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Abstract. We prove a general result about the stability of geometric flows of “closed” sections
of vector bundles on compact manifolds. Our theorem allows us to prove a stability result for the
modified Laplacian coflow in G2-geometry introduced by Grigorian in [9] and for the balanced
flow introduced by the authors in [2].

1. Introduction

In [4] Bryant introduced a new flow in G2-geometry which evolves an initial closed G2-
structure along its Laplacian. Bryant’s Laplacian flow is a flow of closed 3-forms and its well-
posedness is not standard since the evolution equation is weakly parabolic only in the direction
of closed forms. The short-time existence of the flow on compact manifolds was proved by
Bryant and Xu in [5] introducing a gauge fixing of the flow called Laplacian-DeTurck flow and
then applying Nash-Moser theorem.

In [16] Lotay and Wei proved that in the compact case torsion-free G2-structures are stable
under the Laplacian flow. This means that if the initial datum is “close enough” to a torsion
free G2-structure, the Laplacian flow is defined for any positive time t and converges as t→∞
in C∞-topology to a torsion-free G2-structure.

Following Bryant and Xu ideas, other similar flows have been introduced in G2-geometry. For
instance Karigiannis, McKay and Tsui defined in [13] the Laplacian coflow which is the “dual
flow” to the Laplacian flow since it evolves a closed G2 4-form along its Laplacian. Although the
Laplacian flow and coflow are similar from the geometric point of view, it turns out that their
defining equations are quite different from the analytic point of view and the well-posedness of
the Laplacian coflow is still an open problem. To overcome this technical difficulty, Grigorian
modified in [9] the Laplacian coflow by introducing two extra terms, one of which depends on
a parameter A. In the compact case, this modification is always well-posed for any choice of
A ∈ R [9], but it has been shown that the behaviour of the flow may significantly depend on the
choice of A (see [1]).

In [2] the authors showed that the proof of Bryant and Xu about the well-posedness of the
Laplacian-DeTurck flow can be generalized to a quite large family of flows proving a general
result which allows us to treat short-time behaviour of Grigorian’s modified Lapalcian coflow
and of a new flow of balanced metrics in Hermitian geometry.

In the same spirit in the present paper we prove a general result about the stability of a
significant class of flows around linearly stable static solutions. Our theorem can be used to re-
obtain the Lotay-Wei stability of the Laplacian-DeTurck flow around torsion-free G2-structures
(which is a significant part of the main theorem in [16]). As a main application of our theorem
we prove the stability of the modified Laplacian coflow when the parameter A is zero. Note that
in [9] it is suggested to consider only the case A > 0 and big enough, in order to ensure at least
initially that the volume increases. However the term involving the parameter A does not affect
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the well-posedness of the flow and our result suggests to consider the case A = 0 as the best
choice for the parameter.

Finally the main result of the present paper applies to the geometric flow of balanced metrics
introduced by the authors in [2] and yields the stability of the flow around Ricci-flat Kähler
metrics.

The paper is organized as follows. In section 2 we give the statement of the main result and
we declare some notation we will use in the sequel. Section 3.4 is devoted to the proof of the
stability of the modified Laplacian coflow around torsion-free G2-structures when the parameter
A is zero. The proof is obtained by mixing the use of our main theorem with some techniques
used in [16] to prove the stability of the Laplacian flow. In section 4 we prove a stability result
involving the balanced flow around Calabi-Yau metrics. In the last section we give the proof of
the main theorem.

Acknowledgements. The authors would like to thank Jason Lotay and Gao Chen for useful
discussions. The authors are also grateful to the anonymous referee for raising important points
and helping to considerably improve the presentation of the paper.

2. Statement of the main result

In this section we describe our setting and give the precise statement of our result.
Following the terminology introduced in [2] a Hodge system on a compact Riemannian manifold
(M, g) consists of a quadruplet (E−, E,D,∆D), where E− and E are vector bundles over M
with an assigned metric along their fibers, D : C∞(M,E−)→ C∞(M,E) and ∆D : C∞(M,E)→
C∞(M,E) are differential operators such that

(2.1) ψ = DGD∗ψ

for every ψ ∈ ImD, where G is the Green operator of ∆D and D∗ is the formal adjoint of D.
The foremost example of Hodge system over M is defined by E− = Λp, E = Λp+1, D = d
and ∆D = dd∗ + d∗d is the standard Laplace operator, on a compact Riemannian manifold.
Condition (2.1) in this case is a consequence of the standard Hodge theory. Another interesting
example of Hodge system occurs in the study of balanced metrics in complex geometry and it is
defined by setting D = i∂∂̄ and as ∆D the Aeppli Laplacian (see the discussion in section 4).

Given a compact manifold M with a Hodge system (E−, E,D,∆D), we consider an open fiber
subbundle E of E and a partial differential operator of order 2m

Q : C∞(M, E)→ C∞(M,E) ,

and a linear partial differential operator

D+ : C∞(M,E)→ C∞(M,E+)

such that

ImD ⊆ ker D+ ,

where E+ is a vector bundle over M . Let Φ = kerD+ ∩ C∞(M, E). We assume

1. Q(Φ) ⊂ ImD;

2. there exists a smooth family of strongly elliptic linear partial differential operators
Lϕ : C∞(M,E)→ C∞(M,E), ϕ ∈ C∞(M, E), such that

Q∗|ϕ(ψ) = Lϕ(ψ)

for every ϕ ∈ Φ and ψ ∈ ImD;
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3. there exists a smooth family of strongly elliptic linear partial differential operators
lϕ : C∞(M,E−)→ C∞(M,E−), ϕ ∈ C∞(M, E), such that

Q∗|ϕ(Dθ) = Dlϕ(θ)

for every ϕ ∈ Φ and θ ∈ C∞(M,E−).

In [2] the authors proved that for every ϕ0 ∈ Φ the evolution problem

(2.2) ∂tϕt = Q(ϕt) , ϕ|t=0 = ϕ0 , ϕt ∈ U ,

is always well-posed, where

U = {ϕ0 +Dγ : γ ∈ C∞(M,E−)} ∩ C∞(M, E) .

The main result of the present paper is the following

Theorem 2.1. In the situation described above, let ϕ̄ ∈ Φ be such that

1. Q(ϕ̄) = 0;

2. the restriction to DC∞(M,E−) of Lϕ̄ is symmetric and negative definite with respect to
the L2 inner product induced by g.

Then for every ε > 0 there exist δ > 0 and C > 0 such that if

‖ϕ0 − ϕ̄‖C∞ < δ

then (2.2) has a unique long-time solution {ϕt}t∈[0,∞) such that

‖ϕt − ϕ̄‖C∞ < ε , and ‖Q(ϕt)‖C∞ ≤ C‖Q(ϕ0)‖L2 e−λt

for every t ∈ [0,∞), where λ is half the first positive eigenvalue of −Lϕ̄. Moreover, ϕt converges
exponentially fast in C∞ topology to a ϕ∞ ∈ U such that Q(ϕ∞) = 0 as t→∞.

Whenever we write ‖f‖C∞ < ε, we mean that ‖f‖Ck < ε for every k ∈ N. In the statement
above the Ck-norms and the L2-norm are with respect to the background metric g. Conditions
1. and 2. in theorem 2.1 say that ϕ̄ is a linearly stable fixed point of the flow. Hence roughly
speaking the theorem says that linearly stable fixed points of the class of flows we are considering
are indeed dynamically stable.

3. From theorem 2.1 to the stability of the modified Laplacian coflow

Let (M,ϕ0) be a compact manifold with a fixed G2-structure. The Laplacian flow is defined
as

(3.1) ∂tϕt = ∆ϕtϕt , dϕt = 0 , ϕt ∈ C∞(M,Λ3
+) , ϕ|t=0 = ϕ0 ,

where Λ3
+ is the fiber bundle whose sections are G2-forms on M and for any ϕ ∈ C∞(M,Λ3

+) the
Laplacian operator induced by ϕ is denoted by ∆ϕ. The well-posedness of the flow was proved
by Bryant and Xu in [5] applying Nash-Moser inverse function theorem to the gauge fixing of
the flow given by the following proposition.

Proposition 3.1 (Bryant-Xu). There exists a smooth map V : C∞(M,Λ3
+)→C∞(M,TM) such

that the operator

Q : C∞(M,Λ3
+)→ Ω3(M), Q(ϕ) = ∆ϕϕ+ LV (ϕ)ϕ

satisfies

Q∗|ϕ(σ) = −∆ϕσ + dΨ(σ)

for every closed G2-structure ϕ and σ ∈ dΩ2(M), where L is the Lie derivative and Ψ is an
algebraic linear operator on σ with coefficients depending on the torsion of ϕ in a universal way.
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We briefly recall the definition of the map V since we need it for studying the modified
Laplacian coflow. Let ∇0 be a fixed background torsion-free connection on M . For any ϕ ∈
C∞(M,Λ3

+) let ∇ϕ be the Levi-Civita connection of the metric induced by ϕ. Let

Tϕ = ∇ϕ −∇0.

