202 4.149925 7 16.75

 Var: Variance; 6 GM: Geometric Mean; 7 85%: 85th Percentile; 8 95%: 95th Percentile;

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 13

Fig. 11. J4CS-based SW comparison.

Fig. 12. J4CS-based refinement (considering affinity value).

4

a

e

i

t

n

s

L

i

m

c

n

s

t

t

e

p

l

a

m

n

o

v

h

l

t

p

t

t

n

i

a

w

t

a

.2.4. 8051 Statistical analysis

Table 5 shows Pearson correlation and slope between executed

ssembly instructions and executed C statements in details. Differ-

ntly from LEON3 results, it is possible to note that the correlation

s not so close to 1 (there are also values that are under 0.9), while

he slope indicates that the estimation uncertainty depends on the

umber of data input bits. Some specific functions are more sen-

itive to data types compared to other ones (behavior similar to

EON3 processor). This last results depends on different functions

mplementations (number of branches, loop, and complex arith-

etic operations), and the fact that 8051 has an 8-bit internal ar-

hitecture, and no Floating Point Unit.

The different correlation and slope values in Table 5 (and even

egative for binary search algorithm) mean that the values are very

parse in the scatter-plot. In the case of a single function, putting

ogether all the types of data, many straight lines for each data

ype have been founded, with different slopes and above all differ-

nt weights (the number of points from which each line is com-

osed), while the experimental data are arranged very well on the
inear regression straight line for data types (i.e., int8, int16, int32,

nd float). The more the correlation is low or even negative, the

ore the lines by data type are open to each other, with different

umbers of points and also not common intercepts for the Y axis

f the graph. From Table 5 it is possible to note also that the worst

alues are associated to float data types, since the 8051 did not

ave Floating Point Unit.

Fig. 6 shows the scatter plot related to the Pearson corre-

ation. Compared to LEON3 scenarios, the correlation point dis-

ributions is not so linear as the LEON3 scenarios. This sparse

oints distribution depends on 8051 internal processor architec-

ure (8-bit 8051 CISC ISA). Another difference is the internal RAM

hat the 8051 (and Dalton ISS [40]) has compared to the exter-

al TSIM LEON3 RAM memory. This internal 128 KB RAM lim-

ts the data input ranges, and the possible test-bench simulation

ctivities. Meanwhile, there is a similar points placing behaviors

ith respect to LEON3 scenarios (i.e., the isolated points under

he linear regression line) that introduce errors in the estimation

ctivities.

14 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

T
a

b
le

8

A
T

8
9

C
5

1

b

o
a

rd

re

la
ti

v
e

e

rr
o

r
re

su
lt

s
(i

n

%

).

In
t8

in
t1

6

in
t3

2

fl
o

a
t

Fu
n

ct
io

n

1

Q
 1

M
e

d
ia

n

2

A
M

3

Q
 3

1

Q
 1

M
e

d
ia

n

2

A
M

3

Q
 3

1

Q
 1

M
e

d
ia

n

2

A
M

3

Q
 3

1

Q
 1

M
e

d
ia

n

2

A
M

3

Q
 3

A
 ∗

4
.9

9

4
.9

9

−7
.8

3

−4
2

.5

4
6

.3
4

4
6

.3
4

2
2

.2
0

1
9

.5
1

2
1

.3
3

2
1

.3
3

−4
1

.3
2

−3
1

.1
0

8
.3

1

−1
0

.0
1

−7
9

.6
9

−1
0

1
.6

9

B
a

n
k

e
r’

