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Abstract— Electrical load planning and demand response pro-
grams are often based on the analysis of individual load-level
measurements obtained from houses or buildings. The identifi-
cation of individual appliances’ power consumption is essential,
since it allows improvements, which can reduce the appliances’
power consumption. In this article, the problem of identifying the
electrical loads connected to a house, starting from the total elec-
tric current measurement, is investigated. The proposed system
is capable of extracting the energy demand of each individual
device using a nonintrusive load monitoring (NILM) technique.
An NILM algorithm based on a convolutional neural network is
proposed. The proposed algorithm allows simultaneous detection
and classification of events without having to perform double
processing. As a result, the calculation times can be reduced.
Another important advantage is that only the acquisition of
current is required. The proposed measurement system is also
described in this article. Measurements are conducted using a test
system, which is capable of generating the electrical loads found
on a typical house. The most important experimental results are
also included and discussed in the article.

Index Terms— Convolutional neural network (CNN), disaggre-
gation algorithm, energy management, load identification, load
signatures, machine learning (ML), nonintrusive load monitoring
(NILM).

I. INTRODUCTION

HE reduction in electrical energy consumption requires

the acquisition of ever more detailed data on individ-
ual users’ power consumption. Electrical load planning and
demand response programs are often based on the analysis
of individual load-level measurements obtained from houses
or buildings. By performing this analysis, the least efficient
or malfunctioning devices can be identified and appropriate
actions for reducing power consumption can be implemented.
This analysis requires the measurement of energy consumed
by each individual electrical appliance over time intervals of
a few days or weeks.

The most usually applied method is based on the measure-
ment of the total energy demand by users and the identification
of power consumption by each individual load. This method
requires measurement of voltage and current, or often mea-
surement of current alone. The processing of measurements is
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based on a nonintrusive load monitoring (NILM) algorithm,
which applies the “load disaggregation” technique. Research
on load disaggregation began by Hart [1] in the early 1990s.
Over the years, significant improvements have been made with
respect to event detection and feature extraction techniques.
Various techniques have been proposed in the literature, often
based on complex processing techniques.

The load characteristics can be analyzed by observing the
trend over time or by performing analysis in the frequency
domain. The analysis is conducted under stationary or transient
conditions. The type of analysis influences the choice of
the sampling frequency. A brief description of the different
characteristics used in the literature for NILM [2] is described
as follows.

1) Active Power P: This characteristic is generally inte-
grated by measuring the duration and the appliance’s
frequency of use.

2) P-Q Plan: Step changes in the active and reactive power
Q allow easy identification of the ON/OFFstatus of high-
power equipment.

3) Combination of the P—Q Plane With Extended Transient
Characteristics: It is suitable in identifying devices with
relatively long transients and significant peaks of power.

4) Characteristics Based on P, Q, I, and V at Low Fre-
quencies: These combinations exhibit good performance
in identifying ON/OFFappliances.

5) P-Q and Harmonic Planes: The harmonic con-
tent or the spectrum of high-frequency sampled currents
is usually combined with the P—Q characteristics.

6) Short-Time Fourier Transform (STFT): The spectral
envelopes allow the identification of nonlinear and vari-
able load devices.

7) V-I trajectories: It is suitable in identifying loads,
starting from the signal shape.

8) Nonactive current: It is suitable in identifying some
special equipment.

9) Unconventional features: The analysis of voltage—noise
spectrum or electromagnetic interference voltage noise
has been proposed by several authors [3].

An almost complete summary of the relevant techniques has
been reported in [2]. Unfortunately, there is still no suitable
technique for the unequivocal discrimination of electrical
loads.

The type of analysis to be applied also depends on the type
of installation, which must be defined first. The NILM system
can be placed in the switch box inside a property or even
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at a long distance from it. In the first case, the NILM is a
miniaturized system with an embedded microcontroller. This
system is capable of acquiring and processing the signals
locally. In the second case, the system is a computer, which
processes the data transmitted to a cloud database by the local
smart energy meter. Local systems are capable of acquiring
voltage and current (even with sampling frequencies of some
kilohertz) processing them in real-time and displaying the
results or storing them on a remote server [4]. Remote systems
can only use data (normally related only to the active power)
available in the cloud with measurement frequencies ranging
from 1 to 3 Hz due to limited data transmission and storage
capabilities [5].

