
Information and Software Technology 127 (2020) 106362

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

From software architecture to analysis models and back: Model-driven

refactoring aimed at availability improvement

Vittorio Cortellessa, Romina Eramo, Michele Tucci ∗

Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy

a r t i c l e i n f o

Keywords:

Software architecture

Availability

Bidirectional model transformation

Refactoring

a b s t r a c t

Context: With the ever-increasing evolution of software systems, their architecture is subject to frequent changes

due to multiple reasons, such as new requirements. Appropriate architectural changes driven by non-functional

requirements are particularly challenging to identify because they concern quantitative analyses that are usually

carried out with specific languages and tools. A considerable number of approaches have been proposed in the

last decades to derive non-functional analysis models from architectural ones. However, there is an evident lack

of automation in the backward path that brings the analysis results back to the software architecture.

Objective: In this paper, we propose a model-driven approach to support designers in improving the availability

of their software systems through refactoring actions.

Method: The proposed framework makes use of bidirectional model transformations to map UML models onto

Generalized Stochastic Petri Nets (GSPN) analysis models and vice versa. In particular, after availability analysis,

our approach enables the application of model refactoring, possibly based on well-known fault tolerance patterns,

aimed at improving the availability of the architectural model.

Results: We validated the effectiveness of our approach on an Environmental Control System. Our results show

that the approach can generate: (i) an analyzable availability model from a software architecture description,

and (ii) valid software architecture models back from availability models. Finally, our results highlight that the

application of fault tolerance patterns significantly improves the availability in each considered scenario.

Conclusion: The approach integrates bidirectional model transformation and fault tolerance techniques to support

the availability-driven refactoring of architectural models. The results of our experiment showed the effectiveness

of the approach in improving the software availability of the system.

1

c

d

i

w

p

a

t

m

f

N

t

I

o

e

t

a

o

b

T

o

c

n

b

s

n

p

h

R

A

0

(

. Introduction

In order to succeed in new market segments, organizations have

onstantly been increasing the use of software in systems over the last

ecades. Nowadays, due to continuous evolution, software architecture

s subject to changes induced by decisions taken along the overall soft-

are lifecycle [1] . Indeed, as the earliest artifact that evolves along the

rocess, a software architecture model can support different tasks, such

s test case generation [2] , traceability [3] , and non-functional valida-

ion [4] .

Appropriate architectural changes driven by non-functional require-

ents are particularly challenging to identify, mainly because non-

unctional analysis is based on specific languages and tools (e.g., Petri

ets, Markov Models) that are different from typical software architec-

ure notations like Architecture Description Languages (e.g., ACME [5]).

n fact, very few ADLs embed constructs that enable the specification
∗ Corresponding author.

E-mail addresses: vittorio.cortellessa@univaq.it (V. Cortellessa), romina.eramo@u

ttps://doi.org/10.1016/j.infsof.2020.106362

eceived 21 October 2019; Received in revised form 24 April 2020; Accepted 30 Ma

vailable online 2 June 2020

950-5849/© 2020 The Authors. Published by Elsevier B.V. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
f non-functional attributes (e.g., AADL [6]) and even fewer ones are

quipped with solvers leading non-functional indices out of an architec-

ure specification (e.g., Palladio [7]). Hence, even in cases where the

nalysis tools help to identify suitable architectural changes that may

vercome non-functional problems, these changes need to be brought

ack within the architecture description language and environment.

his step may prove to be particularly complex, as it subsumes a change

f notation that might alter the semantics of identified architectural

hanges.

With the introduction of Model Driven Engineering (MDE) [8] tech-

iques in the software lifecycle, the analysis of quality attributes has

ecome more effective by means of automated transformations from

oftware artifacts to analysis models [9] . Hence, in order to validate

on-functional requirements on a software architecture, a number of ap-

roaches, mostly based on model transformations, have been proposed
nivaq.it (R. Eramo), michele.tucci@univaq.it (M. Tucci).

y 2020

ticle under the CC BY-NC-ND license.

https://doi.org/10.1016/j.infsof.2020.106362
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106362&domain=pdf
mailto:vittorio.cortellessa@univaq.it
mailto:romina.eramo@univaq.it
mailto:michele.tucci@univaq.it
https://doi.org/10.1016/j.infsof.2020.106362
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

i

c

t

t

p

w

c

a

f

b

a

i

e

a

p

a

f

b

f

a

d

a

m

p

S

a

a

o

d

t

i

a

i

e

U

n

t

t

c

b

d

i

t

g

m

a

a

g

w

o

J

S

J

c

2

a

p

b

p

2

c

h

e

i

F

p

i

r

p

o

a

a

w

t

t

p

t

t

p

2

r

w

s

M

T

e

S

d

o

d

p

e

i

t

a

a

t

a

f

n the last decades to generate non-functional models from software ar-

hitectural descriptions [10,11] . There is instead a clear lack of automa-

ion in the backward path that basically consists in the interpretation of

he analysis results and the generation of architectural feedback to be

ropagated back to the software architecture.

The goal of this paper is to introduce a model-driven approach that

orks on the forward and backward path of a round-trip software pro-

ess to support designers in improving the availability of their software

rchitecture. In particular, we introduce JASA (JTL-based 1 framework

or Availability analysis of Software Architecture), which makes use of

idirectional model transformations to map architectural models and

vailability models in both forward and backward directions. By work-

ng with UML models, annotated with availability parameters, and Gen-

ralized Stochastic Petri Nets (GSPN), JASA is able both to derive an

nalysis model from a software architecture and, after the analysis, to

ropagate back on the software architecture the changes made on the

nalysis model. In addition, these changes can be based on well-known

ault tolerance patterns that we have preventively modeled in GSPN to

e easily applied to the model under analysis.

The main contributions of this paper are:

• the automated transformation of a software architecture (modeled

in UML) into a GSPN analysis model,
• the refactoring of GSPN models (possibly based on well-known fault

tolerance patterns), and
• the propagation of the changes performed on the GSPN models back

to UML models.

In a previous paper [13] , we presented a bidirectional model trans-

ormation between UML State Machines (SMs), annotated with avail-

bility parameters, and GSPN. Such transformation was aimed both to

erive a GSPN availability model from a SM-based software architecture

nd, after the analysis, to propagate back on the UML model the changes

ade on the GSPN model. This paper is an extension of our previous pa-

er stemming from the realization that it was restricted to consider only

Ms. In fact, a deeper semantic comprehension of an UML model can be

chieved if the dynamic behavior is modeled by using the Sequence Di-

grams (SDs) in addition to SMs [14] . In fact, SMs describe the behavior

f an object (that could be the instance of a particular component/class)

epending on what state it is currently in, whereas SDs show the execu-

ion of use cases and the behavior of involved objects in terms of their

nteractions. Such modeling extension of behavioral aspects of software

rchitectures impacts on the accuracy of availability analysis and on the

ntroduction of well-known fault-tolerance refactoring techniques (e.g.

rror masking). Moreover, the back propagation of GSPN changes into

ML models is improved by considering the interactions among compo-

ents.

Furthermore, in this paper we introduce a catalog of refactoring pat-

erns with the aim to drive the designers in their process. In particular,

he patterns for fault tolerance presented in Saridakis [15] have been

onsidered to generate the corresponding patterns in GSPN, that will

e propagated in UML through the bidirectional model transformations

efined in JASA. The overall approach has been implemented as a ded-

cated framework implemented within Eclipse. 2

Finally, our approach has been evaluated on an Environmental Con-

rol System example application in order to address these points: (i)

eneration of analyzable availability models from software architecture

odels; (ii) back generation of valid software architecture models from

vailability models; (iii) ability to improve the availability of software

rchitecture models.

The rest of the paper is organized as follows: Section 2 sets the back-

round for this research work along with its contributions and relations

ith the authors’ previous work. Section 3 describes the JASA method-

logy and its implementation. Section 4 illustrates the application of
1 The transformation engine is based on JTL [12] .
2 Eclipse Platform: https://projects.eclipse.org/projects/eclipse.platform .

e

p

w
ASA to the Environmental Control System (ECS) example application.

ection 5 provides the evaluation of the results obtained by applying

ASA. Section 6 describes related approaches, and finally Section 7 con-

ludes the paper.

. Background

In the following, we describe the background of this research work

nd its contributions in terms of non-functional analysis and refactoring

rocess leveraged for the definition of JASA. Also, we detail the contri-

utions presented in this paper and put them in relation to the authors’

revious work.

.1. Round-trip non-functional analysis process

In order to validate non-functional requirements on a software ar-

hitecture, some approaches, mostly based on model transformations,

ave been proposed in the last decades to generate non-functional mod-

ls from software architectural descriptions [10,11] . This generation step

s also called forward path , and it is represented by the topmost steps of

ig. 1 . However, the solution of generated models does not necessarily

roduce indices that satisfy the requirements, thus an iterative process

s often required to refactor the generated model on the basis of solution

esults. This process (hopefully) ends up when satisfactory indices are

roduced, and it is represented by the rightmost step of Fig. 1 .

Thereafter, changes applied to non-functional models, for the sake

f requirement satisfaction, have to be propagated back to the software

rchitecture, and this is represented by the bottom-most step of Fig. 1 ,

lso called backward path . However, analysis results do not straightfor-

ardly suggest what changes have to be made on the software archi-

ecture, hence this propagation is often based on the ability of experts

hat interpret the results. This clear lack of automation in the backward

ath represents a heavy limitation towards the construction of a round-

rip process for non-functional validation of a software architecture. In

his paper, we consider this general round-trip non-functional analysis

rocess in the availability analysis context.

.2. Model-based availability analysis

Availability can be defined as the system readiness to provide cor-

ect service. It corresponds to the probability that the system is working

ithin its specifications at a given instant [16] . In particular, the steady

tate availability can be expressed as the ratio between the value of

TTF (Mean Time To Failure) and the sum of MTTF and MTTR (Mean

ime To Repair) values.

Stochastic Petri Nets (SPN) are a well-established formalism for mod-

ling systems availability [11] . In this paper, we consider an extension of

PN, called Generalized Stochastic Petri Nets (GSPN) [17] . Transitions

efined in GSPN can be either immediate, when firings take no time,

r timed, when associated delays are exponentially distributed. Imme-

iate transitions fire with priority over timed transitions, and different

riority levels can be defined over them. A weight is also associated to

ach immediate transition. When two or more immediate transitions are

n conflict (e.g., because they have the same priority), the selection of

he one that fires first is made using the associated weights. The delay

ssociated with a timed transition is a random variable, distributed as

 negative exponential, with a defined rate. When two or more timed

ransitions are in conflict, the selection of the one that fires first is made

ccording to the race policy.

In this work, availability analysis is conducted on a GSPN derived

rom a software architecture modeled in UML [18] .

Since UML does not natively provide support for availability mod-

ling, we rely on the “Dependability Analysis and Modeling ” (DAM)

rofile [19] to enhance UML models with availability annotations. DAM

as designed on top of the standard MARTE profile [20] , which extends

https://projects.eclipse.org/projects/eclipse.platform

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 1. Round-trip non-functional analysis process.