s
A

lg
o

ri
th

m

3
1

.0
1

3
1

.0
1

2
1

.7
0

−3
.4

7

3
5

.6
7

3
5

.6
7

6
.7

3

3
.5

1

4
3

.0
2

4
3

.0
2

−2
.3

6

5
.0

4

4
0

.9
9

2
9

.1
9

−1
5

.6
4

−2
9

.8
0

B
e

ll
m

a
n

F

o
rd

1
4

.2
2

1
4

.2
2

2
.6

4

−2
8

.6
6

2
5

.4
7

2
5

.4
7

−8
.0

6

−1
1

.7
8

2
.9

7

2
.9

7

−7
4

.3
2

−6
1

.7
1

1
8

.6
8

2
.4

2

−5
9

.3
7

−7
8

.8
9

B
in

a
ry

S

e
a

rc
h

3
0

.4
8

3
0

.4
8

2
1

.1
0

−4
.2

6

2
4

.8
7

2
4

.8
7

−8
.9

2

−1
2

.6
8

3
5

.3
5

3
5

.3
5

−1
6

.1
4

−7
.7

4

8
3

.5
5

8
0

.2
6

6
7

.7
7

6
3

.8
2

B
u

b
b

le

S

o
rt

−1
2

.2
7

−1
2

.2
7

−2
7

.4
3

−6
8

.4
1

6
.5

3

6
.5

3

−3
5

.5
1

−4
0

.1
9

1
.7

7

1
.7

7

−7
6

.4
7

−6
3

.7
0

2
3

.3
1

7
.9

8

−5
0

.2
9

−6
8

.6
9

D
ij

k
st

ra

1
.6

7

1
.6

7

−1
1

.6
0

−4
7

.4
9

1
0

.4
7

1
0

.4
7

−2
9

.8
0

−3
4

.2
8

−5
.1

0

−5
.1

0

−8
8

.8
4

−7
5

.1
8

1
8

.1
5

1
.7

8

−6
0

.4
2

−8
0

.0
6

F
lo

y
d

W

a
rs

h
a

ll

5
3

.4
9

5
3

.4
9

4
7

.2
1

3
0

.2
3

6
1

.8
8

6
1

.8
8

4
4

.7
3

4
2

.8
3

6
7

.4
1

6
7

.4
1

4
1

.4
4

4
5

.6
8

5
0

.4
1

4
0

.5
0

2
.8

1

−9
.0

7

G
C

D

−5
5

.3
8

−5
5

.3
8

−7
6

.3
6

−1
3

3
.0

7

4
8

.9
6

4
8

.9
6

2
5

.9
9

2
3

.4
4

8
5

.5
9

8
5

.5
9

7
4

.1
1

7
5

.9
8

-
-

-
-

In
se

rt
io

n

S

o
rt

−4
0

.7
4

−4
0

.7
4

−5
9

.7
4

−1
1

1
.1

1

−5
.9

0

−5
.9

0

−5
3

.5
6

−5
8

.8
6

−1
1

.2
5

−1
1

.2
5

−9
9

.8
8

−8
5

.4
1

−2
6

.5
4

−5
1

.8
5

−1
4

8
.0

3

−1
7

8
.4

0

K
ru

sk
a

l
−1

9
.5

1

−1
9

.5
1

−3
5

.6
5

−7
9

.2
7

−1
2

.1
1

−1
2

.1
1

−6
2

.5
6

−6
8

.1
7

−4
2

.3
1

−4
2

.3
1

−1
5

5
.6

9

−1
3

7
.1

9

−3
7

.1
2

−6
4

.5
5

1
6

8
.7

6

2
0

1
.6

7

M
a

tr
ix

M

u
lt

.
3

8
.2

0

3
8

.2
0

2
9

.8
6

7
.3

1

4
5

.3
4

4
5

.3
4

2
0

.7
5

1
8

.0
2

4
8

.1
6

4
8

.1
6

6
.8

6

1
3

.6
0

2
9

.7
8

5
.7

4

−3
7

.6
1

−5
4

.4
6

M
e

rg
e

S

o
rt

−1
0

.4
9

−1
0

.4
9

−2
5

.4
0

−6
5

.7
3

1
4

.9
9

1
4

.9
9

−2
3

.2
6

−2
7

.5
1

1
6

.8
4

1
6

.8
4

−4
9

.3
9

−3
8

.5
8

5
7

.7
8

4
9

.3
4

1
7

.2
6

1
7

.2
6

Q
u

ic
k

S

o
rt

−0
.9

6

−0
.9

6

−1
4

.5
9

−5
1

.4
5

2
0

.0
5

2
0

.0
5

−1
5

.9
2

−1
9

.9
1

1
1

.8
8

1
1

.8
8

−5
8

.3
1

−4
6

.8
5

2
0

.2
8

4
.3

4

−5
6

.2
4

−7
5

.3
7

S
e

le
ct

io
n

S

o
rt

−5
1

.1
7

−5
1

.1
7

−7
1

.5
7

−1
2

6
.7

5

−1
9

.3
3

−1
9

.3
3

−7
3

.0
3

−7
9

.0
0

−3
3

.9
7

−3
3

.9
7

−1
4

0
.7

1

−1
2

3
.2

9

−3
5

.5
4

4

−6
2

.6
5

−1
6

5
.6

6

−1
9

8
.1

9

T
o

t.

R

e
l.
 4

1
.1

7

1
.1

7

−1
4

.8
3

−5
1

.7
6

2
1

.6
5

2
1

.6
5

1
3

.5
8

1
7

.5
0

1
7

.1
6

1
7

.1
6

−4
8

.6
4

−3
8

.8
6

1
9

.4
2

2
.4

9

−3
2

.0
2

−4
5

.5
1

T
o

t.

A

b
s.
 5

2
5

.9
0

2
5

.9
0

3
2

.3
3

5
7

.1
2

2
6

.9
9

2
6

.9
9

3
0

.7
8

3
2

.8
3

3
0

.4
9

3
0

.4
9

6
6

.1
3

5
6

.9
6

3
4

.6
4

3
1

.5
8

7
1

.5
0

8
9

.0
2

1

Q
 1

:
F

ir
st

Q

u
a

rt
il

e
;

2

A
M

:
A

ri
th

m
e

ti
c

M
e

a
n

;
3

Q
 3

:
T

h
ir

d

Q

u
a

rt
il

e
;

4

To
t.

R

e
l:

To

ta
l

R
e

la
ti

v
e

E

rr
o

r
(a

ll

fu

n
ct

io
n

s)
;

5

To
t.

A

b
s.

:
To

ta
l

A
b

so
lu

te

E

rr
o

r
(a

ll

fu

n
ct

io
n

s)

Furthermore, the Fig. 6 d is the only plot that has a strange point

cluster (orange circle). Fig. 7 a shows the 8051 float correlation with

x -axis in logarithmic scale. It is worth noting that there are some

points outside the main regression line. These points are related to

one function, the Bubblesort . Fig. 7 b presents the correlation plot

for the bubblesort function in more details. From the graph, it is

possible to note that there are 2 fixed assembly instructions values

corresponding to a different number of executed C statements. This

behaviors is not normal, while in the other case (int8, int16 and

int32) the points are close to the regression line and they do not

follow a strange pattern. This problem is probably due to errors in

the ISS compilation/execution so they have been deleted from the

dataset and not considered.

4.2.5. Use case scenario

In order to evaluate results in a real scenario, three boards

have been considered by taking voltage and frequency informa-

tion (the power information can be found in the processor/board

data-sheets): LEON3FT-RTAX [42] , LEON3FT-UT699 Single-Core SOC

[43] and AT89C51 ATMEL Development Board [44] (based on 8051

architecture). The processors parameters used to evaluate J4CS

[36] are shown in Table 6 .

