Information and Software Technology 127 (2020) 106362

Information and Software Technology

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infsof

From software architecture to analysis models and back: Model-driven 7))

Check for

refactoring aimed at availability improvement

Vittorio Cortellessa, Romina Eramo, Michele Tucci*

Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy

ARTICLE INFO

Keywords:

Software architecture

Availability

Bidirectional model transformation
Refactoring

ABSTRACT

Context: With the ever-increasing evolution of software systems, their architecture is subject to frequent changes
due to multiple reasons, such as new requirements. Appropriate architectural changes driven by non-functional
requirements are particularly challenging to identify because they concern quantitative analyses that are usually
carried out with specific languages and tools. A considerable number of approaches have been proposed in the
last decades to derive non-functional analysis models from architectural ones. However, there is an evident lack
of automation in the backward path that brings the analysis results back to the software architecture.

Objective: In this paper, we propose a model-driven approach to support designers in improving the availability
of their software systems through refactoring actions.

Method: The proposed framework makes use of bidirectional model transformations to map UML models onto
Generalized Stochastic Petri Nets (GSPN) analysis models and vice versa. In particular, after availability analysis,
our approach enables the application of model refactoring, possibly based on well-known fault tolerance patterns,
aimed at improving the availability of the architectural model.

Results: We validated the effectiveness of our approach on an Environmental Control System. Our results show
that the approach can generate: (i) an analyzable availability model from a software architecture description,
and (ii) valid software architecture models back from availability models. Finally, our results highlight that the
application of fault tolerance patterns significantly improves the availability in each considered scenario.

Conclusion: The approach integrates bidirectional model transformation and fault tolerance techniques to support
the availability-driven refactoring of architectural models. The results of our experiment showed the effectiveness
of the approach in improving the software availability of the system.

1. Introduction

of non-functional attributes (e.g., AADL [6]) and even fewer ones are
equipped with solvers leading non-functional indices out of an architec-

In order to succeed in new market segments, organizations have
constantly been increasing the use of software in systems over the last
decades. Nowadays, due to continuous evolution, software architecture
is subject to changes induced by decisions taken along the overall soft-
ware lifecycle [1]. Indeed, as the earliest artifact that evolves along the
process, a software architecture model can support different tasks, such
as test case generation [2], traceability [3], and non-functional valida-
tion [4].

Appropriate architectural changes driven by non-functional require-
ments are particularly challenging to identify, mainly because non-
functional analysis is based on specific languages and tools (e.g., Petri
Nets, Markov Models) that are different from typical software architec-
ture notations like Architecture Description Languages (e.g., ACME [5]).
In fact, very few ADLs embed constructs that enable the specification

* Corresponding author.

ture specification (e.g., Palladio [7]). Hence, even in cases where the
analysis tools help to identify suitable architectural changes that may
overcome non-functional problems, these changes need to be brought
back within the architecture description language and environment.
This step may prove to be particularly complex, as it subsumes a change
of notation that might alter the semantics of identified architectural
changes.

With the introduction of Model Driven Engineering (MDE) [8] tech-
niques in the software lifecycle, the analysis of quality attributes has
become more effective by means of automated transformations from
software artifacts to analysis models [9]. Hence, in order to validate
non-functional requirements on a software architecture, a number of ap-
proaches, mostly based on model transformations, have been proposed

E-mail addresses: vittorio.cortellessa@univagq.it (V. Cortellessa), romina.eramo@univagq.it (R. Eramo), michele.tucci@univaq.it (M. Tucci).

https://doi.org/10.1016/j.infsof.2020.106362

Received 21 October 2019; Received in revised form 24 April 2020; Accepted 30 May 2020

Available online 2 June 2020

0950-5849/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.infsof.2020.106362
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106362&domain=pdf
mailto:vittorio.cortellessa@univaq.it
mailto:romina.eramo@univaq.it
mailto:michele.tucci@univaq.it
https://doi.org/10.1016/j.infsof.2020.106362
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Cortellessa, R. Eramo and M. Tucci

in the last decades to generate non-functional models from software ar-
chitectural descriptions [10,11]. There is instead a clear lack of automa-
tion in the backward path that basically consists in the interpretation of
the analysis results and the generation of architectural feedback to be
propagated back to the software architecture.

The goal of this paper is to introduce a model-driven approach that
works on the forward and backward path of a round-trip software pro-
cess to support designers in improving the availability of their software
architecture. In particular, we introduce JASA (JTL-based! framework
for Availability analysis of Software Architecture), which makes use of
bidirectional model transformations to map architectural models and
availability models in both forward and backward directions. By work-
ing with UML models, annotated with availability parameters, and Gen-
eralized Stochastic Petri Nets (GSPN), JASA is able both to derive an
analysis model from a software architecture and, after the analysis, to
propagate back on the software architecture the changes made on the
analysis model. In addition, these changes can be based on well-known
fault tolerance patterns that we have preventively modeled in GSPN to
be easily applied to the model under analysis.

The main contributions of this paper are:

o the automated transformation of a software architecture (modeled
in UML) into a GSPN analysis model,

o the refactoring of GSPN models (possibly based on well-known fault
tolerance patterns), and

o the propagation of the changes performed on the GSPN models back
to UML models.

In a previous paper [13], we presented a bidirectional model trans-
formation between UML State Machines (SMs), annotated with avail-
ability parameters, and GSPN. Such transformation was aimed both to
derive a GSPN availability model from a SM-based software architecture
and, after the analysis, to propagate back on the UML model the changes
made on the GSPN model. This paper is an extension of our previous pa-
per stemming from the realization that it was restricted to consider only
SMs. In fact, a deeper semantic comprehension of an UML model can be
achieved if the dynamic behavior is modeled by using the Sequence Di-
agrams (SDs) in addition to SMs [14]. In fact, SMs describe the behavior
of an object (that could be the instance of a particular component/class)
depending on what state it is currently in, whereas SDs show the execu-
tion of use cases and the behavior of involved objects in terms of their
interactions. Such modeling extension of behavioral aspects of software
architectures impacts on the accuracy of availability analysis and on the
introduction of well-known fault-tolerance refactoring techniques (e.g.
error masking). Moreover, the back propagation of GSPN changes into
UML models is improved by considering the interactions among compo-
nents.

Furthermore, in this paper we introduce a catalog of refactoring pat-
terns with the aim to drive the designers in their process. In particular,
the patterns for fault tolerance presented in Saridakis [15] have been
considered to generate the corresponding patterns in GSPN, that will
be propagated in UML through the bidirectional model transformations
defined in JASA. The overall approach has been implemented as a ded-
icated framework implemented within Eclipse.?

Finally, our approach has been evaluated on an Environmental Con-
trol System example application in order to address these points: (i)
generation of analyzable availability models from software architecture
models; (ii) back generation of valid software architecture models from
availability models; (iii) ability to improve the availability of software
architecture models.

The rest of the paper is organized as follows: Section 2 sets the back-
ground for this research work along with its contributions and relations
with the authors’ previous work. Section 3 describes the JASA method-
ology and its implementation. Section 4 illustrates the application of

1 The transformation engine is based on JTL [12].
2 Eclipse Platform: https://projects.eclipse.org/projects/eclipse.platform.

Information and Software Technology 127 (2020) 106362

JASA to the Environmental Control System (ECS) example application.
Section 5 provides the evaluation of the results obtained by applying
JASA. Section 6 describes related approaches, and finally Section 7 con-
cludes the paper.

2. Background

In the following, we describe the background of this research work
and its contributions in terms of non-functional analysis and refactoring
process leveraged for the definition of JASA. Also, we detail the contri-
butions presented in this paper and put them in relation to the authors’
previous work.

2.1. Round-trip non-functional analysis process

In order to validate non-functional requirements on a software ar-
chitecture, some approaches, mostly based on model transformations,
have been proposed in the last decades to generate non-functional mod-
els from software architectural descriptions [10,11]. This generation step
is also called forward path, and it is represented by the topmost steps of
Fig. 1. However, the solution of generated models does not necessarily
produce indices that satisfy the requirements, thus an iterative process
is often required to refactor the generated model on the basis of solution
results. This process (hopefully) ends up when satisfactory indices are
produced, and it is represented by the rightmost step of Fig. 1.

Thereafter, changes applied to non-functional models, for the sake
of requirement satisfaction, have to be propagated back to the software
architecture, and this is represented by the bottom-most step of Fig. 1,
also called backward path. However, analysis results do not straightfor-
wardly suggest what changes have to be made on the software archi-
tecture, hence this propagation is often based on the ability of experts
that interpret the results. This clear lack of automation in the backward
path represents a heavy limitation towards the construction of a round-
trip process for non-functional validation of a software architecture. In
this paper, we consider this general round-trip non-functional analysis
process in the availability analysis context.

2.2. Model-based availability analysis

Availability can be defined as the system readiness to provide cor-
rect service. It corresponds to the probability that the system is working
within its specifications at a given instant [16]. In particular, the steady
state availability can be expressed as the ratio between the value of
MTTF (Mean Time To Failure) and the sum of MTTF and MTTR (Mean
Time To Repair) values.

Stochastic Petri Nets (SPN) are a well-established formalism for mod-
eling systems availability [11]. In this paper, we consider an extension of
SPN, called Generalized Stochastic Petri Nets (GSPN) [17]. Transitions
defined in GSPN can be either immediate, when firings take no time,
or timed, when associated delays are exponentially distributed. Imme-
diate transitions fire with priority over timed transitions, and different
priority levels can be defined over them. A weight is also associated to
each immediate transition. When two or more immediate transitions are
in conflict (e.g., because they have the same priority), the selection of
the one that fires first is made using the associated weights. The delay
associated with a timed transition is a random variable, distributed as
a negative exponential, with a defined rate. When two or more timed
transitions are in conflict, the selection of the one that fires first is made
according to the race policy.

In this work, availability analysis is conducted on a GSPN derived
from a software architecture modeled in UML [18].

Since UML does not natively provide support for availability mod-
eling, we rely on the “Dependability Analysis and Modeling” (DAM)
profile [19] to enhance UML models with availability annotations. DAM
was designed on top of the standard MARTE profile [20], which extends

https://projects.eclipse.org/projects/eclipse.platform

V. Cortellessa, R. Eramo and M. Tucci

~ Forward path ~

Information and Software Technology 127 (2020) 106362

—— l
e ruk

| & |

[> > { >

| Software Analysis model generation Non-functional \ Non-functional
I | architecture model I: siialsis

e o o o e e e e e e e e e e e e e e e s
S 1l

, I

” \ﬁgtr % ’i

! +— — ——

I'| Refactored Change propagation Refactored \)

| software non-functional I Refactoring
|| architecture model

w = Backward path /1

Fig. 1. Round-trip non-functional analysis process.

UML to annotate models with schedulability and performance analy-
sis information. Despite the ability to annotate behavioral models with
availability properties, UML-DAM lacks the execution semantics to be
formally analyzed. This is the reason why DAM-annotated UML models
need to be transformed (e.g., in GSPN) for the sake of analysis.

2.3. Fault tolerance refactoring techniques

Nowadays, software has strong influence on system availability.
Since defects inherently occur in software design and coding for several
reasons (e.g., software complexity, changing requirements, time pres-
sures), software fault tolerance is even more important.

Among the well-known fault tolerance refactoring techniques that
may improve the software availability, we consider the techniques that
deal with error masking [15], i.e.: Passive Replication, Semi-Passive Repli-
cation, Active Replication and Semi-Active Replication.

Error masking techniques aim at isolating the subsystem in which
an error is detected by relying on some form of redundancy to resume
the processing that the system was performing when the error occurred.
Replicas of system components and checkpoints can be employed, even
in combination, to implement such techniques. Passive Replication and
Semi-Passive Replication patterns provide error masking by saving the
state of a component (checkpoint) before it receives the input, so that,
if an error occurs during processing, an identical replica of the compo-
nent can be activated to restart the processing from the saved check-
point. While in the Passive Replication pattern the checkpoint is stored
in a separate Storage component, Semi-Passive Replication requires that
the checkpoint is directly stored in the replica. On the other hand, Active
Replication and Semi-Active Replication patterns require a group of repli-
cas to be always active during input processing. In the Active Replication
pattern, the replicas provide the output to a Comparator component that
performs a majority vote before forwarding it to the rest of the system.
In contrast, in the Semi-Active Replication pattern, a replica provides the
output to the system only when an error occurs in the original compo-
nent. The patterns mentioned above, as well as refactoring inspired by
them, will be presented in detail in Section 3.3.

3. The JASA approach

In this section we introduce JASA, a model-driven framework for
supporting the round-trip availability analysis process and software ar-
chitectural refactoring. The approach aims at supporting designers in
their availability analysis process that involves the back propagation of
results as refactoring actions on the software architecture. In particular,

JASA leverages the interplay of UML and GSPN and provides automa-
tion for their mapping by means of a bidirectional model transformation
mechanism [12]. In fact, the bidirectional engine provides the possibil-
ity to automate round-trip process by applying the transformation rules
in both ways, from right to left domains and vice versa. In addition,
JASA provides a set of refactoring actions that can be used by the de-
signer to improve the availability of the system.

In the following, we introduce the used technologies, we present the
process underlying our approach, and we provide a catalog of availabil-
ity patterns that can be applied on GSPN models. Then, we describe the
implementation of the approach based on bidirectional model transfor-
mations. The complete implementation of JASA is available online.>

3.1. Using model driven techniques

Model Driven Engineering (MDE) [8] leverages domain knowledge
and business logic from source code into high-level specifications en-
abling more accurate analyses. In general, an application domain is
consistently analyzed and engineered by means of a metamodel, i.e., a
coherent set of interrelated concepts. A model is said to conform to a
metamodel: it is expressed by the concepts encoded in the metamodel.
Constraints are expressed at the meta-level, and model transformations
are based on source and target metamodels. With the introduction of
model-driven techniques in the software lifecycle, the analysis of quality
attributes has become effective by means of automated transformations
from software artifacts to analysis models [10].

The proposed approach makes use of bidirectional model transfor-
mations [21] to map architectural models and analysis models in both
forward and backward directions. In contrast to unidirectional lan-
guages, bidirectional approaches allow describing both forward and
backward transformations simultaneously, so that the consistency of the
transformation can be guaranteed by construction [22].