U

s

a

f

n

2

S

r

s

m

d

c

a

t

R

i

S

s

i

n

p

i

t

R

c

p

p

I

o

n

t

3

s

c

t

r

J

t

m

i

i

J

s

p

i

i

m

3

a

a

c

c

m

C

a

m

a

f

m

f

g

b

t

3

t

f

p

w

3 JASA: https://github.com/SEALABQualityGroup/JASA .
4 JTL: http://jtl.univaq.it/ .
5 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/ .
ML to annotate models with schedulability and performance analy-

is information. Despite the ability to annotate behavioral models with

vailability properties, UML-DAM lacks the execution semantics to be

ormally analyzed. This is the reason why DAM-annotated UML models

eed to be transformed (e.g., in GSPN) for the sake of analysis.

.3. Fault tolerance refactoring techniques

Nowadays, software has strong influence on system availability.

ince defects inherently occur in software design and coding for several

easons (e.g., software complexity, changing requirements, time pres-

ures), software fault tolerance is even more important.

Among the well-known fault tolerance refactoring techniques that

ay improve the software availability, we consider the techniques that

eal with error masking [15] , i.e.: Passive Replication, Semi-Passive Repli-

ation, Active Replication and Semi-Active Replication .

Error masking techniques aim at isolating the subsystem in which

n error is detected by relying on some form of redundancy to resume

he processing that the system was performing when the error occurred.

eplicas of system components and checkpoints can be employed, even

n combination, to implement such techniques. Passive Replication and

emi-Passive Replication patterns provide error masking by saving the

tate of a component (checkpoint) before it receives the input, so that,

f an error occurs during processing, an identical replica of the compo-

ent can be activated to restart the processing from the saved check-

oint. While in the Passive Replication pattern the checkpoint is stored

n a separate Storage component, Semi-Passive Replication requires that

he checkpoint is directly stored in the replica. On the other hand, Active

eplication and Semi-Active Replication patterns require a group of repli-

as to be always active during input processing. In the Active Replication

attern, the replicas provide the output to a Comparator component that

erforms a majority vote before forwarding it to the rest of the system.

n contrast, in the Semi-Active Replication pattern, a replica provides the

utput to the system only when an error occurs in the original compo-

ent. The patterns mentioned above, as well as refactoring inspired by

hem, will be presented in detail in Section 3.3 .

. The JASA approach

In this section we introduce JASA, a model-driven framework for

upporting the round-trip availability analysis process and software ar-

hitectural refactoring. The approach aims at supporting designers in

heir availability analysis process that involves the back propagation of

esults as refactoring actions on the software architecture. In particular,
ASA leverages the interplay of UML and GSPN and provides automa-

ion for their mapping by means of a bidirectional model transformation

echanism [12] . In fact, the bidirectional engine provides the possibil-

ty to automate round-trip process by applying the transformation rules

n both ways, from right to left domains and vice versa. In addition,

ASA provides a set of refactoring actions that can be used by the de-

igner to improve the availability of the system.

In the following, we introduce the used technologies, we present the

rocess underlying our approach, and we provide a catalog of availabil-

ty patterns that can be applied on GSPN models. Then, we describe the

mplementation of the approach based on bidirectional model transfor-

ations. The complete implementation of JASA is available online. 3

.1. Using model driven techniques

Model Driven Engineering (MDE) [8] leverages domain knowledge

nd business logic from source code into high-level specifications en-

bling more accurate analyses. In general, an application domain is

onsistently analyzed and engineered by means of a metamodel , i.e., a

oherent set of interrelated concepts. A model is said to conform to a

etamodel: it is expressed by the concepts encoded in the metamodel.

onstraints are expressed at the meta-level, and model transformations

re based on source and target metamodels. With the introduction of

odel-driven techniques in the software lifecycle, the analysis of quality

ttributes has become effective by means of automated transformations

rom software artifacts to analysis models [10] .

The proposed approach makes use of bidirectional model transfor-

ations [21] to map architectural models and analysis models in both

orward and backward directions. In contrast to unidirectional lan-

uages, bidirectional approaches allow describing both forward and

ackward transformations simultaneously, so that the consistency of the

ransformation can be guaranteed by construction [22] .

.2. From availability assessment to architecture improvements

The proposed approach is realized on top of JTL (Janus Transforma-

ion Language) [12,23] , that is a constraint-based model transformation

ramework specifically tailored to support bidirectionality and change

ropagation. 4 JASA has been implemented within the Eclipse frame-

ork and mainly exploits the Eclipse Modeling Framework (EMF). 5 As a

https://github.com/SEALABQualityGroup/JASA
http://jtl.univaq.it/
https://www.eclipse.org/modeling/emf/

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 2. The JASA overall approach.

c

m

w

t

a

v

a

t

U

r

m

U

a

t

t

T

t

a

m

c

r

c

a

c

a

3

p

t

s

G

o

m

d

w

o

P

p

a

p

s

3

c

r

t

t

A

p

t

m

v

s

h

m

w

a

f

3

l

a

i

s

r

p

B

a

i

a

onsequence, the environment supports any language defined as a meta-

odel conforming to Ecore (i.e., the EMF metamodel). In this work,

e focus on GSPN-based analysis models, whereas, the software archi-

ecture is modeled by means of UML. In particular, for the behavioral

spects, State Machines (SM) and Sequence Diagrams (SD) annotated

ia DAM are considered, whereas for the static aspects, Component Di-

grams (CD) are considered. In the rest of the paper, we use UML JASA

o refer to the considered UML diagrams, that are UML SM , UML SD and

ML CD .

The JASA overall approach is reported in Fig. 2 . As said, the Bidi-

ectional engine relies on JTL to enable the execution of bidirectional

odel transformations in both forward and backward directions. The

ML JASA -GSPN bidirectional transformation maps UML models to GSPN

nd vice versa. In particular, in order to execute the transformation in

he forward direction, a DAM-annotated UML model is taken as input to

he engine, and the correspondent GSPN model is produced as output.

he generated GSPN model is solved in order to obtain a set of indices

hat have to be interpreted (see Availability analysis in the figure). There-

fter, the GSPN model is iteratively modified until availability require-

ents are satisfied (see Refactoring in the figure). In order to propagate

hanges applied to the GSPN model back to the UML model, the bidi-

ectional transformation is executed in the backward direction. In our

ase, the engine takes as input the modified GSPN model and produces

s output a DAM-annotated UML model representing the software ar-

hitecture that embeds the changes made on the GSPN to solve arisen

vailability problems.

.3. A catalog of availability patterns

In this section, we present a set of patterns that can be used to im-

rove the availability of a system. These patterns employ error masking

echniques, based on replicas and checkpoints, that can be applied to a

ystem designed by means of a GSPN. For each pattern, we show how a

SPN can be refactored to mask errors coming from a component with-

ut altering its original functionality.

Although, at the current stage, the refactoring activity is performed

anually, the GSPN refactoring patterns we introduce in this section are

esigned to support automation. In particular, each pattern is equipped

ith anchor points that are used to properly insert it on a specific point

f a GSPN modeling the original behaviour of a software component.

otentially, an automated tool can take as inputs the original GSPN, the

attern to be inserted and the specific point where it has to be applied,

nd it returns the GSPN refactored with the pattern.

Once applied on the GSPN model, the refactoring patterns will be

ropagated backwards through the transformation that will be pre-

ented in Section 3.4 .
.3.1. Passive replication

In this pattern, an error is masked by saving the state of a system

omponent (a checkpoint) before it starts processing the input. If an er-

or is detected, a backup replica of the same component is activated and

he checkpoint restored. Hence, the backup will restart the processing of

he input from the last state in which the system was behaving correctly.

 Component Diagram of this pattern is reported in Fig. 3 a, where com-

onents represent roles in the pattern and interfaces are used to depict

he actions that are required for coordination. Fig. 3 b shows the imple-

entation of this pattern in GSPN. For the sake of presentation, three

ertical dots are used to visually compress sequences of places and tran-

itions without branching points, whereas surrounding boxes are used to

ighlight the roles of GSPN subnets in the pattern. Grey boxes (e.g., Pri-

ary Behavior and Backup Behavior in the figure) are introduced to show

here the original behavior of components will fit into the pattern.

In order to implement the Passive Replication pattern, the following

dditional components should be added to the system:

• The Backup , that is identical to the original (Primary) component

of which we want to mask errors. This replica is not started during

error-free executions;
• The Log , which is able to record and forward inputs to the Primary

as well as send the recorded inputs again to the Backup in case of

error;
• The Storage , that is responsible for storing checkpoints and sending

them to Backup upon request from the Manager . We assume that the

Storage is not subject to errors;
• The Manager , that has the tasks of (i) asking the Primary to save a

checkpoint, (ii) activating the backup in the presence of errors and

(iii) requesting from the Storage to provide the last saved checkpoint.

Primary, Backup , and Manager must be deployed to different units of

ailure.

.3.2. Semi-passive replication

The Semi-Passive Replication pattern is able to mask errors in a simi-

ar way to the Passive Replication pattern, but without requiring a stor-

ge dedicated to checkpoints. The Component Diagram of this pattern

s shown in Fig. 4 a. The Primary component saves the checkpoint by

ending it directly to the Backup. Log and Manager components are still

equired to implement the pattern. The Log stores and forward the in-

ut to the Primary which, before processing it, sends a checkpoint to the

ackup . When an error occurs, the Manager activates the Backup and

sks the Log to forward the input to it. The Backup restores its state us-

ng the saved checkpoint before starting to process the input. Primary

nd Backup must be deployed to different units of failure.

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 3. The Passive Replication pattern.

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 4. The Semi-Passive Replication pattern.

3

m

g

f

p

g

r

r
.3.3. Active replication

The Active Replication pattern is considered the most effective error

asking technique but also the most expensive. This pattern employs a

roup of replicas actively receiving and processing every input intended

or the component of which we want to mask errors. According to this

attern, we need to introduce two new components:

• The Distributor , which receives the input intended for the original

component and forward it to all the replicas in the group;
• The Comparator , that is responsible for comparing the output com-

puted by the replicas and deciding (by majority voting) what will be

the final output of the system.

Fig. 5 a shows the Component Diagram of this pattern when the

roup of replicas is composed by (i) a Primary component, rep-

esenting the original component of which we want to mask er-

ors, and (ii) a Backup component, that is an identical replica of

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 5. The Active Replication pattern.

P

t

t

a

f

3

e

t

F
rimary . For the reason that all the replicas are continuously ac-

ive, the structure of this pattern does not contain a different path

hat the system will follow in case of errors. Primary, Backup ,

nd Comparator components must be mapped to different units of

ailure.
.3.4. Semi-active replication

Similarly to the previous pattern, the Semi-Active Replication pattern

mploys a group of replicas that are always active. However, unlike

he Active Replication pattern, only one replica will deliver the output.

ig. 6 a reports the Component Diagram of this pattern with the group

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 6. The Semi-Active Replication pattern.

