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6 ABSTRACT: Metal contacts play a fundamental role in nanoscale devices. In this work, Schottky metal contacts in monolayer
7 molybdenum disulfide (MoS,) field-effect transistors are investigated under electron beam irradiation. It is shown that the exposure
8 of Ti/Au source/drain electrodes to an electron beam reduces the contact resistance and improves the transistor performance. The
9 electron beam conditioning of contacts is permanent, while the irradiation of the channel can produce transient effects. It is
10 demonstrated that irradiation lowers the Schottky barrier at the contacts because of thermally induced atom diffusion and interfacial
11 reactions. The simulation of electron paths in the device reveals that most of the beam energy is absorbed in the metal contacts. The
12 study demonstrates that electron beam irradiation can be effectively used for contact improvement though local annealing.

13 KEYWORDS: molybdenum disulfide, field-effect transistors, Schottky barrier, scanning electron microscopy, Raman spectroscopy,
14 photoluminescence, electron beam irradiation, electron interactions in solids

15 l INTRODUCTION scanning electron microscopy (SEM) or transmission electron 34
16 Molybdenum disulfide (MoS,) is one of the most studied microscopy, which imply irradiation by charged particles. The 35
17 transition metal dichalcogenides, owing to its layered structure exposure to low-energy electrons and/or ions can modify the 3
18 and useful mechanical, chemical, electronic, and optoelectronic electronic properties of the 2D materials or their inter- 37
19 properties. ~* A molybdenum (Mo) atomic plane sandwiched faces.”"”*° Indeed, structural defects can locally modify the 3
20 between two sulfur (S) planes constitutes the monolayer that is band structure and behave as charge traps, thereby changing 39
21 bonded to other monolayers by weak van der Waals forces to the device characteristics both in the case of e-beam®”*® and 40
22 form the bulk material. MoS, is a semiconductor suitable for ion beam irradiation.””** Conversely, electron beam, ion 41
2 several applications,”™” having a 1.2 eV indirect band gap in irradiation, or plasma treatments can be intentionally used for 42
24 the bulk form that widens up to 1.8—1.9 eV and becomes nanoincisions,” for pores,” or to purposely create defects, for 43

25 direct in the monolayer.® Despite the lower field-effect mobility
26 than graphene,m’11 ranging from few tenths to hundreds'>™"°
27 of em® V™' s7!, MoS, field-effect transistors (FETs) have _
28 recentlzf become very popular as alternatives to graphene Received:  July 1, 2020

20 FETs"*™"7 for next-generation electronics based on 2D Accepted: August 10, 2020
30 materials, '8~ Published: August 10, 2020
31 The fabrication and characterization of devices based on 2D

32 materials greatly rely on the application of electron beam (e-

33 beam) lithography or focused ion beam processing and on

instance, to reduce the contact resistance.”>™*° Choi et al. 44
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Figure 1. (a) SEM image of the Mo$S, device and contact labels. (b) MoS, FET layout and schematic of the common source configuration used for
electrical characterization. (c) AFM image of the MoS, flake between the electrical contacts, which appear here in white as the scale has been
adjusted to properly image the MoS, flake. (d) Zoom-in into the upper region of (c), showing that the flake is flat and structurally intact. The rms
roughness is 0.221 nm for the SiO, substrate and 0.237 nm for MoS,. (e) Height distribution taken from image (d), yielding a height of ~1.2 nm.

s reported the effects of 30 keV electron beam irradiation of
monolayer MoS, FETSs, showing that irradiation-induced
defects act as trap sites by reducing the carrier mobility and
concentration and shifting the threshold voltage.’® A study of
49 point defects in MoS, using SEM imaging and first-principles
so calculations, by Zhou et al, demonstrated that vacancies are
s1 created by e-beam irradiation at low energies,”” below 30 keV.
52 Durand et al. studied the effects of e-beam on the MoS,-based
s3 FET, reporting an increase in carrier density and a decrease in
s4+ mobility explained as irradiation-induced generation of
ss intrinsic defects in MoS, and as Coulomb scattering by
s6 charges at the MoS,—SiO, interface, respectively.”® Giubileo et
s7 al. reported a negative threshold voltage shift and a carrier
ss mobility enhancement under 10 keV electron irradiation of
so few-layer MoS, FETs attributed to beam-induced positive
charge trapped in the SiO, gate oxide.