3.2. From availability assessment to architecture improvements

The proposed approach is realized on top of JTL (Janus Transforma-
tion Language) [12,23], that is a constraint-based model transformation
framework specifically tailored to support bidirectionality and change
propagation.* JASA has been implemented within the Eclipse frame-
work and mainly exploits the Eclipse Modeling Framework (EMF).° As a

3 JASA: https://github.com/SEALABQualityGroup/JASA.
4 JTL: http://jtl.univag.it/.
5 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/.

https://github.com/SEALABQualityGroup/JASA
http://jtl.univaq.it/
https://www.eclipse.org/modeling/emf/

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

JASA
e / N\ 4 4 i N\
Ijgt' g UML"-GSPN g ’ Availability
UML bidirectional transf. GSPN Ivsi
analysis
\jgtv B3 @
UMD Janus bidirectional engine GSPN’ REfetoHinG

Fig. 2. The JASA overall approach.

consequence, the environment supports any language defined as a meta-
model conforming to Ecore (i.e., the EMF metamodel). In this work,
we focus on GSPN-based analysis models, whereas, the software archi-
tecture is modeled by means of UML. In particular, for the behavioral
aspects, State Machines (SM) and Sequence Diagrams (SD) annotated
via DAM are considered, whereas for the static aspects, Component Di-
agrams (CD) are considered. In the rest of the paper, we use UML/ASA
to refer to the considered UML diagrams, that are UMLSM, UMLSP and
UMLCP,

The JASA overall approach is reported in Fig. 2. As said, the Bidi-
rectional engine relies on JTL to enable the execution of bidirectional
model transformations in both forward and backward directions. The
UMLASA_GSPN bidirectional transformation maps UML models to GSPN
and vice versa. In particular, in order to execute the transformation in
the forward direction, a DAM-annotated UML model is taken as input to
the engine, and the correspondent GSPN model is produced as output.
The generated GSPN model is solved in order to obtain a set of indices
that have to be interpreted (see Availability analysis in the figure). There-
after, the GSPN model is iteratively modified until availability require-
ments are satisfied (see Refactoring in the figure). In order to propagate
changes applied to the GSPN model back to the UML model, the bidi-
rectional transformation is executed in the backward direction. In our
case, the engine takes as input the modified GSPN model and produces
as output a DAM-annotated UML model representing the software ar-
chitecture that embeds the changes made on the GSPN to solve arisen
availability problems.

3.3. A catalog of availability patterns

In this section, we present a set of patterns that can be used to im-
prove the availability of a system. These patterns employ error masking
techniques, based on replicas and checkpoints, that can be applied to a
system designed by means of a GSPN. For each pattern, we show how a
GSPN can be refactored to mask errors coming from a component with-
out altering its original functionality.

Although, at the current stage, the refactoring activity is performed
manually, the GSPN refactoring patterns we introduce in this section are
designed to support automation. In particular, each pattern is equipped
with anchor points that are used to properly insert it on a specific point
of a GSPN modeling the original behaviour of a software component.
Potentially, an automated tool can take as inputs the original GSPN, the
pattern to be inserted and the specific point where it has to be applied,
and it returns the GSPN refactored with the pattern.

Once applied on the GSPN model, the refactoring patterns will be
propagated backwards through the transformation that will be pre-
sented in Section 3.4.

3.3.1. Passive replication

In this pattern, an error is masked by saving the state of a system
component (a checkpoint) before it starts processing the input. If an er-
ror is detected, a backup replica of the same component is activated and
the checkpoint restored. Hence, the backup will restart the processing of
the input from the last state in which the system was behaving correctly.
A Component Diagram of this pattern is reported in Fig. 3a, where com-
ponents represent roles in the pattern and interfaces are used to depict
the actions that are required for coordination. Fig. 3b shows the imple-
mentation of this pattern in GSPN. For the sake of presentation, three
vertical dots are used to visually compress sequences of places and tran-
sitions without branching points, whereas surrounding boxes are used to
highlight the roles of GSPN subnets in the pattern. Grey boxes (e.g., Pri-
mary Behavior and Backup Behavior in the figure) are introduced to show
where the original behavior of components will fit into the pattern.

In order to implement the Passive Replication pattern, the following
additional components should be added to the system:

The Backup, that is identical to the original (Primary) component
of which we want to mask errors. This replica is not started during
error-free executions;

The Log, which is able to record and forward inputs to the Primary
as well as send the recorded inputs again to the Backup in case of
error;

The Storage, that is responsible for storing checkpoints and sending
them to Backup upon request from the Manager. We assume that the
Storage is not subject to errors;

The Manager, that has the tasks of (i) asking the Primary to save a
checkpoint, (ii) activating the backup in the presence of errors and
(iii) requesting from the Storage to provide the last saved checkpoint.

Primary, Backup, and Manager must be deployed to different units of
failure.

3.3.2. Semi-passive replication

The Semi-Passive Replication pattern is able to mask errors in a simi-
lar way to the Passive Replication pattern, but without requiring a stor-
age dedicated to checkpoints. The Component Diagram of this pattern
is shown in Fig. 4a. The Primary component saves the checkpoint by
sending it directly to the Backup. Log and Manager components are still
required to implement the pattern. The Log stores and forward the in-
put to the Primary which, before processing it, sends a checkpoint to the
Backup. When an error occurs, the Manager activates the Backup and
asks the Log to forward the input to it. The Backup restores its state us-
ing the saved checkpoint before starting to process the input. Primary
and Backup must be deployed to different units of failure.

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

«component»
= | Primary
_______________ ><_ — L cssasns s s annns,
.] i
' input '
' |
'
' . storeCheckpoint
: checkpoint P
'
: forwardToPrimary)
«component» 4O< _______ «component» provideCheckpoint «component»
%]Log = |Manager = | Storage
() forwardToBackup
input 4(>< ________
T T
' V
: .
: activate
] getCheckpoint
' «component» A
L P >07 £1Backup |- .
input
(a) Component Diagram of the Passive Replication pattern
LOG MANAGER
e TG 3 (= =\
LOG _StandBy MNG_StandBy
LOG _input._e LOG_t_StandBy MNG_inputreccived e MNG_t_StandBy
MNG_inputreceived
MNG _t_inputreceived
LOG t,_WagToFwd
=~ MNG_AskPrimaryToCheckpoint
LOG fwdtoprimary e
: MNG_t_AskPrimaryToCheckpaint
MNG_DetectErrors
LOG _Send ToPrimary LOG_ SendToBackup MNG_t,_DetectErrors MNG_t,_DetectErrors
MNG _noerrors_e MNG _errors_e
LOG_t_SendToPrimary LOG_t_SendToBackup J
MNG _nocrrors
MNG_ActivateBackup
MNG_t_noerrors

PMR_input._e:

PMR_checkpoint._e!

PRIMARY

. PMR_Checkpoint ToStorage

STORAGE

PMR_StandBy

PMR_t_StandBy

MNG_t_ActivateBackup

MNG_ProvideCheekpoint

 MNG_t_Provide Checkpoint

MNG_AskLogToRepluy

MNG _t_AskLogToRepla,

BACKUFP

PMR _t_Checkpoint ToStorage

BKP_activate_e

BKP _restorecheckpoint_e

SRG_t,

SRG _savecheckpoint_e

SRG_SaveCheckpoint

SRG_t_SaveCheck,

SigndBy

int

SRG_StandBy
SRG_t, StandBy

BKP_input_c

SRG_sendcheckpoint_e

SRG_SendCheckpoint

SRG_t_SendCheckpoint

BKP_StandBy

BKP_t_StandBy
BKP_Wakelp
BEP_t_WakeUp

() BEP RestoreCheckpotat

BKP_t_RestoreCheckpoint

(b) GSPN of the Passive Replication pattern

Fig. 3. The Passive Replication pattern.

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

«component»
=] Primary

forwardToPrimary

storeCheckpoint

= |Log
() forwardToBackup
input | L ____> ><)—

«component» e '>’Oi «component» «component»
<]Manager | = |Backup
activate
----------------------------------- input

(a) Component Diagram of the Semi-Passive Replication pattern

LOG

MANAGER

*) LOG StandBy

LOG_input_c LOG_t_StandBy

LOG _WaitToFwd

LOG_t)-WaitToFud LOG_to-WaitToFud

LOG_fwdtoprimary_e

LOG _Send ToPrimary LOG _SendToBackup

LOG_t_SendToPrimary LOG_t_SendToBackup

\&1_()(; fwdtobackup_c

MNG_StandBy

MNG _inputreceived _e = MNG_t_StandBy

MNG_AskPrimary ToCheckpoint

MNG_t_AskPrimary ToCheckpoint

MNG _DetectErrors
MNG._t,_DetectBrrors

O MNG _errors_e

MNG_t,_DetectErrors

MNG_nocrrors_e O’

MNG_noerrors

[

MNG _ActivateBackup

MNG_t_noeriors

PRIMARY

PMR_StandBy

PMR_checkpoint e PMR_t_StandBy
\
\ PMR_Checlpoint ToBackup
PMR_input_e PMR_t_Checkpoint To Backup

PMR_input

PMR _t_input

Primary Behavior
PMR_PrimaryBehavior

PMR_t_PrimaryBehavior

MNG_t_ActivateBackup

MNG _AskLogToReplay

LogToReplay

BACKUP

BKP_StandBy
BKP_t_S{ndBy BKP_t

e S I
BKP_activate oO \C)Zn_m savecheckpoint_e

BKP_WakeUp BRP_SaveCheckpoint

BKP_t_WakeUp BKP._t_SaveCheckpoint
Backup Behavior

BKP_BackupBehavior

BKP_input_e

BKP_t_BackupBehavior,

(b) GSPN of the Semi-Passive Replication pattern

Fig. 4. The Semi-Passive Replication pattern.

3.3.3. Active replication

The Active Replication pattern is considered the most effective error
masking technique but also the most expensive. This pattern employs a
group of replicas actively receiving and processing every input intended
for the component of which we want to mask errors. According to this
pattern, we need to introduce two new components:

o The Distributor, which receives the input intended for the original
component and forward it to all the replicas in the group;

e The Comparator, that is responsible for comparing the output com-
puted by the replicas and deciding (by majority voting) what will be
the final output of the system.

Fig. 5a shows the Component Diagram of this pattern when the
group of replicas is composed by (i) a Primary component, rep-
resenting the original component of which we want to mask er-
rors, and (ii) a Backup component, that is an identical replica of

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

input «component» output
1== == (O)— 8 |Primary.) -~ - -~ - =2
1
1
'
«component» «component»
= | Distributor = | Comparator
inpcu'?
4 «component»
: = |Backup
R G T R,
input output

(a) Component Diagram of the Active Replication pattern

DISTRIBUTOR

DSB_input_e

SendInput _PMR

DSB_Stand By

DSB_t_StandBy

DSB_input

DSB._t.input

DSB_Sendlnput

DSB_t_SendInput

t_Sendlnput PMR
PRIMARY

PMR_StandBy
PMR_input_e PMR_t_StandBy
PMR _input
PMR_t_input

Primary Behavior
PMR _PrimaryBehavior

PMR_t_PrimaryBehavior

SendOutput _PMR

t_SendOutput_PMR

SendInput_BKP

t_SendInput_BKP
BACKUP

BKP_StandBy
BKP_input_e BKP_t_StandBy
BKP _input
BKP_t_input

Backup Behavior
BKP _BackupBehavior

BKP_t_BackupBehavior

SendOutput_BKP

CMR _outputreceived e

RATOR

t_SendQutput_BKP

CMR_StandBy

CMR_t_StandBy

CMR _outputreceived

CMR_t_outputreceived

CMR _Vote

CMR_t_Vote

(b) GSPN of the Active Replication pattern

Fig. 5. The Active Replication pattern.

Primary. For the reason that all the replicas are continuously ac-
tive, the structure of this pattern does not contain a different path
that the system will follow in case of errors. Primary, Backup,
and Comparator components must be mapped to different units of
failure.

3.3.4. Semi-active replication

Similarly to the previous pattern, the Semi-Active Replication pattern
employs a group of replicas that are always active. However, unlike
the Active Replication pattern, only one replica will deliver the output.
Fig. 6a reports the Component Diagram of this pattern with the group

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

«component»
'—"""->’Q7 = | Primary
' inpu
1
«component» :
= | Distributor
. Qﬁ noErrors
inpu
T «component»
I
| = |Backup
SRR, >0
inpu

(a) Component Diagram of the Semi-Active Replication pattern

DISTRIBUTOR

DSB_StandBy
DSB_input_e DSB_t_StandBy
DSB_input
DSB_t_input

DSB_SendInput

SendInput_PMR.

DSB_t_SendInput SendOutput_BKP

t_SendInput_PMR t_SendOutpul_BKP

PRIMARY BACKUP
¢ N
PMR_StandBy BKP_StandBy
PMR_input_e PMR_t_StandBy BKP_input_e BKP_t_StandBy
PMR_input BKP_input
MR_t_input BKP_t_input

Backup Behavior

BKP_BackupBehavior
BKP_t;_BackupBehavior

BKP_errors_e

NoErrors

BKP _noerrors BKP _errors

Primary Behavior
PMR _PrimaryBehavior

BKP_t,_BackupBehavior
PMR_t_PrimaryBehavior BKP_noerrors_e

t_NoFErrors

BKP_t_noerrors BKP_t_errors

BKP_DiscardOutput BKP_SendOutput

BKP_t_DiscardOutput BKP_t_SendQutput

.

(b) GSPN of the Semi-Active Replication pattern

Fig. 6. The Semi-Active Replication pattern.

V. Cortellessa, R. Eramo and M. Tucci

of replicas composed by Primary and Backup. A Distributor component
is still needed to forward the input to all the replicas. In an error-free
execution, the Primary component directly delivers the output to the
environment and then reports to the Backup that no errors occurred so
that the output computed by the Backup can be discarded. If an error
occurs on the Primary, then the Backup takes over the responsibility to
deliver the output. Primary, Backup must be deployed to different units
of failure.

3.4. The UML’ASA-GSPN bidirectional transformation

JTL adopts a textual syntax (that is inspired to QVT-R [24]) and al-
lows a declarative specification of relationships between MOF models.
The mechanism of transformation is rule-based. The language supports
object pattern matching, and implicitly creates trace instances to record
what occurred during a transformation execution. A transformation be-
tween candidate models is specified as a set of relations that must hold
for the transformation to be successful: in particular, it is defined by two
domains and includes a pair of when and where predicates that specify
the pre- and post- conditions that must be satisfied by elements of the
candidate models. When a bidirectional transformation is invoked for
the enforcement, it is executed in a specific direction by selecting one
of the candidate models as the target by means of a run configuration.
The implementation relies on the Answer Set Programming (ASP) [25],
which is a form of declarative programming oriented towards difficult
(primarily NP-hard) search problems and based on the stable model (an-
swer set) semantics of logic programming. The JTL engine finds and
generates, in a single execution, all possible models that are consistent
with the transformation rules by a deductive process.