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

o

i

e

e

t

o

d

o

3

l

T

o

w

t

f

d

t

c

t

o

T

w

(

s

g

w

t

a

c

a

t

t

F

t

t

m

a

t

t

o

q

S

L

r

o

U

3

c

m

U

s

a

t

a

U

t

l

t

m

G

L

i

a

f

o

i

c

M

t

f replicas composed by Primary and Backup . A Distributor component

s still needed to forward the input to all the replicas. In an error-free

xecution, the Primary component directly delivers the output to the

nvironment and then reports to the Backup that no errors occurred so

hat the output computed by the Backup can be discarded. If an error

ccurs on the Primary , then the Backup takes over the responsibility to

eliver the output. Primary, Backup must be deployed to different units

f failure.

.4. The UML JASA -GSPN bidirectional transformation

JTL adopts a textual syntax (that is inspired to QVT-R [24]) and al-

ows a declarative specification of relationships between MOF models.

he mechanism of transformation is rule-based. The language supports

bject pattern matching, and implicitly creates trace instances to record

hat occurred during a transformation execution. A transformation be-

ween candidate models is specified as a set of relation s that must hold

or the transformation to be successful: in particular, it is defined by two

omain s and includes a pair of when and where predicates that specify

he pre- and post- conditions that must be satisfied by elements of the

andidate models. When a bidirectional transformation is invoked for

he enforcement, it is executed in a specific direction by selecting one

f the candidate models as the target by means of a run configuration.

he implementation relies on the Answer Set Programming (ASP) [25] ,

hich is a form of declarative programming oriented towards difficult

primarily NP-hard) search problems and based on the stable model (an-

wer set) semantics of logic programming. The JTL engine finds and

enerates, in a single execution, all possible models that are consistent

ith the transformation rules by a deductive process.

The implementation of the UML JASA -GSPN bidirectional transforma-

ion includes the definitions of the following tasks:

• Mapping UML SM to GSPN models and vice versa (UML SM -GSPN),
• Composing GSPN subnets by mapping UML SD to GSPN models and

vice versa (UML SD -GSPN),
• Updating the static view of the architecture (UML CD).

We remark that the considered UML diagrams are linked together in

ccordance with the UML specifications [18] . As a consequence, the

oordination between execution semantics of related machines is re-

lized by considering the relationships between transitions and opera-

ions. More in detail, each transition has a reference to an event that, in

urn, refers to an operation already defined in the Component diagram.

or instance, in the State Machine diagrams in Fig. 10 , the getTempera-

ureData transitions in TemperatureSensor and GreenhouseController refer

o the very same homonymous operation.

Specifically, with regard to the elements involved in the transfor-

ation, a single State Machine is defined for each Component ,
nd Transition elements in the State Machine Diagram are linked

o Operation elements in the Component Diagram by means of

he trigger.event.operation reference. The same elements

f Operation type are also linked to Message elements in Se-

uence Diagrams through the signature reference. Additionally,

equence Diagrams are linked to Component Diagrams through the

ifeline elements that refer to Component elements by using the

epresents.type reference.

In the rest of this section, we present a detailed discussion of each

f the above mentioned tasks. The complete implementation of the

ML JASA -GSPN bidirectional transformation is available online. 6

.4.1. UML SM -GSPN

The first part of the transformation maps UML SM and GSPN; it is

haracterized by a one-to-pattern element mapping, meaning that a
6 UML JASA -GSPN: https://github.com/SEALABQualityGroup/JASA/blob/

aster/JTL/transformations/UMLGSPN.jtl .

ML SM element is mapped to a pattern of GSPN elements. In particular,

tarting from UML SM the corresponding patterns in GSPN are generated

nd vice versa. Such implementation considers the formal definition of

he unidirectional translation of UML SM in GSPN provided in Bernardi

nd Merseguer [26] . Starting from the latter, the relationships between

ML SM and GSPN are deduced and then completed in order to define

he bidirectional mapping between the notations. The complexity of the

atter task is high because the unique bidirectional transformation has

o guarantee the syntactic and semantic consistency of source and target

odels in both directions.

For the sake of detailed illustration, a fragment of the UML SM -

SPN bidirectional transformation implemented via JTL is depicted in

isting 1 . In the following listings, three dots are used in place of repet-

tive sections of code.

As said, the transformation is specified by means of a set of relations

mong elements of the two involved domain s; they represent the trans-

ormation rules that can be executed in both directions. The first line

f the listing declares the variable uml that matches models conform-

ng to the UML SM metamodel and the variable pn that matches models

onforming to the GSPN metamodel (based on the standard Petri Net

arkup Language (PNML) [27]). The main relations specified in the

ransformation are described as follows:

• StateMachine2PetriNet (lines 3–18) generates a container

element of type PetriNet with attribute id from an element of

type StateMachine with attribute name , and vice versa in the

opposite direction. Moreover, the correspondence between the ref-

erence region of type Region and the reference pages of type

Page is defined.
• State2Pattern (lines 20–41) maps simple states to a specific

pattern. Since a single element in the UML SM domain induces the

creation of a list of elements in the GSPN domain, the relation en-

forces multiple patterns. In particular, for each UML SM State in a
Region (see the reference subvertex), the following GSPN ele-

ments (see the references objects) are created: an element s of

type Place , an element s1 of type Transition (of kind “imme-

diate ”, marking an immediate GSPN transition), and an element s2
of type Arc that links s and s1 . In the opposite direction, for each

occurrence of the described GSPN pattern a correspondent State
is generated;

• StateActivity2Pattern (lines 43–72) considers states that

involve elements of type Activity and add a pattern of elements

to the base pattern defined for simple states. In particular, the fol-

lowing elements are added: s3 of type Place , s4 of type Arc that

links the previously created transition s2 and the place s4 , s5 of

type Transition (of kind “exponential ”, marking an exponential

GSPN transition), and s6 of type Arc that links s4 and s5 . In the

opposite direction, for each occurrence of the described GSPN pat-

tern a correspondent State is generated;
• Transition2Pattern (lines 74–120) relates transitions to a

specific pattern. In particular, for each UML SM Transition in a
Region (see the reference transition), the following GSPN el-

ements (see the references objects) are created: an element t of

type Place , an element t1 of type Transition (of kind “imme-

diate ”), an element t2 of type Arc that links t and t1 , an element

t3 of type Arc that links t and the transition s1 (created from a

simple state), an element t4 of type Place , an element t5 of type

Arc that links s1 and t4 , an element t6 of type Transition (of

kind “immediate ”), and an element t7 of type Arc that links t4 and

t6 . In the opposite direction, for each occurrence of the described

GSPN pattern a correspondent Transition is generated;
• TransitionDaStep2Pattern (lines 122–146) relates UML SM

transitions annotated with the stereotype DaStep from the profile

DAM and GSPN transitions (of kind “immediate ”). Moreover, the

value of the attribute occurrenceProb is mapped to attribute
weight , and vice versa.

https://github.com/SEALABQualityGroup/JASA/blob/master/JTL/transformations/UMLGSPN.jtl

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Listing 1. A fragment of the UML JASA -GSPN bidirectional transformation.

3

s

d

c

s

t

a

e

r

c

a

p

p

r

t

t

r

i

d

e

e

o

G

f

p

c

G

L

f

.4.2. GSPN subnets composition

The UML SM -GSPN transformation in the previous section generates a

eparate GSPN for each UML SM . The set of GSPNs obtained in this way

oes not represent the entire system as their behavior is not properly

onnected. These GSPNs can be considered to be subnets of the final

ystem. It is therefore necessary to compose such subnets by connecting

hem, so that the resulting GSPN represents a system scenario. In this

pproach, we derive the composition of GSPN subnets from messages

xchanged in UML SD .

Specifically, we need to consider two cases: when messages rep-

esent a synchronous or asynchronous call. In case of a synchronous

all, as depicted in Fig. 7 a, we need to connect the GSPN immedi-

te transition of the state in which the caller component is currently

ositioned to the GSPN place of the state in which the called com-

onent is positioned when receiving the message. The reply message

esulting from a synchronous call connects the last GSPN immediate

ransition representing the end of the called component behavior to

he GSPN immediate transition on which a token was waiting for the

eply message. In the asynchronous case, shown in Fig. 7 b, the call

s represented similarly to the synchronous case with the important

istinction that no token will wait for a reply message as none is

xpected.

The mapping of UML SD to GSPN is characterized by a one-to-pattern

lement mapping, meaning that a UML SD element is mapped to a pattern

f GSPN elements. In particular, starting from UML SD , the corresponding

SPN is generated and vice versa. Such implementation considers the

ormal definition of the unidirectional translation of UML SD in GSPN

rovided in Bernardi et al. [28] . With respect to the latter, we only

onsider instantaneous messages (non delayed).
For the sake of detailed illustration, a fragment of the UML SD -

SPN bidirectional transformation implemented via JTL is depicted in

isting 2 .

The main relations specified in the transformation are described as

ollows:

• MessageSynch2Pattern (lines 2–36) maps messages to a spe-

cific pattern. Since a single element in the UML SD domain induces

the creation of a list of elements in the GSPN domain, the relation

enforces multiple patterns. In particular, for each UML SD Message
generated with a synchronous type of communication action (mes-

sageSort = “synchCall ”, marking a synchronous message), the fol-

lowing GSPN elements (see the references objects) are created:

an element s of type Place , an element s1 of type Transition
(of kind “immediate ”), an element s2 of type Arc that links s and

s1 , an element s3 of type Arc that links c (that represent the caller

transition) and s , and an element s4 of type Arc that links s1 ()
and r (that represent the receiver place). The elements c and r are

mapped by calling the relation State2Pattern (from Listing 1)

in the when clause. In the opposite direction, for each occurrence of

the described GSPN pattern a correspondent synchronous Message
is generated;

• MessageAsynch2Pattern (lines 38–48) maps UML SD

Message generated with an asynchronous type of communication

action (messageSort = “asynchCall ”, marking an asynchronous

message) to a specific pattern, similarly to the previous relation; In

the opposite direction, for each occurrence of the described GSPN

pattern a correspondent asynchronous Message is generated;

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Listing 1. Continued

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 7. GSPN subnets composition.

3

t

t

s

a

i

g

t

t

f

n

4

i

r

o

v

S

n

i

b

w

t

t

G

G

F

i

u

4

a

T

m

n

s

t

r

t

• MessageReply2Pattern (lines 50–73) considers UML SD reply

messages (messageSort = “reply ”, marking a reply message) and gen-

erate a pattern of elements in the GSPN domain. In particular, the

following elements are added: s of type Place , s1 of type Arc
that links the receiver transition r and the place s , and s2 of type

Arc that links the transition s1 and the caller place c . The ele-

ments c and r are mapped by calling the relation State2Pattern
(from Listing 1) in the when clause. In the opposite direction, for

each occurrence of the described GSPN pattern a correspondent re-

ply Message is generated;

.4.3. Static view (UML CD) update

After the refactoring and analysis steps are performed on the GSPN,

he execution in backward direction of the transformation propagates

he changes from GSPN to UML. This back propagation also affects the

tatic view of the system, that is represented by a UML Component Di-

gram (UML CD). For example, when a replica of a sensor is created

n GSPN, the corresponding new component should be automatically

enerated in the UML CD . In order to achieve this, we introduce addi-

ional relations updating the static view of the system, as reported in

he Listing 3 .