61 In this paper, we present the spectroscopic and electrical
characterization of monolayer MoS,-based FETs, with
63 Schottky Ti/Au contacts, focusing on the effects of low-energy
64 e-beam irradiation. We show that the long exposure of the
6s metal contacts to 10 keV e-beam in a SEM chamber enhances
66 the transistor’s on-current. We explain such an improvement
67 by radiation-induced lowering of the Schottky barrier at the
6s metal contacts. We perform Monte Carlo simulation to track
69 the e-beam through the device and show that when the beam is
70 focused onto the contacts, most of the beam energy is
71 absorbed within the metal. The local heat can induce atomic
72 diffusion and interfacial reactions that change the chemical
73 composition and structure of the metal—MoS, interface or can
74 generate or release tensile strain. Both effects cause the

S

47
48

lowering of the Schottky barrier and the consequent increase in
transistor current.

Our study shows that electron beam exposure during SEM
imaging has non-negligible effects on MoS, devices; however,
it also highlights that a suitable exposure, with the e-beam
focused on the contact region, can be conveniently exploited to
reduce the contact resistance of the transistor. Compared to
thermal annealing, our finding provides a way to improve the
contact resistance by local conditioning, which avoids the
exposure of the entire wafer to a high thermal budget.

B FABRICATION AND EXPERIMENTAL METHODS

The MoS, monolayer flakes were grown via chemical vapor
deposition in a three-zone split tube furnace, purged with 1000 N
cm®/min Ar gas for 15 min to minimize the O, content. The growth
SiO,/Si substrate was spin-coated with a 1% sodium cholate solution;
then, a saturated ammonium heptamolybdate (AHM) solution was
first annealed at 300 °C under ambient conditions to turn AHM into
MoO; to be used as the source for molybdenum. The target material
was placed in a three-zone tube furnace along with S0 mg of S
powder, positioned upstream in a separate heating zone. The zones
containing S and AHM were heated to 150 °C and 750 °C,
respectively. After 1S min of growth, the process was stopped, and the
sample was cooled rapidly.

We realized FETs using the SiO,/Si substrate (thickness of the
dielectric: 285 nm) as the back gate and evaporating the drain and
source electrodes on selected MoS, flakes through standard
photolithography and lift-off processes. The contacts were made of
Ti (10 nm) and Au (40 nm) used as adhesion and cover layers,
respectively. Ti was deposited in high vacuum, which could not
exclude the formation of TiO,, contributing to the resistance and
Schottky barrier at the contacts. Figure 1a,)b shows the SEM top view
of a typical device and its schematic layout and measurement setup.
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Figure 2. (a) PL and (b) Raman spectrum of monolayer MoS, after FET processing. Blue: contacted MoS, monolayer flake and red: noncontacted

monolayer MoS, flake.
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Figure 3. Output (a) and transfer (b) characteristics of the device between C2 and C3 contacts, with C3 used as the drain and C2 as the grounded

source.

The channel is made up from a monolayer flake [as confirmed by
Raman and photoluminescence (PL), see below] of width and length
of 20 and 4 um, respectively, and a nominal thickness of 0.7 nm.
Atomic force microscope (AFM) images (Figure 1c,d) show that the
flake has an average height of 1.0—1.3 nm (which is typical for single-
layer MoS, measured in air by AFM) and appears to be extremely flat
(roughness rms < 0.25 nm) and structurally intact. There are some
contaminants because of the lithography process, which are weakly
bound and can be swept by the AFM tip. Contacted and
noncontacted flake areas do not differ with respect to contamination
density—spectroscopic data should thus be comparable.