Event detection and load disaggregation can be con-
ducted using “traditional” algorithms [1], [6] or, as more
widely proposed, by applying machine learning (ML)
techniques [7]-[14]. ML [15] is a science related to algorithm
design and applications. It involves computer learning from
the data provided so that they carry out certain tasks. The
ML systems are highly automated and self-modifying. These
systems continue to improve over time with minimal human
intervention as they learn using more data.

ML techniques can be applied using different approaches.
In the first category, direct acquisition of the data on each
individual user is required. These data can be used for
system training (supervised methods) [16]. The second cat-
egory includes techniques, which reduce the requirements
for data training [7], [8]. For example, Parson et al. [5]
proposed the tuning of generic device models to specific
device instances using the signatures extracted from the
aggregate load. Tang et al. [9] formulated load disaggregation
as an optimization problem and attempted to minimize the
change in switching events based on the knowledge of the
appliance power models and the infrequency of switching
events.

The third category of load disaggregation approaches obvi-
ates the need for prior knowledge of the appliances using unsu-
pervised learning methods. These methods process sequences
of low-frequency active power measurements [10]. Recent
algorithms are based on hidden Markov models, factorial
hidden Markov models, and source separation via non-negative
tensor factorization [11]-[13]. These techniques are based on
learning the parameters of an appliance after collecting the
aggregated data for an adequate period, ranging from a few
hours to a few months. In these systems, the number of
appliances determines the dimension of the state space to be
estimated. Therefore, it is directly related to model complexity
and computational overhead. Since only low-frequency real-
power measurements are used as features in these frameworks,
the scalability of the methods is limited [14].

Deep learning (DL) is a type of ML that trains a computer
to perform human-like activities, such as speech recognition,
image identification, or prediction-making. Instead of orga-
nizing data to perform predefined equations [17], DL sets
basic parameters on the data and trains the computer to
learn on its own, by recognizing patterns using some levels
of processing. There is a substantial difference between ML
and DL. If an ML system makes an inaccurate prediction,
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an engineer must intervene and make changes [15], [17].
By adopting a DL model, the algorithm itself is capable
of determining whether a prediction is accurate or not. DL
applications use a layered structure of algorithms called the
artificial neural network (ANN) since they vaguely imitate the
interconnected structure of the human brain to provide multi-
level functionality [18], [19].

In this work, a monitoring system installed inside a house is
proposed. This system is capable of acquiring and processing
the overall user current. The proposed solution is a DL-based
NILM system, which adopts a particular type of ANN,
namely, the convolutional neural network (CNN) [20]-[22].
This CNN is suitable for processing complex inputs such as
multidimensional arrays. In the proposed application, the CNN
processes the STFT of the total current. Although in most
algorithms an event detection step is followed by device
identification, in this work, event detection and classification
of the related device are performed by the same and unique
process.

The operational characteristics of the proposed system are
verified by extensive measurements. The results obtained from
field applications are also included and discussed.

II. ANALYZED LOAD SIGNATURE FEATURES

Although NILM has been investigated for over two decades,
no systematic selection of the electrical characteristics that
allow for unequivocal load discrimination has been presented
yet. Therefore, the identification of the most significant set
of electrical parameters that allow them to be distinguished
remains one of the biggest challenges.

The load characteristics can be classified into stationary
and transient-state characteristics based on the state of the
measured waveform they represent. The load signature pro-
posed in this article is based on the transient characteristics.
More specifically, the transient characteristics are represented
by the spectrogram of the derived rms current signal. By deriv-
ing the rms current, the steady states are filtered and all
transient information is maintained. In this way, it is pos-
sible to classify an event, regardless of the load conditions
present.

The load signature allows the action of a device to be
identified when it comes into operation by measuring only
the overall current of the monitored system. First, the cur-
rent effective (rms) value is calculated by processing the
acquired raw current with a sliding window technique, as
follows:

k+(N—1)
2

> o

n=k
where k is the kth measured current sample, N is the number
of samples per cycle, i(,) is the sampled signal, and n is the
summation index.

After. this signal is deriveq, the impulsive signal I/ (n) €N
be obtained. The pulses of this signal represent the rms current
transient states, as shown in Fig. 1. The position of the pulse
in the derived signal identifies the moment in which a certain
event occurred.
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Fig. 2. Spectrograms obtained during switch ON (left) and OFF (right) of a microwave oven.

