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A B S T R A C T   

The COVID-19 outbreak is deeply influencing the global social and economic framework, due to restrictive 
measures adopted worldwide by governments to counteract the pandemic contagion. In multi-region areas such 
as Italy, where the contagion peak has been reached, it is crucial to find targeted and coordinated optimal exit 
and restarting strategies on a regional basis to effectively cope with possible onset of further epidemic waves, 
while efficiently returning the economic activities to their standard level of intensity. 

Differently from the related literature, where modeling and controlling the pandemic contagion is typically 
addressed on a national basis, this paper proposes an optimal control approach that supports governments in 
defining the most effective strategies to be adopted during post-lockdown mitigation phases in a multi-region 
scenario. Based on the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible- 
Infected-Recovered (SIR)-based epidemiological model, the approach is aimed at minimizing the cost of the 
so-called non-pharmaceutical interventions (that is, mitigation strategies), while ensuring that the capacity of the 
network of regional healthcare systems is not violated. In addition, the proposed approach supports policy 
makers in taking targeted intervention decisions on different regions by an integrated and structured model, thus 
both respecting the specific regional health systems characteristics and improving the system-wide performance 
by avoiding uncoordinated actions of the regions. 

The methodology is tested on the COVID-19 outbreak data related to the network of Italian regions, showing 
its effectiveness in properly supporting the definition of effective regional strategies for managing the COVID-19 
diffusion.   

1. Introduction and paper positioning 

On December 31, 2019, the Wuhan Municipal Health Commission 
(China) reported to the World Health Organization a cluster of pneu-
monia cases of unknown etiology in the city of Wuhan, in the Chinese 
province of Hubei. On January 9, 2020, the Chinese Center for Disease 
Control and Prevention reported that a new coronavirus (SARS-CoV-2, 
later called COVID-19) was identified as the cause of such respiratory 
diseases. On March 11, 2020, the World Health Organization declared 
the COVID-19 viral disease a pandemic. Since then, the COVID-19 has 
affected the whole world, with about ten millions of confirmed cases and 
five hundred thousand of confirmed deaths up to August 2020 over more 
than two hundred countries, areas, or territories, thus becoming one of 

the most relevant pandemics in the recent decades (World Health Or-
ganization, 2020). Like other Coronaviruses (e.g., SARS and MERS), the 
COVID-19 appears to be controllable using basic Non-Pharmaceutical 
Interventions (NPIs), particularly social-distancing and the use of 
face-masks in public (especially when implemented in combinations). 
The factors that are obviously critically-important to the success of the 
anti-COVID-19 control efforts are the early implementation (and 
enhancement of effectiveness) of these measures, and ensuring their 
high adherence/coverage in the community (Ngonghala et al., 2020). 
However, despite the adoption of these measures, it is still possible that 
secondary waves of contagion occur. For instance, in China, restrictions 
were eased as cases declined, but by mid May, 2020, new clusters were 
reported, including in the city of Wuhan where the virus first emerged. 
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In effect, although the adopted countermeasures appear to have reduced 
the number of reported cases, the absence of herd immunity against 
COVID-19 suggests that contagions could easily rise again when these 
interventions are relaxed, as business, factory operations, and schools 
resume (Leung et al., 2020). 

As a consequence, in recent months there has been a growing 
research interest on COVID-19 mitigation in different scientific fields. 
One of the most investigated research area aims at developing dynam-
ical models to predict the evolution of the pandemic (Hernandez-Var-
gas, Alanis, and Tetteh, 2019). In effect, predicting the trend of the 
epidemic is of paramount importance to plan effective control strategies 
(Giordano et al., 2020) to limit or block the spread of the epidemic. 
Broadly speaking, since a vaccine is not yet available, two main control 
strategies can be applied (Ferguson et al., 2020, Casella, 2021): (1) 
mitigation, consisting in slowing but not necessarily stopping the 
epidemic spread (e.g., through isolation of suspect cases and social 
distancing of the elderly), so that the peak healthcare demand is reduced 
and individuals that are most at risk of severe disease from infection can 
be protected, and (2) suppression, which is aimed at reversing the 
epidemic growth, so that the number of cases is reduced, and kept low. 
Clearly, each strategy has its own advantages and drawbacks, and the 
choice among the possible actions mainly relies on economic and social 
reasons, which slightly differ from country to country (Ferguson et al., 
2020). For instance, most countries have attempted to control the effect 
of COVID-19 by adopting a total lockdown of their population at a 
relevant economic cost, while few other countries have preferred timed 
interventions aimed at reducing the number of infected people to a 
manageable level, depending on the capacity of the healthcare system to 
absorb and treat the newly infected (Bin et al., 2020). In this regard, it is 
evident that the proper selection of which strategic action (or which 
combination of them) should be adopted to ensure the best outcomes is a 
challenging task. 