The main relations specified in the transformation are described as

ollows:

• Component2Page (lines 2–10) maps a UML Component to a
GSPN Page . Following the design assumption that a State Machine

is created to describe the behaviour of a Component, this relation

creates a correspondence between a Component in UML and a

GSPN subnet enclosed in a Page that contains the behaviour de-

fined in a State Machine. When executed in the backward direction,

this relation generates a new Component for each new Page added

by the refactoring in GSPN.
• Interface2Pattern (lines 12–63) maps a UML pattern com-

posed of an Interface , its realization and usage to a GSPN pattern

defining a call operation between components. Specifically, the UML

pattern is composed of an Interface , its ownedOperation
and two Component s, one receiving the call (receiver) and

the other performing it (caller). On the GSPN side, the relation

matches the pattern corresponding to a call operation between com-

ponents (the pattern matches both synchronous and asynchronous

calls as they are differentiated only by the presence of a reply mes-
sage). The when clause is used to ensure that the matched com-

ponents have been mapped to different pages. In order to guaran-

tee that the matched call is happening between two components,

the where clause contains two constraints requiring that source
and target references of the Arc s s3 and s4 point to different

Page s.
Next section shows how the approach is applied to an example sce-

ario.

. JASA at work

In this section, we present the approach in practice with the aim of

llustrating the JASA process and how it can be replicated by potential

esearchers and practitioners that would like to follow the same process

n their own architecture.

The experiment is conducted by applying the approach to the En-

ironmental Control System (ECS) system example (as described in

ection 4.1). First, the system has been modelled by means of UML an-

otated with the MARTE DAM profile (as described in Section 2). Then,

n order to be used in the EMF environment, the involved models have

een specified in their Ecore format. The approach has been executed

ithin the JTL framework; in particular, the UML JASA -GSPN bidirec-

ional transformation has been run in the forward direction to generate

he GSPN models (as described in Section 4.2); after performing the

SPN analysis, a set of refactoring actions have been performed on the

SPNs on the basis of the obtained results (as described in Section 4.3).

inally, the UML JASA -GSPN bidirectional transformation has been run

n the backward direction to propagate the changes and generate the

pdated UML architecture (as described in Section 4.4).

.1. Environmental control system (ECS) modeling

The approach presented in the previous sections has been applied to

 software system for the environmental control of a botanical garden.

he Environmental Control System (ECS) is responsible for the auto-

ated management of the artificial habitat preserved in greenhouses. A

etwork of sensors periodically checks air temperature, air humidity and

oil humidity inside greenhouses. When sensors detect values exceeding

he thresholds defined for a given greenhouse, the system automatically

estores the environment conditions activating irrigation and air condi-

ioning systems as required.

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Listing 2. A fragment of the UML JASA -GSPN bidirectional transformation.

r

A

p

t

r

n

d

v

F

e

h

t

a

t

t

t

m

s

fi

i

w

s

a

t

b

7 ECS UML models: https://github.com/SEALABQualityGroup/JASA/tree/
ECS consists of seven software components: GreenhouseController is

esponsible for checking environment conditions; TemperatureSensor,

irHumiditySensor and SoilHumiditySensor respectively measure air tem-

erature, air humidity and soil humidity; Database is queried to retrieve

he thresholds defined for each monitored condition; AirConditioner can

aise or decrease the air temperature inside a greenhouse; MobileApp

otifies the user about certain events such as conditions exceeding the

efined thresholds.

We consider three use case scenarios of ECS, for which we pro-

ide the respective UML Sequence Diagrams: Monitoring Conditions , in

ig. 9 a, in which a timer periodically activates a procedure to check

nvironment conditions, Remote Monitoring , in Fig. 9 b, in which the air

umidity is continuously monitored and the GreenhouseController no-

ifies the user when the value exceeds the corresponding threshold,

nd Managing Temperature , in Fig. 9 c, that defines the procedure for

he activation of the air conditioner when required. We assume that

he complexity of a message parameters and return types, as well as
 m
he width of their ranges, do not affect the behaviour following that

essage.

Moreover, the internal behavior of each software component is de-

cribed by a State Machine that is consistent with the interactions de-

ned in the Sequence Diagrams. The resulting State Machine diagram

s shown in Fig. 8 .

UML Transition and Message elements that may fail are annotated

ith the DaStep stereotype from DAM, as depicted in Figs. 8 and 9 , re-

pectively. This stereotype is used here to define system failure modes

nd the probabilities of failures occurring in a scenario, as follows: at-

ribute kind is set to failure , as a consequence, the attribute failure can

e used to set the failure probability as the occurrenceProb real value.

The considered models, specified in UML, are available online. 7
aster/UML .

https://github.com/SEALABQualityGroup/JASA/tree/master/UML

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Listing 3. A fragment of the UML JASA -GSPN bidirectional transformation.

4

c

S

n

t

S

a

T

g

o

t

n

S

b

D

m

.

4

p

a

p

T

s

s

i

a

t

a

i

g

c

e

.2. Analysis model generation

The first operational step of our approach consists in the exe-

ution (in the forward direction) of the transformation presented in

ection 3.4 (UML JASA -GSPN) within the JTL framework. For each sce-

ario, from a Sequence Diagram and the set of involved State Machines,

his execution generates a GSPN. The transformation UML SM -GSPN in

ection 3.4.1 creates a GSPN subnet for each State Machine. As an ex-

mple, Fig. 11 shows a fragment of the GSPN obtained for the Managing

emperature scenario (Fig. 9 c). The GSPN subnets visible in the figure are

enerated from the TemperatureSensor, AirConditioner and GreenhouseC-

ntroller State Machines in Fig. 10 , where colours are used to outline

he subnets generated from the corresponding State Machines. Such sub-

ets are connected on the basis of the transformation UML SD -GSPN in

ection 3.4.2 .

In general, the composition of subnets obtained from this step is

ased on interactions among components, as appearing in Sequence

iagrams. In particular, synchronous and asynchronous messages are

apped to the corresponding patterns presented in Section 3.4.2 . 8
8 The GSPNs generated for each scenario are available at https://github

com/SEALABQualityGroup/JASA/tree/master/GSPN .

r

m

t
.3. Analysis results and refactoring

In this section, first we play with a simple case for checking whether

atterns induce differences in the system availability. Thereafter, we

pply patterns to components on the basis of current practices and com-

onent role, as it will be explained in detail at the end of the section.

he result of patterns application is a unique static architecture that

ubsumes different SD, hence different availability results for different

cenarios (in terms of operational profile and workload).

As a first step, we consider the GSPN obtained from the execution

n the forward direction of the transformation to perform a steady state

vailability analysis. Given an initial marking of a GSPN, and provided

hat every place of the net is bounded, the reachability set is the set of

ll the markings reachable by sequences of transition firings from the

nitial one. The reachability graph associated to a GSPN is a directed

raph whose nodes are the markings in the reachability set and each arc,

onnecting a marking M to a M ′ one, represents the firing of a transition

nabled in M and leading to M ′ .

In general, availability metrics of an GSPN model can be defined as

eward functions on the reachability graph [29] . Let M

0 be the initial

arking, and 𝑟 𝑀

= {1 if 𝑀 ∈ 𝑂, 0 if 𝑀 ∈ 𝐹 } be a state reward function

hat partitions the set of reachable markings RS (M

0) into two sets: O , the

https://github.com/SEALABQualityGroup/JASA/tree/master/GSPN

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 8. UML State Machine Diagram of the ECS components.

s

T

b

c

s

a

f

t

v

n

a

m

s
et of operational system states, and F , the set of system failure states.

he probability of the system being in marking M at time instant t can

e expressed as 𝜎𝑀

(𝑡) = 𝑃 𝑟 { 𝑋(𝑡) = 𝑀 } . Steady state probability can be

omputed as 𝜎𝑀

= 𝑙𝑖𝑚 𝑡 →∞𝜎𝑀

(𝑡) , and it represents the probability of the

ystem being in marking M at any time instant t > 0. The steady state

vailability of the GSPN is then defined taking into account the reward

unction and the steady state probabilities of individual markings in-
roduced before, as follows: 𝐴 ∞ =

∑
𝑀∈𝑅𝑆(𝑀 0) 𝑟 𝑀

𝜎𝑀

=

∑
𝑀∈𝑂 𝜎𝑀

. The

alue of A ∞ is to be interpreted as the percentage of time the system is

ot in a failure state after running for a sufficiently long time.

System failure mode needs to be defined in order to discern oper-

tional states from failure ones, and to exclusively assign the related

arkings to one among the O and F subsets of reachable markings. The

ystem is considered to be in a failure state when any of the state tran-

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 9. UML Sequence Diagrams of the ECS scenarios.

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 10. UML State Machines of the TemperatureSensor, AirConditioner and GreenhouseController components.

s

c

f

t

m

t

o

c

w

t

p

c

b

p

a

p

s

a

s

i

s

i

Table 1

Initial failure probabilities of

components in ECS.

TemperatureSensor 0.18

HumiditySensor 0.08

SoilHumiditySensor 0.07

Database 0.04
itions annotated by the DaStep stereotype fails during execution. As a

onsequence, in the GSPN obtained from the previous step, we define as

ailure states the markings reached from firing all the transitions having

he _loss suffix, as they represent the occurrence of a failure.

The GreatSPN solver [30] is used to derive the reachability graph of

arkings in the net and to compute the corresponding values of 𝜎M

. In

he initial marking of the net, a token appears in the StandBy place

f each component subnet, so that the component is ready to serve in-

oming requests. Immediate transitions representing failures are marked

ith weights derived from the failure probabilities. Since we assume

hat the operations belonging to the same component fail with the same

robability, we report in Table 1 the initial failure probabilities of every

omponent in ECS.

The steady state availability index can be computed by considering

oth the aforementioned initial marking of the GSPN and the failure

robabilities. The resulting indices for the three scenarios we considered

re reported in Table 2 .
In order to establish the effectiveness of the fault tolerance patterns

resented in Section 2.3 , we apply each of them on the TemperatureSen-

or component in the Managing Temperature scenario. The steady state

vailability resulting in each case is reported in Table 3 . The results

how, as expected, that the application of the fault tolerance patterns

ncreased the overall availability of the scenario, with the particular ob-

ervation that Active Replication and Passive Replication induce the best

mprovements. Note that even a change in the second decimal digit of
MobileApp 0.06

AirConditioner 0.23

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 11. Fragment of the GSPN generated for the Managing Temperature scenario.

a

s

t

S

a

m

c

d

T

A

R

s

s

d

e

p

Table 3
vailability metric is already considered relevant, since high availability

ystems usually require to be available up to the 99.999% of the running

ime (this requirement is usually referred to as five nines) [31] .

In order to further improve the system availability, we apply the

emi-Active Replication pattern to all the sensors components in the ex-

mple application, as this pattern has proved effective in the deploy-

ent of sensors in high availability contexts [32] . Since the Active Repli-

ation pattern is widely used in practice to deploy high availability

atabases [33] , we apply it to the Database component in each scenario.

he results obtained from this refactoring are discussed in Section 5.1.3 .

n additional reason for the application of the Active and Semi-Active
Table 2

Steady state availability of execution

scenarios.