This impulsive signal is successively processed by the STFT
through the following known transformation [23], [24]:

o0
STFT(mw) = D, Ly Win—mye "

n=—0oo

)

Each specific event can be distinguished based on its spectral
content and located in a precise time instant. In the above
formula, w is the window function, and Ir’ms ) is the sampled
signal to be transformed (i.e., the derivative of the rms current
value).

The current is processed cyclically at 1-s acquisition inter-
vals following the described procedure. Each acquisition slot
is processed (to calculate rms and the derivative) by adopting
an overlap of 500 ms to ensure correct analysis. It is also
processed for transient events, which can be fragmented into
two successive slots. The STFT is implemented by processing
ten-cycle (200 ms) windows with an overlap of 4/5 of the
processing window.

To keep track of the type of event (switching ON or OFF),
as the spectrograms of a device are often identical for both
cases, the spectrogram described in (2) is multiplied by the
sign of the cumulative sum, evaluated on the rms current
signal, as follows:

N
SN = Z (Irms (n) — Trms (nfl))

n=1

3)

where Iims (n) is the rms value of the current described in
(1), N is the number of samples, and Sy is the value of the
cumulative sum. The final signal S(i, j) can be obtained in
the form of a 101 x 26 matrix, as follows:

S@, j) = STFT(,0) - sgn(Sn)

(@]

Z Ir/ms (n)w(n*m)eijwn
n=—oo
N
- sgn Z (Irms () — Trms (nfl)) 4)
n=1
Two examples of the obtained spectrograms are shown
in Fig. 2 for the case of a microwave oven.

The spectrograms obtained by processing the currents flow-
ing through different loads are used as inputs to the neural
network described in Section III. This network provides a
response every 500 ms, indicating the presence or absence
of events in the signal, and the type of device involved.

III. DEEP LEARNING SYSTEMS

Based on the use of complex algorithms, DL provides
systems, which are capable of analyzing massive amounts of
data, recognizing patterns, and making predictions or deci-
sions without being explicitly programmed to perform these
tasks. In contrast, the DL systems operate by “learning and
improving from experience.”
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Fig. 3. Structure of the proposed CNN.

This learning ability does not imply that a DL system
is capable of understanding what it is analyzing, learning
from its experiences, and making decisions based on that
understanding. Indeed, the real capabilities of such a system
can be summarized considering that if particular behaviors
have occurred in the past, it is possible to predict if they
can happen again. It also means that if there are no past
cases, then there are no predictions. Therefore, the analysis
of previous cases is essential for achieving prediction results.
Also, the number of cases is generally high.

Neural networks (NNs) are essential parts for the imple-
mentation of DL systems. NNs are capable of simulating
a large number of densely interconnected brain cells in a
simplified way using a computer. Originally, NNs were used
for modeling biological neural systems without achieving
significant results. Subsequently, other methodologies were
used, achieving better performance. Today, NNs are generally
software simulations implemented by conventional computer
programming. They are called ANNs to differentiate from
biological NNs [18], [19].

The basic computational elements of an ANN are the nodes
(or neurons). These nodes are arranged in a series of layers,
each of which is connected to the layers placed on either
side. Some nodes receive various forms of information from
outside sources (input nodes). Other nodes, which are placed
on the opposite side of the network, indicate how the system
responds to the supplied information (output nodes). Between
the input and output nodes, there are one or more layers of
hidden processing nodes.

Each node receives its input from other nodes or from
an external source and calculates its output by applying a
function, called activation function (AF), to the weighted sum
of its inputs. A bias value is added to this sum. The application
of the AF specifically introduces nonlinearities, aiming to
emulate the way humans analyze real-world data [25]. The
connection between one node and another is performed by
a number (weight), which can be positive (one node excites
another) or negative (one node inhibits another). The greater
the weight, the greater the influence one node exerts on
another. If the final sum is above a certain threshold, the node
generates an output.

-

EVENT CLASSIFICATION

A. Proposed Convolutional Neural Network

In this work, a particular ANN type, namely, the CNN, is
adopted [26] because of its capability of processing complex
inputs such as multidimensional arrays. More specifically,
CNNs are designed to exploit the intrinsic properties of some
2-D data structures, in which there is a correlation between
spatially close elements (local connectivity). The CNNs are
capable of reducing the number of operations required by
converting the input into modules, which are easier to process.
Thus, compared with ANNs, the number of parameters can be
reduced. As a result, CNNs are widely used in the processing
of audio and video signals [27]-[29].