It is worth noting that LEON3-FT is a System-On-Chip design

based on LEON3FT core, and it has the same ISA of the classical

LEON3 processor. Therefore, the number of assembly instructions

executed by the ISS is the same for both processors since they rely

on the same compiler. So, considering these characteristics, the av-

erage energy consumption associated to each executed assembly

instruction is: (̄E RTAX = 0 , 8 nJ/Instr., Ē UT 699 = 11 , 364 nJ/Instr. and

Ē AT 89 C51 = 0 , 16 nJ/Instr.). The obtained results for the executions of

the benchmark functions are summarized in Table 7 .

For each function, different data types have been considered

(int8, int16, int32, and float). Indeed, both timing [3] and energy,

especially their average values, change with respect to the dimen-

sion of data.

Figs. 8 –10 show the distribution related to J4CS evaluated for

RTAX, UT699 and AT89C51 boards, according to the reference

benchmark. The described evaluation process of J4CS for the three

boards has required a total of near 12 h on a standard workstation

(Intel i7, 1.5 GHz, 16 GB RAM). However, as highlighted before, this

is a one-time effort to make available J4CS for subsequent analysis

(as shown in the next section).

5. J4CS-Based energy consumption estimation

The availability of J4CS is very useful for very fast early-stage

estimation, comparison and selection. Indeed, by having available

J4CS for different processors, with a single host-based profiling it

is possible to estimate the energy consumption of a function of

interest for the whole processors set, giving very fast preliminary

comparison and selection activities. As an example, strating from

a target function tf() and considering a specific golden input x , by

means of a host-based profiling (that takes less than a second on

the same workstation described in the previous section), it is pos-

sible to count the number of executed C statements during the ex-

ecution of tf(x) (e.g., 100). Then, as shown in Fig. 11 (the x -axis is

in a logarithmic scale), it is straightforward to compare the whole

processors set by multiplying 100 for the related J4CS. Depending

on a possible energy consumption constraint it is then possible to

select a specific processor or, at least, to reduce the set to few of

them in order to be considered for further analyses.

6. J4CS-Based energy consumption estimation validation

In order to validate the proposed metric, an error estimation

evaluation has been performed with respect to the benchmark.

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 15

T

n

t

t

a

a

a

c

d

c

d

c

“

f

o

s

b

f

d

D

m

i

t

s

A

r

T

t

i

A

o

l

a

f

{

e

t

w

r

t

e

s

o

t

T
a

b
le

9

A
T

8
9

C
5

1

b

o
a

rd

E

rr
o

r
R

e
su

lt
s

(i
n

%

)
co

n
si

d
e

ri
n

g

A

ffi
n

it
y

v

a
lu

e
s.

In
t8

in
t1

6

in
t3

2

fl
o

a
t

Fu
n

ct
io

n

1

A
ff

.
2

R
e

l.

3

A
b

s.

1

A
ff

.
2

R
e

l.

3

A
b

s.

1

A
ff

.
2

R
e

l.

3

A
b

s.

1

A
ff

.
2

R
e

l.

3

A
b

s.

A
 ∗

0
.5

4
.9

9
5

5

1
1

.7
1

5
2

0
.4

5

6
.7

4
0

1

3
8

.1
5

0
8

0
.4

8

0
.6

8
5

8

3
0

.3
6

0
1

0
.4

4
1

−0
.4

4
6

4

7
.4

0
3

6

B
a

n
k

e
r’