In the pertinent literature, several models have been developed to 
describe the pandemic dynamics, which are based on the classic 
compartmental epidemiological models (Hethcote, 2000, Nowzari, 
Preciado, and Pappas, 2016), and adapting them to the specific case of 
COVID-19. Briefly said, epidemiological models, describing disease 
transmission within a population, provide important insights to under-
stand which control mechanisms can lead, under what circumstances, to 
remove, or at least reduce, the infection (Mei, Mohagheghi, Zampieri, 
and Bullo, 2017). More in detail, according to the work in Hethcote 
(2000), compartmental epidemiological models are typically classified 
on the basis of the considered compartments of individuals and the 
related flow patterns. In particular, labels such as M (i.e., infants with 
passive immunity), S (that is, the class of Susceptible people, i.e., those 
who can become infected), E (the class of Exposed, i.e., those who are 
infected but not yet infectious), I (the class of Infective individuals,i.e., 
those who are capable of transmitting the infection), and R (the 
Recovered class, i.e., those with permanent infection-acquired immu-
nity) are often used for epidemiological classes, and the threshold for 
most epidemiological models is the basic reproduction number R0, 
defined as the average number of secondary infections produced when 
one infected individual is introduced into a population of Susceptible 
individuals (Hethcote, 2000). Depending on the specific features of the 
disease to be modeled, some of the above compartments can be omitted 
(as an example, as shown in Ridenhour, Kowalik, and Shay (2018), the 
Exposed compartment is generally used only when the disease has a 
significant latent period relative to the infectious period), as well as 
further compartments can be identified and represented, nevertheless 
three of the recalled compartments should be always included in the 
model, that is Susceptible, Infective, and Recovered compartments; 
consequently all these models fall into the broader class of the so-called 
SIR-based epidemiological models. Referring to COVID-19, an example 
of a variant of the classic SIR model is presented in Calafiore, Novara, 
and Possieri (2020), while SEIR models are proposed in Casella (2021) 
and in Gatto et al. (2020). 

In the case COVID-19 it is necessary to consider particularly detailed 
models to accurately predict the dynamics of the epidemic (Giordano 
et al., 2020, Nowzari et al., 2016). In effect, COVID-19 presents four 
main peculiarities that are difficult to describe with the classic epide-
miological models (Zhao and Chen, 2020): 1) the spread of the pandemic 
has impacted the global population and the respective complex 
healthcare and economic systems; 2) due to a large incubation period 
(which may be of two weeks even), differences between the real dy-
namics and the daily observed number of cases may be observed; 3) 
multiple factors should be explicitly modeled, such as local medical 
resources and quarantine measures; 4) since quarantine measures are 
widely implemented, a lower chance to infect the Susceptible in-
dividuals is to be modeled. Therefore, more classes have been intro-
duced in the recent studies on COVID-19 predictive models. For 
instance, a SUQC model (that is, with Susceptible, Un-quarantined 
infected, Quarantined infected, and Confirmed infected classes) is pro-
posed in Zhao and Chen (2020) to describe the COVID-19 dynamics in 
China and analyze the effects of some control measures. A SIDARTHE 
model is proposed in Giordano et al. (2020), where the population is 
divided into eight classes: S (Susceptible), I (Infected), D (Diagnosed, 
that is, detected asymptomatic infected); A (Ailing, that is, undetected 
symptomatic infected), R (Recognized, that is, detected symptomatic 
infected), T (Threatened, i.e., detected infected with life-threatening 
symptoms), H (Healed, i.e., recovered), and E (Extinct, i.e., dead). The 
final goal of the contribution in Giordano et al. (2020) is to estimate the 
impact of different actions to contain the contagion in Italy. To this aim, 
the authors evaluate different possible scenarios by suitably modifying 
some model parameters. 

The recalled works focus on the analysis of the COVID-19 in a 
country at a national level; however, given the heterogeneity of eco-
nomic and social features at regional level in almost any country, and 
particularly in Italy, it is actually essential to assess the evolution of the 
pandemic when applying suitable local post-lockdown strategies (that 
is, once the epidemic is brought under control, or in the so-called Phase 
2). In effect, many countries are divided into administrative regions 
which can independently oversee their own share of national healthcare 
system (Della Rossa, Salzano, Di Meglio et al., 2020). Nonetheless, only 
few contributions in the related literature take into account the spatial 
dynamics of the epidemic, among which we recall the work in Gatto 
et al. (2020), where a spatial SEIR model for the ongoing COVID-19 
emergency in Italy is developed as a baseline support tool to plan the 
inter-regional mobility and to deploy medical supplies and staff based on 
the local epidemiological conditions. Similarly, in Di Domenico, Pull-
ano, Coletti, Hens, and Colizza (2020) a SEIIR model (i.e., including 
classes of Susceptible, Exposed, pre-symptomatic and symptomatic In-
fectious, and Removed individuals) is adopted to evaluate the impact of 
school closure and telework during the COVID-19 lockdown in the three 
most affected France regions (i.e., le-de-France, Hauts-de-France, Grand 
Est) through a stochastic age-structured data-driven analysis. A gener-
alized multi-region SIR model is proposed in Brugnano and Iavernaro 
(2020), as well as a multi-region SI2R2 extension (where the considered 
classes are Susceptible, Infectious but not yet diagnosed, Infectious 
diagnosed, Removed undiagnosed, and Removed diagnosed in-
dividuals), albeit only the mathematical formulation of the models is 
reported while the validation is not yet available. Finally, in Della Rossa 
et al. (2020) a model including the Susceptible, Infected, Quarantined, 
Hospitalized, Recovered, and Deceased compartments for the Italian 
regions is presented to evaluate the effectiveness and impact level of 
differentiated but coordinated local actions during Phase 2, to avoid 
future recurrence of the epidemic, while taking into account the specific 
regional healthcare systems’ characteristics. The main finding of these 
studies is that the expected impact of mitigation measures deeply varies 
across different regions. Therefore, it is essential to correctly parame-
terize the model to the specific characteristics of each region under 
examination. 