In this work, a CNN suitable to process the current spec-
trograms was designed. The proposed system, which is shown
in Fig. 3, includes different layers: an input level (for signal
loading), three groups of convolution, Relu, and max pooling
layers (for feature extraction from the input), and a group of
flatten, fully connected, and softmax layers, which use data
from the convolution layers to generate the output.

In the proposed CNN:

1) The first layer is the input layer, which holds the raw
data related to the acquired current. These data are pre-
processed through the STFT; each input is a 101 x 26
matrix (frequency x time).

2) The convolution layer, which is the core block of a CNN,
detects the presence of specific features in the input
spectrogram through the application of relevant filters.
Instead of processing one matrix element at a time,
the convolution layer collects restricted portions (square
patches) of data and forwards them through a number of
filters. Each of the applied filter seeks a different input
parameter, such as a special behavior of the spectrum
in a time instant or a particular evolution of a harmonic
over time. A filter’s spatial dimensions are smaller than
the input signal. A filter is also a square matrix, equal in
size to the patch, with a set of learnable parameters. Each
convolutional layer applies a certain number of filters to
its input. In this work, three convolutional layers with
different numbers of filters (32 in the first convolution
layer, 64 in the second, and 32 in the third) were applied.
The filters were convolved (slided) across the width and
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height of the input, and the dot products (between these
two matrices) at any position were computed. The result
is 2-D arrays (feature maps) that give the responses of
the filters at every spatial position.

AFs can be either linear or nonlinear. Networks with
nonlinear AFs are preferred, since they allow nodes
to learn more complex data structures, even if they
require more work in the initial configuration (training).
In the proposed network, the AF used at each filter
output is the Relu (z), an elementary rectified linear
unit (RELU), whose piecewise linear characteristics are
presented in Fig. 4 [25].

The activation maps are fed into a pooling (downsam-
pling) layer, which processes one patch at a time, like a
convolution. The pooling layer operates on each feature
map independently and resizes it spatially using the max
operation. The max pooling collects the largest value
from one input patch, places it in a new matrix (next to
the max values from other patches), and discards the rest
of the information contained in the activation maps. This
layer is inserted between successive convolution levels
to progressively reduce (in this study by approximately
50%) the spatial dimensions of the representation (width,
height), keeping the depth intact, to reduce the number
of parameters and related calculations.

The Flatten layer transforms the entire pooled feature
map matrix into a single vector (1 x 384).

The flattened feature vector is forwarded through a fully
connected layer, which executes a multiclass classifica-
tion using the following softmax AF:

et
e e

This function maps K elements of the nonnormalized
flattened feature vector z; to a probability distribution
over the predicted K output classes. The softmax applies
an exponential function to each element z; and then
divides it by the sum of all these exponentials. Each
K output value represents the probability that an input
belongs to that particular class. In this study, five dif-
ferent loads were analyzed. Therefore, the problem’s
setting required the definition of ten different classes
associated with each device’s ON and OFFtransients and
an additional class (number 5 in Table I), which is
related to the “no event occurred” case. The definition
of classes is shown in Table I.

, forj=1,2,...K. 5)

9(2)j =
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TABLE I
CLASS DEFINITION

Class Event
0 Microwave oven switched off
1 Oven switched off
2 Induction hob switched off
3 Toaster switched off
4 Light switched off
5 No events detected
6 Light switched on
7 Toaster switched on
8 Induction hob switched on
9 Oven switched on
10 Microwave oven switched on

Each of the 11 values in this output layer corresponds to a
class score: the result is the class with the greatest probability.
The number 10 indicates the number of events selected and
represents the specific application, which was selected as a
reference. It is possible to identify a larger number of events
by changing the architecture of the CNN.

B. CNN Configuration

As a general remark, it can be considered that the correct
functioning of the proposed NILM system can be ensured
by optimally designing the architecture of the CNN network
(number and type of layers and nodes). It is also necessary to
adequately define the AFs and set the network by assigning
the appropriate values for the filter weights. After designing
the network, as described in Section III-A, the weights of
each filter can be defined using the procedure described in
the following.