s
A

lg
o

ri
th

m

0
.0

1
5

−2
.4

4
4

0

9
.9

1
3

1

0
.4

7

2
.8

7
6

6

9
.0

2
2

9

0
.4

4
5

−0
.8

4
5

3

9
.1

9
1

8

0
.3

8

5
.1

2
5

2

1
3

.2
0

4
9

B
e

ll
m

a
n

F

o
rd

0
.4

5
.6

4
6

0

1
4

.5
5

0
8

0
.4

8

0
.1

3
5

7

1
7

.6
5

7
2

0
.4

9

−1
0

.6
1

1
9

1
8

.3
2

4
3

0
.4

2
5

−0
.0

1
8

5

2
4

.3
3

8
9

B
in

a
ry

S

e
a

rc
h

0
.4

5

−1
1

.2
1

6
5

1
9

.7
0

0
1

0
.4

8

−0
.6

6
0

9

5
.5

4
4

8

0
.4

5

−9
.8

9
9

3

1
1

.1
6

0
6

0
.1

3
4

.8
8

4
0

.0
7

B
u

b
b

le

S

o
rt

0
.6

−1
.0

5
1

3

2
.5

9
7

5

0
.5

6
.5

3
9

8

7
.4

1
5

3

0
.5

1
.7

7
4

6

2
.9

6
1

5

0
.4

2
5

5
.6

8
1

4

7
.4

0
3

7

D
ij

k
st

ra

0
.5

1
.6

7
2

5

8
.8

0
1

1

0
.5

1
0

.4
7

9
7

1
4

.5
6

5
3

0
.5

6

−0
.9

0
4

3

9
.2

4
0

0

0
.4

2

−0
.6

7
1

9

4
.5

7
6

2

F
lo

y
d

W

a
rs

h
a

ll

0
.4

−2
.3

2
0

8

1
6

.5
3

3
5

0
.4

−2
.9

0
3

7

1
7

.2
3

9
4

0
.3

5

−1
.0

2
5

1

1
4

.7
8

0
6

0
.3

1

−8
.8

8
1

4

1
6

.6
7

4
4

G
C

D

0
.8

5

−1
.0

0
0

7

1
.9

3
8

4

0
.4

5

5
.5

8
2

5

6
.0

3
5

7

0
.0

2

−1
1

.2
4

1
5

1
4

.7
3

3
9

-
-

-

In
se

rt
io

n

S

o
rt

0
.8

1
.4

8
1

2

2
.5

0
0

1

0
.6

4
.6

8
3

2

4
.8

4
1

4

0
.6

5

0
.1

2
6

5

1
.9

4
4

6

0
.4

8

2
.8

1
2

7

6
.7

1
2

0

K
ru

sk
a

l
0

.6
8

1
.9

9
4

9

1
4

.7
6

8
0

0
.6

−0
.9

0
2

2

8
.0

7
5

0

0
.9

−4
.3

6
6

2

6
.8

1
3

2

0
.4

8

−5
.3

1
2

4

9
.2

7
3

9

M
a

tr
ix

M

u
lt

.
0

.4

1
5

.9
6

3
5

2
1

.0
2

5
9

0
.4

5

−1
.1

0
6

3

2
4

.6
6

1
6

0
.4

5

1
1

.8
7

4
2

2
3

.0
1

7
1

0
.4

−1
.1

0
2

5

1
5

.5
8

0
7

M
e

rg
e

S

o
rt

0
.6

0
.5

5
8

1

4
.3

5
8

0

0
.5

1
4

.9
9

2
2

1
4

.9
9

2
2

0
.5

1
6

.8
4

7
6

1
6

.8
4

7
6

0
.3

3
.7

5
5

1

4
.4

1
4

1

Q
u

ic
k

S

o
rt

0
.5

0
.5

5
8

1

4
.3

5
8

0

0
.4

8

−7
.1

2
7

2

7
.1

2
7

2

0
.5

1
1

.8
8

6
6

1
1

.8
8

6
6

0
.4

−1
4

.7
8

9
1

1
4

.7
8

9
1

S
e

le
ct

io
n

S

o
rt

0
.8

−5
.8

1
9

6

6
.1

3
6

1

0
.7

4
.5

3
0

2

4
.5

3
0

2

0
.9

1
.7

5
0

2

1
.7

5
0

2

0
.5

1
8

.6
7

3
2

1
9

.1
0

0
8

T
o

t.

4

-
0

.6
4

4
1

9
.9

2
1

1

-
3

.1
3

2
8

1
2

.8
4

7
1

-
0

.4
3

2
3

1
2

.3
5

8
0

-
3

.0
5

4
3

1
4

.1
1

8
6

T
o

t.

R

e
d

.
A

M
 5

-
−1

0
4

.3
4

3
0

−6
9

.3
1

2
9

-
−7

6
.9

3

−5
8

.2
6

2

-
−1

0
0

.8
8

9

−8
1

.3
1

3

-
−1

0
9

.5
3

9

−8
0

.2
5

4

T
o

t.

R

e
d

.
M

e
d

. 6

-
−4

4
.9

5
1

8

−6
1

.6
9

4
5

-
−8

9
.8

2
2

−5
2

.4
0

1

-
−9

7
.4

8
0

9

−5
9

.4
6

9

-
2

2
.6

6
1

1

−5
5

.2
9

3

1

A
ff

:
A

ffi
n

it
y

;
2

R
e

l:

R

e
la

ti
v

e

E

rr
o

r;

3

A
b

s:

A

b
so

lu
te

E

rr
o

r;

4

To
t.

:
To

ta
l

E
rr

o
r

(a
ll

fu

n
ct

io
n

s)
;

5

To
t.

R

e
d

.
A

M
:

To
ta

l
R

e
d

u
ce

d

R

e
la

ti
v

e

a

n
d

A

b
so

lu
te

E

rr
o

r
(r

e
d

u
ce

d

%

re

sp
e

ct

to

A

M

in

T

a
b

le

8
);

6

To
t.

R

e
d

.
M

e
d

.:

To

ta
l

R
e

d
u

ce
d

R

e
la

ti
v

e

a

n
d

A

b
so

lu
te

E

rr
o

r
(r

e
d

u
ce

d

%

re

sp
e

ct

to

M

e
d

ia
n

in

T

a
b

le

8
);

able 8 shows some results related to AT89C51 board. It is worth

oting that the error depends on the specific J4CS considered (in

his example we considers the first quartile, the arithmetic mean,

he median and the third quartile). Errors ranges are highly vari-

ble, where median errors are less than other ones, depending on

ssembly and C statements distributions. In order to reduce errors

nd variance associated to the estimations, a further assumption

an be considered.

Figs. 8 –10 present the specific processor characterization w.r.t.

ifferent boards. It is possible to fix the J4CS value introducing the

oncept of “Affinity” defined in [45] . Since the execution time of

ifferent functions depends on some architectural features of spe-

ific executors classes, this dependency can be defined using the

Affinity” metric, which suggests the most suitable processor class

or the execution of a given functionality. This value, in the range

f 0 and 1, provides a quantification of the matching between the

tructural and functional features of the functionality implemented

y the considered processor classes function and the architectural

eatures.