We can locally write Tϕ = 1
2T

i
jk∂xi ⊗ dxj ◦ dxk. Then V is locally defined as

(3.2) V (ϕ)i = c1 g
pqT ipq + c2 g

kiT jjk

where c1 and c2 are universal constants.
The “modified” Laplacian flow

(3.3) ∂tϕt = ∆ϕtϕt + LV (ϕt)ϕt , dϕt = 0 , ϕt ∈ C∞(M,Λ3
+) , ϕ|t=0 = ϕ0 ,

is often called the Laplacian-DeTurck flow.

In [16] Lotay and Wei proved the following stability result about Laplacian flow

Theorem 3.2 (Lotay-Wei [16]). Let ϕ̄ be a torsion-free G2-structure on a compact 7-manifold
M . There exists δ > 0 such that for any closed G2-structure ϕ0 cohomologous to ϕ̄ and satisfying
‖ϕ0 − ϕ̄‖C∞ < δ, the Laplacian flow (3.1) with initial value ϕ0 exists for all t ∈ [0,∞) and
converges in C∞-topology to ϕ∞ ∈ Diff0 · ϕ̄ as t→∞.

In the statement above the Ck-norms are meant with respect to the metric induced by ϕ̄. The
proof of Lotay-Wei theorem in [16] can be subdivided in two steps: in the first step it is proved
the stability of the Laplacian-DeTurck flow and in the second step it is recovered the stability
of the Laplacian flow. The stability of the Laplacian-DeTurck flow can be deduced from our
theorem 2.1 taking into account lemma 4.2 in [16]. Indeed, according to our setting we put

E− = Λ2M , E = Λ3M , E+ = Λ4M E = Λ3
+

D = d : Ω2(M)→ Ω3(M) , D+ = d : Ω3(M)→ Ω4(M)

and we take ∆D : Ω3(M) → Ω3(M) to be the Laplacian induced by a fixed background Rie-
mannian metric. Furthermore Φ is the space of closed G2-forms on M and for ϕ ∈ Φ we take

Lϕ = −∆ϕ + dΨ , on 3-forms;

lϕ = −∆ϕ + Ψ , on 2-forms ,

where Ψ is defined in proposition 3.1. If ϕ̄ is a torsion free G2-structure, then Q(ϕ̄) = 0 and the
restriction of Lϕ̄ to dΩ2(M) is −∆ϕ̄. Therefore theorem 2.1 implies that for every ε > 0 there
exists δ > 0 such that if ϕ0 is a closed G2-structure cohomologous to ϕ̄ satisfying ‖ϕ0−ϕ̄‖C∞ < δ,
then flow (3.3) with initial value ϕ0 has a long-time solution ϕ̃t defined for t ∈ [0,∞) such that
‖ϕ̃t − ϕ̄‖C∞ < ε and ϕ̃t converges in C∞-topology to some torsion-free G2-structure ϕ̃∞ in
[ϕ̄] ∈ H3(M,R). Now lemma 4.2 of [16] implies that ϕ̃∞ = ϕ̄ if ε is taken small enough. Indeed
lemma 4.2 of [16] implies that for ε small enough the L2-norm of ϕ̃t − ϕ̄ decays exponentially
and consequently ϕ̃∞ = ϕ̄. The long-time existence of the Laplacian flow easily follows. Indeed,
let φt be the curve of diffeomorphisms solving

∂tφt = −V (ϕ̃t)|φt φ0 = IdM ,

then ϕt := φ∗t (ϕ̃t), t ∈ [0,∞), is a long-time solution of the Laplacian flow with initial condition
ϕ|t=0 = ϕ0. The convergence of the flow in theorem 3.2 is proved in [16] by using the Shi-type
estimates for the Laplacian flow proved in [15].

Next we focus on the Laplacian coflow. The Laplacian coflow is the analogue of the Laplacian
flow where the initial G2-structure is assumed to be coclosed instead of closed. Indeed a G2-
structure ϕ on a smooth manifold M can be alternatively given by the 4-form ψ = ∗ϕϕ and the
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fixed orientation. In [13] it is defined the Laplacian coflow

∂tψt = ∆ψtψt , dψt = 0 , ψt ∈ C∞(M,Λ4
+) , ψ|t=0 = ψ0 ,

where here Λ4
+ is the fiber bundle whose sections are G2-4-forms and ∆ψt is the Laplacian

operator induced by ψt. Unlike the Laplacian flow, there is no known gauge fixing that makes the
Laplacian coflow parabolic, for this reason in [9] Grigorian proposed the following modification

(3.4) ∂tψt = ∆ψtψt + 2d((A− trTψt) ∗ψt ψt) , dψt = 0 , ψt ∈ C∞(M,Λ4
+) , ψ|t=0 = ψ0 ,

where A is a constant and for a G2 4-form ψ ∈ C∞(M,Λ4
+) the function trTψ is the trace with

respect to the metric g induced by ψ of the torsion tensor

Tψ(X,Y ) :=
1

24
g(∇X ∗ψ ψ, ιY ψ)

for X,Y in C∞(M,TM), where ∇ is the Levi-Civita connection of g. It is not difficult to see
that

trTψ =
1

4
∗ψ (d ∗ψ ψ ∧ ∗ψψ) .

Under this modification the flow is still not parabolic, but it can be further modified by using
a DeTurck trick.

In this section we revise Grigorian’s proof of the well-posedness of the Laplacian coflow in
order to show how the flow fits in our setting in the case A = 0.

We first recall how the space of smooth forms on a G2-manifold splits into a direct sum of
irreducible modules (we refer to [4] for details). Given a G2-manifold (M,ϕ) the space of 2-forms
and 3-forms split in irreducible G2-modules as

Ω2(M) = Ω2
14(M)⊕ Ω2

7(M) , Ω3(M) = Ω3
27(M)⊕ Ω3

7(M)⊕ Ω3
1(M)

where
Ω2

7(M) = {∗ϕ(α ∧ ∗ϕϕ) : α ∈ Ω1(M)} ,
Ω2

14(M) = {α ∈ Ω2(M) : α ∧ ϕ = − ∗ϕ α}
and

Ω3
27(M) = {α ∈ Ω3(M) : α ∧ ϕ = α ∧ ∗ϕϕ = 0} ,

Ω3
7(M) = {∗ϕ(α ∧ ϕ) : α ∈ Ω1(M)} ,

Ω3
1(M) = {f ϕ : f ∈ C∞(M)} .

The space of symmetric 2-tensors S2(M) on M is isomorphic to Ω3
1(M)⊕ Ω3

27(M) via the map
iϕ : S2(M)→ Ω3

1(M)⊕ Ω3
27(M) locally defined as

iϕ(h) = hlrϕlskdx
r ∧ dxs ∧ dxk

for every h = hrsdx
r ◦ dxs, where ϕlsk are the components of ϕ in the coordinates {x1, . . . , x7}.

Although the following lemma arises from [9], we prefer to give a proof of it in order to frame the
Laplacian coflow in our setting and point out that the vector field needed to apply the DeTurck
trick is the same used in the Laplacian flow.

Lemma 3.3. Let Q : C∞(M,Λ4
+)→ Ω4(M) be defined as

Q(ψ) = ∆ψψ + 2d((A− trTψ) ∗ψ ψ) + LV (∗ψψ)ψ ,

where V (∗ψψ) is defined in (3.2). Let {ψt}t∈(−ε,ε) be a smooth curve in C∞(M,Λ4
+) and

ϕt = ∗ψtψt , ψ̇ = ∂t|t=0ψt , ϕ̇ = ∂t|t=0ϕt .

Then

∂t|t=0Q(ψt) = −∆ψ0ψ̇ + 2Adϕ̇+ dΨ(ψ̇)
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where Ψ is an algebraic linear operator on ψ̇ with coefficients depending on the torsion of ψ0 in
a universal way.

Proof. In this proof we use the same notation as in [4, 5] denoting by dsr the projection of d onto
Ωs
r(M). We also set ψ = ψ0 and ϕ = ϕ0 to simplify notation.