The implementation of the UML’ASA-GSPN bidirectional transforma-
tion includes the definitions of the following tasks:

¢ Mapping UMLSM to GSPN models and vice versa (UMLSM-GSPN),

e Composing GSPN subnets by mapping UMLSP to GSPN models and
vice versa (UMLSP-GSPN),

o Updating the static view of the architecture (UMLCP).

We remark that the considered UML diagrams are linked together in
accordance with the UML specifications [18]. As a consequence, the
coordination between execution semantics of related machines is re-
alized by considering the relationships between transitions and opera-
tions. More in detail, each transition has a reference to an event that, in
turn, refers to an operation already defined in the Component diagram.
For instance, in the State Machine diagrams in Fig. 10, the getTempera-
tureData transitions in TemperatureSensor and GreenhouseController refer
to the very same homonymous operation.

Specifically, with regard to the elements involved in the transfor-
mation, a single State Machine is defined for each Component,
and Transition elements in the State Machine Diagram are linked
to Operation elements in the Component Diagram by means of
the trigger.event.operation reference. The same elements
of Operation type are also linked to Message elements in Se-
quence Diagrams through the signature reference. Additionally,
Sequence Diagrams are linked to Component Diagrams through the
Lifeline elements that refer to Component elements by using the
represents.type reference.

In the rest of this section, we present a detailed discussion of each
of the above mentioned tasks. The complete implementation of the
UMLIASA_GSPN bidirectional transformation is available online.®

3.4.1. UMLSM-GSPN
The first part of the transformation maps UMLSM and GSPN; it is
characterized by a one-to-pattern element mapping, meaning that a

6 UML’ASA.GSPN: https://github.com/SEALABQualityGroup/JASA/blob/
master/JTL/transformations/UMLGSPN.jtl.

Information and Software Technology 127 (2020) 106362

UMLSM element is mapped to a pattern of GSPN elements. In particular,
starting from UMLSM the corresponding patterns in GSPN are generated
and vice versa. Such implementation considers the formal definition of
the unidirectional translation of UMLSM in GSPN provided in Bernardi
and Merseguer [26]. Starting from the latter, the relationships between
UMLSM and GSPN are deduced and then completed in order to define
the bidirectional mapping between the notations. The complexity of the
latter task is high because the unique bidirectional transformation has
to guarantee the syntactic and semantic consistency of source and target
models in both directions.

For the sake of detailed illustration, a fragment of the UMLSM-
GSPN bidirectional transformation implemented via JTL is depicted in
Listing 1. In the following listings, three dots are used in place of repet-
itive sections of code.

As said, the transformation is specified by means of a set of relations
among elements of the two involved domains; they represent the trans-
formation rules that can be executed in both directions. The first line
of the listing declares the variable uml that matches models conform-
ing to the UMLSM metamodel and the variable pn that matches models
conforming to the GSPN metamodel (based on the standard Petri Net
Markup Language (PNML) [27]). The main relations specified in the
transformation are described as follows:

e StateMachine2PetriNet (lines 3-18) generates a container
element of type PetriNet with attribute id from an element of
type StateMachine with attribute name, and vice versa in the
opposite direction. Moreover, the correspondence between the ref-
erence region of type Region and the reference pages of type
Page is defined.

e State2Pattern (lines 20-41) maps simple states to a specific
pattern. Since a single element in the UMLM domain induces the
creation of a list of elements in the GSPN domain, the relation en-
forces multiple patterns. In particular, for each UMLSM State in a
Region (see the reference subvertex), the following GSPN ele-
ments (see the references objects) are created: an element s of
type Place, an element s1 of type Transition (of kind “imme-
diate”, marking an immediate GSPN transition), and an element s2
of type Arc that links s and s1. In the opposite direction, for each
occurrence of the described GSPN pattern a correspondent State
is generated;

StateActivity2Pattern (lines 43-72) considers states that

involve elements of type Activity and add a pattern of elements

to the base pattern defined for simple states. In particular, the fol-
lowing elements are added: s3 of type Place, s4 of type Arc that
links the previously created transition s2 and the place s4, s5 of
type Transition (of kind “exponential”, marking an exponential

GSPN transition), and s6 of type Arc that links s4 and s5. In the

opposite direction, for each occurrence of the described GSPN pat-

tern a correspondent State is generated;

e Transition2Pattern (lines 74-120) relates transitions to a
specific pattern. In particular, for each UMLSM Transition in a
Region (see the reference transition), the following GSPN el-
ements (see the references objects) are created: an element t of
type Place, an element t1 of type Transition (of kind “imme-
diate”), an element t2 of type Arc that links t and t1, an element
t3 of type Arc that links t and the transition s1 (created from a
simple state), an element t4 of type Place, an element t5 of type
Arc that links s1 and t4, an element t6 of type Transition (of
kind “immediate”), and an element t7 of type Arc that links t4 and
t6. In the opposite direction, for each occurrence of the described
GSPN pattern a correspondent Transition is generated;

e TransitionDaStep2Pattern (lines 122-146) relates UMLSM
transitions annotated with the stereotype DaStep from the profile
DAM and GSPN transitions (of kind “immediate”). Moreover, the
value of the attribute occurrenceProb is mapped to attribute
weight, and vice versa.

https://github.com/SEALABQualityGroup/JASA/blob/master/JTL/transformations/UMLGSPN.jtl

V. Cortellessa, R. Eramo and M. Tucci

I transformation UMLGSPN (uml:umlsm, pn:
ptnet) {
2

3 top relation StateMachine2PetriNet ({

Information and Software Technology 127 (2020) 106362

28 objects=sl:ptnet::Transition {

29 transitionKind="immediate"

}

31 i

enforce domain pn p:ptnet::Page {
objects=s2:ptnet::Arc {

source=s:ptnet::Place {}

35 target=sl:ptnet::Transition {}

i

where {
s.doActivity.oclIsUndefined ()
}

355 4 name: String; 38532
enforce domain uml statemachine:umlsm 33
::StateMachine { 3
name=name,
7 region=r:umlsm::Region {}
360 8 }; 3903
enforce domain pn petrinet:ptnet::
PetriNet {
0 id=name,
11 pages=p:ptnet::Page {}
36512 ¥ 39512

13 where {
4 State2Pattern(r, p);

StateActivity2Pattern(r, p);

16 Transition2Pattern(r, p);
3700 }
18 }
20 relation State2Pattern {
21 enforce domain uml r:umlsm::Region {
37522 subvertex=s:umlsm::State {}
23}
24 enforce domain pn p:ptnet::Page {
25 objects=s:ptnet::Place {}
26 };
38027 enforce domain pn p:ptnet::Page {

405

41064

51 enforce domain pn

52 enforce domain pn

relation StateActivity2Pattern {

enforce domain uml r:umlsm::Region {

45 subvertex=s:umlsm::State {

doActivity=a:umlsm: :Activity {}
}
bi
enforce domain pn
bi
enforce domain pn

}i

p:ptnet::Page {

p:ptnet::Page {

p:ptnet::Page {
bi

p:ptnet::Page {
objects=s3:ptnet
bi

::Place {}

Listing 1. A fragment of the UML’ASA-GSPN bidirectional transformation.

3.4.2. GSPN subnets composition

The UMLSM.GSPN transformation in the previous section generates a
separate GSPN for each UMLSM. The set of GSPNs obtained in this way
does not represent the entire system as their behavior is not properly
connected. These GSPNs can be considered to be subnets of the final
system. It is therefore necessary to compose such subnets by connecting
them, so that the resulting GSPN represents a system scenario. In this
approach, we derive the composition of GSPN subnets from messages
exchanged in UMLSP.

Specifically, we need to consider two cases: when messages rep-
resent a synchronous or asynchronous call. In case of a synchronous
call, as depicted in Fig. 7a, we need to connect the GSPN immedi-
ate transition of the state in which the caller component is currently
positioned to the GSPN place of the state in which the called com-
ponent is positioned when receiving the message. The reply message
resulting from a synchronous call connects the last GSPN immediate
transition representing the end of the called component behavior to
the GSPN immediate transition on which a token was waiting for the
reply message. In the asynchronous case, shown in Fig. 7b, the call
is represented similarly to the synchronous case with the important
distinction that no token will wait for a reply message as none is
expected.

The mapping of UMLSP to GSPN is characterized by a one-to-pattern
element mapping, meaning that a UMLSP element is mapped to a pattern
of GSPN elements. In particular, starting from UMLSP, the corresponding
GSPN is generated and vice versa. Such implementation considers the
formal definition of the unidirectional translation of UMLSP in GSPN
provided in Bernardi et al. [28]. With respect to the latter, we only
consider instantaneous messages (non delayed).

For the sake of detailed illustration, a fragment of the UMLSP-
GSPN bidirectional transformation implemented via JTL is depicted in
Listing 2.

The main relations specified in the transformation are described as
follows:

* MessageSynch2Pattern (lines 2-36) maps messages to a spe-
cific pattern. Since a single element in the UMLSP domain induces
the creation of a list of elements in the GSPN domain, the relation
enforces multiple patterns. In particular, for each UMLSP Message
generated with a synchronous type of communication action (mes-
sageSort = “synchCall”, marking a synchronous message), the fol-
lowing GSPN elements (see the references objects) are created:
an element s of type Place, an element s1 of type Transition
(of kind “immediate”), an element s2 of type Arc that links s and
s1, an element s3 of type Arc that links c (that represent the caller
transition) and s, and an element s4 of type Arc that links s1 ()
and r (that represent the receiver place). The elements ¢ and r are
mapped by calling the relation State2Pattern (from Listing 1)
in the when clause. In the opposite direction, for each occurrence of
the described GSPN pattern a correspondent synchronous Message
is generated;

MessageAsynch2Pattern (lines 38-48) maps UMLSP
Message generated with an asynchronous type of communication
action (messageSort “asynchCall”, marking an asynchronous
message) to a specific pattern, similarly to the previous relation; In
the opposite direction, for each occurrence of the described GSPN
pattern a correspondent asynchronous Message is generated;

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

55 enforce domain pn p:ptnet::Page { 100 enforce domain pn page:ptnet::Page {

56 objects=s4:ptnet::Arc { 101 objects=t4:ptnet::Place {}

57 source=sl:ptnet::Transition {} 102 b

58 target=s3:ptnet::Place {} 4600 3 enforce domain pn page:ptnet::Page {
4159 } objects=t5:ptnet::Arc {

60 bY; source=sl:ptnet::Transition {}

enforce domain pn p:ptnet::Page { target=t4:ptnet::Place {}

objects=s5:ptnet::Transition {

63 transitionKind="exponential" I¥;
42064 } 109 enforce domain pn page:ptnet::Page {
65 b¥; 110 objects=t6:ptnet::Transition {
66 enforce domain pn p:ptnet::Page { 111 transitionKind="immediate"
67 objects=s6:ptnet::Arc { 112 }
68 source=s3:ptnet::Place {} 4701 3 ¥
4259 target=s5:ptnet::Transition {} 114 enforce domain pn page:ptnet::Page {
70 } 115 objects=t7:ptnet::Arc {
71 bY; 116 source=t4:ptnet::Place {}
72} 117 target=t6:ptnet::Transition {}
73 4758 }
430/4 relation Transition2Pattern { 119 I¥;
75 enforce domain uml region:umlsm:: 120 1}
Region { 21
76 transition=t:umlsm::Transition { 122 relation TransitionDaStep2Pattern {
77 source=s:umlsm: :State {} 4800 3 name:String;
435/ 5 } 124 prob:String;
79 ¥ 125 enforce domain uml region:umlsm::
80 enforce domain pn page:ptnet::Page { Region {
81 objects=t:ptnet::Place {} 126 transition=t:umlsm: :DaStep {
82 b o 485”77 name=name,
4408 3 enforce domain pn page:ptnet::Page { 128 occurrenceProb=prob,
84 objects=tl:ptnet::Transition { 129 source=s:umlsm: :State {}
85 transitionKind="immediate" 130 }
86 } 31 i
87 }i 49032 enforce domain pn page:ptnet::Page {
44538 enforce domain pn page:ptnet::Page { coo §B
89 objects=t2:ptnet::Arc { 133 enforce domain pn page:ptnet::Page {
90 source=t:ptnet::Place {} 134 objects=tl:ptnet::Transition {
9 target=tl:ptnet::Transition {} 35 id=name,
92 } 49536 weight=prob
4500 3 ¥ 137 transitionKind="immediate"
94 enforce domain pn page:ptnet::Page { 138 }
95 objects=t3:ptnet::Arc { 139 bo
96 source=t:ptnet::Place {} 140 enforce domain pn page:ptnet::Page {
97 target=sl:ptnet::Transition {} 500 coo BB
45508 } 141 enforce domain pn page:ptnet::Page {
99 I¥: e b
142 enforce domain pn page:ptnet::Page { oco U@
1% 145 enforce domain pn page:ptnet::Page {
5054 3 enforce domain pn page:ptnet::Page {510 cco U8
¥ 146)

144 enforce domain pn page:ptnet::Page { 147

Listing 1. Continued

V. Cortellessa, R. Eramo and M. Tucci

Caller

(Synchronous Message) Called

(3]

L Synch t_Synch)
WaitForReply
(Reply Message

(e

Reply

By

t3

\

Rest of the
behavior

behavior

(a) A synchronous message in GSPN

iy

Information and Software Technology 127 (2020) 106362

Caller

(Asynchronous Message) Called

Async t_Asynch

Rest of the
behavior

behavior

(b) An asynchronous message in GSPN

Fig. 7. GSPN subnets composition.