Starting from the affinity value, it is possible to refine the J4CS

efinition using the following equations:

efinition 6.1. J4CS-A (Joule for C Statements considering Affinity

etric) . Considering a single C function z i , with a specific affin-

ty value A i,j evaluated with the method proposed in [45] , and

he J 4 CS (p j) distribution evaluated for a specific processor, as pre-

ented in Eq. (17) , it is possible to chose a fixed value for J4 CS −
 (p j , A i, j) depending on an “Affinity” value and distribution pa-

ameters [{Min, Q 1 , Med (Median), Q 3 , Max} of J 4 CS (p j) from

able 7]. Three different scenarios are considered:

1. Best Case

J4 CS − A (p j , A i, j) = 2 · (Med − Q 3) · A i, j + Q 3 I f A i, j < 0 . 5

J4 CS − A (p j , A i, j) = Med + 2 · (A i, j − 0 . 5) · (Q 1 − Med) I f A i, j ≥ 0 . 5
(18)

2. Average Case

J4 CS − A (p j , A i, j) = 2 · (Med − [Q 3 + α · IQR]) · A i, j + (Q 3 + α · IQR) I f A i, j < 0 . 5

J4 CS − A (p j , A i, j) = Med + (A i, j − 0 . 5)(Q 1 − α · IQR) − 2 · Med I f A i, j ≥ 0 . 5

(19)

3. Worst Case

J4 CS − A (p j , A i, j) = 2 · (M ed − M ax) · A i, j + Q 4 I f A i, j < 0 . 5

J4 CS − A (p j , A i, j) = Med + 2 · (A i, j − 0 . 5)(Min − Med) I f A i, j ≥ 0 . 5

(20)

Eq. (18) –(20) are derived considering a linear interpolation be-

ween affinity value and J4CS distribution. Fig. 12 shows the graph-

cal representation of the equations above.

Table 9 shows the relative and absolute errors associated to the

T89C51 board where the affinity value has been introduced in

rder to reduce the estimation error. The total relative and abso-

ute mean errors (considering all the functions in the benchmark

nd a test-bench composed of 100 inputs and executions for each

unctions) associated to the validation activity is in the range of

 + / − 0 . . . 15 } , with an highest error equal to about 34%, and the

rror reduction (absolute and relative) compared to Table 8 is in

he range of { 50 . . . 110% } . The only worst situation is the float case,

here the error range is { + / − 0 . 5 . . . 18% } . This is an interesting

esult since the estimation activity takes only few seconds (the

ime to profile the functions with the different inputs), without ex-

cute the specific functions on the reference target.

Finally, Fig. 13 shows the relative error results graph w.r.t. In-

ertion Sort function. In this case the errors are less then 10%. The

ther functions have a similar behavioral pattern, with some func-

ions that arrive to relative errors less then 15% at most.

16 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

Fig. 13. Relative error plot compared to insertion sort function tests.

A

A

7

r

S

f

R

7. Conclusion and future work

This work has presented a metric useful to estimate in an early-

stage design phase, the energy consumption related to the ex-

ecution of embedded SW on a target processor. Such a metric,

called J4CS (Joule for C Statements) is good for very fast estima-

tion, comparison and selection activities. Then, more accurate ap-

proaches at lower abstraction levels can be used for more pre-

cise and time-consuming estimations. Beyond the pure SW do-

main, this metric can be easily exploited into specific HW/SW Co-

Design methodologies and tools (e.g., [46]), in order to consider

energy requirements during system-level design space exploration.

Indeed, it is worth noting that this metric can be evaluated also

in the HW domain, by using High-Level Synthesis (HLS) tools and

Hardware Description Language (HDL) simulators able to provide

energy information as output. Such values can be used to sub-

stitute the E
′
(p j) · I(p j , z i , b i,k) numerator value in Eq. (17) . More-

over, J4CS can be also useful in ESL energy consumption estima-

tion approaches that rely on the availability of an estimated energy

consumption for each statement composing the ESL specification

(e.g., [47]). Future works will concentrate on the validation of J4CS-

 metric with respect to the energy consumption measured on the

actual boards and choosing other functions, different from the ref-

erence ones. Other future activities will focus on reducing abso-

lute error estimations, introducing more accurate statistical analy-

sis and models able to better consider processor architectural fea-

tures. Some interesting opportunities, still at early-stage, will be

related to the use of HW profilers [48] , in order to evaluate es-

timation errors directly on-target and to the combined exploita-

tion firstly of the Affinity metric [45] , so to reduce such errors by

identifying a proper distribution subset, and secondly of a more

detailed static analysis of source-code, in order to assign different

weights to different statements.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.
cknowledgment

This work has been partially supported by the ECSEL RIA 2017-

83162 FitOptiVis and ECSEL RIA 2018-826610 COMP4DRONES Eu-

opean projects.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.micpro.2020.103200 .

eferences

[1] K. Grttner, R. Grgen, S. Schreiner, F. Herrera, P. Peil, J. Medina, E. Villar,
G. Palermo, W. Fornaciari, C. Brandolese, D. Gadioli, E. Vitali, D. Zoni, S. Boc-

chio, L. Ceva, P. Azzoni, M. Poncino, S. Vinco, E. Macii, S. Cusenza, J. Favaro,

R. Valencia, I. Sander, K. Rosvall, N. Khalilzad, D. Quaglia, CONTREX: Design
of embedded mixed-criticality control systems under consideration of extra-

functional properties, Microprocess. Microsyst. 51 (2017) 39–55, doi: 10.1016/j.
micpro.2017.03.012 .

[2] Y. Park, S. Pasricha, F.J. Kurdahi, N. Dutt, A multi-granularity power model-
ing methodology for embedded processors, IEEE Trans. Very Large Scale Integr.

VLSI Syst. 19 (4) (2011) 66 8–6 81, doi: 10.1109/TVLSI.2009.2039153 .
[3] V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, F. Salice, CC4CS: An

off-the-shelf unifying statement-level performance metric for HW/SW tech-

nologies, in: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, in: ICPE ’18, ACM, New York, NY, USA, 2018, pp. 119–

122, doi: 10.1145/3185768.3186291 .
[4] GCov Profiler, 2018. (accessed: 21.10.2019) https://gcc.gnu.org/onlinedocs/gcc/

Gcov.html .
[5] J. Castillo , H. Posadas , E. Villar , M. Martínez , C.R. Darwin , Energy consumption

estimation technique in embedded processors with stable power consumption

based on source-code operator energy figures, in: XXII Conference on Design
of Circuits and Integrated Systems, in: DCIS’07, 2007, p. 1 .