From [12] it follows that ϕ̇ and ψ̇ are related as follows

ϕ̇ = 3f0ϕ+ ∗ϕ(f1 ∧ ϕ) + f3 , ψ̇ = 4f0ψ + f1 ∧ ϕ− ∗ϕf3 ,

where f0 is a smooth function, f1 ∈ Ω1(M) and f3 ∈ Ω3
27(M). A direct computation via the

formulas in [5] yields

∂t|t=0∆ψtψt = dp(ψ̇) , ∂t|t=0LV (∗ψψ)ψ = dq(ψ̇)

where
p(ψ̇) = 3 ∗ϕ d(f0 ∧ ϕ) + ∗ϕdf3 + ∗ϕd ∗ϕ (f1 ∧ ϕ) + l.o.t. ,

q(ψ̇) = 5 ∗ϕ (df0 ∧ ϕ) + ∗ϕ(d27
7 f

3 ∧ ϕ) + l.o.t. ,

and by “l.o.t.” we mean “lower order terms”.
Moreover if we denote by π7(dψ̇) the component of dψ̇ in ∗ϕΩ2

7(M) = {α ∧ ψ : α ∈ Ω1(M)}
we have

π7(dψ̇) = 4df0 ∧ ψ +
1

3
d27

7 f
3 ∧ ψ +

2

3
d7

7f
1 ∧ ψ + l.o.t.

and from dψ̇ = 0 we deduce

d27
7 f

3 = −12df0 − 2d7
7f

1 + l.o.t.

which implies
q(ψ̇) = −7 ∗ϕ (df0 ∧ ϕ)− 2 ∗ϕ (d7

7f
1 ∧ ϕ) + l.o.t.

Therefore

p(ψ̇) + q(ψ̇) + ∗ϕd ∗ϕ ψ̇ = 2 ∗ϕ d ∗ϕ (f1 ∧ ϕ)− 2 ∗ϕ (d7
7f

1 ∧ ϕ) + l.o.t.

Now

∗ϕd ∗ϕ (f1 ∧ ϕ) =
4

7
d7

1f
1ϕ+

1

2
∗ϕ (d7

7f
1 ∧ ϕ) + d7

27f
1

and so

p(ψ̇) + q(ψ̇) + ∗ϕd ∗ϕ ψ̇ = 2 ∗ϕ d ∗ϕ (f1 ∧ ϕ)− 2 ∗ϕ (d7
7f

1 ∧ ϕ) + l.o.t.

=
8

7
d7

1f
1ϕ+ ∗ϕ(d7

7f
1 ∧ ϕ) + 2d7

27f
1 − 2 ∗ϕ (d7

7f
1 ∧ ϕ) + l.o.t.

=
8

7
d7

1f
1ϕ− ∗ϕ(d7

7f
1 ∧ ϕ) + 2d7

27f
1 + l.o.t.

From

d(∗ϕ(f1 ∧ ψ)) = −3

7
d7

1f
1ϕ− 1

2
∗ϕ (d7

7f
1 ∧ ϕ) + d7

27f
1

we deduce
p(ψ̇) + q(ψ̇) + ∗ϕd ∗ϕ ψ̇ = 2d(∗ϕ(f1 ∧ ψ)) + 2d7

1f
1ϕ+ l.o.t.

Finally

TrTψ =
1

4
∗ϕ (dϕ ∧ ϕ) = d7

1f
1 + l.o.t.

and consequently

p(ψ̇) + q(ψ̇) + 2(A− TrTψ)ϕ+ ∗ϕd ∗ϕ ψ̇ = 2d(∗ϕ(f1 ∧ ψ)) + 2Aϕ+ l.o.t.

Therefore

∂t|t=0Q(ψt) = dp(ψ̇) + dq(ψ̇) + 2d(A− TrTψ) = −∆ψψ̇ + 2Adϕ̇+ l.o.t.

and the claim follows. �
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Now we note that torsion-free G2-structures are critical points of the functional Q regardless
of the value of A. We concentrate on the case A = 0.

The main result of this section is the following

Theorem 3.4. Let ψ̄ ∈ C∞(M,Λ4
+) be a torsion-free G2-structure on a compact 7-manifold M .

There exists δ > 0 such that if ψ0 ∈ C∞(M,Λ4
+) is closed and satisfies

‖ψ0 − ψ̄‖C∞ < δ , [ψ0] = [ψ̄] ,

then the evolution equation

(3.5) ∂tψt = ∆ψtψt − 2d((trTt) ∗ψt ψt) , ψ|t=0 = ψ0 ,

has a unique long-time solution {ψt}t∈[0,∞) which converges in C∞-topology to ψ∞ ∈ Diff0 · ψ̄
as t→∞.

In the statement above and in the following proof the Ck-norms and the L2-norm, where not
specified, are meant with respect to the metric ḡ induced by ψ̄.

Proof. Our approach mixes the use of theorem 2.1 with some techniques used in [16] to prove
the stability of the Laplacian flow. We first apply theorem 2.1 to show the stability of the gauge
fixing of the flow and then use Shi-type estimates in [6] to recover the stability of the original
flow. The proof is subdivided in the following three steps:

1. We prove that for δ small enough a gauge fixing to (3.5) has a long-time solution ψ̃t which

converges in C∞ topology to a torsion-free G2-structure ψ̃∞ ∈ [ψ̄] and stays C∞-close
to ψ̄.

2. We show that for a suitable choice of δ, ψ̃t converges in L2-norm to ψ̄, which implies
that ψ̃∞ = ψ̄;

3. We recover the stability of the original flow.

The proof of steps 2 and 3 are close to the case of the Laplacian flow.

Step 1. If we choose as background metric the metric ḡ induced by the torsion free G2-structure
ψ̄, then lemma 3.3 together with theorem 2.1 implies that for every ε > 0 there exists δ > 0 and
κ > 0 such that if ψ0 ∈ C∞(M,Λ4

+) is closed and satisfies

‖ψ0 − ψ̄‖C∞ < δ , [ψ0] = [ψ̄] ,

then the evolution problem

(3.6) ∂tψ̃t = ∆ψ̃t
ψ̃t − 2d((tr T̃t) ∗ψ̃t ψ̃t) + LV (ψ̃t)

ψ̃t , ψ̃|t=0 = ψ0

has a long-time solution {ψ̃t}t∈[0,∞) such that

‖ψ̃t − ψ̄‖C∞ < ε , for every t ∈ [0,+∞)

and

(3.7) ‖∆ψ̃t
ψ̃t − 2d((tr T̃t) ∗ψ̃t ψ̃t) + LV (ψ̃t)

ψ̃t‖C∞ ≤ κe−λt

for every t ∈ [0,∞), where λ is half the first positive eigenvalue of ∆ψ̄. Furthermore, ψ̃t converges

exponentially fast to a torsion-free G2-structure ψ̃∞ ∈ [ψ̄].

Step 2. We show that if we choose ε small enough in the previous step, then the L2-norm of
θt = ψ̃t − ψ̄ decays exponentially. Let Q : C∞(M,Λ4

+)→ Ω4(M) be defined as

Q(ψ) = ∆ψψ − 2d((trTψ) ∗ψ ψ) + LV (∗ψψ)ψ .

Since Q sends closed forms to exact forms we can write

(3.8) ∂tθt = Q(ψ̃t) = Q∗|ψ̄(θt) + dF (ψ̃t) = −∆ψ̄ψ̃t + dF (θt) ,
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where we used also lemma 3.3. Next we consider Θ(ψ) = ∗ψψ and write

Θ(ψ̃t) = ∗ψ̄ψ̄ + S1(θt) + S2(θt)

where S1(θt) = Θ∗|ψ̄(θt). Arguing as in [12] we can observe that both dS1(θt) and dS2(θt) are

dominated by θt∇̄θt for ‖θt‖C∞ḡ small, where ∇̄ is the Levi-Civita connection of ḡ. Note also

that dS1(θt) is linear in ∇̄θt.

Let Q1(ψ) := ∆ψψ. Then

Q1
∗|ψ̄(θt) = d ∗ψ̄ dS1(θt)

and

Q1(ψ̃t)−Q1(ψ̄)−Q1
∗|ψ̄(θt) = d ∗ψ̃t d ∗ψ̃t ψ̃t − d ∗ψ̄ dS1(θt)

= d ∗ψ̃t d ∗ψ̃t ψ̃t − d ∗ψ̄ d ∗ψ̃t ψ̃t + d ∗ψ̄ d ∗ψ̃t ψ̃t − d ∗ψ̄ dS1(θt)

= d(∗ψ̃t − ∗ψ̄)d ∗ψ̃t ψ̃t + d ∗ψ̄ d ∗ψ̃t ψ̃t − d ∗ψ̄ dS1(θt)

= d(∗ψ̃t − ∗ψ̄)d ∗ψ̃t ψ̃t + d ∗ψ̄ dS2(θt) .