A total of seven MoS, channels of identically prepared FETs have
been characterized by Raman and PL spectroscopy just after
processing. The measurements were performed with a Renishaw
InVia Raman microscope at the Interdisciplinary Center for Analytics
on the Nanoscale (ICAN). The excitation laser wavelength was 532
nm, and the power density was kept below 0.1 mW/um?* to avoid
damage to the MoS, flake. Exemplary spectra of Raman character-
ization are shown in Figure 2. The chosen reference measurements
are spectra obtained from MoS, flakes on the same substrate, which
were also in contact with the photoresist and various solvents during
the processing and lift-off for the production of the FETs, but are not
in contact with metal electrodes themselves. The shape of the PL
spectra (Figure 2a) and the difference of the Raman modes (Figure
2b) differ significantly. The PL intensity (sum of all excitons and
trions) for noncontacted Mo$, flakes is higher by a factor of 1.7 + 0.8
than that for contacted MoS,. The mode differences for noncontacted
and contacted MoS, are 21.3 + 0.7 cm™ and 19.7 + 0.7 cm™},
respectively. Both the changes in PL and Raman mode difference can
be associated with built-in strain or changes in the electronic
properties and the band structure of the MoS, sheets.’”~* From the
linear dependencies of Raman mode positions on doping and
strain,””*’ we find a reduction of tensile strain by (0.46 + 0.28) % and
an increase in electron doping of 0.44 + 0.36 X 103 electrons per cm?
for the contacted 2D material in comparison with noncontacted MoS,
(details of the calculation method can be found in ref 44). Hence, the
significant alterations in the spectroscopic precharacterization of the

MoS, channels can be clearly attributed to electronic and structural
changes at the metal contact.

In the following, most of the electrical characterization refers to the
transistor between the contacts labeled C2 and C3 in Figure la. The
contact C3 was used as the drain and C2 as the grounded source. The
electrical measurements were carried out inside a SEM chamber
(LEO 1530, Zeiss), endowed with two metallic probes with
nanometer positioning capability, connected to a Keithley 4200
SCS (source measurement units, Tektronix Inc.), at room temper-
ature and a pressure of about 107 mbar. The e-beam of SEM, set to
10 keV and 10 pA, was used for the time-controlled irradiation of
specific parts of the device.

B RESULTS AND DISCUSSION

The output (I4;—Vj,) and the transfer (I—V,,) characteristics
of the transistor are shown in Figure 3a,b, respectively. The
output curve shows rectification with the forward current
appearing at negative Vy,, typical of a p-type Schottky diode,
while the transfer characteristic shows an n-type transistor.
This apparently contradictory behavior has been previously
reported for MoS, and WSe, transistors and explained by the
formation of two back-to-back and possibly asymmetric
Schottky barriers at the contacts.”*® The forward current at
negative Vy, is caused by the different contact areas and by the
image force barrier lowering of the forced junction (i.e., the
drain, C3, in our case), while the reverse current at Vy; > 0 V is
limited by the grounded junction at the source (C2) contact.
As the barrier lowering is more effective on the forced junction,
the voltage being directly applied to it, the negative bias gives
rise to the higher (apparently forward) current.

After the initial electrical characterization, we performed two
sets of exposures to the SEM electron beam. Each exposure
lasted 300 s, corresponding to a fluence of ~180 e”/nm?, over
a surface of ~100 ym?> The two sets of irradiations were
carried out first on the drain contact (C3) and then on the

C https://dx.doi.org/10.1021/acsami.0c11933
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Figure 4. (a) Output characteristics at V,; = 0 V of the transistor formed by contacts C2—C3 exposed to two sets of electron irradiations performed
first on contact C3 and then on C2. (b) Rectification ratio and (c) maximum forward and reverse current, at Vg, = +5 V, as a function of the
irradiation number. (d) Zero-bias Schottky barrier variation at the contacts C2 and C3 as a function of the irradiation number.