[6] V. Muttillo, J4CS: An early-stage statement-level metric for energy consump-
tion of embedded SW, in: 2019 8th Mediterranean Conference on Embedded

Computing (MECO), 2019, pp. 1–5, doi: 10.1109/MECO.2019.8760288 .
[7] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto, Affinity-driven

system design exploration for heterogeneous multiprocessor SoC, IEEE Trans.

Comput. 55 (5) (2006) 508–519, doi: 10.1109/TC.2006.66 .
[8] H. Sultan, G. Ananthanarayanan, S.R. Sarangi, Processor power estimation tech-

niques: a survey, Int. J. High Perform. Syst. Archit. 5 (2) (2014) 93–114, doi: 10.
1504/IJHPSA.2014.061448 .

[9] F.N. Najm, A survey of power estimation techniques in vlsi circuits, IEEE
Trans. Very Large Scale Integr. VLSI Syst. 2 (4) (1994) 446–455, doi: 10.1109/

92.335013 .

https://doi.org/10.1016/j.micpro.2020.103200
https://doi.org/10.1016/j.micpro.2017.03.012
https://doi.org/10.1109/TVLSI.2009.2039153
https://doi.org/10.1145/3185768.3186291
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0004
https://doi.org/10.1109/MECO.2019.8760288
https://doi.org/10.1109/TC.2006.66
https://doi.org/10.1504/IJHPSA.2014.061448
https://doi.org/10.1109/92.335013

V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200 17

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(

e

S

B

t

t

[10] T. Simunic, L. Benini, G. De Micheli, Cycle-accurate simulation of energy con-
sumption in embedded systems, in: Proceedings 1999 Design Automation

Conference (Cat. No. 99CH36361), 1999, pp. 867–872, doi: 10.1109/DAC.1999.
782199 .

[11] W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, The design and use of sim-
plePower: a cycle-accurate energy estimation tool, in: Proceedings 37th Design

Automation Conference, 20 0 0, pp. 340–345, doi: 10.1145/337292.337436 .
[12] A.B. Abril Garcia, J. Gobert, T. Dombek, H. Mehrez, F. Petrot, Cycle-accurate en-

ergy estimation in system level descriptions of embedded systems, in: 9th

International Conference on Electronics, Circuits and Systems, vol. 2, 2002,
pp. 549–552, doi: 10.1109/ICECS.2002.1046224 .

[13] V. Tiwari, S. Malik, A. Wolfe, Power analysis of embedded software: a first
step towards software power minimization, in: IEEE/ACM International Confer-

ence on Computer-Aided Design, 1994, pp. 384–390, doi: 10.1109/ICCAD.1994.
629825 .

[14] A . Sinha, A .P. Chandrakasan, JouleTrack-a web based tool for software energy

profiling, in: Proceedings of the 38th Design Automation Conference (IEEE Cat.
No. 01CH37232), 2001, pp. 220–225, doi: 10.1109/DAC.2001.156139 .

[15] S. Lee, A. Ermedahl, S.L. Min, N. Chang, An accurate instruction-level energy
consumption model for embedded RISC processors, SIGPLAN Not. 36 (8) (2001)

1–10, doi: 10.1145/384196.384201 .
[16] S. Lee , A. Ermedahl , S.L. Min , N. Chang , Statistical derivation of an accurate

energy consumption model for embedded processors, 2002 .

[17] M. Sami , D. Sciuto , C. Silvano , V. Zaccaria , Instruction-level power estimation
for embedded VLIW cores, in: Proceedings of the Eighth International Work-

shop on Hardware/Software Codesign. CODES 20 0 0 (IEEE Cat. No. 0 0TH8518),
20 0 0, pp. 34–38 .

[18] S. Nikolaidis , N. Kavvadias , T. Laopoulos , L. Bisdounis , S. Blionas , Instruction
level energy modeling for pipelined processors, J. Embedded Comput. 1 (3)

(2005) 317–324 .

[19] S. Sultan , S. Masud , Rapid software power estimation of embedded pipelined
processor through instruction level power model, in: 2009 International Sym-

posium on Performance Evaluation of Computer Telecommunication Systems,
vol. 41, 2009, pp. 27–34 .

20] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto, A multi-level strat-
egy for software power estimation, in: Proceedings 13th International Sympo-

sium on System Synthesis, 20 0 0, pp. 187–192, doi: 10.1109/ISSS.20 0 0.874048 .

[21] E. Senn , N. Julien , J. Laurent , E. Martin , Power consumption estimation of a
C program for data-intensive applications, in: B. Hochet, A.J. Acosta, M.J. Bel-

lido (Eds.), Integrated Circuit Design. Power and Timing Modeling, Optimiza-
tion and Simulation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,

pp. 332–341 .
22] S. M, H. Blume, T. Noll, Power estimation on functional level for programmable

processors, Adv. Radio Sci. 2 (2004), doi: 10.5194/ars- 2- 215- 2004 .

23] J. Livonius , H. Blume , T. Noll , Flpa-based power modeling and power aware
code optimization for a TriMedia DSP, in: Proceedings of the ProRISC Work-

shop, 2005 .
[24] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, T. Noll, Hybrid

functional- and instruction-level power modeling for embedded and heteroge-
neous processor architectures, J. Syst. Archit. 53 (2007) 689–702, doi: 10.1016/

j.sysarc.20 07.01.0 02 .
25] C. Brandolese, F. Salice, W. Fornaciari, D. Sciuto, Static power modeling of 32-

bit microprocessors, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21

(11) (2002) 1306–1316, doi: 10.1109/TCAD.2002.804104 .
26] C. Brandolese , W. Fornaciari , F. Salice , D. Sciuto , Source-level execution

time estimation of C programs, in: Ninth International Symposium on
Hardware/Software Codesign. CODES 2001 (IEEE Cat. No. 01TH8571), 2001,

pp. 98–103 .
[27] C. Brandolese, S. Corbetta, W. Fornaciari, Software energy estimation based on

statistical characterization of intermediate compilation code, in: IEEE/ACM In-

ternational Symposium on Low Power Electronics and Design, 2011, pp. 333–
338, doi: 10.1109/ISLPED.2011.5993659 .