Thus we can write ∆ψ̃t
ψ̃t = Q1

∗|ψ̄(θt) + dF 1(θt) with F 1(θt) dominated by θt∇̄θt, for ‖θt‖C∞ḡ
small, since (∗ψ̃t − ∗ψ̄) is a 0th-order operator depending on θt polynomially.

Now let q2(ψ) = (∗ψ(d∗ψψ ∧ ψ)) ∗ψ ψ and Q2(ψ) = dq2(ψ), then

q2
∗|ψ̄(θt) = (∗ψ̄(∗ψ̄dS1(θt) ∧ ψ̄)) ∗ψ̄ ψ̄ .

Moreover

q2(ψ̃t)− q2(ψ̄)− q2
∗|ψ̄(θt) = (∗ψ̃t(d

∗
ψ̃t
ψ̃t ∧ ψ̃t)) ∗ψ̃t ψ̃t − (∗ψ̄(∗ψ̄dS1(θt) ∧ ψ̄)) ∗ψ̄ ψ̄

= ((∗ψ̃t − ∗ψ̄)(d∗
ψ̃t
ψ̃t ∧ (ψ̃t − ψ̄)))(∗ψ̃tψ̃t − ∗ψ̄ψ̄) + (∗ψ̃t(d

∗
ψ̃t
ψ̃t ∧ (ψ̃t − ψ̄))) ∗ψ̄ ψ̄

+ (∗ψ̃t(d
∗
ψ̃t
ψ̃t ∧ ψ̄)) ∗ψ̄ ψ̄ + ((∗ψ̃t − ∗ψ̄)(d∗

ψ̃t
ψ̃t ∧ ψ̄))(∗ψ̃tψ̃t − ∗ψ̄ψ̄) + (∗ψ̄(d∗

ψ̃t
ψ̃t ∧ ψ̄))(∗ψ̃tψ̃t − ∗ψ̄ψ̄)

+ (∗ψ̄(d∗
ψ̃t
ψ̃t ∧ (ψ̃t − ψ̄)))(∗ψ̃tψ̃t − ∗ψ̄ψ̄)− (∗ψ̄(∗ψ̄dS1(θt) ∧ ψ̄)) ∗ψ̄ ψ̄ ,

and consequently we have that Q2(ψ̃t) = Q2
∗|ψ̄(θt) + dF 2(θt), with F 2(θt) dominated by θt∇̄θt,

for ‖θt‖C∞ḡ small.

Finally, if Q3(ψ) = LV (∗ψψ)ψ, then [16, formula (4.13)] (once regarded on 4-forms) yields

Q3(ψ̃t) = Q3
∗|ψ̄(θt) + dF 3(θt) ,

with F 3(θt) again dominated by θt∇̄θt, for ‖θt‖C∞ḡ small. Therefore in (3.8) we can put F (θt) =

F 1(θt)− 7
2F

2(θt)+F 3(θt) and we have that there exists a constant C ′ > 0 such that the pointwise

estimate |F (θt)|ḡ ≤ C ′|θt|ḡ|∇̄θt|ḡ holds for ‖θt‖C∞ḡ small. Now

d

dt
‖θt‖2L2 =

d

dt

∫
M
|θt|2ḡ Volḡ = 2

∫
M
ḡ(θt, ∂tθt) Volḡ = 2

∫
M
ḡ(θt,−∆ψ̄θt + dF (θt)) Volḡ

= − 2‖d∗θt‖2L2 + 2

∫
M
ḡ(d∗θt, F (θt)) Volḡ ≤ −2‖d∗θt‖2L2 + 2

∫
M
|d∗θt|ḡ|F (θt)|ḡ Volḡ

≤ − 2‖d∗θt‖2L2 + 2C ′
∫
M
|d∗θt|ḡ|θt|ḡ|∇̄θt|ḡ Volḡ ≤ −2‖d∗θt‖2L2 + 2C ′ε

∫
M
|d∗θt|ḡ|∇̄θt|ḡ Volḡ

≤ − 2‖d∗θt‖2L2 + C ′ε(‖d∗θt‖2L2 + ‖∇̄θt‖2L2) .
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Weitzenböck formula yields that there exists a constant C ′′ > 0 depending only on bounds of
the curvature of ḡ such that

‖∇̄θt‖2L2 ≤ ‖d∗θt‖2L2 + C ′′‖θt‖2L2 .

Since

‖d∗θt‖2L2 ≥ 2λ‖θt‖2L2

we get
d

dt
‖θt‖2L2 ≤ 4λ(C ′ε− 1)‖θt‖2L2 + C ′C ′′ε‖θt‖2L2 = (−4λ+ C ′′′ε)‖θt‖2L2 ,

with C ′′′ = C ′(4λ+C ′′). Therefore for ε small enough, Gronwall lemma implies that ‖ψ̃t− ψ̄‖L2

decays exponentially.

Step 3. We recover from ψ̃t a long-time solution ψt to (3.5) and we show that ψt converges
exponentially fast to a torsion-free G2-structure in C∞-topology. Let {φt} be the family of
diffeomorphisms solving

∂tφt = −V (∗ψ̃tψ̃t)|φt , φ|t=0 = Id ,

and correspondingly let us set

ψt = φ∗t ψ̃t .

From the convergence of ψ̃t in C∞ḡ topology it follows that φt converges to a limit map φ∞.
Arguing as in [16] we get that φ∞ is in fact a diffeomorphism. Indeed, if X is a vector field on
M , we have

1

2
∂t|φt∗(X)|2ḡ = ḡ (∂t φt∗(X), φt∗(X)) ≥ − |∂tφt∗(X)|ḡ |φt∗(X)|ḡ ≥ −‖V (∗ψ̃tψ̃t)‖C1 |φt∗(X)|2ḡ .

Hence

∂t log |φt∗(X)|ḡ ≥ −‖V (∗ψ̃tψ̃t)‖C1

and integrating we deduce

|φt∗(X)|ḡ ≥ |X|ḡ e−
∫ t
0 ‖V (∗ψ̃s ψ̃s)‖C1 ds .

Since ψt converges exponentially to ψ̄ in C∞ topology, we have that ‖V (∗ψ̃tψ̃t)‖C1 decays

exponentially so that

(3.9) |φt∗(X)|ḡ ≥ C |X|ḡ ,

where C is a positive constant which does not depend on X and t. This last inequality holds
true for φ∞ and it follows that φ∞ is a local diffeomorphism homotopic to the identity and hence
a diffeomorphism. Since ψ̃t stays close to ψ̄ in C∞-topology, up to choosing a smaller ε, (3.7)
yields

‖∆ψ̃t
ψ̃t−2d((tr T̃t)∗ψ̃t ψ̃t))+LV (ψ̃t)

ψ̃t‖C∞g̃t ≤ 2‖∆ψ̃t
ψ̃t−2d((tr T̃t)∗ψ̃t ψ̃t))+LV (ψ̃t)

ψ̃t‖C∞ḡ ≤ 2κe−λt

where g̃t is the metric induced by ψ̃t. By diffeomorphism invariance it follows that

(3.10) ‖∂tψt‖C∞gt = ‖∆ψtψt − 2d((trTt) ∗ψt ψt))‖C∞gt ≤ 2κe−λt

where gt is the metric induced by ψt.
Now if we write

∂tψt = αt ∧ ∗ψt + 3 ∗ψt iψt(ht)
we have in particular

‖∂tψt‖2C0
gt

= ‖αt ∧ ∗ψtψt‖2C0
gt

+ ‖3 ∗ψt iψt(ht)‖2C0
gt
.
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Thus (3.10) implies ‖ht‖2C0
gt

≤ Cκe−λt , where C is a positive universal constant. Moreover

by [9, Proposition 3.1]

∂tgt =
1

2
(trgt ht) gt − 2ht ,

so that for a vector field X 6= 0 on M we have

|∂tgt(X,X)| ≤
(

1
2 |trgt ht|+ 2‖ht‖C0

gt

)
gt(X,X) ≤ C‖ht‖C0

gt
gt(X,X)

for some constant C > 0 and integrating ∂tgt(X,X)
gt(X,X) we deduce

e−
C
λ g0 ≤ gt ≤ e

C
λ g0

so that the metrics gt and g0 are uniformly equivalent. It follows that gt is uniformly equivalent
to ḡ and so ‖∂tψt‖C0