178 grounded source contact (C2). A final exposure of the MoS,
179 channel to the e-beam was performed as well.

180 Figure 4 summarizes the obtained results. The I;—Vy,
181 curves were measured at the end of each irradiation, ~120 s
182 after the blanking of the e-beam, to allow cooling down.
183 Starting from the bottom (black) line in Figure 4a,
184 representing the output curve of the unexposed device, the
185 current increases with the e-beam exposures. We note two
186 major discontinuities in the sequence of I;—Vy curves,
187 corresponding to the start of the two irradiations sets. These
188 gaps are likely due to the uncontrolled exposure of the whole
189 device during the selection of the drain (C3) and grounded
190 source (C2) contact areas for the respective irradiation sets.
191 A different behavior of the forward with respect to the
192 reverse current can be observed in Figure 4a, and a distinction
193 of the effects of the irradiations on the drain (C3) and the
194 grounded source (C2) can be made. Although the irradiation
195 of the drain increases both the forward and the reverse
196 currents, keeping the rectification ratio almost constant (see
197 Figure 4 b), the irradiation of the source augments the reverse
198 current in a faster way, rendering the output curves more
199 symmetric. Figure 4b shows that repeated irradiations of the
200 drain contact (C3) do not change the rectification ratio (at Vg,
201 = 5 V), while the irradiation of the grounded source contact
202 (C2) dramatically decreases the rectification ratio. Figure 4c
203 shows that the maximum reverse and forward currents, at Vg, =
204 =5 V, have different variation rates when the irradiation is
205 either on the drain or source. Noticeably, Figure 4c shows that
206 the increase in both the reverse and forward currents is an
207 exponential function of the fluence, which is proportional to
208 and can be parametrized by the irradiation number.

209 As the shape and the current intensity of the output
210 characteristics are related to the Schottky barrier heights at the
211 contacts, the exponentially increasing current and the changing
212 rectification ratio point to radiation-induced Schottky barrier
213 lowering. The energy release in the metal contacts can modify
214 the chemistry of the metal—MoS, interface or create stress and
215 defects that can lead to a lowering of the barrier and a
216 consequent contact resistance reduction. We note that the

—

—_

—_

reduction of contact resistance by chemical reactions between 217
the metal contacts and MoS, channel has been reported for the 213
metal deposited under ultrahigh vacuum®” and contact laser 219
annealing.*® A disordered, compositionally graded layer, 220
composed of Mo and Ti,S, species, forms on the surface of 221
the MoS, crystal following the deposition of Ti, and thermal 222
annealing in the 100—600 °C temperature range can cause Ti 223
diffusion inducing further chemical and structural changes at 224
the Ti—MoS, interface.*”" It is also possible that diffusion of 25
Au atoms to the interface with MoS, occurs under the 226
energetic electron beam irradiation. Au does not react with 227
MoS, but reduces the contact resistance and therefore the 228

Schottky barrier height.”' 229
Similarly, tensile strain has been demonstrated to induce 230
considerable Schottky and tunneling barrier lowering.*” 231

A Schottky barrier of ~0.2 eV is formed by several metals on 232
MoS, because of Fermi level pinning below the MoS, 233
conduction band.”*™>° Density functional theory calculations 234
have indicated that the pinning at the metal—-MoS, interface is 235
different from the well-known Bardeen pinning effect, metal- 236
induced gap states, and defect/disorder-induced gap states, 237
which are applicable to traditional metal—semiconductor 238
junctions. At metal—MoS, interfaces, the Fermi level is pinned 239
either by a metal work function modification due to interface 240
dipole formation arising from the charge redistribution or by 241
the production of gap states mainly of Mo d-orbitals, 242
characterized by the weakened intralayer S—Mo bonding 243
because of the interface metal—$ interaction.”®>” The observed 244
decrease in the Schottky barrier by e-beam irradiation, up to its 245
complete disappearance, supports the occurrence of interface 246
modifications that cause Fermi level depinning, 247