28] C. Brandolese , W. Fornaciari , F. Salice , D. Sciuto , Timing and energy estimation
of C programs, ACM Trans. Embedded Comput. Syst.(TECS) (2002) .

29] L. Bogdanov , Look-up table-based microprocessor energy model, in: Fifth In-
ternational Scientific Conference ǣEngineering, Technologies and Systems ǥ
(TECHSYS 2016), 2016, pp. 180–185 .

30] k. Liu , A Simulation Based Approach to EstimateEnergy Consumption for Em-
bedded Processors, Wrocaw University of Technology, 2015 Master’s thesis .

[31] M. Hubner, J. Becker, Multiprocessor System-on-Chip: Hardware Design and
Tool Integration, Springer, 2011, doi: 10.1007/978- 1- 4419- 6460- 1 .

32] V. Tiwari, S. Malik, A. Wolfe, M.T. Lee, Instruction level power analysis and
optimization of software, in: Proceedings of 9th International Conference on

VLSI Design, 1996, pp. 326–328, doi: 10.1109/ICVD.1996.489624 .

[33] I. Nikolaidis, Arm system-on-chip architecture, 2nd edition [book review], Net-
work, IEEE 14 (20 0 0), doi: 10.1109/MNET.20 0 0.885658 . 4–4

34] M. Siegesmund , Embedded C Programming: Techniques and Applications of C
and PIC MCUS, first ed., Newnes, Newton, MA, USA, 2014 .

[35] CC4CS benchmark, 2018. (accessed: 21.10.2019) https://github.com/vnzstc/
cc4cs .

36] LEON3 processor, 2018. (accessed: 21.10.2019) https://www.gaisler.com/ .

[37] Synthesizable VHDL Model of 8051, 2018. (accessed: 21.10.2019) http:
//www.newit.gsu.by/resources/CPUs/i8051/VHDL/Synthesizeable%20VHDL%

20Model%20of%208051.htm .
38] TSIM2 ERC32/LEON simulator, 2018. (accessed: 21.10.2019) https://www.gaisler.
com/ .

39] LEON Bare-C Cross Compilation System (BCC), 2018. (accessed: 21.10.2019)
https://www.gaisler.com/index.php/products/operating-systems/bcc .

40] Dalton Project: 8051 microcontroller, University of California, 2018. (accessed:
21.10.2019) http://www.ann.ece.ufl.edu/i8051/ .

[41] SDCC - Small Device C Compiler, 2018. (accessed: 21.10.2019) http://sdcc.
sourceforge.net/ .

42] LEON3-FT SPARC V8 Processor LEON3FT-RTAX, 2018. (accessed: 21.10.2019)

https://www.gaisler.com/doc/leon3ft- rtax- ag.pdf .
43] UT699 32-bit Fault-Tolerant SPARCTM V8/LEON 3FT Processor, 2018. (ac-

cessed: 21.10.2019) https://www.cobhamaes.com/pagesproduct/datasheets/
leon/UT699LEON3FTDatasheet.pdf .

44] AT89C51 ATMEL Development Board, 2018. (accessed: 21.10.2019)
https://www.indiamart.com/proddetail/at89c51- atmel- development-

board-15939053291.html .

45] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto, Affinity-driven
system design exploration for heterogeneous multiprocessor SoC, IEEE Trans.

Comput. 55 (5) (2006) 508–519, doi: 10.1109/TC.2006.66 .
46] V. Muttillo, G. Valente, D. Ciambrone, V. Stoico, L. Pomante, HEPSYCODE-RT: A

real-time extension for an ESL HW/SW co-design methodology, in: Proceedings
of the Rapido’18 Workshop on Rapid Simulation and Performance Evaluation:

Methods and Tools, in: RAPIDO ’18, ACM, New York, NY, USA, 2018, pp. 6:1–

6:6, doi: 10.1145/3180665.3180670 .
[47] L. Berardinelli , A. Di Marco , S. Pace , L. Pomante , W. Tiberti , Energy consump-

tion analysis and design of energy-aware WSN agents in fUML, in: G. Taentzer,
F. Bordeleau (Eds.), Modelling Foundations and Applications, Springer Interna-

tional Publishing, Cham, 2015, pp. 1–17 .
48] A. Moro , F. Federici , G. Valente , L. Pomante , M. Faccio , V. Muttillo , Hardware

performance sniffers for embedded systems profiling, in: 2015 12th Interna-

tional Workshop on Intelligent Solutions in Embedded Systems (WISES), 2015,
pp. 29–34 .

Vittoriano Muttillo received his Bachelor’s degree and

Master’s Degree (summa cum laude) in Computer Sci-
ence Engineering, and his PhD in Information and Com-

munication Technologies (cum laude) from the Univer-

sity of L’Aquila. In 2014 he was a researcher at the Cen-
tre of Excellence DEWS (Design Methodologies for Em-

bedded controllers, Wireless interconnect and System-on-
chip), working on the development of middleware for

FPGA’s embedded multi-core architectures in the context
of CRAFTERS (Constraint and Application driven Tailoring

Framework for Embedded Real-time Systems) ARTEMIS-

JU European Project. Currently, he is a research fellow in
the area of Information and Communication Technologies

ICT) at the Department of Information Engineering, Computer Science and Math-
matics (DISIM), University of L’Aquila. His research interests focus on Embedded

ystems, with a particular emphasis on Electronic Design Automation and Model-
ased System-Level HW/SW Co-Design area. He works on the development of EDA

ools, mainly oriented to properly manage Mixed-Criticality and Cyber-Physical Sys-

ems on heterogeneous multi/many-core platforms.