ḡ
≤ Ce−λt for some constant C > 0. Thus ψt converges in C0

ḡ -norm to some

4-form ψ∞. On the other hand, by (3.9) we have

|ψ∞ − φ∗∞ψ̄|ḡ ≤ lim
t→∞

(
|ψ∞ − ψt|ḡ + |ψt − φ∗t ψ̄|ḡ + |φ∗t ψ̄ − φ∗∞ψ̄|ḡ

)
≤ lim

t→∞

(
|ψ∞ − ψt|ḡ + C|ψ̃t − ψ̄|ḡ + |(φ∗t − φ∗∞)ψ̄|ḡ

)
= 0 ,

so that ψ∞ = φ∗∞ψ̄.
The last part consists in showing that ψt converges to ψ∞ in C∞-topology. We just describe

the procedure and refer to [16] for details. First we have exponential estimates for the ḡ-norm of

the curvature R̃t of g̃t and the first covariant derivatives of the torsion T̃t of ψ̃t. Then for t large
enough we deduce corresponding estimates with respect to the gt-norms (since gt is uniformly
equivalent to ḡ) and finally by diffeomorphism invariance we have uniform bounds for the gt-
norm of the curvature Rt of gt and the covariant derivative of the torsion Tt of ψt. This allows
us to use the a-priori Shi-type estimates for the Laplacian co-flow [6, Theorem 2.1] (Note that
the flow (3.5) is a reasonable flow of G2-structures in the sense of [6]). Now the lower bound
on the injectivity radius of gt (again by uniform equivalence) and the compactness theorem for
G2-structures [15, Theorem 7.1] gives us the convergence of ψt to ψ∞ in C∞-topology. �

3.1. Examples and Remarks. It is known that in the case A > 0, the modified Laplacian
coflow may have some stationary points which are not torsion-free. Here we observe that such
stationary points are not stable in general. A class of examples is provided by nearly parallel
G2-structures which are characterized by the equations

(3.11) dψ = 0 and d(∗ψψ) = τ0ψ ,

where τ0 is a constant. For instance the standard G2-structure on the 7-sphere Spin(7)/G2 is
nearly parallel. Let us study the evolution of a nearly parallel G2-structure ψ̄ by equation (3.4)
with A ≥ 0. For ψ nearly parallel one has

∆ψψ + 2d((A− trTψ) ∗ψ ψ) = τ0

(
2A− 5

2τ0

)
ψ

It is immediate to note that if the torsion form τ0 is 4
5A then ψ̄ is stationary for (3.4) (see also

[14]). In general the modified Laplacian coflow starting from a nearly parallel G2-structure ψ0

acts by rescaling ψt = ctψ0, where ct solves the ODE

(3.12) d
dtct = c

3/4
t τ0

(
2A− 5

2c
−1/4
t τ0

)
.

where τ0 is the torsion form of ψ0 defined by (3.11). Now consider A > 0 fixed and take ψ̄ nearly
parallel and stationary. Take ψ0 = µψ̄ with µ a real constant. Now if µ > 1 we have that ct is
increasing, while if µ < 1 we have that ct is decreasing. In both cases the flow steps away from
the stationary solution and ψ̄ is unstable.
We can use the same computation to illustrate another phenomenon. Grigorian noted in [9] that
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the volume is increasing along the modified Laplacian coflow (3.4) if and only if the following
inequality is satisfied for every t

|Tt|2 + trTt(4A− 3trTt) > 0 .

In the case A = 0, the volume may decrease. Indeed in the situation above we have

d
dtct = −5

2c
1/2
t τ2

0 ,

i.e.
ct = (1− 5

4τ
2
0 t)

2 .

Since
Volψt = c

7/4
t Volψ0

the volume decreases.

Next we focus on examples of static solutions to the modified Laplacian coflow which are not
torsion free. To construct such examples we consider nilpotent Lie groups and we work in their
Lie algebras in an algebraic fashion.

Example 3.5. Let M = T4×H3/Γ, where T4 is the 4-dimensional torus, H3 is the 3-dimensional
Heisenberg Lie group

H3 =
{[

1 x z
0 1 y
0 0 1

]
| x, y, z,∈ R

}
and Γ is the co-compact lattice of matrices in H3 with integral entries. Notice that M can be
regarded as the product of the Kodaira-Thurston manifold with the 3-dimensional torus and it
is a 2-step nilmanifold admitting a global coframe {e1, . . . , e7} which satisfies

dei = 0, i = 1, 2, 3, 4, 5, 7 de6 = e1 ∧ e7.

Let
ϕ̄ = e123 + e145 + e167 + e246 − e257 − e347 − e356

be the “standard”G2-structure with respect to the co-frame we have fixed. (As usual we denote
by eijk... the form ei ∧ ej ∧ ek ∧ . . .). An easy computation implies that ϕ̄ is co-closed and that

ψ̄ = ∗ϕ̄ϕ̄ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247

is a static solution to (3.5). More generally it can be noticed that every left-invariant G2-structure
M of the form

ϕ = c1e
123 + c2e

145 + c3e
167 + c4e

246 − c5e
257 − c6e

347 − c7e
356

gives a static solution to (3.5) and that every left-invariant co-closed G2-structure on M is static.

Example 3.6. Let g be the nilpotent Lie algebra admitting a coframe {e1, . . . , e7} satisfying

dei = 0, i = 1, 3, 5, 7 , de2 = −e13 , de4 = e15 , de6 = e17

and let G be the simply-connected Lie group having g as Lie algebra. Then G has a co-compact
lattice Γ and we set M = G/Γ. A direct computation gives that the standard G2-structure

ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356

is coclosed and static with respect to the modified Laplacian coflow with A = 0. However,
in contrast with the previous example, we have that on M there are left-invariant coclosed
G2-structures which are not static. For instance if we consider

ϕ = c2
1e

123 + c2
2e

145 + c2
3e

167 + c2
4e

246 − c2
5e

257 − c2
6e

347 − c2
7e

356

for ci constant, then ϕ is coclosed and the corresponding ψ satisfies

∆ψψ − 2d(trTψ ∗ψ ψ) =
2(c2c4c7 + c2c5c6 − c3c4c6)

c2
1c3c5c7

e1357 .



12 LUCIO BEDULLI AND LUIGI VEZZONI

Remark 3.7. Note that the G2-structures in Example 3.5 and Example 3.6 cannot be torsion-
free since a (compact) nilmanifold M cannot admit a left-invariant G2-structure unless it is a
torus.

4. From theorem 2.1 to the stability of the Balanced flow

We recall that given a Kähler manifold (M,ω0) the Calabi-flow starting from ω0 is the geo-
metric flow of Kähler forms governed by the equation

(4.1) ∂tωt = i∂∂̄sωt , ω|t=0 = ω0

where sωt is the Riemannian scalar curvature of ωt. Many properties of the flow were proved in
[7]. Here we recall the theorem by Chen and He about the stability of the Calabi-flow.

Theorem 4.1 (Chen-He). Let (M, ω̄) be a compact Kälher manifold with constant scalar cur-
vature. Then there exists δ > 0 such that if ω0 is a Kähler metric satisfying

‖ω0 − ω̄‖C∞ < δ ,

then the Calabi-flow starting from ω0 is immortal and converges in C∞ topology to a constant
scalar curvature Kähler metric in [ω̄].

The Calabi-flow was generalized to the context of balanced geometry by the authors in [2]
(see also [3] for a generalizations in a different direction). A Hermitian metric on a complex
manifold is called balanced if its fundamental form is co-closed (instead of closed as in the Kähler
case). Given a compact balanced manifold (M,ω0) of complex dimension n the balanced flow
consists in evolving ω0 as

(4.2)


∂t ∗t ωt = i∂∂̄ ∗t (ρt ∧ ωt) + (n− 1)∆t

BC ∗t ωt
dωn−1

t = 0

ω|t=0 = ω0 ,

where ∗t, ρt and ∆t
BC are the Hodge star operator, the Chern-Ricci form and the modified

Bott-Chern Laplacian of ωt, respectively (see [2] for details). Also this flow fits in the class of
flows of theorem 2.1 when we consider the following Hodge system:

Ωn−2,n−2 D=i∂∂̄−−−−→ Ωn−1,n−1y∆D=∆A

Ωn−2,n−2 D∗←−−−− Ωn−1,n−1

where ∆A is the modified Aeppli Laplacian

∆A := ∂
∗
∂∗∂∂ + ∂∂∂

∗
∂∗ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗
+ ∂∂∗ + ∂∂

∗
.

Theorem 4.2. Let (M, ω̄) be a compact Ricci-flat Kähler manifold of complex dimension n.
Then there exists δ > 0 such that if ω0 is a balanced metric on M satisfying ‖ω0 − ω̄‖C∞ < δ,
then flow (4.2) with initial datum ω|t=0 = ω0 exists for all t ∈ [0,∞) and as t→∞ it converges
in C∞ topology to a balanced form ω∞ satisfying

i∂∂̄ ∗ω∞ (ρω∞ ∧ ω∞) + (n− 1)∆ω∞
BC ∗ω∞ ω∞ = 0 .