When the CNN operation is started for the first time, the fil-
ters are configured by assigning default values to the individual
weights. Thus, the results obtained cannot be optimal. The
filter weights’ adjustment is accomplished through the training
process, which consists of two distinct phases [30].

1) Forward Propagation. A reference input signal is fed
into the input layer. The nodes in the hidden layers apply
the defined mathematical operations to these numerical
values. The result is sent to the output layer, which
generates the final result (classification).

2) Backward Propagation. By comparing the generated
output with the expected one, the error value can be
calculated. This calculation is based on which new
(better) filter parameter values are defined.

This cycle is repeated for a new signal, which is obtained
from a reference set of input data, until the error falls below a
predetermined threshold. Obviously, the performance strongly
depends on the set of reference examples selected for training.
Therefore, these examples must be representative of the real
type of the electrical load present. The more data available to
the system, the more accurate the load identification will be.

Beyond its unusual name, the so-called training phase is,

in fact, an optimization process capable of finding the best
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solution among all possible ones. During this process, an input
data set is mapped to an output data set. The optimization
process is based on a function, which represents the error
occurring in the network. If the value of this function (which
is called cost or loss function) is low (low loss), this means a
better system performance. In this study, the function selected
was the logarithmic loss [31].

At the end of this phase, the network is configured by
assigning optimal values for the filter weights based on the
analyzed reference data, that is, the values that allow the best
event detection and the best load identification. The value of
the achieved loss function during configuration was approxi-
mately 0.008.

After this phase, tests were conducted to verify the behavior
of the system for a set of fest signals, other than the reference
set. The verification of the correct network configuration
was completed by checking whether the system provided the
correct answers for inputs other than those considered as a
reference. In this work, the reference set adopted consists
of 11500 signals and the test set of 2876 signals. The
time required for the network training was approximately
7 min.

IV. EXPERIMENTAL RESULTS
As part of the development phase, the proposed algorithm
was implemented and tested to evaluate its performance with
real data.

A. Proposed System Setup

The measurement system includes an Agilent U2542A data-
acquisition module with a 16-bit resolution. The sampling
frequency was set to 10 kHz. The current signal was acquired
using a TA SCT-013 current transducer. The CNN network was
implemented on a desktop computer (based on the Windows
10 x 64 operating system) using the open-source Python
3.7 from Anaconda [32]. Python is the programming language
mostly used in artificial intelligence (AI) applications due

Sequence of events: variation in the rms current (above) and detected events (below).

to the availability of numerous libraries for continuous data
acquisition and processing.

To systematically evaluate the performance of NILM tech-
niques, it is essential to use a set of reference data. The main
tests were conducted on signals directly acquired from a real
system because of the flexibility regarding both the sampling
frequency and the generation of multiple events. Other tests
were conducted on signals belonging to a public data set.

The proposed measurement system was installed on a test
system, which was designed to generate electrical loads cre-
ated by domestic users, as part of the “nonintrusive infrastruc-
ture for monitoring loads in residential users” research project.
The plant, which is located in the Electrical Engineering Lab-
oratory of the University of L’ Aquila (I), allows the generation
of electrical loads in a single or simultaneous way. These
loads correspond to the loads generated by the most common
household appliances and are integrated in a structure similar
to that of a residential building to reproduce the real problems
of conditioning and measurement of the signals.

B. Results Obtained With the Acquired Signals

Before conducting experimental measurements, the current
measurement channel was calibrated using the Fluke 6100A
power-supply standard. More specifically, a reference current
was generated and applied to the TA SCT-013 current trans-
ducer. The current was acquired through the Agilent U2542A
data-acquisition system, and the data were processed to cal-
culate the rms value. In this way, the entire signal acquisition
and processing path were tested. The system was calibrated
with ten different current values, ranging from 2 to 20 A. The
maximum uncertainty obtained was approximately £1.3%.

Subsequently, the performance of the NILM system was
assessed by conducting acquisitions, during which various
loads were turned ON and OFFfor a total of over 519 events.

