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Abstract
We give a shorter proof of the well-posedness of the Laplacian flow in G

2
-geometry. This 

is based on the observation that the DeTurck–Laplacian flow of G
2
-structures introduced 

by Bryant and Xu as a gauge fixing of the Laplacian flow can be regarded as a flow of (not 
necessarily closed) G

2
-structures, which fits in the general framework introduced by Ham-

ilton in J Differ Geom 17(2):255–306, 1982. A similar application is given for the modified 
Laplacian co-flow.
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1  Introduction

In[1] Bryant introduced a geometric flow in G2-geometry which evolves an initial closed 
G2-structure �0 in the direction of its Laplacian.

Given a compact seven-dimensional manifold with a closed G2-structure (M,�0) , a 
Laplacian flow is a solution to the evolution equation

The well-posedness of Eq. (1) is proved in[2] by applying the Nash–Moser theorem to the 
gauge fixing

where L is the Lie derivative and V ∶ C∞(M,Λ3
+
) → C∞(M, TM) is a first-order differential 

operator which depends on the choice of a connection on M. Here, Λ3
+
 denotes the open 

(1)�

�t
�t = Δ�t

�t, d�t = 0, �|t=0 = �0 .

(2)�

�t
�t = Δ�t

�t + LV(�t)
�t, d�t = 0, �|t=0 = �0,
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subbundle of Λ3 of G2-structures on M. A solution to (2) is usually called a DeTurck–Lapla-
cian flow.

A DeTurck–Laplacian flow �t is also a solution to

In the present note, we observe that Eq. (3) fits in the general framework introduced by 
Hamilton in[4]. As a direct consequence, we have the following theorem which in particu-
lar implies the well-posedness of (2)

Theorem 1.1  Let (M,�0) be a compact seven-dimensional manifold with a G2-structure. 
Then, Eq. (3) has a unique short-time solution.

In[5] Karigiannis, McKay and Tsui introduced the Laplacian co-flow as the solution to 
the evolution equation

where in this case �0 is supposed to be co-closed with respect to the metric induced by 
itself. The well-posedness of this last equation is still an open problem and Grigorian intro-
duced in[3] the following modification

where A is a constant and T(�t) is the torsion of �t . In[3], the well-posedness of (5) is 
proved following the same approach of Bryant in[1] by applying the Nash–Moser theorem 
to the gauge fixing

Any solution to Eq. (6) satisfies

Analogously to Theorem 1.1, we have

Theorem 1.2  Let (M,�0) be a compact seven-dimensional manifold with a G2-structure. 
Then, Eq. (6) has a unique short-time solution.

2 � Proof of the results

Both Theorems 1.1 and 1.2 can be proved by using the following setup introduced by Ham-
ilton in [4].

Let M be an oriented compact manifold, F a vector bundle over M, U an open subbundle 
of F and

(3)�

�t
�t = dd∗

�t
�t + d�V(�t)

�t, �|t=0 = �0 .

(4)�

�t
(∗�t

�t) = −Δ�t
∗�t

�t, d ∗�t
�t = 0, �|t=0 = �0,

(5)�

�t
(∗�t

�t) = Δ�t
∗�t

�t + 2d((A − Tr(T(�t))�t), d ∗�t
�t = 0, �|t=0 = �0,

(6)

�

�t
(∗�t

�t) = Δ�t
∗�t

�t + 2d((A − Tr(T(�t))�t) + LV(�t)
�t, d ∗�t

�t = 0, �|t=0 = �0,

(7)�

�t
(∗�t

�t) = dd∗
�t
∗�t

�t + 2d((A − Tr(T(�t))�t) + d�V(�t)
�t, �|t=0 = �0,

E ∶ C∞(M,U) → C∞(M,F)
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a second-order differential operator. For f ∈ C∞(M,U) , we denote by 
DE(f ) ∶ C∞(M,F) → C∞(M,F) the linearization of E at f and by �DE(f ) the principal 
symbol of DE(f).

Definition 2.1  An integrability condition for E is a first-order linear differential operator

where G is another vector bundle over M, such that L(E(f )) = 0 for all f ∈ C∞(M,U) , and 
for every (x, ξ) in T*M all the eigenvalues of �DE(f )(x, �) restricted to ker �L(x, �) have 
strictly positive real part.

Theorem 2.1  (Hamilton [4, Theorem 5.1]) Assume that E admits an integrability condi-
tion. Then, for every f0 ∈ C∞(M,U) the geometric flow

has a unique short-time solution.

Now we can focus on the setup of Theorem 1.1. Here, we consider

From [2], it follows that for every � ∈ C∞(M,U) and every closed � ∈ C∞(M,Λ3) , we 
have

Hence, all the assumptions of Hamilton’s Theorem  2.1 are satisfied and Theorem  1.1 
follows.

Notice that if the starting form �0 is closed, then the solution to (3) is closed for 
every t since

Therefore, if �0 is closed, the unique solution �t to (3) solves also the DeTurck–Laplacian 
flow (2) and the short-time existence of the DeTurck–Laplacian flow (2) can be deduced 
from Theorem 1.1.

About the proof of Theorem 1.2, we set

From [3], it follows

for every closed � ∈ C∞(M,Λ4) and the proof of Theorem 1.2 follows.
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L ∶ C∞(M,F) → C∞(M,G),

(8)
�f

�t
= E(f ), f (0) = f0,

F = Λ3, U = Λ3

+
, G = Λ4, E(�) = dd∗

�
� + d�V(�)�, L = d ∶ C∞(M,Λ3) → C∞(M,Λ4) .

DE(�)(�) = −Δ�� + l.o.t.
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