Proof. A Hermitian form ω on a complex manifold M is determined by an (n − 1, n − 1)-form
ϕ which is positive in the sense that

(4.3) ϕ(Z1, . . . , Zn−1, Z̄1, . . . , Z̄n−1) > 0

for every {Z1, . . . , Zn−1} linearly independent vector fields of type (1, 0) on M (here n is the
complex dimension of M). Indeed, once such a form ϕ is given, there exists a unique Hermitian
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form ω such that ∗ωω = ϕ. We denote by E ⊆ Λn−1,n−1
R the bundle whose sections are real

(n−1, n−1)–forms satisfying (4.3). Flow (4.2) can be alternatively written in terms of ϕ as

(4.4)


∂tϕt = i∂∂̄ ∗t (ρt ∧ ∗tϕt) + (n− 1)∆t

BCϕt

dϕt = 0

ϕ|t=0 = ϕ0 ,

and we denote by Q : C∞(M, E)→ Ωn−1,n−1
R the operator

Q(ϕ) = i∂∂̄ ∗ϕ (ρϕ ∧ ∗ϕϕ) + (n− 1)∆ϕ
BCϕ .

In order to apply theorem 2.1 we show that for a Ricci-flat Kähler form ω̄ on M the corresponding
ϕ̄ = ∗ω̄ω̄ is such that

1. Q(ϕ̄) = 0;

2. the restriction to DΩn−2,n−2 of Lϕ̄ is symmetric and negative definite with respect to
the L2 inner product induced by ω̄ .

Item 1 is trivial and item 2 can be deduced from [2, Section 5], but we prove it for the sake of
completeness.

Let {ωt}t∈(−ε,ε), be a smooth curve of balanced forms which is ω̄ at t = 0 and such that the
corresponding (n−1, n−1)-forms ϕt are in the Bott-Chern cohomology class of ϕ̄, and let

χ = ∂t|t=0 ∗t ωt .

Then we can write

χ = h1ϕ̄+ ∗ω̄h0

for a smooth function h1 and a (1, 1)-form h0 such that h0 ∧ ωn−1 = 0. In this way

∂t|t=0ωt =
h1

n− 1
ω̄ − h0

see [2, Lemma 2.5]. Since ρ̄ = 0 we have

∂t|t=0i∂∂̄ ∗t (ρt ∧ ωt) = i∂∂̄ ∗ω̄ (ρ̇ ∧ ω̄)

where we have set ρ̇ = ∂t|t=0ρt . In view of [2, lemma 5.1] ρ̇ = −in∂∂̄h1 and so

∂t|t=0i∂∂̄ ∗t (ρt ∧ ωt) = n∂∂̄ ∗ω̄ (∂∂̄h1 ∧ ω) .

On the other hand it is clear that for a curve of Bott-Chern-cohomologous (n−1, n−1)-forms ϕt
starting at ϕ̄ we have

∂t|t=0∆ϕt
BCϕt = − ∂∂̄ ∗ω̄ ∂∂̄ ω̇ = − ∂∂̄ ∗ω̄ ∂∂̄

(
h1

n− 1
ω̄ − h0

)
.

And then we obtain

Lϕ̄(ψ) = ∂t|t=0i∂∂̄ ∗t (ρt ∧ ωt) + (n− 1)∂t|t=0∆ϕt
BCϕt = (n− 1)∂∂̄ ∗ω̄ ∂∂̄ (h1ω̄ − h0)

Moreover since ω̄ is Kähler we have

∆ω̄
BC(ψ) = −∂∂̄ ∗ω̄ ∂∂̄ ∗ω̄ ψ = −∂∂̄ ∗ω̄ ∂∂̄ ∗ω̄ (h1ϕ̄+ ∗ω̄h0)

= −∂∂̄ ∗ω̄ ∂∂̄(h1ω̄) + ∂∂̄ ∗ω̄ ∂∂̄h0 = −∂∂̄ ∗ω̄ ∂∂̄(h1∧ω̄ − h0)

and so

Lϕ̄(ψ) = −(n− 1)∆ω̄
BC(ψ)

which implies the statement. �
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Remark 4.3. It is quite natural wondering if theorem 4.2 can be improved by showing that the
limit balanced metric is actually Calabi-Yau, or by proving the stability around more general
static solutions of the flow, such as constant scalar curvature Kähler metrics or even balanced
metrics ω satisfying

(4.5) i∂∂̄ ∗ (ρ ∧ ω) + (n− 1)∆BC ∗ ω = 0 .

These improvements cannot be easily deduced from our theorem 2.1 and will be the subject
of some future studies. On the other hand, theorem 2.1 suggests to consider balanced metrics
satisfying (4.5) as natural generalizations of extremal Kähler metrics to the context of balanced
geometry (for a generalization in another direction see [8]) and the problem of the existence and
uniqueness of such metrics in a fixed Bott-Chern cohomology class arises. More general it could
be interesting to compare the geometry of extremal Kähler metrics to the geometry of balanced
metrics satisfying (4.5).

5. Proof of theorem 2.1

In this last section we prove theorem 2.1. The scheme of the proof resembles the one of the
main theorem of [19] and of [3].

First we need to recall some basic facts about the category of tame Fréchet spaces and tame
maps (see [10] for the relevant details). A tame Fréchet space is a vector space V endowed
with a topology given by an increasing countable family of seminorms {| · |n}. Thus a sequence
{xn} ⊆ V will be convergent if it converges with respect to each seminorm. A continuous map
F : (V, | · |n)→ (W, | · |′n) between two tame Fréchet spaces is called tame if for every x ∈ V there
are a neighborhood Ux of x, a natural number r and positive numbers b, Cn such that

|F (y)|′n ≤ Cn(1 + |y|n+r)

for every y ∈ Ux and n > b. A differentiable map between tame Fréchet spaces is called smooth
tame if all its derivatives are tame maps. The main relevant result is the celebrated Nash-Moser
theorem.

Theorem 5.1 (Nash-Moser). Let V, W be tame Fréchet spaces and let U be an open subset of
V. Let F : U → W be a smooth map. If the differential of F , F∗|x : V → W, is an isomorphism

for every x ∈ U and the map (x, y) 7→ F−1
∗|xy is smooth tame, then F is locally invertible with

smooth tame local inverses.

Let π : E →M be a vector bundle over a compact oriented Riemannian manifold (M, g) with
a metric h along its fibres. Once a connection ∇ on E preserving h is fixed, the space C∞(M,E)
of global smooth sections of E has a natural structure of tame Fréchet space given by the
Sobolev norms ‖.‖Hn induced by h, ∇ and the volume form of g. Fix now a closed interval [a, b]
and consider the space of time-dependent partial differential operators P : C∞(M × [a, b], E)→
C∞(M× [a, b], E) having degree at most r. This space is tame Fréchet with respect to the family
of seminorms

|[P ]|n =
∑
jr≤n

[∂jtP ]n−jr

where [P ]n is the supremum of the norm of P and its space covariant derivatives up to degree
n.

Now we can focus on the setting described in the introduction considering a Hodge system
(E−, E,D,∆D) on M , E , D+, Q as in section 2 and studying flow (2.2) under the assumptions
1, 2, 3. Let us fix a connection ∇ on E and define the spaces

F [a, b] = DC∞(M × [a, b], E−) , G[a, b] = F [a, b]×DC∞(M,E−) .
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Both the above spaces have a structure of tame Fréchet spaces given by the gradings

‖β‖Fn[a,b] =
∑

2rj≤n

∫ b

a
‖∂jt βt‖Hn−2rj dt

and
‖(β, σ)‖Gn[a,b] = ‖β‖Fn[a,b] + ‖σ‖Hn

respectively. If we fix η̄ ∈ Φ = kerD+ ∩ C∞(M, E), then we can set

U = {β ∈ F [a, b] : η̄ + βt ∈ U for every t ∈ [a, b]} ,
where, accordingly to section 2, U = {η̄+Dγ : γ ∈ C∞(M,E−)} ∩C∞(M, E). Note that U is
open in F [a, b].

The following theorem is proved in [11] for second order operators and then extended in [2]
to operators of arbitrary degree.

Theorem 5.2. Let

F : U → G[a, b] , F (β) = (∂tβ −Q(η̄ + β), βa) .