* MessageReply2Pattern (lines 50-73) considers UMLSP reply
messages (messageSort = “reply”, marking a reply message) and gen-
erate a pattern of elements in the GSPN domain. In particular, the
following elements are added: s of type Place, sl of type Arc
that links the receiver transition r and the place s, and s2 of type
Arc that links the transition s1 and the caller place c. The ele-
ments ¢ and r are mapped by calling the relation State2Pattern
(from Listing 1) in the when clause. In the opposite direction, for
each occurrence of the described GSPN pattern a correspondent re-
ply Message is generated;

3.4.3. Static view (UMLCP) update

After the refactoring and analysis steps are performed on the GSPN,
the execution in backward direction of the transformation propagates
the changes from GSPN to UML. This back propagation also affects the
static view of the system, that is represented by a UML Component Di-
agram (UMLCP). For example, when a replica of a sensor is created
in GSPN, the corresponding new component should be automatically
generated in the UMLCP. In order to achieve this, we introduce addi-
tional relations updating the static view of the system, as reported in
the Listing 3.

The main relations specified in the transformation are described as
follows:

* Component2Page (lines 2-10) maps a UML Component to a
GSPN Page. Following the design assumption that a State Machine
is created to describe the behaviour of a Component, this relation
creates a correspondence between a Component in UML and a
GSPN subnet enclosed in a Page that contains the behaviour de-
fined in a State Machine. When executed in the backward direction,
this relation generates a new Component for each new Page added
by the refactoring in GSPN.

e Interface2Pattern (lines 12-63) maps a UML pattern com-
posed of an Interface, its realization and usage to a GSPN pattern
defining a call operation between components. Specifically, the UML
pattern is composed of an Interface, its ownedOperation
and two Components, one receiving the call (receiver) and
the other performing it (caller). On the GSPN side, the relation
matches the pattern corresponding to a call operation between com-
ponents (the pattern matches both synchronous and asynchronous
calls as they are differentiated only by the presence of a reply mes-

sage). The when clause is used to ensure that the matched com-
ponents have been mapped to different pages. In order to guaran-
tee that the matched call is happening between two components,
the where clause contains two constraints requiring that source
and target references of the Arcs s3 and s4 point to different
Pages.

Next section shows how the approach is applied to an example sce-
nario.

4. JASA at work

In this section, we present the approach in practice with the aim of
illustrating the JASA process and how it can be replicated by potential
researchers and practitioners that would like to follow the same process
on their own architecture.

The experiment is conducted by applying the approach to the En-
vironmental Control System (ECS) system example (as described in
Section 4.1). First, the system has been modelled by means of UML an-
notated with the MARTE DAM profile (as described in Section 2). Then,
in order to be used in the EMF environment, the involved models have
been specified in their Ecore format. The approach has been executed
within the JTL framework; in particular, the UML’ASA.GSPN bidirec-
tional transformation has been run in the forward direction to generate
the GSPN models (as described in Section 4.2); after performing the
GSPN analysis, a set of refactoring actions have been performed on the
GSPNs on the basis of the obtained results (as described in Section 4.3).
Finally, the UML’ASA.GSPN bidirectional transformation has been run
in the backward direction to propagate the changes and generate the
updated UML architecture (as described in Section 4.4).

4.1. Environmental control system (ECS) modeling

The approach presented in the previous sections has been applied to
a software system for the environmental control of a botanical garden.
The Environmental Control System (ECS) is responsible for the auto-
mated management of the artificial habitat preserved in greenhouses. A
network of sensors periodically checks air temperature, air humidity and
soil humidity inside greenhouses. When sensors detect values exceeding
the thresholds defined for a given greenhouse, the system automatically
restores the environment conditions activating irrigation and air condi-
tioning systems as required.

V. Cortellessa, R. Eramo and M. Tucci

2 relation MessageSynch2Pattern {
585 3
4 messageSort="synchCall"
5 }i
enforce domain pn p:ptnet::Page {
objects=s:ptnet::Place {}
590 8]
enforce domain pn p:ptnet::Page {
10 objects=sl:ptnet::Transition {
1 transitionKind="immediate"
2 }
5951 3 g
14 enforce domain pn p:ptnet::Page {
15 objects=s2:ptnet::Arc {
source=s:ptnet::Place {}

target=sl:ptnet::Transition {}

6001 8 }
19 bi
20 enforce domain pn p:ptnet::Page {
21 objects=s3:ptnet::Arc {
22 source=c:ptnet::Transition {}
60523 target=s:ptnet::Place {}
24 }
25 }i
26 enforce domain pn p:ptnet::Page {
27 objects=s4:ptnet::Arc {
6102 3 source=sl:ptnet::Transition {}

29 target=r:ptnet::Place {}
30 }
31 bi
32 when {
61533 State2Pattern(c, c);
34 State2Pattern(r, r);

35}

6304 5

Information and Software Technology 127 (2020) 106362

4 i

enforce domain uml m:umlsm::Message 625 500 X

42 enforce domain pn p:ptnet::Page {

43 enforce domain pn p:ptnet::Page {
bi

1 enforce domain pn p:ptnet::Page {
}i

enforce domain pn p:ptnet::Page {
bi

46 enforce domain pn p:ptnet::Page {

i
47 when { eeo)

}

50 relation MessageReply2Pattern ({
5 enforce domain uml m:umlsm::Message {

52 messageSort="reply"

6403 };

54 enforce domain pn p:ptnet::Page {
55 objects=s:ptnet::Place {}

56 }i

enforce domain pn p:ptnet::Page {
objects=sl:ptnet::Arc {

59 source=r:ptnet::Transition {}

target=s:ptnet::Place {}

i

enforce domain pn p:ptnet::Page {
64 objects=s2:ptnet::Arc {
65 source=sl:ptnet::Transition {}

target=c:ptnet::Place {}

bi

69 when {
State2Pattern(r, r);

1 State2Pattern(c, c);

2}

660/3 }

62038 relation MessageAsynch2Pattern {
39 enforce domain uml m:umlsm::Message { 74
40 messageSort="asynchCall"

Listing 2. A fragment of the UML’ASA-GSPN bidirectional transformation.

ECS consists of seven software components: GreenhouseController is
responsible for checking environment conditions; TemperatureSensor,
AirHumiditySensor and SoilHumiditySensor respectively measure air tem-
perature, air humidity and soil humidity; Database is queried to retrieve
the thresholds defined for each monitored condition; AirConditioner can
raise or decrease the air temperature inside a greenhouse; MobileApp
notifies the user about certain events such as conditions exceeding the
defined thresholds.

We consider three use case scenarios of ECS, for which we pro-
vide the respective UML Sequence Diagrams: Monitoring Conditions, in
Fig. 9a, in which a timer periodically activates a procedure to check
environment conditions, Remote Monitoring, in Fig. 9b, in which the air
humidity is continuously monitored and the GreenhouseController no-
tifies the user when the value exceeds the corresponding threshold,
and Managing Temperature, in Fig. 9c, that defines the procedure for
the activation of the air conditioner when required. We assume that
the complexity of a message parameters and return types, as well as

the width of their ranges, do not affect the behaviour following that
message.

Moreover, the internal behavior of each software component is de-
scribed by a State Machine that is consistent with the interactions de-
fined in the Sequence Diagrams. The resulting State Machine diagram
is shown in Fig. 8.

UML Transition and Message elements that may fail are annotated
with the DasStep stereotype from DAM, as depicted in Figs. 8 and 9, re-
spectively. This stereotype is used here to define system failure modes
and the probabilities of failures occurring in a scenario, as follows: at-
tribute kind is set to failure, as a consequence, the attribute failure can
be used to set the failure probability as the occurrenceProb real value.

The considered models, specified in UML, are available online.”

7 ECS UML models: https://github.com/SEALABQualityGroup/JASA/tree/
master/UML.

https://github.com/SEALABQualityGroup/JASA/tree/master/UML

V. Cortellessa, R. Eramo and M. Tucci

2 relation Component2Page {
3 name:String; 32
enforce domain uml c:umlsm::Componentsss:
{ 34
5 name=name 35
Vi 36
checkonly domain pn p:ptnet
id=name
9 }i
} 40

2 relation Interface2Pattern ({ 42

71013 enforce domain uml i:umlsm::Interfacwesi3
{ 44
14 ownedOperation=o:umlsm: :Operation {} 45
5 b 46
enforce domain uml receiver:umlsm:: 17
715 Component { 7504 8
1 interfaceRealization=ir:umlsm:: 49
InterfaceRealization {
8 supplier=i:umlsm::Interface {}, 5
9 contract=i:umlsm::Interface {} 5
72020 } 7555
21 }i

22 enforce domain uml caller:umlsm::

Component { 56

packagedElement=d:umlsm: :Dependency

Information and Software Technology 127 (2020) 106362

bi

enforce domain pn p:ptnet::Page {
objects=sl:ptnet::Transition {
transitionKind="immediate"
}

Vi

enforce domain pn p:ptnet::Page {
objects=s2:ptnet::Arc {
source=s:ptnet::Place {}

target=sl:ptnet::Transition {}

bi

enforce domain pn pl:ptnet::Page {
objects=s3:ptnet::Arc {
source=c:ptnet::Transition {}
target=s:ptnet::Place {}
}

bi

enforce domain pn p2:ptnet::Page {

objects=s4:ptnet::Arc {

50 source=sl:ptnet::Transition {}

target=r:ptnet::Place {}

52 }

}i

54 when {

Component2Page (caller, pl);
Component2Page (receiver,

}

p3);

725 { 7605 8 where {
24 client=caller:umlsm: :Component {}, 59 s3.source.containerPage.id <>
25 supplier=i:umlsm::Interface {} s3.target.containerPage.id;
26 } 61 s4.source.containerPage.id <>
27 I¥; 62 sd4.target.containerPage.id;
73028 enforce domain pn p:ptnet::Page { 76553 }

29 objects=s:ptnet::Place {} 6

Listing 3. A fragment of the UML’ASA-GSPN bidirectional transformation.

4.2. Analysis model generation

The first operational step of our approach consists in the exe-
cution (in the forward direction) of the transformation presented in
Section 3.4 (UML/ASA-GSPN) within the JTL framework. For each sce-
nario, from a Sequence Diagram and the set of involved State Machines,
this execution generates a GSPN. The transformation UMLSM-GSPN in
Section 3.4.1 creates a GSPN subnet for each State Machine. As an ex-
ample, Fig. 11 shows a fragment of the GSPN obtained for the Managing
Temperature scenario (Fig. 9¢). The GSPN subnets visible in the figure are
generated from the TemperatureSensor, AirConditioner and GreenhouseC-
ontroller State Machines in Fig. 10, where colours are used to outline
the subnets generated from the corresponding State Machines. Such sub-
nets are connected on the basis of the transformation UMLSP-GSPN in
Section 3.4.2.

In general, the composition of subnets obtained from this step is
based on interactions among components, as appearing in Sequence
Diagrams. In particular, synchronous and asynchronous messages are
mapped to the corresponding patterns presented in Section 3.4.2.8

8 The GSPNs generated for each scenario are available at https://github
.com/SEALABQualityGroup/JASA/tree/master/GSPN.

4.3. Analysis results and refactoring

In this section, first we play with a simple case for checking whether
patterns induce differences in the system availability. Thereafter, we
apply patterns to components on the basis of current practices and com-
ponent role, as it will be explained in detail at the end of the section.
The result of patterns application is a unique static architecture that
subsumes different SD, hence different availability results for different
scenarios (in terms of operational profile and workload).

As a first step, we consider the GSPN obtained from the execution
in the forward direction of the transformation to perform a steady state
availability analysis. Given an initial marking of a GSPN, and provided
that every place of the net is bounded, the reachability set is the set of
all the markings reachable by sequences of transition firings from the
initial one. The reachability graph associated to a GSPN is a directed
graph whose nodes are the markings in the reachability set and each arc,
connecting a marking M to a M’ one, represents the firing of a transition
enabled in M and leading to M".

In general, availability metrics of an GSPN model can be defined as
reward functions on the reachability graph [29]. Let MPO be the initial
marking, and ry, = {1if M € O, 0 if M € F} be a state reward function
that partitions the set of reachable markings RS(MP) into two sets: O, the

https://github.com/SEALABQualityGroup/JASA/tree/master/GSPN

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

(TemperatureSensc) (AirHumiditySensor SoilHumiditySensor
Initial Initial Initial
StandBy
«DaStep»
«DaStep» «DaStep»
getTemperatﬁreDat getHumidithata getSoiIHumidﬁyData
ﬂRetrleveTemperatureDaj RetrieveHumidityDatz RetrieveSoiIHumidityDatj
- J J - J
(Database h AirConditioner A MobileApp h
Initial Initial Initial
(RetrieveTemperatureThresho] slagday
| ~
y «DaStep» - g «DaStep» «DaStep»
getTemperatu%ThreshoI raiseTemperatur decreaseTergperatur
.___J(RetrieveHumidityThresholj RaiseTemperatuj [DecreaseTemperatur
etHumidityThreshold
g «Dagtep» /L ~ @
>,
(RetrieveSoiIHumidityThresholj
~)
getSoiIHumidityThreshoIc/\
«DaStep»
(RetrieveEnvironmentThreshoIcﬂ
~
getEnvironmentThreshold: “\
\ «DaStep»)
(GreenhouseControlle A
Initial
decreaseTemperatur v
< StandBy
raiseTemperatur ’l l:
triggerTemperatureChec monitorHumidity
triggerEnvironmentCheck
[BeginTemperatureChec} [BeginEnvironmentChecﬂ [BeginHumidityMonitorinﬂ
getTemperatureDat getTemperatureDat getHumidityData,
CheckTemperature EnvCheckTemperature CheckHumidity
getTemperatureThreshol getHumidityData getHumidityThreshold
CheckTemperatureThreshoj EnvCheckHumidity] [CheCkHumidityThresholtﬂ;
getSoilHumidityDat notify
EnvCheckSoilHumidity NotifyMobiIeApp]
getEnvironmentThreshold
[CheckEnvironmentThresholdﬁ
M B

Fig. 8. UML State Machine Diagram of the ECS components.

set of operational system states, and F, the set of system failure states.
The probability of the system being in marking M at time instant ¢ can
be expressed as o), (t) = Pr{X(t) = M }. Steady state probability can be
computed as 6, = lim,_,o,0),(1), and it represents the probability of the
system being in marking M at any time instant t > 0. The steady state
availability of the GSPN is then defined taking into account the reward
function and the steady state probabilities of individual markings in-

troduced before, as follows: Ay, = ¥ yrersmy) "MOM = Lmeo Oy The
value of A, is to be interpreted as the percentage of time the system is
not in a failure state after running for a sufficiently long time.