Regarding the NILM systems, no standard and consolidated
techniques can be found in the literature to evaluate the
performance of event detectors. Since the purpose of an NILM
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TABLE 11
ERRORS MEASURED DURING PROCESSING OF THE ACQUIRED SIGNALS

Number of processed windows 2883
Number of total events 519
Number of true power-on events ONr 272
Number of true power-off events OFFr 247
Number of windows with no events NEr 2364
Number of power-on events identified ON; 281
Number of power-off events identified OFF; 247
Number of no-events identified as no-events NE; 2355
Error in the identification of power-on events Ejjen, on (%0) 3.31%
Error in the identification of power-off events Egen, o (%0) 0.00%
Error in the identification of no events Ege; e (%0) 0.38%
Number of correctly classified power-on events ON.. 267
Number of correctly classified power-off events OFF, 244
Error in the classification of power-on events E ;g 0n (%) 1.84%
Error in the classification of power-off events E 4 o (%) 1.21%

system is to disaggregate consumption for each of the devices
in question, their performances were analyzed to verify the
achievement of these objectives, which in summary are correct
identification and classification of the events.

The first thing verified was the ability to correctly identify
the ONand OFF events, which were also performed in rapid
succession, and to correctly classify the device that produced
a particular event. The proposed system was found to be
capable of correctly identifying the insertion of loads, even
by performing maneuvers at very short time intervals, up to
approximately 500 ms. An example of the acquired signal rep-
resenting the current variation for a 1-min window is presented
in Fig. 5. This signal was extracted from the overall acquisition
process. The effective value of the measured current and the
relative system responses are also shown in this figure. It can
be observed that the system is capable of detecting all the
events.

Since the electrical load signature proposed in this work
is based on the transitory characteristics, the system defined
is not capable of classifying two different devices when
the events associated with them are exactly superimposed.
Tests were conducted to verify the system’s ability to detect
temporally close events. Fig. 6 shows that a toaster’s switch
on occurs approximately 400 ms after a microwave oven’s
switch on and the consequent system response. It is possible to
observe how the system perfectly distinguishes the two events
and classifies them correctly (events 10 and 7). A third event
in the interval between 6 and 7 s can be observed in Fig. 6.
This transient is normally produced by the microwave oven
under examination approximately 3 s after its start. The double
transient is very common in many household appliances. In an

=
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Fig. 6. Switch ON of a toaster 400 ms after the switch on of a microwave
oven (above) and detected events (below).

oven, for example, the electronic section is activated first
followed by the heating section. The proposed system was
configured to filter this transient, classifying it as a nonevent
(5), being linked to the first correctly recorded insertion. It was
verified that the system is capable of identifying nearby events
up to 300 ms.

The percentage of events, which were correctly detected,
was compared with the total number of real events by adopting
the following definitions.

1) Number of true power-ON events: ON7

2) Number of true power-OFF events: OFFr

3) Number of windows with no events: NE7

4) Number of power-ON events identified: ON;

5) Number of power-OFF events identified: OFF;
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SCORES ACHIEVED WITH THE ACQUIRED SIGNALS

P TN FP FN  Precision  recall FPR FPP  Fl-score
518 2354 10 1 0.981 0.998 0.004 0.019 0.989
TABLE TV 10) Error in the identification of power-OFF events
ERROR MATRIX
OFF; — OFFT
Microwave oven Eident,OFF% = 100 (7)
switched off 47, 0 0 0 0O O O 0O 0 0 O OFFr
Oven switched off 0 52 2 o 0 0O O o O0O o0 o . . . .
nduci 11) Error in the identification of no events
nduction hob o 13 0 0 0 0 0 0 0 o
switched off
Toaster switched PR
" o 0 0O 05 0 0 0 0 0 0 O £ % — NE; — NE7T 100 ®)
Z ident,ne 70 .
5 Light switched off 0 0 0O 0|60 O 0 0 O 0 O NET
0>) No events detected 0 0 0 0 0 - 10 O 0 0 0 . . .
= 12) Error in the classification of power-ON events
S ihtswichedon 0 0 0 0 0 17 0 2 0 0
5 :
< Toasterosnwnched 0 0 0 0 o 0 o 53] o 2 0 E q ONC _ ONT 100 (9)
Induction hob class,ON70 = —————— .
fduotion ol 0 0 0 0 0 0 0 013 0 0 ONp
Oven switched on 0 o 0 O O O O o0 o0 57 o0 . . .
Microwave oven T o BB 13) Error in the classification of power-OFF events
switched on
~ OFF, — OFFT
E g 5 8 Eclass,orr % = ————100. (10)
3 £ = = = B OFFT
T 5 2 : %5 % 8 & 2 & 3
3 £ 2 83 2 2 3 % .
- fé 5 I 3 i;’ 3 The absolute values relating to these parameters are presented
2 % 2 % % £ % % 5 2 .
- B A : in Table IL
S gz S 0wz &8 ¢ 3 . .
: 8 5 £ & s 5 g 2 s 2 From the above table, it can be observed that the system is
S El 3 . e
s = = s capable of perfectly identifying all the OFFevents. An error of