Then

1. F is smooth tame;
2. F∗|β is an isomorphism for every β ∈ U ;

3. the map U × G[a, b]→ F , (β, ψ) 7→ F−1
∗|βψ, is smooth tame.

The starting point of the proof of theorem 2.1 is the following weak stability result that is a
consequence of theorem 5.2.

Proposition 5.3. Let ϕ̄ ∈ Q−1(0). For every T > 0 and ε > 0, there exists δ > 0 such that if
ϕ0 ∈ Φ and satisfies

ϕ0 − ϕ̄ ∈ DC∞(M,E−) , ‖ϕ0 − ϕ̄‖C∞ ≤ δ ,
then there exists a smooth solution {ϕt}t∈[0,T ] to (2.2) such that

‖ϕ− ϕ̄‖Fn[0,T ] ≤ ε , for every n ∈ N .

Proof. We use theorem 5.2 with η̄ = ϕ̄. Since F (0) = (0, 0), theorem 5.2 together with Nash-
Moser theorem 5.1 implies that there exist an open neighborhood U ′ of 0 in U and an open
neighborhood V ′ of (0, 0) in G such that F : U ′ → V ′ is invertible with smooth tame inverse. By
choosing δ small enough we may assume that (0, ϕ0− ϕ̄) ∈ V ′. So we can take βt ∈ U ′ such that
F (βt) = (0, ϕ0 − ϕ̄). Hence ϕt = ϕ̄+ βt satisfies

∂tϕt = Q(ϕt) , ϕ|t=0 = ϕ0 .

Since F−1 is continuous, if we fix ε > 0 and we choose δ small enough, we have ‖ϕ−ϕ̄‖Fn[0,T ] ≤ ε
for every n ∈ N and the claim follows. �

The next step is the following

Lemma 5.4 (Interior Estimate). For every n, T > 0 and ε ∈ (0, T ), there exists δ, C > 0 and
and l = l(n) ∈ N, with C depending on T, ε and an upper bound on δ such that if {ϕt}t∈[0,T ] is
a smooth curve in U with

‖ϕ− ϕ̄‖F l[0,T ] ≤ δ
and σ ∈ F [0, T ] satisfies

∂tσ = Lϕσ ,

then

(5.1) ‖σ‖F2nr[t0+ε,T ] ≤ C‖σ‖F0[t0,T ] ,

for every t0 ∈ [0, T − ε].
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Proof. We prove the statement by induction on n. For n = 0 the claim is trivial and we assume
the statement true up to N . From [2, lemma 4.6] there exist δ, C ∈ R+, with C depending on
T and an upper bound on δ, such that for t ∈ [0, T ) and σ ∈ F [0, T ] we have

‖σ‖FN+2r[t,T ] ≤ C
(
‖∂tσ − Lϕ(σ)‖FN [0,T ] + ‖σ0‖HN+r

)
+C|[Lϕ]|N

(
‖∂tσ − Lϕ(σ)‖F0[0,T ] + ‖σ0‖HN

)
≤ (1 + C)|[Lϕ]|N

(
‖∂tσ − Lϕ(σ)‖FN [0,T ] + ‖σ0‖HN+r

)
.

If ‖ϕ− ϕ̄‖F l[0,T ] < δ for l big enough then |[Lϕ]|N ≤ 1 + |[Lϕ̄]|N , so we have

(5.2) ‖σ‖FN+2r[t,T ] ≤ (1 + C)(1 + |[Lϕ̄]|N )
(
‖∂tσ − Lϕ(σ)‖FN [0,T ] + ‖σ0‖HN+r

)
for every σ ∈ F [0, T ]. Now take σ ∈ F [0, T ] solution of the linear equation ∂tσ = Lϕσ and fix
ε ∈ (0, T ). Choose a smooth function χ : R→ [0, 1] such that

χ(t) = 0 for t ≤ t0 + ε/2 , χ(t) = 1 for t ≥ t0 + ε .

Set σ̃ = χσ. Then ∂tσ̃ = χ̇σ + χ∂tσ and

∂tσ̃ − Lϕ(σ̃) = χ̇σ .

Hence using (5.2) we find C ′ > 0 depending only on ε such that

‖σ‖F2r(N+1)[t0+ε,T ] ≤ ‖σ̃‖F2r(N+1)[t0+ε/2,T ] ≤ (1 + C)(1 + |[Lϕ̄]|N )‖χ̇σ‖F2rN [t0+ε/2,T ]

≤ C ′(1 + C)(1 + |[Lϕ̄]|N ) ‖σ‖F2rN [t0+ε/2,T ]

and the induction assumption implies the statement. �

Now we need a general lemma for families of symmetric operators on Hilbert spaces. Here we
will say that, given a Hilbert spaceH1 continuously embedded in a Hilbert spaceH2, an operator
L : H1 → H2 is symmetric if 〈Lz1, z2〉H2 = 〈z1, Lz2〉H2 for every z1, z2 ∈ H1 . Analogously we
will say that L is negative semidefinite if 〈Lz, z〉H2 ≤ 0 for every z ∈ H1.

Lemma 5.5. Let (X, x̄) be a pointed metric space and let H1 and H2 be two Hilbert spaces with
H1 continuously embedded in H2. Let {Lx}x∈X be a continuous family of bounded symmetric
operators Lx : H1 → H2. Assume that Lx̄ is negative semidefinite and that there exists C > 0
such that

(5.3) ‖z0‖H1 ≤ C‖z0‖H2 , for every z0 ∈ kerLx̄ ,

and

(5.4) ‖z1‖H1 ≤ C‖Lx̄z1‖H2 , for every z1 ∈ (kerLx̄)⊥ .

Then for every ε > 0 there exists δ > 0 such that if x ∈ X satisfies d(x, x̄) < δ,

(5.5) 〈Lxz, z〉H2 ≤ (1− ε)〈Lx̄z, z〉H2 + ε‖z‖2H2
for every z ∈ H1.

Proof. Fix ε > 0. Let T := −εLx̄ and Vx := Lx̄ − Lx, for every x ∈ X. Now T is symmetric
and positive semidefinite. Let us write z = z0 + z1 according to the decomposition H1 =
kerLx̄⊕ (kerLx̄)⊥. Thus for b > 0 arbitrarily small, using also (5.4) we can find δ > 0 such that
if d(x, x̄) ≤ δ, we have

‖Vxz1‖H2 ≤ bεC−1‖z1‖H1 ≤ b‖Tz‖H2

for every z ∈ H1. Consequently using (5.3), up to shrinking δ we have

‖Vxz‖H2 ≤ ‖Lxz0‖H2 + ‖Vxz1‖H2 ≤ a‖z‖H2 + b‖Tz‖H2

with a > 0 arbitrarily small. Taking a = ε
2 and b = 1

2 and using [18, Theorem 9.1] we have that

〈(T + Vx)z, z〉H2 ≥ −ε‖z‖2H2
for every z ∈ H1 and the claim follows. �
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Now we apply the previous lemma to the family of operators Lϕ in the following situation:
H1 = H2r(M,E), i.e. the space of sections of E whose local components have square integrable
derivatives up to order 2r, H2 = L2(M,E), (X, x̄) = (Φ, ϕ̄) where on Φ we consider the distance
induced by H n̄(M,E), where n̄ = dimM

2 + 2r + 1. The choice of n̄ ensures via the Sobolev
embedding theorem that {Lϕ}ϕ∈Φ is a continuous family of bounded operators. Since inequality
(5.4) comes from Fredholm alternative and inequality (5.3) holds due to elliptic regularity of Lϕ̄
we get the following corollary.

Corollary 5.6. For every a > 0 there exists δ > 0 such that if ϕ ∈ C∞(M, E) satisfies ‖ϕ −
ϕ̄‖Hn̄ < δ, then

(5.6) 〈Lϕ(z), z〉L2 ≤ (1− a)〈Lϕ̄(z), z〉L2 + a‖z‖2L2

for every z ∈ H2r(M,E).

Next we deduce the following trace-type theorem in C∞(M × [0, T ], E−):

Proposition 5.7. For every n ∈ N and ` ∈ R+ there exists positive constants C and m ∈ N
such that

‖βt‖Hn ≤ C‖β‖FmI
for every β ∈ C∞(M × I, E−), and t ∈ I, where I ⊆ R is a closed interval of length `.

Proof. Arguing exactly as in [17, proposition 4.1] for every s ∈ N we get the following inequality

‖∇sβ‖C0(M×I,E−) ≤ C‖β‖FmI
for m > max{ s+dimM+2r

4r , s2r} and C independent of β. (Here ∇s denotes spatial derivatives
only). �

Corollary 5.8. For every T > 0, n ∈ N and ε′ > 0 there exist C > 0 and m ∈ N such that
every β ∈ C∞(M × [0, T + ε′], E−) satisfies

‖βt‖Hn ≤ C‖β‖Fm[t,T+ε′]

for every t ∈ [0, T ].