System failure mode needs to be defined in order to discern oper-
ational states from failure ones, and to exclusively assign the related
markings to one among the O and F subsets of reachable markings. The
system is considered to be in a failure state when any of the state tran-

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

MonitoringConditions

«GaWorkloadEvent: «DaComponents» «DaComponent» «DaComponent» «DaComponent» «DaComponent:
Timer : GreenhouseController : TemperatureSensor : AirHumiditySensor : SoilHumiditySensor : Database
T T T T T T
| triggerEnvironmentCheck() | ; rkl:i’r?dsifeaﬁlzre' i i
{ getTemperatureData() : failure={occurrenceProb=0.18}} : :
l l I I
1 1 1 1
1 1 1 1
| ! «DaStep» '
| ! ' {kind=failure; '
: getHumiéityData() : failure={occurrenceProb=0.08}} :
: ! >l:| : |
1 1 1 1
1 1 1 1
I «DaStep» |
: : : {kind=failure; :
' 1 getSoilHumidityData() failure={occurrenceProb=0.07}}
: i i i
1 1 1 1
1 1 1 1
' «DaStep»
| : : . {kind=failure;
| \ getEnvironmentThresholds() | failure={occurrenceProb=0.04}}
: 1 1 1
1 1 1 1
1 1 1 1
I
(a) The Monitoring Conditions scenario
RemoteMonitoring
«GaWorkloadEvents» «DaComponents «DaComponents «DaComponent»| | «DaComponents»
Timer : GreenhouseController : AirHumiditySensor : Database : MobileApp
T T T T T
! P farn ! ! «DaStep» |
| monitorHumidity() | ' fkind=failure; !
| getHum idityData() | failure={occurrenceProb=0.08}} f
1 I 1
1 I 1
1 I 1
1 I 1
} T «DaStep»
: ! {kind=failure;
| getHumid ity'lfh reshold() failure={occurrenceProb=0.04}}
1 t 1
1 1 1
1 1 1
1 1 1
1 t T 1
1 + + 4
! lopt ! | «DaStep»
. * +" {kind=failure;
' \ notify() , failure={occurrenceProb=0.06}}
1
| i |
1 1 I
1 1 I
1 T T T
1 1 L I

(b) The Remote Monitoring scenario

ManagingTemperature

«GaWorkloadEvent» «DaComponent» «DaComponent» «DaComponent» «DaComponent»
Timer : GreenhouseController| : TemperatureSensor| : Database : AirConditioner

T T T T T

. ' ' «DaStep» :

| triggerTemperatureCheck() , ' {kind=failure; ;

getTemperatureData() | failure={occurrenceProb=0.18}} |

i I

1 1

«DaStep»

| {kind=failure;
getTemperatu'reTh reshold() failure={occurrenceProb=0.04}}

1 1
1 1
: «DaStep»

T {kind=failure;

T
>---—----—>------—---—---—---ﬂmeaseﬁ'enwpem(')’“:—' failure={occurrenceProb=0.23}}

seq
|z | [aboveThreshold]

«DaStep»
i i {kind=failure;
 raiseTemperature(} 1 failure={occurrenceProb=0.23}}

| | i

(c) The Managing Temperature scenario

|z | [belowThreshold]

Fig. 9. UML Sequence Diagrams of the ECS scenarios.

V. Cortellessa, R. Eramo and M. Tucci

-

Information and Software Technology 127 (2020) 106362

TemperatureSensor i AirConditioner)
Initial Initial
StandBy StandBy
DaSte J
getTer‘ﬂperatSr%Data ~ «DaStep» «DaStep»
raiseTemperature decreaseTemperature
ﬁRetrieveTemperatureDatzj RaiseTemperaturej [DecreaseTemperature
- J . .
" GreenhouseController)
Initial
decreaseTemperature \
StandBy
raiseTemperature
triggerTemperatureCheck monitorHumidity
triggerEnvironmentCheck
[BeginTemperatureChecl? [BeginEnvironmentCheclj [BeginHumidityMonitorinﬂ
getTemperatureData getTemperatureData getHumidityData
[CheckTemperatL@ [EnvCheckTemperature] [CheckHumidity]
getTemperatureThreshold getHumidityData getHumidityThreshold
(CheckTemperatureThreshoId] i EnvCheckHumidity] [CheckHumidityThreshold}
getSoilHumidityData, notify
[EnvCheckSoiIHumidity] [NotifyMobileApp l
getEnvironmentThresholds
[Chec kEnvironmentThresholdsﬁ
'3 J

Fig. 10. UML State Machines of the TemperatureSensor, AirConditioner and GreenhouseController components.

sitions annotated by the DaStep stereotype fails during execution. As a
consequence, in the GSPN obtained from the previous step, we define as
failure states the markings reached from firing all the transitions having
the _loss suffix, as they represent the occurrence of a failure.

The GreatSPN solver [30] is used to derive the reachability graph of
markings in the net and to compute the corresponding values of ¢),. In
the initial marking of the net, a token appears in the StandBy place
of each component subnet, so that the component is ready to serve in-
coming requests. Immediate transitions representing failures are marked
with weights derived from the failure probabilities. Since we assume
that the operations belonging to the same component fail with the same
probability, we report in Table 1 the initial failure probabilities of every
component in ECS.

The steady state availability index can be computed by considering
both the aforementioned initial marking of the GSPN and the failure
probabilities. The resulting indices for the three scenarios we considered
are reported in Table 2.

In order to establish the effectiveness of the fault tolerance patterns
presented in Section 2.3, we apply each of them on the TemperatureSen-
sor component in the Managing Temperature scenario. The steady state
availability resulting in each case is reported in Table 3. The results
show, as expected, that the application of the fault tolerance patterns
increased the overall availability of the scenario, with the particular ob-
servation that Active Replication and Passive Replication induce the best
improvements. Note that even a change in the second decimal digit of

Table 1
Initial failure probabilities of
components in ECS.

TemperatureSensor 0.18
HumiditySensor 0.08
SoilHumiditySensor ~ 0.07
Database 0.04
MobileApp 0.06

AirConditioner 0.23

V. Cortellessa, R. Eramo and M. Tucci

arrival

TemperatureSensor

trig_get TemperatureData

trig_t_get Temperature Data

TS StandBy
I'S_getTemperatureData_e

TS_t_StandBy

TS_t_get Temperature Data_loss

w= 18

IS_getTemperatureDat a

TS_t_getTemperature Data

TS_RetrieveTemperat ureData_a

TS_t_Retrieve TemperatureData_a
10

TS_RetrieveTemperatureData

Information and Software Technology 127 (2020) 106362

ManagingTemperature

GreenhouseController

GC_t;_StandBy T

GO _trigger Temperat nreCheck el

GO _trigger TemperatureCheckl

GOt _trigger Temperature Check

GC_BeginTemperatureCheck

GCLt_BeginTemperature Check

GC_get TemperatureData

GC_t_getTemperature Data

S_i_Retnieve Temnperature Dafa

GC _Check Temperat ure

GO_t_Check Temperature

AirConditioner

trig_raise Temperature trig_decrease Tomperature

frig_t_raise Temperabure trig_t_decrease Temperabfrp

GC_getTemperature Threshold e

GC_get Temperature Threshold

GOt _get Tesperature Threshold

AC StandBy
AC_t:_StandBy

AC.

415

AC _raiseTemperature_e AC _decrease Temperat ure_e

w= 23 w=
AC_t_raise Temperabure_loss
AC_raiseTemperature

ACLE_deerense Temperature_loss
AC_decresse Temperature

AC_i_raise Temperature ACLi_deerease Temnperature

GC_Check TemperatureThreshold _a

p
GOt Check TemperatureThreshold_a GOtz CheekTemperafureThreshold_a

GC_raiseTemperature

GO decresseTemperature

G CLi_rmise Tesnperafwe G CLi_deerense Temperabure

AC_RaiseTemperature_a AC _DecresseTemperature_a

AC_t_Ruse Terperafwre _a AC_t_Decrense Temperature_a

AC_ RaiseTemperature AC_DecreaseTemperat ure

AC_t_Raise Temperature AC_t_Decrense Tesnperatwre

Fig. 11. Fragment of the GSPN generated for the Managing Temperature scenario.

availability metric is already considered relevant, since high availability
systems usually require to be available up to the 99.999% of the running
time (this requirement is usually referred to as five nines) [31].

In order to further improve the system availability, we apply the
Semi-Active Replication pattern to all the sensors components in the ex-
ample application, as this pattern has proved effective in the deploy-
ment of sensors in high availability contexts [32]. Since the Active Repli-
cation pattern is widely used in practice to deploy high availability
databases [33], we apply it to the Database component in each scenario.
The results obtained from this refactoring are discussed in Section 5.1.3.
An additional reason for the application of the Active and Semi-Active

Table 2
Steady state availability of execution
scenarios.
Monitoring Conditions 0.985392
Remote Monitoring 0.991672

Managing Temperature 0.977984

Replication patterns over their Passive and Semi-Passive counterparts re-
sides in the stateless nature of the functionalities provided by the sen-
sors and the database in the example application we are considering. In-
deed, since the Passive and Semi-Passive Replication patterns accomplish
error masking by saving the current state of a component through check-
points, their application to stateless operations would only increase er-

Table 3

Steady state availability of the Managing
Temperature scenario after the applica-
tion of fault tolerance patterns on Tem-

peratureSensor.
Initial (no refactoring) 0.977984
Semi-Active Replication 0.985605
Active Replication 0.988511
Semi-Passive Replication 0.98026
Passive Replication 0.989855

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

«component»
«DaComponent»
=]AirConditioner

getEnvironmentThresholds raiseTemperature O O decreaseTemperature
& T—— ., A A
' 1 1
«component» getTemperatureThreshold «component» getTemperatureData «component»
«DaComponent» O «DaComponent» O «DaComponent»
= |Database <c------- %]GreenhouseController | - ------=> = | TemperatureSensor
< . : : \\\ s ~
[N S
getHumidityThreshold - A S
'] A e
1 Ll hS ~
[e A «component»
g ;< """""""" v b «DaComponent»
getSoilHumi hreshold notify \\‘ getHumidityData | = | AirHumiditySensor
\
«component» % oM
- : \ ponent»
<] MobileApp N\ «DaComponent»
getSoilHumidityData | = | SoilHumiditySensor

(a) Initial Component Diagram of ECS

«component»
«DaComponent»
=] AirConditioner getTemperatureData «component»
«DaComponent»
’,‘7 O =] TemperatureSensor
raiseTemperature l decreaseTemperature el
getEnvironmentThresholds «component»
f A Fas
- ! : getTemperatureData =] TS_Distributor «component»
' ' ' «DaComponent»
' ' ' 7()
! ! ' o <]TemperatureSensorl
""""""" «component» - N
«DaComponent» getTemperatureData
«compf)ngnt» """"""" =] GreenhouseController getHumidityData «component»
getEnvironmentThresholds <]DB_Distributor | getHumidityThreshold 70— «DaComponent»
_p< : I e %] AirHumiditySensor
getTemperatureThreshold ~~. -~ getSoilHumidityThreshold 5 ‘\\ DT «component»
e SNt . ' S Y =]HS_Distributor
getHumidityThreshgl C\» i RN A() getEnvironmentThresholds \ N
~ \ \\\ ' R «component»
getSoilHumidityThresHols (\‘A)getTemperatureThreshold E ‘\‘ getHumidityData =] AirHumiditySensorl
getSoilHumidityThreshold getHYmidityThreshold v % B
N getHumidityDat:
notify . < oilHoridivD:
«component» «component» % getSoilHumidityData
«DaComponent» «DaComponent» ‘\ _70— «component»
=] Database < |Databasel % «component» _ «DaComponent»
\\O %] SHS_Distributor =] SoilHumiditySensor
A /}’ getSoilHumidityDatd
«component»
compare £ MobileApp o «component»
s £]SoilHumiditySensorl
«component»
<] DB_Comparator getSoilHumidityData

(b) Refactored Component Diagram of ECS

Fig. 12. Component Diagrams before and after the change propagation.

ror masking complexity and cost without providing additional benefits contain the changes applied to the GSPN during the refactoring step
over the Active and Semi-Active Replication patterns. and propagated back by the execution of the transformation.

Moreover, the back propagation of changes generates additional

software components. The updated Component Diagram is reported in

4.4. Change propagation Fig. 12b. In particular:

After the analysis and refactoring step, the UMLASA-GSPN bidirec- e Monitoring Conditions: the components TS Distributor, Temperature-
tional transformation is applied in backward direction on the refactored Sensor1, HS Distributor, AirHumiditySensor1, SHS_Distributor, and Soil-
GSPN model. In particular, the refactored UML Sequence and State Ma- HumiditySensor] have been introduced by the application of the

chine Diagrams are generated for each scenario. These new diagrams Semi-Active Replication pattern on TemperatureSensor, AirHumidity-

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

(TS_Distributor N[TemperatureSensor \(TemperatureSensorl)
Initial Initial Initial
StandBy StandBy StandBy
. «DaStep» «DaStep» discardOutput
input getTemperatureDath lgetTemperatureDat3
Sendl t RetrieveTemperatureDate
Sinel RetrieveTemperatureDatz
q) (. _
\ J

Fig. 13. UML State Machines generated from the back propagation of the Semi-Active Replication pattern on TemperatureSensor.

Sensor, and SoilHumiditySensor, while the components DB_Distributor,
DB_Comparator, and Databasel have been introduced by the applica-
tion of the Active Replication pattern on Database;

e Remote Monitoring: the components HS Distributor, AirHumiditySen-
sorl, have been introduced by the application of the Semi-Active
Replication pattern on AirHumiditySensor, while the components
DB Distributor, DB_Comparator, and Databasel have been introduced
by the application of the Active Replication pattern on Database;

e Managing Temperature: the components TS Distributor, Temperature-
Sensor1, have been introduced by the application of the Semi-Active
Replication pattern on TemperatureSensor, while the components
DB Distributor, DB_Comparator, and Databasel have been introduced
by the application of the Active Replication pattern on Database;

As a consequence of the back propagation, nine new state machines
have been generated by enforcing the StateMachine2PetriNet
relation and its triggered relations. The state machines corresponding
to the original components are instead restored without any modifica-
tion. In addition, each state machine corresponding to replicas in the
Semi-Active Replication pattern (i.e., all sensors’ replicas) includes a new
discardOutput transition that represents the case in which no fail-
ure occurs in the original component and, as a consequence, the data
computed by the replica must be discarded. As an example, the UML
State Machines generated (TS Distributor and TemperatureSensorl) and
restored (TemperatureSensor) from the Semi-Active Replication pattern on
the TemperatureSensor component are included in Fig. 13.