Events found

6) Number of no events identified as no events: NE;

7) Number of correctly classified power-ON events: ON,

8) Number of correctly classified power-OFF events: OFF,

9) Error in the identification of power-ON events

ON; — ONT
ONT

100. (6)

Eident,ON% =

approximately 3% was recorded regarding the ONevents. This
error value is essentially linked to the multiple oscillations
of the current signal produced by some devices during the
activation phase. Regarding the classifier performance, errors
of 1.84% were recorded during the ONphases and 1.21%
during the OFFphases, respectively.

For a better evaluation of the system performance, precision,
recall, and F1-score metrics were also used [33]. These para-
meters were obtained using the number of true positive (TP),
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TABLE V
ERRORS MEASURED DURING A SUCCESSION OF ON AND OFF SWITCHING
. Measured Actual time | Measured time o
Event  Actual time time interval [s] interval [s] Error [%]
1 0:03.8 0:04.0
11.2 11. 2.
2 0:15.0 0:15.5 > 68
3 0:19.2 0:19.5
20. 21. .
4 0:40.0 0:40.5 08 0 0.96
5 0:44.2 0:44.5
6 1:14.7 1:15.0 30:5 303 0.00
7 1:19.0 1:19.5
8 1:59.6 2:00.0 406 403 025
9 2:04.8 2:05.0 49.8 500 0.40
10 2:54.6 2:55.0 ' ' '
11 2:59.2 3:00.0
60.3 60.0 -0.50
12 3:59.5 4:00.0
13 4:04.3 4:04.5
14 4:25.0 4:25.5 20.7 21.0 145
15 4:33.8 4:34.0 204 20.5 0.49
16 4:54.2 4:54.5 ' ’ '
false positive (FP), true negative (TN), and false negative (FN) 12
as follows: -
TP ‘% 11.5
precision = —— (11) =
TP + FP g »
TP s |\ n -
recall = ——— (12) I _ N
TP + FN 105 |
2x precision x recall 0 08 ' o2 25 3 38 4
F1-score = — (]3) Time [s]
precision + recall .
FPR 7FP (14)
— =
FP + TN 5’
FP B
FPP = ——. 15 2
TP + FN (15) as
The calculated results are presented in Table III. .
The system was capable of correctly classifying 511 of 0 08 ! 5 Timi - 25 3 38 4
519 overall events. The obtained basic accuracy during clas-
sification [33], which is defined as Fig. 8. Lamp switch ON.

Correct matches
Acc% = - 100
Total possible matches

(16)

is 98% with the acquired signals.

The errors obtained during the classification phase can
be tabulated using the error matrix [34]. This is shown
in Table IV. Each column of the matrix represents instances
in a predicted class, whereas each row represents instances in
an actual class.

The second type of tests is related to the measured duration
between the ONand off events, being linked to the energy
consumed. The results shown in Fig. 7 show a rapid succession
of switch ON(event 9) and OFF(event 1) for the oven. The
obtained results, which are tabulated in Table V, show a
maximum relative error of 2.68%. However, it should be noted
that this value is related to the reduced activation time (11.2 s),
which was produced during the test. With longer intervals,
for example 49.8 s, the relative error is reduced to 0.40%.

The absolute error essentially depends on the duration of the
window used for processing the STFT. The reduction of this
window results in a reduction in this error. However, the
processing time increases. The value of the window duration
selected allows a good compromise, considering that the
activation times of the loads are normally much greater than
those selected in the test.