Paolo Giammatteo is a Research Fellow with master de-

gree in Physics and PhD in Power Electronics. His top-

ics of interest are machine learning, big data, embed-
ded systems, statistical physics, mathematical modeling of

complex systems, scale-free networks, analysis. During his
academic years, he matured a good experience in various

programming languages, designing and developing soft-
ware for devices such as GPU and embedded electronic

systems for data acquisition and control of engineering

systems. He also improved his informatics skills through a
job experience in software development for web applica-

tions and database management systems for massive data
analysis.

Vincenzo Stoico has received the Bachelor’s degree in

Computer Science from the University of L’Aquila (Italy)
in 2017, and a Double Degree in Software Engineering

from University of L’Aquila (Italy) and Mlardalens Uni-
versity (Sweden) in 2019. He graduated with a Master

Thesis entitled ”A Model-Driven Approach for modeling

Heterogeneous Embedded Systems”. From 2019, he is a
Ph.D. student at University of L’Aquila. His activities focus

mainly on Model-Based Design for Embedded Systems.

https://doi.org/10.1109/DAC.1999.782199
https://doi.org/10.1145/337292.337436
https://doi.org/10.1109/ICECS.2002.1046224
https://doi.org/10.1109/ICCAD.1994.629825
https://doi.org/10.1109/DAC.2001.156139
https://doi.org/10.1145/384196.384201
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0018
https://doi.org/10.1109/ISSS.2000.874048
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0020
https://doi.org/10.5194/ars-2-215-2004
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0022
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0022
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0022
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0022
https://doi.org/10.1016/j.sysarc.2007.01.002
https://doi.org/10.1109/TCAD.2002.804104
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0025
https://doi.org/10.1109/ISLPED.2011.5993659
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0029
https://doi.org/10.1007/978-1-4419-6460-1
https://doi.org/10.1109/ICVD.1996.489624
https://doi.org/10.1109/MNET.2000.885658
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0033
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0033
https://github.com/vnzstc/cc4cs
https://www.gaisler.com/
http://www.newit.gsu.by/resources/CPUs/i8051/VHDL/Synthesizeable%20VHDL%20Model%20of%208051.htm
https://www.gaisler.com/
https://www.gaisler.com/index.php/products/operating-systems/bcc
http://www.ann.ece.ufl.edu/i8051/
http://sdcc.sourceforge.net/
https://www.gaisler.com/doc/leon3ft-rtax-ag.pdf
https://www.cobhamaes.com/pagesproduct/datasheets/leon/UT699LEON3FTDatasheet.pdf
https://www.indiamart.com/proddetail/at89c51-atmel-development-board-15939053291.html
https://doi.org/10.1109/TC.2006.66
https://doi.org/10.1145/3180665.3180670
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0036
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037
http://refhub.elsevier.com/S0141-9331(20)30367-7/sbref0037

18 V. Muttillo, P. Giammatteo and V. Stoico et al. / Microprocessors and Microsystems 77 (2020) 103200

’

t

E

h

a

s

F

D

Luigi Pomante has received the ’Laurea’ (i.e. BSc+MSc)

Degree in Computer Science Engineering from ’Politecnico
di Milano’ (Italy) in 1998, the 2nd Level University Master

Degree in Information Technology from CEFRIEL (a Cen-
ter of Excellence of ’Politecnico di Milano’) in 1999, and

the Ph.D. Degree in Computer Science Engineering from

’Politecnico di Milano’ in 2002. He had been a Researcher
at CEFRIEL from 1999 to 2005 and, in the same period, he

had been also a Temporary Professor at ’Politecnico di Mi-
lano’. From 2006, he is an Academic Researcher at Center

of Excellence DEWS (’Universitá degli Studi dell’Aquila’,
Italy). From 2008 he is also Assistant Professor at ’Uni-

versitá degli Studi dell’Aquila’ (he is responsible of the
Embedded Systems’ course). His activities focus mainly on Electronic Design Au-
omation (in particular Electronic System-Level HW/SW Co-Design) and Networked

mbedded Systems (in particular Wireless Sensor Networks). In such a context, he
as been author (or co-author) of more than 100 articles published on international

nd national conference proceedings, journals, and book chapters. He has been also
ession chair, reviewer, and member of several TPCs related to his research topics.

rom 2010, he has been in charge of scientific and technical issues on behalf of
EWS in several European and national research projects.

	An early-stage statement-level metric for energy characterization of embedded processors
	1 Introduction
	2 Related works
	3 Metric definition
	3.1 Main assumptions
	3.2 Proposed energy model
	3.3 J4CS Metric

	4 Evaluation of J4CS
	4.1 Generic framework
	4.1.1 Reference benchmark
	4.1.2 Inputs generation
	4.1.3 Profiling on the host architecture (Host Profiling)
	4.1.4 Profiling on the target processor (ISS Execution)

	4.2 Processor specific framework: two examples
	4.2.1 LEON3 micro-processor
	4.2.2 LEON3 Statistical analysis
	4.2.3 8051 Micro-controller
	4.2.4 8051 Statistical analysis
	4.2.5 Use case scenario

	5 J4CS-Based energy consumption estimation
	6 J4CS-Based energy consumption estimation validation
	7 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References