The refactored UML Sequence Diagrams for the scenarios Monitor-
ing Conditions, Remote Monitoring, and Managing Temperature are shown
in Figs. 14-16, respectively. In such diagrams, the application of the
Semi-Active Replication pattern can be noticed by the presence of the
discardOutput message that is sent from each sensor component
(e.g., TemperatureSensor, AirHumiditySensor, SoilHumiditySensor) to its
corresponding replica. Moreover, alternative fragments are created to
model the two cases in which a failure may or may not occur. Lifelines
for the newly created distributor and comparator components are in-
cluded as well.

Finally, the obtained model is consistent with respect to the consis-
tency relation defined in the transformation, and it is compliant with
the source metamodel.

5. Results evaluation

In this section we discuss the evaluation we have performed with the
aim of answering the following research questions:

RQI: Does the approach generate an analyzable availability model
from a software architecture model?

RQ2: Does the approach generate a valid software architecture model
back from an availability model?

RQ3: Does the approach help to identify the fault tolerance patterns
that better improve the system availability?

The evaluation has been conducted by applying the approach to the
Environmental Control System (ECS) example application, described in
Section 4. The software design has been modeled by means of UML di-
agrams; then, for each scenario the following process has been applied:

o the UMLIASA.GSPN bidirectional transformation has been executed

in forward direction: thus, a Sequence diagram and a set of State

Machine diagrams have been given as input and the corresponding

GPSN has been obtained as output;

the resulting GPSN has been analyzed to obtain the steady state

availability index, and it has been then refactored on the basis of

the fault tolerance patterns defined in Section 2.3;

e the UMLIASA.GSPN bidirectional transformation has been executed
in backward direction: thus, the changes performed on the GPSN
have been propagated to the UML model.

5.1. Insights on research questions

In order to assess the approach according to the research questions,
several measurements and properties have been considered for each
step of our evaluation. The results of the performed experiments are
discussed in the context of each research question on the basis of the
selected evaluation criteria.

5.1.1. RQI: Analizability of the generated analysis models

In order to answer this research question, we have observed the re-
sults obtained by transforming the UML models in the corresponding
GPSN models, as well as by applying the refactoring actions. For evalu-
ating if the considered GSPN models can support our analysis, we refer
to a set of basic behavioral properties (as introduced in Murata [34])
discussed as following.

Reachability: In order to decide if the considered GSPN is reachable,
we have to establish if any state of the modeled system is reachable
from the initial state through a finite sequence of transitions. Formally,
it is the problem of finding if any given marking M is contained in the
set of markings reachable from the initial marking M°. This property
is required since the availability metrics we considered are defined as
reward functions on the reachability graph associated to the GSPN, as
described in Section 4.3.

We verified the reachability of our GSPN models by using the Great-
SPN tool, that is able to compute reachability graphs where every mark-
ing in the net is reachable from M. In our experiment, we can ob-
serve that all the reachability graphs have been successfully created.
In Table 4, we report the cardinality of the reachability set RS(M,)) for
each scenario. In particular, the Initial values refer to the GPSN mod-
els obtained by applying the UMLASA.GSPN bidirectional transforma-
tion, whereas the Refactored values refer to the GSPN models after the

V. Cortellessa, R. Eramo and M. Tucci Information and Software Technology 127 (2020) 106362

Table 4
The cardinality of the reachability set of the
GSPNs.
Initial Refactored
Monitoring Conditions 73 152
Remote Monitoring 66 105
--- Managing Temperature 77 116

Thresholds()

: Database

refactoring described in Section 4.3. The new elements introduced by
the refactoring of the GSPN caused an increase in the cardinality of the
reachability sets because they originated new markings. Since we were
able to compute finite reachability sets, we can assert that the applica-
tion of the transformation in forward direction and of the refactoring
patterns have generated reachable GSPN models.

Boundedness: A GSPN model is said to be bounded or safe if the num-
ber of tokens in each place does not exceed a fixed number for any mark-
ing reachable from the initial marking M. This property is required for
the steady state availability analysis as bounded GSPNs are isomorphic
to finite Markov Chains [35].

By considering that (i) a GSPN is bounded if and only if its reachabil-
ity graph is finite [36], and (ii) we showed in Table 4 that finite reach-
A ability sets can be computed before and after the refactoring, we can
assert that all the GSPNs (i.e., initial and refactored ones) are bounded.

E More generally, our transformation is designed so that the generated
e ; TR GSPNs cannot contain transitions without input places. This property is
a necessary condition for boundedness. Moreover, none of the proposed
refactorings introduces this type of transitions.

Liveness: This property is closely related to the complete absence of
deadlocks. A GSPN is said to be live if, for any reachable marking, it is
possible to ultimately fire any transition of the net through some further
firing sequence.

In our experiment, we can observe that all the GSPNs (both initial
and refactored) are live, because from any reachable state it is possible to
enable any transition by a firing sequence. In particular, the transitions
modeling failures are L1-live, as they can be fired at least once in some
firing sequence starting from the initial marking M. As an example, the
transition TS t getTemperatureData loss in Fig. 17 is a L1-live one, as it
can potentially fire only once, when at least one token is in the place
TS getTemperatureData e. All the other transitions in the GSPN are L3-
live, since they can fire infinitely, as well as all transitions in Fig. 17 ex-
T cept TS_t getTemperatureData_loss. In general, liveness of obtained GSPNs
""""""" - - can be checked by the GreatSPN solver that we have adopted.

€
§
g
§
g
E
s
®
g

letgnvironmentThreshalds()

: DB Distributor

<DaComponent»
: SoilHumiditySensorl|

Data()

[:sHs pistributor | | DaC

1

«DaComponent>

: AirH

discardOutput()

«DaComponent>
: AirHumiditySensor

\ getHumidityData()

ta()

.

: HS Distributor

getSoilHumidityD:

l] DaCompanent JJ

GIECETAOUTPULTT

atureData()

5.1.2. RQ2: Validity of the refactored architecture

R N1 —_— I £ 1 51 5 In order to answer this research question, we have observed the re-
sults obtained by transforming the refactored GSPN back to the UML
software architecture. To evaluate if the refactored architectural model
is a still valid software architecture, we considered a set of properties
that are commonly used in the analysis of software architectures [37].

Correctness:

It is an external property of an architectural model and ensures that
it fully realizes the system specification. In order to evaluate the cor-
rectness of a refactored UML model resulting from the application of
the approach, we need to consider the following aspects:

<DaCs
getH

[=7s pistributor ||

ontroller

«DaComponent»

[[nofail)
] [else]
it

(2] [nofail]
[[else]
[ate

[fnofail
] [else]

s Refactored

| triggerEnvironmentCheck() |
[alt

¢ We assume that the initial software architectural model is correct
(i.e., it realizes the system specification).

¢ The refactoring applied on the GSPN model obtained from the for-
ward application of the implemented UML’ASA-GSPN bidirectional
transformation does not break the conformance to the system re-

Fig. 14. UML Sequence Diagram of the Monitoring Conditions scenario. quirements. In fact, the adopted fault tolerance patterns make use of

replicas and checkpoints techniques to provide error masking, thus

without altering the original functionalities of the refactored com-

ponent (as detailed in Section 3.3).

gCondition:

[<GaworkioadEvent:
Timer

SD_Monitorin

V. Cortellessa, R. Eramo and M. Tucci

SD_RemoteMonitoring_Refactored

Information and Software Technology 127 (2020) 106362

l«GaWorkloadEvent
Timer
T

| monitorHumidity() |

«DaComponent: : HS_Distributor «DaComponent» «DaComponent»
: Greenhouse... H : AirHumiditySensor : AirHumiditySensor]]
T

: DB_Comparator | [_: MobileApp |

: DB_Distributor

l«DaComponent: l«DaComponent: |
: Database : Databasel

SD_ManagingTemperature_Refactored

i i i
' | I I H i
| 1 | | ! !
etHumidityData() | |)\ ' ‘ . '
i g il getHumidityData() i i i i | i
i I getHgmiliityData() i] | i ! !
: I] { i 1]
i jalt ! discardOutput() | i | 1 i
- || [nofail] ! 1 i i) |
i ; : 1 i ;]
| i |
[Eeler 5 ! 3 : : i i
| - | |
! E getHumidityThreshold() ! ;!etHumidityThreshold() . 2 E
! ' ! ! getHumd[tyThreshold() | ! '
| | I
' | ' ' ! 11 : '
: ! : ’ ' ‘ '
! i ! ! I ! —_— |
| ' I I ! i i !
|] | I ! | | !
| T 1 i T i 1 T !
| ! \ \ . '] d :
| lopt J 3 4 i |] y !
|] : | i notify) | | : ;
‘ ' | | ! i i !
|] I I ! i | !
| i | I ! I | i
i ' . ;] . : :
‘ L1 X | V ; T ‘ ;
! : ' ' : 1 ' :

Fig. 15. UML Sequence Diagram of the Remote Monitoring scenario.

«DaC

I

- [Ts_Distributor |

l«GaWorkloadEvent:
Timer

I I
| triggerTemperatureCheck() H

: GreenhouseController H

getTemperatureData()

«DaComponent» «DaComponent»
: TemperatureSensor : TemperatureSensorl

: DB_Distributor

[«DaC [«Dac [[: DB_Comparator] [«DaC
: Database : Databasel : AirConditioner

TS_getTemperatureData_e

TS_t_get TemperatureData_loss
w=18

TS_StandBy

TS_t_StandBy

TS_getTemperatureData

TS_t_getTemperatureData

TS_RetrieveTemperatureData_a

TS_t_Retrieve TemperatureData_a

TS_RetrieveTemperatureData

S_t_RetrieveTemperatureData)

Fig. 17. GSPN subnet of the Temperature Sensor.

j i
| ! |
' ' : ' |
- : : - :
! | I i '
i getTemperatureData() | ! ! | [1
| [getTemperatureData()) i H t !
i att L1770 ! i i ! 1
i ['] [nofail] ! discardOutput() i H H ! H
| | | | | | |
) : ' ;) ' |
! = S [| | i ’ |
H [[else] H | ! H i . i
E] getTemperatureThreshold()] | E E | E
' 1 ‘ ' getTemperatureThreshold() | ! H !
| |
! ! | 1 getTemperaturéTHreghold() 1 ! i
H ! H 1 - ! \
|] | | ! |
| ! | | 1 L |
I] | |] i I
I ! | | ! I i
- , : : , : - :
I . . . h L
d ['] [aboveThreshold]]) ' s i i . |
| ! | | ! | h ! |
' ' i ' decreaseTempefature() 1 i \ » i
h ! 1 1 i 1 1 !
I] | | i I I i
: ; : : ; : : ;
| [2] [belowThreshold] 1 J j ralseTempera}ure() [1 ! o i
i]]]]]] ! 'U
I] | |] I I !
| . . | .
I t i I H I i t 1
| L] . I h h h
Fig. 16. UML Sequence Diagram of the Managing Temperature scenario.

The UML’ASA.GSPN bidirectional transformation is able to gener-
ate consistent solutions with respect to the relations specified in the
transformation itself. In other words, the backward application of the
transformation propagates changes by correctly mapping the refac-
toring patterns on GPSN in refactoring patterns in UML (i.e., with-
out altering the original functionalities of the system). For instance,
when a replica is introduced in the GSPN (e.g., Semi-Active and Ac-
tive Replication pattern in Section 4), an additional state machine
that contains the same states and transitions of the original compo-
nent is introduced in the UML model, as well as additional messages
from/to the replicated component.

Finally, this aspect is strictly related to the correctness of bidirec-
tional transformations. Formally, a bidirectional transformation T
between two classes of models, M and N, is characterized by two uni-
directional transformations: T : M x N - N andT : M x N — M.
T is said to be correct if for any pair of models m € M and n € N,
T(m, T(m,n)) and T(T (m, n), n) [38]. The capability of the JTL frame-
work to correctly execute the transformation is discussed in Cicchetti
et al. [12], Eramo et al. [23]. As a proof of concept, by running

V. Cortellessa, R. Eramo and M. Tucci

our transformation on forward and backward directions without any
change on the example application, the transformation generated the
same pair of models.

Completeness: This property is verified whether all necessary archi-
tectural elements are defined and whether all design decisions are made.
In order to evaluate the completeness of the refactored UML model, let
us to consider the following aspects:

* We assume that the initial software architectural model is complete.
e The refactoring applied on the obtained GSPN model operates only
on components with probability of failure, without eliminating or
modifying other architectural elements, where changes performed
on those components are limited to the error handling. For example,
in the Semi-Active Replication pattern described in Section 3.3, the
primary component is enriched exclusively with elements that allow
sending messages to the backup component in order to signal that
no errors occurred and the output can be discarded.
e The UML’ASA.GSPN bidirectional transformation is able to preserve
the completeness of the solution with respect to the relations speci-
fied in the transformation itself. The changes defined in the refactor-
ing patterns are mapped in changes involving only the corresponding
components without eliminating or modifying other architectural el-
ements. For instance, the modification described above is translated
in UML by means of adding a message in the corresponding Sequence
Diagram and a transition in the corresponding State Machine.
Finally, this property is related to another property of bidirectional
transformations, namely the hippocraticness [38]. A transformation
T is said to be hippocratic if for any model m € M and n € N, T(m,
n) implies T(m,n) and T(m, n) implies T(m,n). In our context, it
means that the backward execution of the UML’ASA-GSPN transfor-
mation does not modify any part of the UML initial model that still
complies, along the specified relation, with the refactored GSPN. In
other words, the transformation only modifies the portions of the
UML model where refactoring patterns have been applied in the re-
lated GSPN model portions. The capability of the JTL framework to
guarantee hippocraticness is discussed in Cicchetti et al. [12], Eramo
et al. [23].

Consistency: It is an internal property of an architectural model en-
suring that the defined architecture does not contain contradicting in-
formation. In order to evaluate the consistency of the refactored UML
model, let us consider the following aspects:

e We assumed that the initial software architectural model is consis-
tent.

e Examples of inconsistencies are inconsistent names, interfaces, and
refinements of architectural elements. The UML'ASA.-GSPN bidirec-
tional transformation specifies the mapping between UML and GSPN
elements by preserving the consistency of names and structure (e.g.,
in the GPSN models the same names are used for the corresponding
elements). On our example application, indeed, we observed that the
generated architecture does not contain information that contradicts
the initial one.