The system’s performance was further evaluated by inves-
tigating its behavior with respect to distinguishing currents
flowing in small loads in the presence of significant current
values. To this purpose, Fig. 8 shows an acquisition in which
a lamp is switched on (0.54 A) while more than 10 Arms
are already flowing in the system (this represents 5% of the
total load). The system proved to be efficient even under these
operating conditions by identifying the event and correctly
classifying the device.
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TABLE VI
ERRORS MEASURED DURING THE PROCESSING OF THE BLUED DATA SET

Number of processed windows 11918
Number of total events 7901
Number of true power-on events ONy 3887
Number of true power-off events OFFr 4014
Number of windows with no events NE7 4017
Number of power-on events identified ON; 3890
Number of power-off events identified OFF; 4006
Number of no-events identified as no-events NE; 4022
Error in the identification of power-on events Ejyen, on (%6) 0.08%
Error in the identification of power-off events Ejyeu o (%) 0.20%
Error in the identification of no events Eyep ne (%6) 0.12%
Number of correctly classified power-on events ON, 3569
Number of correctly classified power-off events OFF. 3377
Error in the classification of power-on events E.;u0n (%6) 8.18%
Error in the classification of power-off events E s o5 (%) 15.87%

TABLE VII
SCORES ACHIEVED WITH THE BLUED DATA SET

P TN FP

FN  precision Recall

FPR FPP  Fl-score

7890 4011 6 11

C. Results Obtained With the BLUED Data Set

To make comparisons between the obtained results, tests
were also conducted using the Building-Level fUlly-labeled
data set for Electricity Disaggregation (BLUED), which is
a residential electricity-usage public data set. This data set
includes voltage and current measurements for a single-family
house in the United States, sampled at 12 kHz for an entire
week [35].

The current signal, which was extracted from the data set,
was processed as described previously. Specifically, the spec-
trograms of 59 587 windows of 1-s duration were processed by
the CNN, and 59 587 output values were obtained. This data
set was randomly divided into two parts: 80% for network
training and 20% (11 918 windows) for its performance
evaluation. In the windows analyzed, 3887 switch-ON events
and 4014 switch-OFF events were observed, whereas 4017
windows were free of events.

For the elaboration of the BLUED data set, the CNN was
modified by extending the classification of Table I to 69 differ-
ent classes to detect the ON and OFFstates of 34 different types
of devices. The obtained results are presented in Table VI.

The scores achieved with the BLUED data set are tabulated
in Table VII.

The obtained basic accuracy (16) with the BLUED data
set is 87.9%. The data processing value of the data set is

0.998

0.998  0.001  0.001 0.998
lower than that obtained by processing the signals acquired.
This is due to the greater number of devices the system must

identify.

V. CONCLUSION AND FINAL REMARKS

A typical NILM system involves three main processes:
signal acquisition (current and/or voltage), event detection,
and their classification. NILM approaches based on NNs have
already been proposed in the literature. For example, in [36],
a framework for using two NILMs for fault detection and
isolation on a ship has been proposed. This system identifies
the changes in a load by detecting transients. After this
phase, two fully connected NNs identify the load from the
extracted signature features. In [38], a technique based on
the detection of events has been proposed, and it is based
on four steps: 1) zero-cross detection; 2) current detection
of similarity; 3) threshold evaluation; and 4) current event
acquisition. Subsequently, the current is converted into an
image and processed by a CNN.

In contrast to other NILM systems, which perform load
classification based on the analysis of quantities also related
to voltage (e.g., analysis in the P—Q or V-I plane [38]),
the proposed system has the advantage of only measuring
the overall current in a house. As a result, the complexity
of the processing system is reduced. Another advantage is that
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the measuring system can be implemented as a galvanically
isolated system at low cost using a clamp current transducer.

In this work, the detection of an event and the classification
of the related device were conducted by the same and unique
process. The proposed system was implemented in Python’s
open-source development environment, thus reducing the sys-
tem cost. The online system configuration (training) required
approximately 7 min. The processing times measured were of
the order of 105 ms for processing 1 s of acquired data (10K
samples).

The proposed NILM algorithm allows the system to recog-
nize a device, regardless of whether it operates singularly or in
combination with other loads. The first results obtained after
a large number of measurements appeared to be satisfactory,
with error rates of approximately 3% for event detection and
less than 2% for event classification.

The results obtained by processing the data available on the
public BLUED data set appeared very encouraging. The value
obtained for the Fl-score was 99.8%, which is higher than
that obtained with other systems using the same data set such
as those proposed in [39] (91.5%) and [40] (93.2%).
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