Proof. It is enough to apply proposition 5.7 with I = [t, t+ ε′]. In this way

‖βt‖Hn ≤ C‖β‖Fm[t,t+ε′] ≤ C‖β‖Fm[t,T+ε′]

with C independent of β and t and the claim follows. �

Lemma 5.9 (exponential decay). Let ε > 0 and T > ε. There exists δ > 0 such that if ϕ0 ∈ Φ
satisfies

(5.7) ϕ0 − ϕ̄ ∈ DC∞(M,E−) , ‖ϕ0 − ϕ̄‖C∞ ≤ δ ,
then the solution ϕt to (2.2) is defined in M × [0, T ] and satisfies

‖Q(ϕt)‖Hn ≤ C‖Q(ϕ0)‖L2 e−λt , for every t ∈ [ε, T ] ,

where λ is half the first positive eigenvalue of −Lϕ̄ and C is a constant depending on n, ε, T
and an upper bound on δ.

Proof. Fix a small time ε′ > 0 arbitrary. Proposition 5.3 implies that there exists δ > 0 such
that if ϕ0 satisfies (5.7), then problem (2.2) has a solution ϕ ∈ C∞(M × [0, T + 2ε′], E) with
‖ϕ− ϕ̄‖F l[0,T+2ε′] bounded for every l. Now

∂2
t ϕt = ∂tQ(ϕt) ,

implies
∂tQ(ϕt) = LϕtQ(ϕt)
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and

∂t‖Q(ϕt)‖2L2 = 2〈∂tQ(ϕt), Q(ϕt)〉L2 = 2〈LϕtQ(ϕt), Q(ϕt)〉L2

for every t ∈ [0, T + 2ε′]. In view of corollary 5.8 and corollary 5.6 we can choose the initial δ so
small that for every t ∈ [0, T + ε′] we have

〈LϕtQ(ϕt), Q(ϕt)〉L2 ≤ (1− a)〈Lϕ̄Q(ϕt), Q(ϕt)〉L2 + a‖Q(ϕt)‖2L2

with a = λ
2λ+1 . Taking into account that 〈Lϕ̄Q(ϕt), Q(ϕt)〉L2 ≤ −2λ‖Q(ϕt)‖2L2 , we have

〈LϕtQ(ϕt), Q(ϕt)〉L2 ≤ −λ〈Lϕ̄Q(ϕt), Q(ϕt)〉L2 .

So

∂t‖Q(ϕt)‖2L2 ≤ −2λ‖Q(ϕt)‖2L2

and by Gronwall’s lemma we get

‖Q(ϕt)‖2L2 ≤ e−2λt‖Q(ϕ0)‖2L2

for every t ∈ [0, T + ε′]. We have

(5.8) ‖Q(ϕ)‖2F0[t,T+ε′] =

∫ T+ε′

t
‖Q(ϕs)‖2L2 ds ≤ ‖Q(ϕ0)‖2L2

∫ T+ε′

t
e−2λsds ≤ ‖Q(ϕ0)‖2L2

e−2λt

2λ
.

By corollary 5.8 we find m such that for every t ∈ [0, T ]

‖Q(ϕt)‖Hn ≤ C‖Q(ϕ)‖Fm[t,T+ε′] .

Now by lemma 5.4 we can take l big enough such that if ‖ϕ− ϕ̄‖F l[0,T+2ε′] ≤ δ we have

‖Q(ϕ)‖Fm[t,T+ε′] ≤ C‖Q(ϕ)‖F0[t−ε,T+ε′] ,

for every t ∈ [ε, T + ε′] . Finally putting these together with (5.8) we have

‖Q(ϕt)‖Hn ≤ C‖Q(ϕ0)‖L2e−λt

for t ∈ [ε, T ] as required. �

Now we are ready to prove the main theorem.

Proof of theorem 2.1. Let T > 0 and ε ∈ (0, T2 ) be fixed. Using theorem 5.9, there exists δ′ > 0
such that if ‖ϕ0 − ϕ̄‖C∞ ≤ δ′, then the solution ϕt to the geometric flow (2.2) exists in [0, T ]
and for every n ∈ N

(5.9) ‖Q(ϕt)‖Hn ≤ C‖Q(ϕ0)‖L2e−λt for every t ∈ [ε, T ] ,

for some C > 0 depending on n, ε, T and an upper bound on δ′.
Now we choose δ ≤ δ′ such that if ‖ϕ0 − ϕ̄‖C∞ ≤ δ then

(5.10) C‖Q(ϕ0)‖L2

e−λε

λ

∞∑
j=0

e−λj(T−ε) + ‖ϕε − ϕ̄‖Hn ≤ δ′ .

We show that ϕ can be extended to M × [0,∞) and converges to an element of U lying in the
0 level set of Q as t→∞. We have

‖ϕt − ϕ̄‖Hn =

∥∥∥∥∫ t

ε
Q(ϕτ ) dτ + ϕε − ϕ̄

∥∥∥∥
Hn

≤
∫ t

ε
‖Q(ϕτ )‖Hn dτ + ‖ϕε − ϕ̄‖Hn

≤ C‖Q(ϕ0)‖L2

e−λε

λ
+ ‖ϕε − ϕ̄‖Hn , t ∈ [ε, T ]

and condition (5.10) implies ‖ϕT−ε−ϕ̄‖Hn ≤ δ′ and therefore ϕ can be extended in M×[0, 2T−ε].
Moreover,

‖Q(ϕt)‖Hn ≤ C‖Q(ϕ0)‖L2 e−λt , for every t ∈ [T, 2T − ε] .
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Now

‖ϕt − ϕ̄‖Hn =

∥∥∥∥∫ t

T
Q(ϕτ ) dτ + ϕT − ϕ̄

∥∥∥∥
Hn

≤
∫ t

T
‖Q(ϕτ )‖Hn dτ + ‖ϕT − ϕ̄‖Hn

≤ C‖Q(ϕ0)‖L2

e−λT

λ
+ ‖ϕT − ϕ̄‖Hn

≤ C‖Q(ϕ0)‖L2

(
e−λT

λ
+

e−λε

λ

)
+ ‖ϕε − ϕ̄‖Hn ≤ δ′ , t ∈ [T, 2T − ε]

therefore the flow can be extended in M× [0, 3T −2ε] with exponential decay in [2T −ε, 3T −2ε].
Analogously

‖ϕt − ϕ̄‖Hn =

∥∥∥∥∫ t

2T−ε
Q(ϕτ ) dτ + ϕ2T−ε − ϕ̄

∥∥∥∥
Hn

≤
∫ t

2T−ε
‖Q(ϕτ )‖Hn dτ + ‖ϕ2T−ε − ϕ̄‖Hn

≤ C‖Q(ϕ0)‖L2

e−λ(2T−ε)

λ
+ ‖ϕ2T−ε − ϕ̄‖Hn

≤ C‖Q(ϕ0)‖L2

(
e−λ(2T−ε)

λ
+

e−λT

λ
+

e−λε

λ

)
+ ‖ϕε − ϕ̄‖Hn ≤ δ′ ,

for t ∈ [2T − ε, 3T − 2ε] and the flow can be extended in M × [0, 4T − 3ε] with exponential decay
in [3T − 2ε, 4T − 3ε]. In this way for any t ∈ [NT − (N − 1)ε, (N + 1)T −Nε] we have

‖ϕt − ϕ̄‖Hn ≤ C‖Q(ϕ0)‖L2

e−λε

λ

N∑
j=0

e−λj(T−ε) + ‖ϕε − ϕ̄‖Hn ≤ δ′

and the solution ϕ is defined in M × [0,∞). Now let ϕ∞ := ϕ0 +
∫∞

0 Q(ϕs)ds ∈ C∞(M,E);
since

lim
t→∞
‖ϕt − ϕ∞‖Hn ≤ lim

t→∞
C‖Q(ϕ0)‖L2e−λt = 0 , for n large enough

ϕt converges to ϕ∞ in C∞-topology. We clearly have D+ϕ∞ = 0, since D+ϕt = 0 for every
t ∈ [0,∞) and by construction

‖ϕt − ϕ̄‖C0 ≤ C ′δ′, for every t ∈ [0,∞) ,

where C ′ does not depend on δ. So up to take δ′ smaller we have ϕ∞ ∈ C∞(M, E). Finally

Q(ϕ∞) = lim
t→0

Q(ϕt) = 0

and the claim follows. �
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