Monitoring Conditions 0.985392

Remote Monitoring 0.991672

Managing Temperature 0.977984
eplication patterns over their Passive and Semi-Passive counterparts re-

ides in the stateless nature of the functionalities provided by the sen-

ors and the database in the example application we are considering. In-

eed, since the Passive and Semi-Passive Replication patterns accomplish

rror masking by saving the current state of a component through check-

oints, their application to stateless operations would only increase er-
Steady state availability of the Managing

Temperature scenario after the applica-

tion of fault tolerance patterns on Tem-

peratureSensor .

Initial (no refactoring) 0.977984

Semi-Active Replication 0.985605

Active Replication 0.988511

Semi-Passive Replication 0.98026

Passive Replication 0.989855

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 12. Component Diagrams before and after the change propagation.

r

o

4

t

G

c

c

a

s

F

or masking complexity and cost without providing additional benefits

ver the Active and Semi-Active Replication patterns.

.4. Change propagation

After the analysis and refactoring step, the UML JASA -GSPN bidirec-

ional transformation is applied in backward direction on the refactored

SPN model. In particular, the refactored UML Sequence and State Ma-

hine Diagrams are generated for each scenario. These new diagrams
ontain the changes applied to the GSPN during the refactoring step

nd propagated back by the execution of the transformation.

Moreover, the back propagation of changes generates additional

oftware components. The updated Component Diagram is reported in

ig. 12 b. In particular:

• Monitoring Conditions : the components TS_Distributor, Temperature-

Sensor1, HS_Distributor, AirHumiditySensor1, SHS_Distributor , and Soil-

HumiditySensor1 have been introduced by the application of the

Semi-Active Replication pattern on TemperatureSensor, AirHumidity-

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 13. UML State Machines generated from the back propagation of the Semi-Active Replication pattern on TemperatureSensor .

h

r

t

t

S

d

u

c

S

r

t

i

i

S

d

(

c

m

f

c

t

t

5

a

E

S

a

5

s

s

d

s

5

s

G

a

t

d

w

f

i

s

i

r

d

S

i

s

I

e

e

t
Sensor , and SoilHumiditySensor , while the components DB_Distributor,

DB_Comparator , and Database1 have been introduced by the applica-

tion of the Active Replication pattern on Database ;
• Remote Monitoring : the components HS_Distributor, AirHumiditySen-

sor1 , have been introduced by the application of the Semi-Active

Replication pattern on AirHumiditySensor , while the components

DB_Distributor, DB_Comparator , and Database1 have been introduced

by the application of the Active Replication pattern on Database ;
• Managing Temperature : the components TS_Distributor, Temperature-

Sensor1 , have been introduced by the application of the Semi-Active

Replication pattern on TemperatureSensor , while the components

DB_Distributor, DB_Comparator , and Database1 have been introduced

by the application of the Active Replication pattern on Database ;

As a consequence of the back propagation, nine new state machines

ave been generated by enforcing the StateMachine2PetriNet
elation and its triggered relations. The state machines corresponding

o the original components are instead restored without any modifica-

ion. In addition, each state machine corresponding to replicas in the

emi-Active Replication pattern (i.e., all sensors’ replicas) includes a new

iscardOutput transition that represents the case in which no fail-

re occurs in the original component and, as a consequence, the data

omputed by the replica must be discarded. As an example, the UML

tate Machines generated (TS_Distributor and TemperatureSensor1) and

estored (TemperatureSensor) from the Semi-Active Replication pattern on

he TemperatureSensor component are included in Fig. 13 .

The refactored UML Sequence Diagrams for the scenarios Monitor-

ng Conditions, Remote Monitoring , and Managing Temperature are shown

n Figs. 14–16 , respectively. In such diagrams, the application of the

emi-Active Replication pattern can be noticed by the presence of the

iscardOutput message that is sent from each sensor component

e.g., TemperatureSensor, AirHumiditySensor, SoilHumiditySensor) to its

orresponding replica. Moreover, alternative fragments are created to

odel the two cases in which a failure may or may not occur. Lifelines

or the newly created distributor and comparator components are in-

luded as well.

Finally, the obtained model is consistent with respect to the consis-

ency relation defined in the transformation, and it is compliant with

he source metamodel.

. Results evaluation

In this section we discuss the evaluation we have performed with the

im of answering the following research questions:

RQ1 : Does the approach generate an analyzable availability model

from a software architecture model?

RQ2 : Does the approach generate a valid software architecture model

back from an availability model?
RQ3 : Does the approach help to identify the fault tolerance patterns

that better improve the system availability?

The evaluation has been conducted by applying the approach to the

nvironmental Control System (ECS) example application, described in

ection 4 . The software design has been modeled by means of UML di-

grams; then, for each scenario the following process has been applied:

• the UML JASA -GSPN bidirectional transformation has been executed

in forward direction: thus, a Sequence diagram and a set of State

Machine diagrams have been given as input and the corresponding

GPSN has been obtained as output;
• the resulting GPSN has been analyzed to obtain the steady state

availability index, and it has been then refactored on the basis of

the fault tolerance patterns defined in Section 2.3 ;
• the UML JASA -GSPN bidirectional transformation has been executed

in backward direction: thus, the changes performed on the GPSN

have been propagated to the UML model.

.1. Insights on research questions

In order to assess the approach according to the research questions,

everal measurements and properties have been considered for each

tep of our evaluation. The results of the performed experiments are

iscussed in the context of each research question on the basis of the

elected evaluation criteria.

.1.1. RQ1: Analizability of the generated analysis models

In order to answer this research question, we have observed the re-

ults obtained by transforming the UML models in the corresponding

PSN models, as well as by applying the refactoring actions. For evalu-

ting if the considered GSPN models can support our analysis, we refer

o a set of basic behavioral properties (as introduced in Murata [34])

iscussed as following.

Reachability: In order to decide if the considered GSPN is reachable,

e have to establish if any state of the modeled system is reachable

rom the initial state through a finite sequence of transitions. Formally,

t is the problem of finding if any given marking M is contained in the

et of markings reachable from the initial marking M

0 . This property

s required since the availability metrics we considered are defined as

eward functions on the reachability graph associated to the GSPN, as

escribed in Section 4.3 .

We verified the reachability of our GSPN models by using the Great-

PN tool, that is able to compute reachability graphs where every mark-

ng in the net is reachable from M 0 . In our experiment, we can ob-

erve that all the reachability graphs have been successfully created.

n Table 4 , we report the cardinality of the reachability set RS (M 0) for

ach scenario. In particular, the Initial values refer to the GPSN mod-

ls obtained by applying the UML JASA -GSPN bidirectional transforma-

ion, whereas the Refactored values refer to the GSPN models after the

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 14. UML Sequence Diagram of the Monitoring Conditions scenario.

Table 4

The cardinality of the reachability set of the

GSPNs.

Initial Refactored

Monitoring Conditions 73 152

Remote Monitoring 66 105

Managing Temperature 77 116

r

t

r

a

t

p

b

i

t

t

i

a

a

G

a

r

d

p

fi

a

e

m

fi

t

c

T

l

c

c

5

s

s

i

t

i

r

t

efactoring described in Section 4.3 . The new elements introduced by

he refactoring of the GSPN caused an increase in the cardinality of the

eachability sets because they originated new markings. Since we were

ble to compute finite reachability sets, we can assert that the applica-

ion of the transformation in forward direction and of the refactoring

atterns have generated reachable GSPN models.

Boundedness: A GSPN model is said to be bounded or safe if the num-

er of tokens in each place does not exceed a fixed number for any mark-

ng reachable from the initial marking M 0 . This property is required for

he steady state availability analysis as bounded GSPNs are isomorphic

o finite Markov Chains [35] .

By considering that (i) a GSPN is bounded if and only if its reachabil-

ty graph is finite [36] , and (ii) we showed in Table 4 that finite reach-

bility sets can be computed before and after the refactoring, we can

ssert that all the GSPNs (i.e., initial and refactored ones) are bounded.

More generally, our transformation is designed so that the generated

SPNs cannot contain transitions without input places. This property is

 necessary condition for boundedness. Moreover, none of the proposed

efactorings introduces this type of transitions.

Liveness: This property is closely related to the complete absence of

eadlocks. A GSPN is said to be live if, for any reachable marking, it is

ossible to ultimately fire any transition of the net through some further

ring sequence.

In our experiment, we can observe that all the GSPNs (both initial

nd refactored) are live, because from any reachable state it is possible to

nable any transition by a firing sequence. In particular, the transitions

odeling failures are L1-live , as they can be fired at least once in some

ring sequence starting from the initial marking M 0 . As an example, the

ransition TS_t_getTemperatureData_loss in Fig. 17 is a L1-live one, as it

an potentially fire only once, when at least one token is in the place

S_getTemperatureData_e . All the other transitions in the GSPN are L3-

ive , since they can fire infinitely, as well as all transitions in Fig. 17 ex-

ept TS_t_getTemperatureData_loss . In general, liveness of obtained GSPNs

an be checked by the GreatSPN solver that we have adopted.

.1.2. RQ2: Validity of the refactored architecture

In order to answer this research question, we have observed the re-

ults obtained by transforming the refactored GSPN back to the UML

oftware architecture. To evaluate if the refactored architectural model

s a still valid software architecture, we considered a set of properties

hat are commonly used in the analysis of software architectures [37] .

Correctness:

It is an external property of an architectural model and ensures that

t fully realizes the system specification. In order to evaluate the cor-

ectness of a refactored UML model resulting from the application of

he approach, we need to consider the following aspects:

• We assume that the initial software architectural model is correct

(i.e., it realizes the system specification).
• The refactoring applied on the GSPN model obtained from the for-

ward application of the implemented UML JASA -GSPN bidirectional

transformation does not break the conformance to the system re-

quirements. In fact, the adopted fault tolerance patterns make use of

replicas and checkpoints techniques to provide error masking, thus

without altering the original functionalities of the refactored com-

ponent (as detailed in Section 3.3).

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 15. UML Sequence Diagram of the Remote Monitoring scenario.

Fig. 16. UML Sequence Diagram of the Managing Temperature scenario.

Fig. 17. GSPN subnet of the Temperature Sensor .

• The UML JASA -GSPN bidirectional transformation is able to gener-

ate consistent solutions with respect to the relations specified in the

transformation itself. In other words, the backward application of the

transformation propagates changes by correctly mapping the refac-

toring patterns on GPSN in refactoring patterns in UML (i.e., with-

out altering the original functionalities of the system). For instance,

when a replica is introduced in the GSPN (e.g., Semi-Active and Ac-

tive Replication pattern in Section 4), an additional state machine

that contains the same states and transitions of the original compo-

nent is introduced in the UML model, as well as additional messages

from/to the replicated component.
• Finally, this aspect is strictly related to the correctness of bidirec-

tional transformations. Formally, a bidirectional transformation T

between two classes of models, M and N , is characterized by two uni-

directional transformations: ⃖ ⃖⃗𝑇 ∶ 𝑀 ×𝑁 → 𝑁 and ⃖ ⃖𝑇 ∶ 𝑀 ×𝑁 → 𝑀 .