¢ Finally, the JTL framework helps in guaranteeing this property. In
fact, the invertibility of a transformation can be severely affected in
case of partial transformations that do not cover all the concepts. The
consequent information loss may give place to unwanted behavior
when the transformation is reversed. The traceability engine of JTL is
able to preserve the missing information and restore it, thus avoiding
loss of information [39].

5.1.3. RQ3: Pattern selection for availability improvements

It is obvious that the application of any fault-tolerance pattern should
improve the system availability, as it will be shown and discussed in
Table 5. It is, instead, less obvious to identify the patterns that more ef-
fectively improve the system availability when applied to specific com-
ponents within defined scenarios.

Information and Software Technology 127 (2020) 106362

Table 5
Steady state availabiligy computed on the initial
(#0) and refactored (@) architecture.

!

4, a
Monitoring Conditions 0.985392 0.990771
Remote Monitoring 0.991672 0.994207
Managing Temperature 0.977984 0.993316

This research question aims at addressing such issue, by showing the
effects on the system availability of the application of fault tolerance
patterns to different components in different scenarios.

We define the following notation for the remaining of this section.
We denote by: go an initial architectural model; Tfp (C) a single refactor-
ing action, which consists in applying a single fault tolerance pattern ftp
to a specific component C; R a refactoring strategy, that is the joint ap-
plication of multiple ry, actions to specific components (R = {r,,(C)}).
A refactorin, applic?tion obviously leads to a refactored architecture g,,
namely: R(q) —

The system availability will be denoted by Avail, and it is intended
to be computed on a specific architecture @, in the context of a specific

execution scenario denoted by ES* (where x is the scenario name, e.g.,
MT stands for Managing Temperature in our example application), while
varying the failure probability (FPIY) of the architectural component y
within the range I.

We start by investigating how changes in failure probabilities affect
the improvements introduced by the application of the fault tolerance
patterns in a specific execution scenario. Fig. 18 shows how the steady
state availability of the Managing Temperature scenario (ESMT) is altered
when varying the failure probability of the TemperatureSensor compo-
nent (FP'®) in the interval [0.01, 0.5].

The figure shows the availability Avail(@,, ESMT, F P[Eﬁlm> com-
puted for five alternative architectures:

(i) the initial architecture g0 in red, on which no refactoring action
is applied;

(ii) the architecture 4, in heavy green, on which the refactoring
action rgug (i.e., Semi-Active Replication pattern) is applied on
the TemperatureSensor component (i.e., R@y) - @, where R =
{rsar(TSH};

(iii) the architecture #; in light green, on which the refactoring action
rag (i.e., Active Replication pattern) is applied on the Temperature-
Sensor component (i.e., R(dg) — 4, where R = {rar(TSH));

(iv) the architecture g3 in heavy blue, on which the refactoring
action rgpp (i.e., Semi-Passive Replication pattern) is applied on
the TemperatureSensor component (i.e., R(@;) = @; where R =
{rspr(TSH});

(v) the architecture g4 in light blue, on which the refactoring action

rpg (i.e., Passive Replication pattern) is applied on the Tempera-
tureSensor component (i.e., R@,) —» 4, where R = {rpr(TSHD.

The results show that, while the Active Replication and Semi-Active
Replication patterns perform better with small failure probabilities val-
ues, the Passive Replication and Semi-Passive Replication patterns are more
robust to an increase in the failure probability of the components they
are applied on. This figure shows how our approach can support the
designer decisions to identify the best refactoring actions with respect
to the variation of system parameters. More specifically, in this case the
Semi-Active Replication pattern appears to be the best choice when the
failure probability value of TemperatureSensor is within the range [0.01,
0.115], whereas, for higher values, Passive Replication pattern should be
preferred.

In order to move from single refactoring actions to combined ones,
for each considered scenario, we have first measured the availability
on the GPSN model before and after applying the refactoring changes

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

.995

990

.985

.980

975

970

.965

Availability of Managing Temperature

.960

.955

Fig. 18. Availability of Managing Temperature
scenario vs. TemperatureSensor failure probabil-
ity under single refactoring actions.

950

02 04 06 .08 .10 .12 .14 .16 .18 20 22 24 26 28 30 .32 .34

TemperatureSensor failure probability

mentioned at the end of Section 4.3, namely R@,) - g/, where R =
(rsar(TS), rssr(HS), rgsr(SHS),r4g(DB)}. The observed steady state
availability indexes resulting from the analysis are reported in Table 5.
The availability is computed on the Monitoring Conditions (ESMC), Re-
mote Monitoring (ES®M), and Managing Temperature (ESMT) scenarios by
considering the specific failure probabilities reported in Table 1. The
measures highlight that the application of the fault tolerance patterns
has improved, as expected, the availability in each considered scenario.

The Managing Temperature scenario had an improvement of 15.332 x
1073 after the application of the Semi-Active Replication pattern on Tem-
peratureSensor, and the Active Replication pattern on the Database com-
ponent. The Monitoring Conditions scenario had an improvement of
5.379 x 103 after the application of the Semi-Active Replication pattern
on TemperatureSensor, HumiditySensor and SoilHumiditySensor, and the
Active Replication pattern on the Database component. Finally, the Re-
mote Monitoring scenario had an improvement of 2.535 x 1073 after the
application of the Semi-Active Replication pattern on HumiditySensor, and
the Active Replication pattern on the Database component.

Then, we performed a sensitivity analysis of availability, for each
considered scenario, by varying in the interval [0.01, 0.5] the failure
probability of each refactored component involved in the scenarios.

In what follows, we show how some changes in the failure prob-
abilities of components affect both the initial architecture 9 and the
refactored architecture @’ obtained by applying R defined above to 4.
In particular, Figs. 19-21 report the results for the Monitoring Conditions,
Remote Monitoring, and Managing Temperature scenarios, respectively.

The curve notation is the same as for Fig. 18. For ex-
ample, in Fig. 19 we depict Avail@o, ESMT_FPTS)

10.01,0.5]

and Avail(go,ESMT,F P[f)’gl 0s) @S solid curves, whereas
2’ g oMT TS S g’ g oMT DB

Avail @ ,ES FP{3 05) and Avail(@,ES JFPOS o5) as dashed

curves, respectively. For the other two figures, of course, the scenario
and the related involved components are different. For the sake of
clarity, in the legend of each figure we indicate, beside the architecture
name, the involved component whose failure probability varies to
obtain that specific curve.

The graphs clearly show improvements of the availability in all
scenarios. Moreover, by comparing the effects of refactored compo-

nents with those of original ones, we can see that, while the fail-
ure probability increases, the availability decreases more slowly after
the refactoring. In other words, we can observe that the architecture
@' can better withstand an increase in failure probabilities than 4,
does.

Finally, we remark that this analysis provides further support to
designers, by distinguishing the robustness of a refactoring strategy
vs. failure probability variations of different components. For example,
Fig. 19 shows that R is more effective on the architecture @' when the
TemperatureSensor failure probability increases with respect to when the
Database one increases. Indeed, this effect is emphasized by the increas-
ing distance between solid and dashed red curves, whereas the distance
between orange curves remains more or less the same all across the
Database probability failure range.

5.2. Threats to validity

In this section, potential threats to validity associated with the exper-
imental evaluation are discussed, by distinguishing internal, external,
construct and conclusion validity.

Internal validity: concerns any extraneous factor that could influence
our results. In general, the implementation of the approach could be
defective, as well as the results of the analysis could be inaccurate. We
mitigated these threats: i) by specifying our transformation on the base
of already existing mapping from Sequence Diagrams and Statecharts
to GSPNs [28]; ii) by considering already existing fault tolerance pat-
terns [15]; iii) by considering well-established methods for stochastic
availability assessment [29]; iv) by delegating the availability analysis
to an external solver [30]. Obviously, all the above actions mitigate the
possibility of introducing faults in the model transformation, because
it is based on solid specifications. We recall here that, by construction,
the transformation only produces, as output, models conforming to both
metamodels, although we have not performed any formal proof on the
semantic correctness of the results.

External validity refers to the generalizability of the obtained results.
With reference to the model transformation, we have adopted stan-
dard metamodels, thus the approach can be applied to any other con-
forming model. The analysis can be generalized to other models, even

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

= % %
995 * % % 5

"B-E.

990 |-

.985

.980

975

970

.965

Availability of Managing Temperature

—%— go: TemperatureSensor
-x-q'
—— goz Database

R

950 ‘

960 : TemperatureSensor

955
: Database

Fig. 19. Availability of Managing Temperature
scenario on the initial (go) and refactored

!
(@) architecture vs. failure probabilities under
combined refactoring actions.

20 22 24 26 28 30 32 34

Failure probability

.36

38 .40 46 .48 50

.995

.990

.985

080 : TemperatureSensor

: TemperatureSensor
975 : HumiditySensor
: HumiditySensor

970 |- : SoilHumiditySensor

Availability of Monitoring Conditions

: SoilHumiditySensor
965 : Database

: Database

Fig. 20. Availability of Monitoring Conditions

scenario on the initial (go) and refactored

!
(g) architecture vs. failure probabilities under
combined refactoring actions.

960 ‘

20 22 24 26 28 30 .32 34

Failure probability

though the considered fault tolerance patterns obviously change their
effectiveness depending on the specific software system. However, our
approach can be extended to apply additional patterns at the cost of
specifying them in GSPN. Finally, the size of the example application
considered here is not very large, but complex enough to demonstrate
the effectiveness of the approach. Nothing can be asserted about the
scalability of the approach on large size architectures, which remains
one of our future objectives. However, we remark that our approach
is intended to be used within a decisional process that usually is not
constrained by hard real-time requirements, like it could have been
the assessment of availability at runtime. Hence, even several hours
of processing time could represent a reasonable cost to be afforded
in practice for exploring a solution space difficult to inspect without
automation.

.36

38 .40

42

4446 48 .50

Construct validity concerns the validity of our results with respect to
the evaluation criteria. As said, we considered well-know methodologies
and methods existing in literature both for the transformation specifica-
tion and the availability analysis. This mitigates the presence of factors
that can compromise the validity of the experiment and of the results.

Conclusion validity concerns the reliability of the measures that, in
this case, refers to the reproducibility of the results. In order to ensure
that our results are reproducible, we repeated each measurement three
times and made sure that there were no differences between the mea-
sured values with an approximation of 107>, The artifacts considered in
this experiment are supplied via a GitHub repository,” and the experi-
ment can be reproduced locally within the JTL framework.

9 https://github.com/SEALABQualityGroup/JASA.

https://github.com/SEALABQualityGroup/JASA

V. Cortellessa, R. Eramo and M. Tucci

Information and Software Technology 127 (2020) 106362

.995

990

.985

.980

975

970 —%— go : HumiditySensor

-x- HumiditySensor
goz MobileApp
!
960 a’. MobileApp

.965

Availability of Remote Monitoring

goz Database
955 ,
A': Database

Fig. 21. Availability of Remote Monitoring sce-
nario on the initial (go) and refactored (g,) ar-
chitecture vs. failure probabilities under com-
bined refactoring actions.

950
.02 .04 06 .08 .10 .12 .14 .16 .18 20 22 24 26 28 .30 .32 .34

Failure probability

6. Related work

Several approaches have been introduced in the last few years to
derive analysis models from annotated software models. Bondavalli
et al. [40] represents one of the first attempts at enriching a UML design
to specify dependability aspects. The authors define UML extensions to
generate Stochastic Petri Net models for dependability analysis auto-
matically. High-level SPN models are derived from UML structural dia-
grams and later refined using UML behavioral specifications. The trans-
formation relies upon an intermediate model, and no standard UML pro-
files are employed since none were available at the time of publication.
In [41], Huszer et al. propose a transformation of UML statechart di-
agrams into Stochastic Reward Nets (SRN) to conduct a performance
and dependability analysis. The transformation is defined as a set of
SRN patterns, and the dependability analysis is performed under erro-
neous state and faulty behavior assumptions. Mustafiz et al. [42] also
present a mapping between a probabilistic extension of statecharts and
a Markov chain model for quantitative assessment of safety and relia-
bility. Bernardi et al. [26] propose a transformation of UML sequence,
statechart and deployment diagrams into a GSPN model for performa-
bility analysis. Software models are annotated using the former stan-
dard UML SPT profile. Our bidirectional transformation is based on the
mechanisms related to statechart transformation as formally specified
in Bernardi and Merseguer [26], which we have implemented in JTL. By
taking advantage of bidirectional transformations, the designer can au-
tomatically propagate the refactoring performed on the analysis model
back to the UML model.

On top of automated derivation of analysis models from software
models, several approaches have been built for multi-objective software
architecture optimization driven by non-functional attributes. None of
these approaches explicitly consider availability as a target, even though
some of them consider failure probabilities of components and/or plat-
form devices.

In particular, in Martens et al. [43] an evolutionary algorithm is in-
troduced for optimizing performance, reliability and cost. Failure proba-
bilities are associated to hardware connectors only, and a discrete-time
Markov chain is generated to calculate the probability for the whole
system to be in a failure state. Hence, this approach considers differ-
ent model elements to be subject to failures, as well as a different non-
functional target property with respect to our work. Moreover, the ar-

38 40 42 44 46 48 50

chitecture refactoring actions in Martens et al. [43] are not specifically
targeted to fault tolerance as in our case, but rather generic refactoring
actions, such as component replication. These differences about target
properties and non-specific fault tolerant actions remain in other similar
works that have appeared in the context of architecture optimization,
such as [44].

In the context of bidirectional model transformations, a round-trip
engineering process between models representing different views of the
same system is formally defined in Hettel et al. [45]. In the perfor-
mance analysis domain, in a previous paper [9], we have introduced
a similar approach to the one presented in this paper. In particular, we
have defined a bidirectional model transformation between UML soft-
ware models and Queueing Network (QN) performance models. The for-
ward transformation path generates the performance model from the
initial software model, whereas the backward one is used to generate,
after the analysis, a new software model from the modified version of
the performance model. In [46] two methods to tackle the problem of
deriving architectural changes from model-based performance analysis
results have been compared: (i) to perform refactoring on the software
side by detecting and solving performance antipatterns, or (ii) to modify
the analysis model using bidirectional model transformations to induce
architectural changes. This represents an interesting study for reasoning
on the pros and cons of modifying a non-functional model as opposite
to applying modifications to a software architectural model.