As the forward current at Vi < 0 V is limited by the 248
Schottky barrier at the drain contact (C3), while the reverse 249
current at Vg, > 0 V is limited by the Schottky barrier at the 250
grounded source contact C2 (which are the reverse-biased 251
junctions for negative and positive Vj, respectively), the 252
output curves of Figure 4a, which correspond always to reverse 253
current, can be used to extract the behavior of the Schottky 234
barriers as a function of the fluence (i.e., the e-beam irradiation 255
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Figure 5. Low-bias energy band diagrams (black) and their modification under electron irradiation (red) of C3 (a) and of C2 (b) contacts resulting

in barrier lowering (@g).
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Figure 6. (a) FET transfer characteristics at Vg, = —4 V before and after e-beam irradiations of contacts C3 and C2 and of the channel. (b) Left
shift of the threshold voltage extrapolated from the transfer characteristics over the e-beam exposure.

256 number). Let us consider the thermionic current through a
257 reverse-biased Schottky barrier’®*’

[ = Isn[eeVﬂ/nkT _ 1] — [SA;kDTfa/Ze—e(an/kT][eeVa/nkT _ 1]

~ * m3/2 —eqy, /KT
258 R —=SA;p T e n (1)

259 where @p, and I, are the barrier height and the reverse
260 saturation current at the n-th e-beam irradiation, S is the
261 junction area, Af, is the 2D Richardson constant, k is the
262 Boltzmann constant, T is the temperature, n is the ideality

263 factor, and V, is the negative voltage across the barrier that

V,/nkT .
264 makes e/ ~ 0. Let us define I, as the reverse saturation

265 current before e-beam exposure, that is, associated to the
266 maximum barrier height ¢y, To avoid the effect of bias which
267 can induce image-force barrier lowering,60 both I, and I, are
268 obtained by extrapolating the measured currents to zero bias.
269 Then, eq 1 can be used to evaluate the variation of the
270 Schottky barrier, A@g, = @, — @po, as a function of the
271 irradiation number

I eA I
ln[—”] s TN Ap, = —k—Tln[—")
- I, kT e I, (2)

273 The zero-bias Schottky barrier variation, Agy,, is shown in
274 Figure 4d for both source (C2) and drain (C3) contacts. The
275 overall reduction of both barriers is comparable to the

expected initial barrier height based on Fermi level pinning,
meaning that the long irradiation can completely remove the
barriers. The plot indicates that the two barriers behave
differently for the irradiation of C2 or C3. Although the beam
irradiation of either contact results in a lowering of both
Schottky barriers, the barrier decrease is faster for the
irradiation of the grounded source. Besides, the Schottky
barrier at the source contact is the most affected by the
irradiation of the source.

To explain these results, we propose the model based on the
energy band diagrams, shown in Figure S. A negative (positive)
voltage applied to the drain contact (C3) causes an upward
(downward) shift of the energy bands in the drain region.
Electron beam irradiation of the contact lowers the Schottky
barrier and the relative built-in potential, as shown by the red
dashed lines in Figure 5. The reduction of a Schottky barrier
and of its associated built-in potential, at the irradiated contact,
results also in the lowering of the unexposed barrier, which can
experience a stronger potential drop because of the reduced
contact resistance of the first contact. Figure Sa represents the
situation in which the e-beam is focused on the biased drain
contact (C3). At V4 < 0V, the current is limited mainly by the
drain contact barrier which is lowered by the successive
irradiations, causing the exponential increase in maximum
forward current. At Vg, > 0V, the current is limited by the un-
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Figure 7. Monte Carlo simulation using CASINO v2 of e-beam irradiation of the device (a) contacts and (b) of the MoS, channel. (c) Simulated
cathodoluminescence intensity through the sample, with the e-beam focused onto contacts and onto the flake. (d) Simulation of the electron’s

penetration depth through the sample.