T is said to be correct if for any pair of models m ∈ M and n ∈ N ,

𝑇 (𝑚, ⃖⃖⃗𝑇 (𝑚, 𝑛)) and 𝑇 (⃖⃖𝑇 (𝑚, 𝑛) , 𝑛) [38] . The capability of the JTL frame-

work to correctly execute the transformation is discussed in Cicchetti

et al. [12] , Eramo et al. [23] . As a proof of concept, by running

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

t

I

u

s

f

m

5

i

T

f

p

Table 5

Steady state availability computed on the initial

() and refactored () architecture.

Monitoring Conditions 0.985392 0.990771

Remote Monitoring 0.991672 0.994207

Managing Temperature 0.977984 0.993316

e

p

W

i

t

p

A

n

t

e

M

v

w

t

p

s

w

n

p

R

u

r

a

d

t

S

f

0

p

f

o
our transformation on forward and backward directions without any

change on the example application, the transformation generated the

same pair of models.

Completeness: This property is verified whether all necessary archi-

ectural elements are defined and whether all design decisions are made.

n order to evaluate the completeness of the refactored UML model, let

s to consider the following aspects:

• We assume that the initial software architectural model is complete.
• The refactoring applied on the obtained GSPN model operates only

on components with probability of failure, without eliminating or

modifying other architectural elements, where changes performed

on those components are limited to the error handling. For example,

in the Semi-Active Replication pattern described in Section 3.3 , the

primary component is enriched exclusively with elements that allow

sending messages to the backup component in order to signal that

no errors occurred and the output can be discarded.
• The UML JASA -GSPN bidirectional transformation is able to preserve

the completeness of the solution with respect to the relations speci-

fied in the transformation itself. The changes defined in the refactor-

ing patterns are mapped in changes involving only the corresponding

components without eliminating or modifying other architectural el-

ements. For instance, the modification described above is translated

in UML by means of adding a message in the corresponding Sequence

Diagram and a transition in the corresponding State Machine.
• Finally, this property is related to another property of bidirectional

transformations, namely the hippocraticness [38] . A transformation

T is said to be hippocratic if for any model m ∈ M and n ∈ N, T (m,

n) implies ⃖⃖⃗𝑇 (𝑚, 𝑛) and T (m, n) implies ⃖⃖𝑇 (𝑚, 𝑛) . In our context, it

means that the backward execution of the UML JASA -GSPN transfor-

mation does not modify any part of the UML initial model that still

complies, along the specified relation, with the refactored GSPN. In

other words, the transformation only modifies the portions of the

UML model where refactoring patterns have been applied in the re-

lated GSPN model portions. The capability of the JTL framework to

guarantee hippocraticness is discussed in Cicchetti et al. [12] , Eramo

et al. [23] .

Consistency: It is an internal property of an architectural model en-

uring that the defined architecture does not contain contradicting in-

ormation. In order to evaluate the consistency of the refactored UML

odel, let us consider the following aspects:

• We assumed that the initial software architectural model is consis-

tent.
• Examples of inconsistencies are inconsistent names, interfaces, and

refinements of architectural elements. The UML JASA -GSPN bidirec-

tional transformation specifies the mapping between UML and GSPN

elements by preserving the consistency of names and structure (e.g.,

in the GPSN models the same names are used for the corresponding

elements). On our example application, indeed, we observed that the

generated architecture does not contain information that contradicts

the initial one.
• Finally, the JTL framework helps in guaranteeing this property. In

fact, the invertibility of a transformation can be severely affected in

case of partial transformations that do not cover all the concepts. The

consequent information loss may give place to unwanted behavior

when the transformation is reversed. The traceability engine of JTL is

able to preserve the missing information and restore it, thus avoiding

loss of information [39] .

.1.3. RQ3: Pattern selection for availability improvements

It is obvious that the application of any fault-tolerance pattern should

mprove the system availability, as it will be shown and discussed in

able 5 . It is, instead, less obvious to identify the patterns that more ef-

ectively improve the system availability when applied to specific com-

onents within defined scenarios.
This research question aims at addressing such issue, by showing the

ffects on the system availability of the application of fault tolerance

atterns to different components in different scenarios.

We define the following notation for the remaining of this section.

e denote by: an initial architectural model; r ftp (C) a single refactor-

ng action, which consists in applying a single fault tolerance pattern ftp

o a specific component C; R a refactoring strategy, that is the joint ap-

lication of multiple r ftp actions to specific components (𝑅 = { 𝑟 𝑓𝑡𝑝 (𝐶)}).
 refactoring application obviously leads to a refactored architecture ,

amely: .

The system availability will be denoted by Avail , and it is intended

o be computed on a specific architecture , in the context of a specific

xecution scenario denoted by ES x (where x is the scenario name, e.g.,

T stands for Managing Temperature in our example application), while

arying the failure probability (𝐹 𝑃
𝑦

𝐼
) of the architectural component y

ithin the range I .

We start by investigating how changes in failure probabilities affect

he improvements introduced by the application of the fault tolerance

atterns in a specific execution scenario. Fig. 18 shows how the steady

tate availability of the Managing Temperature scenario (ES MT) is altered

hen varying the failure probability of the TemperatureSensor compo-

ent (FP TS) in the interval [0.01, 0.5].

The figure shows the availability com-

uted for five alternative architectures:

(i) the initial architecture in red, on which no refactoring action

is applied;

(ii) the architecture in heavy green, on which the refactoring

action r SAR (i.e., Semi-Active Replication pattern) is applied on

the TemperatureSensor component (i.e., where 𝑅 =
{ 𝑟 𝑆𝐴𝑅 (𝑇 𝑆)});

(iii) the architecture in light green, on which the refactoring action

r AR (i.e., Active Replication pattern) is applied on the Temperature-

Sensor component (i.e., where 𝑅 = { 𝑟 𝐴𝑅 (𝑇 𝑆)});
(iv) the architecture in heavy blue, on which the refactoring

action r SPR (i.e., Semi-Passive Replication pattern) is applied on

the TemperatureSensor component (i.e., where 𝑅 =
{ 𝑟 𝑆𝑃𝑅 (𝑇 𝑆)});

(v) the architecture in light blue, on which the refactoring action

r PR (i.e., Passive Replication pattern) is applied on the Tempera-

tureSensor component (i.e., where 𝑅 = { 𝑟 𝑃𝑅 (𝑇 𝑆)}).

The results show that, while the Active Replication and Semi-Active

eplication patterns perform better with small failure probabilities val-

es, the Passive Replication and Semi-Passive Replication patterns are more

obust to an increase in the failure probability of the components they

re applied on. This figure shows how our approach can support the

esigner decisions to identify the best refactoring actions with respect

o the variation of system parameters. More specifically, in this case the

emi-Active Replication pattern appears to be the best choice when the

ailure probability value of TemperatureSensor is within the range [0.01,

.115], whereas, for higher values, Passive Replication pattern should be

referred.

In order to move from single refactoring actions to combined ones,

or each considered scenario, we have first measured the availability

n the GPSN model before and after applying the refactoring changes

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 18. Availability of Managing Temperature

scenario vs. TemperatureSensor failure probabil-

ity under single refactoring actions.

m

{

a

T

m

c

m

h

1

p

p

5

o

A

m

a

t

c

p

a

r

I

R

a

a

A

c

a

c

n

o

s

n

u

t

d

d

v

F

T

D

i

b

D

5

i

c

o

d

m

o

t

t

a

t

p

i

t

m

s

W

d
entioned at the end of Section 4.3 , namely , where 𝑅 =
 𝑟 𝑆𝐴𝑅 (𝑇 𝑆) , 𝑟 𝑆𝐴𝑅 (𝐻𝑆) , 𝑟 𝑆𝐴𝑅 (𝑆𝐻𝑆) , 𝑟 𝐴𝑅 (𝐷𝐵)} . The observed steady state

vailability indexes resulting from the analysis are reported in Table 5 .

he availability is computed on the Monitoring Conditions (ES MC), Re-

ote Monitoring (ES RM), and Managing Temperature (ES MT) scenarios by

onsidering the specific failure probabilities reported in Table 1 . The

easures highlight that the application of the fault tolerance patterns

as improved, as expected, the availability in each considered scenario.

The Managing Temperature scenario had an improvement of 15 . 332 ×
0 −3 after the application of the Semi-Active Replication pattern on Tem-

eratureSensor , and the Active Replication pattern on the Database com-

onent. The Monitoring Conditions scenario had an improvement of

 . 379 × 10 −3 after the application of the Semi-Active Replication pattern

n TemperatureSensor, HumiditySensor and SoilHumiditySensor , and the

ctive Replication pattern on the Database component. Finally, the Re-

ote Monitoring scenario had an improvement of 2 . 535 × 10 −3 after the

pplication of the Semi-Active Replication pattern on HumiditySensor , and

he Active Replication pattern on the Database component.

Then, we performed a sensitivity analysis of availability, for each

onsidered scenario, by varying in the interval [0.01, 0.5] the failure

robability of each refactored component involved in the scenarios.

In what follows, we show how some changes in the failure prob-

bilities of components affect both the initial architecture and the

efactored architecture obtained by applying R defined above to .

n particular, Figs. 19–21 report the results for the Monitoring Conditions,

emote Monitoring , and Managing Temperature scenarios, respectively.

The curve notation is the same as for Fig. 18 . For ex-

mple, in Fig. 19 we depict Avail (, 𝐸𝑆

𝑀𝑇 , 𝐹 𝑃 𝑇𝑆 [0 . 01 , 0 . 5])
nd Avail (, 𝐸𝑆

𝑀𝑇 , 𝐹 𝑃 𝐷𝐵
[0 . 01 , 0 . 5]) as solid curves, whereas

vail (, 𝐸𝑆

𝑀𝑇 , 𝐹 𝑃 𝑇𝑆 [0 . 01 , 0 . 5]) and Avail (, 𝐸𝑆

𝑀𝑇 , 𝐹 𝑃 𝐷𝐵
[0 . 01 , 0 . 5]) as dashed

urves, respectively. For the other two figures, of course, the scenario

nd the related involved components are different. For the sake of

larity, in the legend of each figure we indicate, beside the architecture

ame, the involved component whose failure probability varies to

btain that specific curve.

The graphs clearly show improvements of the availability in all

cenarios. Moreover, by comparing the effects of refactored compo-

f
ents with those of original ones, we can see that, while the fail-

re probability increases, the availability decreases more slowly after

he refactoring. In other words, we can observe that the architecture

can better withstand an increase in failure probabilities than

oes.

Finally, we remark that this analysis provides further support to

esigners, by distinguishing the robustness of a refactoring strategy

s. failure probability variations of different components. For example,

ig. 19 shows that R is more effective on the architecture when the

emperatureSensor failure probability increases with respect to when the

atabase one increases. Indeed, this effect is emphasized by the increas-

ng distance between solid and dashed red curves, whereas the distance

etween orange curves remains more or less the same all across the

atabase probability failure range.