In [47], the authors propose principles to use f{UML (Foundational
Semantics for Executable UML Models) and Alf (Action Language for
fUML) as a simulation environment. However, this approach provides
only the structural modeling constructs of UML, whereas the ability to
model behavior is limited to UML activities. Hence, in order to exploit
the simulation environment, availability parameters (such as the fail-
ure probabilities) should be defined within the modeling language and
the simulation engine could require to be extended to process them. As
opposite, the use of languages as DAM that natively supports the defini-
tion of dependability parameters, coupled with transformations towards
analysis models like GSPNs, does not require to extend the modeling lan-
guage and the solution/simulation engine. Finally, this process would be
subject to scalability problems, as pointed in Berardinelli et al. [48,49].

To the best of our knowledge, this is the first paper proposing an
automated propagation of changes performed on an availability model
back to an architectural model. Even though the scope of this paper

V. Cortellessa, R. Eramo and M. Tucci

is limited to the modeling notation context considered here (i.e., UML-
DAM and GSPNs), our approach represents a first step towards the usage
of bidirectional transformations for closing a round-trip process for soft-
ware availability modeling and analysis.

7. Conclusion

In this paper, we proposed JASA, a model-driven framework that
supports a round-trip availability analysis process based on software ar-
chitectural refactoring. We used bidirectional model transformations to
map software architectures represented by UML models to GSPN analy-
sis models and vice versa. In fact, after the analysis, the obtained GSPN
is modified according to a proposed catalog of refactoring based on well-
known fault tolerance patterns. Finally, the changes are back propagated
to the software architecture with the aim of improving the software
availability. The effectiveness of our approach has been demonstrated
on an Environmental Control System, in terms of ability to generate an-
alyzable availability models from software architectures and valid soft-
ware architectures from availability models. Also, we showed how to
select more effective fault-tolerance patterns in different execution sce-
narios.

Although we considered a set of well-known fault tolerance refactor-
ing techniques, the approach can be extended to support further user-
defined refactoring actions and to automate the application of such
actions on GSPN models completely. In this respect, the bidirectional
model transformation needs to be modified in order to cope with a
larger set of relationships. As a possible consequence of this modifica-
tion, the change propagation from analysis to architectural models may
result in the generation of multiple architectural alternatives, because
a single refactoring action in a GSPN can be mapped in more than one
refactored architectural model. This is our main future work direction,
where we can still exploit the JTL transformation engine that is able
to support non-bijective mappings by generating all the alternative so-
lutions according to the specification. In the same direction, a further
challenge for the future is to introduce a human-assisted process for
choosing among multiple suggested alternatives.

Finally, another line of future investigation encompasses the exten-
sion of the proposed methodology to further non-functional require-
ments such as reliability and safety.

Credit author statement

The contribution of each author is equivalent for all the CRediT
(Contributor Roles Taxonomy) roles.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] D. Garlan, J.M. Barnes, B.R. Schmerl, O. Celiku, Evolution styles: foundations and
tool support for software architecture evolution, in: WICSA/ECSA, 2009, pp. 131-
140, doi:10.1109/WICSA.2009.5290799.

[2] H. Muccini, A. Bertolino, P. Inverardi, Using software architecture for code testing,
IEEE Trans. Softw. Eng. 30 (3) (2004) 160-171, doi:10.1109/TSE.2004.1271170.

[3] A. Tang, Y. Jin, J. Han, A rationale-based architecture model for de-
sign traceability and reasoning, J. Syst. Softw. 80 (6) (2007) 918-934,
doi:10.1016/j.jss.2006.08.040.

[4] V. Cortellessa, A.D. Marco, P. Inverardi, Non-functional modeling and validation in
model-driven architecture, in: WICSA, 2007, p. 25, doi:10.1109/WICSA.2007.30.

[5] D. Garlan, R.T. Monroe, D. Wile, Acme: an architecture description interchange lan-
guage, in: Proceedings of the 1997 Conference of the Centre for Advanced Studies
on Collaborative Research, November 10-13, 1997, Toronto, Ontario, Canada, 1997,
p-7.

[6] P. Feiler, D. Gluch, J. Hudak, The architecture analysis & design lan-
guage (AADL): an introduction, 2006, p. 145, doi:10.1184/R1/6584909.v1.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7879.

[71

[8

=

[9

—_

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]
[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

Information and Software Technology 127 (2020) 106362

S. Becker, H. Koziolek, R.H. Reussner, The Palladio component model for
model-driven performance prediction, J. Syst. Softw. 82 (1) (2009) 3-22,
doi:10.1016/j.js5.2008.03.066.

D. Schmidt, Guest editor’s introduction: model-driven engineering, Computer 39 (2)
(2006) 25-31, doi:10.1109/MC.2006.58.

R. Eramo, V. Cortellessa, A. Pierantonio, M. Tucci, Performance-driven architectural
refactoring through bidirectional model transformations, in: QoSA, 2012, pp. 55-60,
doi:10.1145/2304696.2304707.

V. Cortellessa, A.D. Marco, P. Inverardi, Model-Based Software Performance Analy-
sis, Springer, 2011, doi:10.1007/978-3-642-13621-4.

S. Bernardi, J. Merseguer, D.C. Petriu, Model-Driven Dependability Assessment of
Software Systems, Springer, 2013.

A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, JTL: a bidirectional and change
propagating transformation language, in: SLE10, 2010, pp. 183-202.

V. Cortellessa, R. Eramo, M. Tucci, Availability-driven architectural change propaga-
tion through bidirectional model transformations between UML and petri net mod-
els, in: IEEE International Conference on Software Architecture, ICSA 2018, 2018,
pp. 125-134, doi:10.1109/ICSA.2018.00022.

M.C. Otero, J.J. Dolado, Evaluation of the comprehension of the dy-
namic modeling in UML, Inf. Softw. Technol. 46 (1) (2004) 35-53,
doi:10.1016,/50950-5849(03)00108-3.

T. Saridakis, A system of patterns for fault tolerance, in: Proceedings of 2002 Euro-
PLoP Conference, 2002.

A. Avizienis, J. Laprie, B. Randell, C.E. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Trans. Depend. Secure Comput. 1 (1) (2004)
11-33, doi:10.1109/TDSC.2004.2.

M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with
Generalized Stochastic Petri Nets, John Wiley & Sons, Inc., 1994.

Unified modeling language, 2015, (OMG). Version 2.5.

S. Bernardi, J. Merseguer, D.C. Petriu, A dependability profile within MARTE, Softw.
Syst. Model. 10 (3) (2011) 313-336, d0i:10.1007/510270-009-0128-1.

A UML profile for MARTE: modeling and analysis of real-time embedded systems,
2008, (OMG).

S. Hidaka, M. Tisi, J. Cabot, Z. Hu, Feature-based classification of bidirectional trans-
formation approaches, in: SOSYM, 2015, pp. 1-22.

P. Stevens, A landscape of bidirectional model transformations, in: GTTSE, Springer,
2008, pp. 408-424.

R. Eramo, A. Pierantonio, G. Rosa, Managing uncertainty in bidirectional model
transformations, in: SLE, 2015, pp. 49-58.

MOF Query/View/Transformation - QVT, 2016, (OMG).

M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: ICLP,
1988, pp. 1070-1080.

S. Bernardi, J. Merseguer, QoS Assessment via stochastic analysis, IEEE Internet
Comput. 10 (2006) 32-42, doi:10.1109/MIC.2006.63.

M. Weber, E. Kindler, The petri net markup language, in: Petri Net Technology
for Communication-Based Systems - Advances in Petri Nets, 2003, pp. 124-144,
doi:10.1007/978-3-540-40022-6_7.

S. Bernardi, S. Donatelli, J. Merseguer, From UML sequence siagrams and statecharts
to analysable petrinet models, in: Workshop on Software and Performance, 2002,
pp. 35-45, doi:10.1145/584369.584376.

K. Goseva-Popstojanova, K.S. Trivedi, Stochastic modeling formalisms for depend-
ability, performance and performability, in: Performance Evaluation: Origins and
Directions, 2000, pp. 403-422.

G. Chiola, G. Franceschinis, R. Gaeta, M. Ribaudo, Greatspn 1.7: graphical editor and
analyzer for timed and stochastic petri nets, Perform. Eval. 24 (1-2) (1995) 47-68,
doi:10.1016/0166-5316(95)00008-L.

M. Toeroe, F. Tam, Service Availability: Principles and Practice, Wiley, 2012.

, Delta Four: A Generic Architecture for Dependable Distributed Computing, D. Pow-
ell, I. Bey, J. Leuridan (Eds.), Springer-Verlag, Berlin, Heidelberg, 1991.

B. Kemme, Replication for Availability and Fault Tolerance, Springer, pp. 1-7.
10.1007/978-1-4614-8265-9_80723.

T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (4) (1989)
541-580, doi:10.1109/5.24143.

M. Ajmone Marsan, G. Conte, G. Balbo, A class of generalized stochastic petri nets for
the performance evaluation of multiprocessor systems, ACM Trans. Comput. Syst. 2
(2) (1984) 93-122, doi:10.1145/190.191.

L. Popova-Zeugmann, Time and Petri Nets, Springer, 2013.

R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture - Foundations, The-
ory, and Practice, Wiley, 2010.

P. Stevens, Bidirectional model transformations in QVT: semantic issues and open
questions, Softw. Syst. Model. 9 (1) (2010) 7-20, doi:10.1007/s10270-008-0109-9.
R. Eramo, A. Pierantonio, M. Tucci, Improved traceability for bidirectional model
transformations, in: Proceedings of MODELS 2018 Workshops co-located with MOD-
ELS 2018), 2018, pp. 306-315.

A. Bondavalli, M.D. Cin, D. Latella, I. Majzik, A. Pataricza, G. Savoia, Dependability
analysis in the early phases of uml-based system design, Comput. Syst. Sci. Eng. 16
(2001) 265-275.

G. Huszerl, K. Kosmidis, M.D. Cin, I. Majzik, A. Pataricza, Quantitative analysis of
UML statechart models of dependable systems, Comput. J. 45 (2000) 260-277.

S. Mustafiz, X. Sun, J. Kienzle, H. Vangheluwe, Model-driven assess-
ment of system dependability, Softw. Syst. Model. 7 (4) (2008) 487-502,
doi:10.1007/510270-008-0084-1.

A. Martens, H. Koziolek, S. Becker, R.H. Reussner, Automatically improve software
architecture models for performance, reliability, and cost using evolutionary algo-
rithms, in: A. Adamson, A.B. Bondi, C. Juiz, M.S. Squillante (Eds.), Proceedings of
the First Joint WOSP/SIPEW International Conference on Performance Engineer-

https://doi.org/10.1109/WICSA.2009.5290799
https://doi.org/10.1109/TSE.2004.1271170
https://doi.org/10.1016/j.jss.2006.08.040
https://doi.org/10.1109/WICSA.2007.30
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0005
https://doi.org/10.1184/R1/6584909.v1
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7879
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/2304696.2304707
https://doi.org/10.1007/978-3-642-13621-4
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0011
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1016/S0950-5849(03)00108-3
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0014
https://doi.org/10.1109/TDSC.2004.2
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0016
https://doi.org/10.1007/s10270-009-0128-1
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0021
https://doi.org/10.1109/MIC.2006.63
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1145/584369.584376
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0025
https://doi.org/10.1016/0166-5316(95)00008-L
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0028
https://doi.org/10.1109/5.24143
https://doi.org/10.1145/190.191
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0032
https://doi.org/10.1007/s10270-008-0109-9
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0036
https://doi.org/10.1007/s10270-008-0084-1

V. Cortellessa, R. Eramo and M. Tucci

[44]

[45]

ing, San Jose, California, USA, January 28-30, 2010, ACM, 2010, pp. 105-116,
doi:10.1145/1712605.1712624.

V. Cardellini, E. Casalicchio, V. Grassi, F.L. Presti, R. Mirandola, QoS-driven run-
time adaptation of service oriented architectures, in: H. van Vliet, V. Issarny (Eds.),
Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2009, Amsterdam, The Netherlands, August 24-28, 2009, ACM, 2009,
pp. 131-140, doi:10.1145/1595696.1595718.

T. Hettel, M. Lawley, K. Raymond, Model synchronisation: definitions for round-trip
engineering, in: Theory and Practice of Model Transformations, 2008, pp. 31-45.

[46]

[47]

[48]

[49]

Information and Software Technology 127 (2020) 106362

D. Arcelli, V. Cortellessa, Software model refactoring based on performance analy-
sis: better working on software or performance side? in: FESCA, 2013, pp. 33-47,
doi:10.4204/EPTCS.108.3.

J. Tatibouet, A. Cuccuru, S. Gérard, F. Terrier, Principles for the realization of an
open simulation framework based on fUML (WIP), volume 45, 2013.

L. Berardinelli, A.D. Marco, S. Pace, f{UML-driven design and performance analysis of
software agents for wireless sensor network, in: Software Architecture - 8th European
Conference, ECSA 2014, 2014, pp. 324-339.

L. Berardinelli P. Langer, T. Mayerhofer, Combining fUML and pro-
files for non-functional analysis based on model execution traces, 2013,
doi:10.1145/2465478.2465493.

https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1595696.1595718
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0040
https://doi.org/10.4204/EPTCS.108.3
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30130-0/sbref0042
https://doi.org/10.1145/2465478.2465493

	From software architecture to analysis models and back: Model-driven refactoring aimed at availability improvement
	1 Introduction
	2 Background
	2.1 Round-trip non-functional analysis process
	2.2 Model-based availability analysis
	2.3 Fault tolerance refactoring techniques

	3 The JASA approach
	3.1 Using model driven techniques
	3.2 From availability assessment to architecture improvements
	3.3 A catalog of availability patterns
	3.3.1 Passive replication
	3.3.2 Semi-passive replication
	3.3.3 Active replication
	3.3.4 Semi-active replication

	3.4 The UMLJASA-GSPN bidirectional transformation
	3.4.1 UMLSM-GSPN
	3.4.2 GSPN subnets composition
	3.4.3 Static view (UMLCD) update

	4 JASA at work
	4.1 Environmental control system (ECS) modeling
	4.2 Analysis model generation
	4.3 Analysis results and refactoring
	4.4 Change propagation

	5 Results evaluation
	5.1 Insights on research questions
	5.1.1 RQ1: Analizability of the generated analysis models
	5.1.2 RQ2: Validity of the refactored architecture
	5.1.3 RQ3: Pattern selection for availability improvements

	5.2 Threats to validity

	6 Related work
	7 Conclusion
	Credit author statement
	Declaration of Competing Interest
	References