irradiated source contact (C2) barrier, and its dependence on
the irradiation cycle is caused by the lowering of the built-in
potential at the drain (C3). As the barrier and built-in lowering
are the same, the rectification ratio remains almost constant.
For irradiation of the grounded source (C2, Figure Sb), the
current increases because of a similar mechanism, with the
difference that the drain contact barrier limits the current for
Vas > 0 V to a lesser extent, having been already irradiation-
lowered. Therefore, the reverse current increases faster with
the repeated irradiation and the rectification ratio decreases.

The effect of irradiation on the transfer characteristic of the
transistor is shown in Figure 6 and confirms the radiation-
induced increase in channel current. Besides, Figure 6a shows
that the e-beam, independent of onto which contact it is
focused on, causes a left shift of the transfer curve. Such a shift
corresponds to a decrease in threshold voltage, defined as the
x-axis intercept of the linear fit of the transfer curve on the
linear scale. The threshold voltage as a function of the
irradiation is displayed in Figure 6b. Although the e-beam
exposure of the contacts provokes a left shift (the transfer
curves are taken at the end of the two irradiation sets on the
drain (C3) and grounded source (C2)), further left shift of the
threshold voltage is observed when two successive irradiations
are performed in the channel region.

The observed negative shift of the threshold voltage has
been reported and discussed before.”” It can be explained by
the pile-up of positive charge in trap states of the SiO, gate
dielectric or at the SiO,—Si interface. The e-beam exposures
produce electron—hole pairs in the SiO, gate oxide and in the
Si substrate: although mobile electrons are easily swept by the
applied bias, the positive charges can be stored for long
times.”” The positive charge storage acts as an extra gate
(similarly to the gating effect under light irradiation®"**) and
enhances the n-type doping of the channel.

Indeed, Figure 6 shows that there is a slight recovery of the
threshold voltage after 12 h of annealing at room temperature.
However, we highlight that, as demonstrated by Figure 6a, the
maximum channel current, which is limited by the contact

resistances, remains unchanged after annealing, demonstrating
that the irradiation-induced improvement of the contacts is
permanent.

To further confirm our model, we performed a Monte Carlo
simulation to track the path of the electrons under the contacts
and in the channel region (Figure 7a,b), using the CASINO
software package.”>™®° We simulated a 10 keV beam with one
million electrons and a radius beam of 10 nm. The
cathodoluminescence spectrum (Figure 7c) shows that
electrons lose their energy and are stopped (Figure 7d) mostly
in the Ti/Au metal stack, while they reach and are absorbed in
the Si substrate when the irradiation is on the channel. The
high release of energy in the metal contacts, similarly to
thermal ;1nnea1ing,66’67 induces Ti—MoS, reactions and creates
contact with the reduced Schottky barrier and contact
resistance. Conversely, when we directly irradiate the MoS,
channel, energy is prevalently adsorbed in the Si bulk and its
effect manifests only through the positive charge traps
generated in the SiO, layer.

B CONCLUSIONS

We investigated the effects of 10 keV electron beam irradiation
of the Schottky metal contacts in MoS,-based FETs.
Spectroscopic analysis by Raman and PL shows that the

361

presence of metal contacts changes the properties of 36

monolayer MoS, with respect to strain and doping. The
electrical measurements revealed that electron beam irradiation

363
364

improves the device conductance, reduces the rectification of 365

the output characteristic, and causes a left shift of the threshold
voltage. To explain such a feature, we propose that the energy
absorbed in the metal contacts induces atomic diffusion and
interfacial reactions that lower the Schottky barrier at the
contacts and improve the contact resistance. We corroborate
our model by direct measurement of the Schottky barrier
height variation and by simulation of the electron trajectories
in the contact regions.
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