.2. Threats to validity

In this section, potential threats to validity associated with the exper-

mental evaluation are discussed, by distinguishing internal, external,

onstruct and conclusion validity.

Internal validity: concerns any extraneous factor that could influence

ur results. In general, the implementation of the approach could be

efective, as well as the results of the analysis could be inaccurate. We

itigated these threats: i) by specifying our transformation on the base

f already existing mapping from Sequence Diagrams and Statecharts

o GSPNs [28] ; ii) by considering already existing fault tolerance pat-

erns [15] ; iii) by considering well-established methods for stochastic

vailability assessment [29] ; iv) by delegating the availability analysis

o an external solver [30] . Obviously, all the above actions mitigate the

ossibility of introducing faults in the model transformation, because

t is based on solid specifications. We recall here that, by construction,

he transformation only produces, as output, models conforming to both

etamodels, although we have not performed any formal proof on the

emantic correctness of the results.

External validity refers to the generalizability of the obtained results.

ith reference to the model transformation, we have adopted stan-

ard metamodels, thus the approach can be applied to any other con-

orming model. The analysis can be generalized to other models, even

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 19. Availability of Managing Temperature

scenario on the initial () and refactored

() architecture vs. failure probabilities under

combined refactoring actions.

Fig. 20. Availability of Monitoring Conditions

scenario on the initial () and refactored

() architecture vs. failure probabilities under

combined refactoring actions.

t

e

a

s

c

t

s

o

i

c

t

o

i

a

t

a

t

t

t

t

t

s

t

m

hough the considered fault tolerance patterns obviously change their

ffectiveness depending on the specific software system. However, our

pproach can be extended to apply additional patterns at the cost of

pecifying them in GSPN. Finally, the size of the example application

onsidered here is not very large, but complex enough to demonstrate

he effectiveness of the approach. Nothing can be asserted about the

calability of the approach on large size architectures, which remains

ne of our future objectives. However, we remark that our approach

s intended to be used within a decisional process that usually is not

onstrained by hard real-time requirements, like it could have been

he assessment of availability at runtime. Hence, even several hours

f processing time could represent a reasonable cost to be afforded

n practice for exploring a solution space difficult to inspect without
utomation.
Construct validity concerns the validity of our results with respect to

he evaluation criteria. As said, we considered well-know methodologies

nd methods existing in literature both for the transformation specifica-

ion and the availability analysis. This mitigates the presence of factors

hat can compromise the validity of the experiment and of the results.

Conclusion validity concerns the reliability of the measures that, in

his case, refers to the reproducibility of the results. In order to ensure

hat our results are reproducible, we repeated each measurement three

imes and made sure that there were no differences between the mea-

ured values with an approximation of 10 −5 . The artifacts considered in

his experiment are supplied via a GitHub repository, 9 and the experi-

ent can be reproduced locally within the JTL framework.
9 https://github.com/SEALABQualityGroup/JASA .

https://github.com/SEALABQualityGroup/JASA

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Fig. 21. Availability of Remote Monitoring sce-

nario on the initial () and refactored () ar-

chitecture vs. failure probabilities under com-

bined refactoring actions.

6

d

e

t

g

m

g

f

fi

I

a

a

S

n

p

a

b

s

b

d

m

i

t

t

b

m

a

t

s

f

t

b

M

s

e

f

c

t

a

p

w

s

e

s

m

a

h

w

w

i

a

t

d

r

s

t

a

o

t

S

f

o

m

t

u

t

o

t

a

g

s

a

b
. Related work

Several approaches have been introduced in the last few years to

erive analysis models from annotated software models. Bondavalli

t al. [40] represents one of the first attempts at enriching a UML design

o specify dependability aspects. The authors define UML extensions to

enerate Stochastic Petri Net models for dependability analysis auto-

atically. High-level SPN models are derived from UML structural dia-

rams and later refined using UML behavioral specifications. The trans-

ormation relies upon an intermediate model, and no standard UML pro-

les are employed since none were available at the time of publication.

n [41] , Huszer et al. propose a transformation of UML statechart di-

grams into Stochastic Reward Nets (SRN) to conduct a performance

nd dependability analysis. The transformation is defined as a set of

RN patterns, and the dependability analysis is performed under erro-

eous state and faulty behavior assumptions. Mustafiz et al. [42] also

resent a mapping between a probabilistic extension of statecharts and

 Markov chain model for quantitative assessment of safety and relia-

ility. Bernardi et al. [26] propose a transformation of UML sequence,

tatechart and deployment diagrams into a GSPN model for performa-

ility analysis. Software models are annotated using the former stan-

ard UML SPT profile. Our bidirectional transformation is based on the

echanisms related to statechart transformation as formally specified

n Bernardi and Merseguer [26] , which we have implemented in JTL. By

aking advantage of bidirectional transformations, the designer can au-

omatically propagate the refactoring performed on the analysis model

ack to the UML model.

On top of automated derivation of analysis models from software

odels, several approaches have been built for multi-objective software

rchitecture optimization driven by non-functional attributes. None of

hese approaches explicitly consider availability as a target, even though

ome of them consider failure probabilities of components and/or plat-

orm devices.

In particular, in Martens et al. [43] an evolutionary algorithm is in-

roduced for optimizing performance, reliability and cost. Failure proba-

ilities are associated to hardware connectors only, and a discrete-time

arkov chain is generated to calculate the probability for the whole

ystem to be in a failure state. Hence, this approach considers differ-

nt model elements to be subject to failures, as well as a different non-

unctional target property with respect to our work. Moreover, the ar-
hitecture refactoring actions in Martens et al. [43] are not specifically

argeted to fault tolerance as in our case, but rather generic refactoring

ctions, such as component replication. These differences about target

roperties and non-specific fault tolerant actions remain in other similar

orks that have appeared in the context of architecture optimization,

uch as [44] .

In the context of bidirectional model transformations, a round-trip

ngineering process between models representing different views of the

ame system is formally defined in Hettel et al. [45] . In the perfor-

ance analysis domain, in a previous paper [9] , we have introduced

 similar approach to the one presented in this paper. In particular, we

ave defined a bidirectional model transformation between UML soft-

are models and Queueing Network (QN) performance models. The for-

ard transformation path generates the performance model from the

nitial software model, whereas the backward one is used to generate,

fter the analysis, a new software model from the modified version of

he performance model. In [46] two methods to tackle the problem of

eriving architectural changes from model-based performance analysis

esults have been compared: (i) to perform refactoring on the software

ide by detecting and solving performance antipatterns, or (ii) to modify

he analysis model using bidirectional model transformations to induce

rchitectural changes. This represents an interesting study for reasoning

n the pros and cons of modifying a non-functional model as opposite

o applying modifications to a software architectural model.

In [47] , the authors propose principles to use fUML (Foundational

emantics for Executable UML Models) and Alf (Action Language for

UML) as a simulation environment. However, this approach provides

nly the structural modeling constructs of UML, whereas the ability to

odel behavior is limited to UML activities. Hence, in order to exploit

he simulation environment, availability parameters (such as the fail-

re probabilities) should be defined within the modeling language and

he simulation engine could require to be extended to process them. As

pposite, the use of languages as DAM that natively supports the defini-

ion of dependability parameters, coupled with transformations towards

nalysis models like GSPNs, does not require to extend the modeling lan-

uage and the solution/simulation engine. Finally, this process would be

ubject to scalability problems, as pointed in Berardinelli et al. [48,49] .

To the best of our knowledge, this is the first paper proposing an

utomated propagation of changes performed on an availability model

ack to an architectural model. Even though the scope of this paper

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

i

D

o

w

7

s

c

m

s

i

k

t

a

o

a

w

s

n

i

d

a

m

l

t

r

a

r

w

t

l

c

c

s

m

C

(

D

i

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

s limited to the modeling notation context considered here (i.e., UML-

AM and GSPNs), our approach represents a first step towards the usage

f bidirectional transformations for closing a round-trip process for soft-

are availability modeling and analysis.

. Conclusion

In this paper, we proposed JASA, a model-driven framework that

upports a round-trip availability analysis process based on software ar-

hitectural refactoring. We used bidirectional model transformations to

ap software architectures represented by UML models to GSPN analy-

is models and vice versa. In fact, after the analysis, the obtained GSPN

s modified according to a proposed catalog of refactoring based on well-

nown fault tolerance patterns. Finally, the changes are back propagated

o the software architecture with the aim of improving the software

vailability. The effectiveness of our approach has been demonstrated

n an Environmental Control System, in terms of ability to generate an-

lyzable availability models from software architectures and valid soft-

are architectures from availability models. Also, we showed how to

elect more effective fault-tolerance patterns in different execution sce-

arios.

Although we considered a set of well-known fault tolerance refactor-

ng techniques, the approach can be extended to support further user-

efined refactoring actions and to automate the application of such

ctions on GSPN models completely. In this respect, the bidirectional

odel transformation needs to be modified in order to cope with a

arger set of relationships. As a possible consequence of this modifica-

ion, the change propagation from analysis to architectural models may

esult in the generation of multiple architectural alternatives, because

 single refactoring action in a GSPN can be mapped in more than one

efactored architectural model. This is our main future work direction,

here we can still exploit the JTL transformation engine that is able

o support non-bijective mappings by generating all the alternative so-

utions according to the specification. In the same direction, a further

hallenge for the future is to introduce a human-assisted process for

hoosing among multiple suggested alternatives.

Finally, another line of future investigation encompasses the exten-

ion of the proposed methodology to further non-functional require-

ents such as reliability and safety.

redit author statement

The contribution of each author is equivalent for all the CRediT

Contributor Roles Taxonomy) roles.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

eferences

[1] D. Garlan, J.M. Barnes, B.R. Schmerl, O. Celiku, Evolution styles: foundations and

tool support for software architecture evolution, in: WICSA/ECSA, 2009, pp. 131–

140, doi: 10.1109/WICSA.2009.5290799 .

[2] H. Muccini, A. Bertolino, P. Inverardi, Using software architecture for code testing,

IEEE Trans. Softw. Eng. 30 (3) (2004) 160–171, doi: 10.1109/TSE.2004.1271170 .

[3] A. Tang, Y. Jin, J. Han, A rationale-based architecture model for de-

sign traceability and reasoning, J. Syst. Softw. 80 (6) (2007) 918–934,

doi: 10.1016/j.jss.2006.08.040 .

[4] V. Cortellessa, A.D. Marco, P. Inverardi, Non-functional modeling and validation in

model-driven architecture, in: WICSA, 2007, p. 25, doi: 10.1109/WICSA.2007.30 .

[5] D. Garlan , R.T. Monroe , D. Wile , Acme: an architecture description interchange lan-

guage, in: Proceedings of the 1997 Conference of the Centre for Advanced Studies

on Collaborative Research, November 10–13, 1997, Toronto, Ontario, Canada, 1997,

p. 7 .

[6] P. Feiler, D. Gluch, J. Hudak, The architecture analysis & design lan-

guage (AADL): an introduction, 2006, p. 145, doi: 10.1184/R1/6584909.v1 .

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid = 7879 .
[7] S. Becker, H. Koziolek, R.H. Reussner, The Palladio component model for

model-driven performance prediction, J. Syst. Softw. 82 (1) (2009) 3–22,

doi: 10.1016/j.jss.2008.03.066 .

[8] D. Schmidt, Guest editor’s introduction: model-driven engineering, Computer 39 (2)

(2006) 25–31, doi: 10.1109/MC.2006.58 .

[9] R. Eramo, V. Cortellessa, A. Pierantonio, M. Tucci, Performance-driven architectural

refactoring through bidirectional model transformations, in: QoSA, 2012, pp. 55–60,

doi: 10.1145/2304696.2304707 .

10] V. Cortellessa, A.D. Marco, P. Inverardi, Model-Based Software Performance Analy-

sis, Springer, 2011, doi: 10.1007/978-3-642-13621-4 .

11] S. Bernardi , J. Merseguer , D.C. Petriu , Model-Driven Dependability Assessment of

Software Systems, Springer, 2013 .

12] A. Cicchetti , D. Di Ruscio , R. Eramo , A. Pierantonio , JTL: a bidirectional and change

propagating transformation language, in: SLE10, 2010, pp. 183–202 .

13] V. Cortellessa, R. Eramo, M. Tucci, Availability-driven architectural change propaga-

tion through bidirectional model transformations between UML and petri net mod-

els, in: IEEE International Conference on Software Architecture, ICSA 2018, 2018,

pp. 125–134, doi: 10.1109/ICSA.2018.00022 .

14] M.C. Otero, J.J. Dolado, Evaluation of the comprehension of the dy-

namic modeling in UML, Inf. Softw. Technol. 46 (1) (2004) 35–53,

doi: 10.1016/S0950-5849(03)00108-3 .

15] T. Saridakis , A system of patterns for fault tolerance, in: Proceedings of 2002 Euro-

PLoP Conference, 2002 .

16] A. Avizienis, J. Laprie, B. Randell, C.E. Landwehr, Basic concepts and taxonomy of

dependable and secure computing, IEEE Trans. Depend. Secure Comput. 1 (1) (2004)

11–33, doi: 10.1109/TDSC.2004.2 .

17] M.A. Marsan , G. Balbo , G. Conte , S. Donatelli , G. Franceschinis , Modelling with

Generalized Stochastic Petri Nets, John Wiley & Sons, Inc., 1994 .

18] Unified modeling language, 2015, (OMG). Version 2.5.

19] S. Bernardi, J. Merseguer, D.C. Petriu, A dependability profile within MARTE, Softw.

Syst. Model. 10 (3) (2011) 313–336, doi: 10.1007/s10270-009-0128-1 .

20] A UML profile for MARTE: modeling and analysis of real-time embedded systems,

2008, (OMG).

21] S. Hidaka , M. Tisi , J. Cabot , Z. Hu , Feature-based classification of bidirectional trans-

formation approaches, in: SOSYM, 2015, pp. 1–22 .

22] P. Stevens , A landscape of bidirectional model transformations, in: GTTSE, Springer,

2008, pp. 408–424 .

23] R. Eramo , A. Pierantonio , G. Rosa , Managing uncertainty in bidirectional model

transformations, in: SLE, 2015, pp. 49–58 .

24] MOF Query/View/Transformation - QVT, 2016, (OMG).

25] M. Gelfond , V. Lifschitz , The stable model semantics for logic programming, in: ICLP,

1988, pp. 1070–1080 .

26] S. Bernardi, J. Merseguer, QoS Assessment via stochastic analysis, IEEE Internet

Comput. 10 (2006) 32–42, doi: 10.1109/MIC.2006.63 .

27] M. Weber, E. Kindler, The petri net markup language, in: Petri Net Technology

for Communication-Based Systems - Advances in Petri Nets, 2003, pp. 124–144,

doi: 10.1007/978-3-540-40022-6_7 .

28] S. Bernardi, S. Donatelli, J. Merseguer, From UML sequence siagrams and statecharts

to analysable petrinet models, in: Workshop on Software and Performance, 2002,

pp. 35–45, doi: 10.1145/584369.584376 .

29] K. Goseva-Popstojanova , K.S. Trivedi , Stochastic modeling formalisms for depend-

ability, performance and performability, in: Performance Evaluation: Origins and

Directions, 2000, pp. 403–422 .

30] G. Chiola, G. Franceschinis, R. Gaeta, M. Ribaudo, Greatspn 1.7: graphical editor and

analyzer for timed and stochastic petri nets, Perform. Eval. 24 (1–2) (1995) 47–68,

doi: 10.1016/0166-5316(95)00008-L .

31] M. Toeroe , F. Tam , Service Availability: Principles and Practice, Wiley, 2012 .

32] , Delta Four: A Generic Architecture for Dependable Distributed Computing, D. Pow-

ell, I. Bey, J. Leuridan (Eds.), Springer-Verlag, Berlin, Heidelberg, 1991 .

33] B. Kemme, Replication for Availability and Fault Tolerance, Springer, pp. 1–7.

10.1007/978-1-4614-8265-9_80723.

34] T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (4) (1989)

541–580, doi: 10.1109/5.24143 .

35] M. Ajmone Marsan, G. Conte, G. Balbo, A class of generalized stochastic petri nets for

the performance evaluation of multiprocessor systems, ACM Trans. Comput. Syst. 2

(2) (1984) 93–122, doi: 10.1145/190.191 .

36] L. Popova-Zeugmann , Time and Petri Nets, Springer, 2013 .

37] R.N. Taylor , N. Medvidovic , E.M. Dashofy , Software Architecture - Foundations, The-

ory, and Practice, Wiley, 2010 .

38] P. Stevens, Bidirectional model transformations in QVT: semantic issues and open

questions, Softw. Syst. Model. 9 (1) (2010) 7–20, doi: 10.1007/s10270-008-0109-9 .

39] R. Eramo , A. Pierantonio , M. Tucci , Improved traceability for bidirectional model

transformations, in: Proceedings of MODELS 2018 Workshops co-located with MOD-

ELS 2018), 2018, pp. 306–315 .

40] A. Bondavalli , M.D. Cin , D. Latella , I. Majzik , A. Pataricza , G. Savoia , Dependability

analysis in the early phases of uml-based system design, Comput. Syst. Sci. Eng. 16

(2001) 265–275 .

41] G. Huszerl , K. Kosmidis , M.D. Cin , I. Majzik , A. Pataricza , Quantitative analysis of

UML statechart models of dependable systems, Comput. J. 45 (2000) 260–277 .

42] S. Mustafiz, X. Sun, J. Kienzle, H. Vangheluwe, Model-driven assess-

ment of system dependability, Softw. Syst. Model. 7 (4) (2008) 487–502,

doi: 10.1007/s10270-008-0084-1 .

43] A. Martens, H. Koziolek, S. Becker, R.H. Reussner, Automatically improve software

architecture models for performance, reliability, and cost using evolutionary algo-

rithms, in: A. Adamson, A.B. Bondi, C. Juiz, M.S. Squillante (Eds.), Proceedings of

the First Joint WOSP/SIPEW International Conference on Performance Engineer-

https://doi.org/10.1109/WICSA.2009.5290799
https://doi.org/10.1109/TSE.2004.1271170
https://doi.org/10.1016/j.jss.2006.08.040
https://doi.org/10.1109/WICSA.2007.30
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
https://doi.org/10.1184/R1/6584909.v1
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7879
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/2304696.2304707
https://doi.org/10.1007/978-3-642-13621-4
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1016/S0950-5849(03)00108-3
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0014
https://doi.org/10.1109/TDSC.2004.2
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
https://doi.org/10.1007/s10270-009-0128-1
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
https://doi.org/10.1109/MIC.2006.63
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1145/584369.584376
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
https://doi.org/10.1016/0166-5316(95)00008-L
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0028
https://doi.org/10.1109/5.24143
https://doi.org/10.1145/190.191
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
https://doi.org/10.1007/s10270-008-0109-9
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
https://doi.org/10.1007/s10270-008-0084-1

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

[

[

[

[

[

[

ing, San Jose, California, USA, January 28–30, 2010, ACM, 2010, pp. 105–116,

doi: 10.1145/1712605.1712624 .

44] V. Cardellini, E. Casalicchio, V. Grassi, F.L. Presti, R. Mirandola, QoS-driven run-

time adaptation of service oriented architectures, in: H. van Vliet, V. Issarny (Eds.),

Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-

ence and the ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2009, Amsterdam, The Netherlands, August 24–28, 2009, ACM, 2009,

pp. 131–140, doi: 10.1145/1595696.1595718 .

45] T. Hettel , M. Lawley , K. Raymond , Model synchronisation: definitions for round-trip

engineering, in: Theory and Practice of Model Transformations, 2008, pp. 31–45 .
46] D. Arcelli, V. Cortellessa, Software model refactoring based on performance analy-

sis: better working on software or performance side? in: FESCA, 2013, pp. 33–47,

doi: 10.4204/EPTCS.108.3 .

47] J. Tatibouet, A. Cuccuru, S. Gérard, F. Terrier, Principles for the realization of an

open simulation framework based on fUML (WIP), volume 45, 2013.

48] L. Berardinelli , A.D. Marco , S. Pace , fUML-driven design and performance analysis of

software agents for wireless sensor network, in: Software Architecture - 8th European

Conference, ECSA 2014, 2014, pp. 324–339 .

49] L. Berardinelli, P. Langer, T. Mayerhofer, Combining fUML and pro-

files for non-functional analysis based on model execution traces, 2013,

doi: 10.1145/2465478.2465493 .

https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1595696.1595718
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
https://doi.org/10.4204/EPTCS.108.3
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
https://doi.org/10.1145/2465478.2465493

	From software architecture to analysis models and back: Model-driven refactoring aimed at availability improvement
	1 Introduction
	2 Background
	2.1 Round-trip non-functional analysis process
	2.2 Model-based availability analysis
	2.3 Fault tolerance refactoring techniques

	3 The JASA approach
	3.1 Using model driven techniques
	3.2 From availability assessment to architecture improvements
	3.3 A catalog of availability patterns
	3.3.1 Passive replication
	3.3.2 Semi-passive replication
	3.3.3 Active replication
	3.3.4 Semi-active replication

	3.4 The UMLJASA-GSPN bidirectional transformation
	3.4.1 UMLSM-GSPN
	3.4.2 GSPN subnets composition
	3.4.3 Static view (UMLCD) update

	4 JASA at work
	4.1 Environmental control system (ECS) modeling
	4.2 Analysis model generation
	4.3 Analysis results and refactoring
	4.4 Change propagation

	5 Results evaluation
	5.1 Insights on research questions
	5.1.1 RQ1: Analizability of the generated analysis models
	5.1.2 RQ2: Validity of the refactored architecture
	5.1.3 RQ3: Pattern selection for availability improvements

	5.2 Threats to validity

	6 Related work
	7 Conclusion
	Credit author statement
	Declaration of Competing Interest
	References