All the above recalled approaches, while being able to model the 
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pandemic dynamics, do not provide a feedback control method to 
properly select the most beneficial action(s) (for instance, based on the 
number of infected or of hospitalized patients) to be applied in a post- 
lockdown framework. In fact, these methods can be classified as open- 
loop techniques that typically require what-if analyses (through 
scenario-based evaluations or Monte Carlo simulations) to identify the 
most effective actions. In this perspective, it is fundamental to provide a 
tool for a feedback-based selection of the mitigation strategy that 
continuously adapts to the contagion evolution. This is possible by 
constantly measuring and monitoring the pandemics values and adapt-
ing the policy accordingly (Köhler et al., 2020). It has been proven that 
an open-loop optimal control policy is successful to evaluate simple 
policies under the assumption of exact model knowledge, while in a 
more realistic scenario with uncertain data and model mismatch, a 
feedback strategy that periodically updates the policy is much more 
effective (Köhler et al., 2020). In effect, the use of feedback control 
theory represents a powerful tool to support managing the COVID-19 
outbreak (Casella, 2021). Unfortunately, most of the existing literature 
contributions on the control of previous epidemics involves vaccines or 
treatments, which are currently not available for COVID-19. 

In addition, in the recalled contributions, the lockdown periods are 
typically driven by a periodic switching logic. On the contrary, in order 
to ensure an active and effective support to the decision-making process, 
it is essential to tune the parameters of the mitigation strategy over 
larger time periods, providing a robust outer supervisory feedback loop 
to the process (Bin et al., 2020). To this aim, the contribution in Bin 
et al. (2020) proposes a fast switching policy, consisting in multi-shot 
interventions based on the outcomes of two SIR-based models (i.e., the 
SIQR and the SIDARTHE) to switch between quarantine (i.e., social 
isolation) and work days (that is, normal behavior). 

Given the obvious uncertainties in the spreading of the virus and in 
the disease progression, an effective feedback control strategy can be 
obtained by joining a SIR-based epidemic model with other techniques, 
thus providing a hybrid model. In fact, the challenge is to determine the 
optimal external input across time so that a target can be reached (e.g., 
by optimizing a cost function) (Sélley, Besenyei, Kiss, and Simon, 2015). 
Hence, the final aim is to combine a disease transmission model with a 
feedback control mechanism of the epidemics, which allows controlling 
the whole network rather than only predicting the recovery time or the 
proportion of infected individuals. Indeed, optimal control theory has 
been already successfully applied to identify the best action strategies 
for other diseases, typically by simply introducing into the predictive 
model a new control variable representing the vaccination rate at time t 
(see, e.g., the work in Rodrigues, Monteiro, and Torres (2014), where a 
SIR model for dengue is proposed, and that in Rachah and Torres (2015), 
where a SIR model for Ebola is presented), or other specifically defined 
control variables (such as, for instance, in Silva and Torres (2013), 
where an ad-hoc model for the optimal control of tuberculosis is sug-
gested by including in the model reinfection and post-exposure 
interventions). 

In this perspective, Model Predictive Control (MPC) is a control 
technique including both feedback control and optimization that allows 
to take into account the deviations of the predictive model from the real 
progress of the disease (Bussell, Dangerfield, Gilligan, and Cunniffe, 
2019, Morato, Normey-Rico, and Sename, 2020). Although imple-
menting the MPC controller typically requires a large amount of 
computational resources, which can lead to long computation time 
(Carli, Cavone, Dotoli, Epicoco, and Scarabaggio, 2019), this is not a 
concern when the optimization is performed at a strategic level, as is the 
case of the decision-making process for the definition of the proper 
strategies to tackle epidemiological diseases. The basic idea here is to 
keep the true system state (that is, the predicted future output of the 
model) in line with the selected target. This is achieved based on past 
control inputs and the optimal predicted control input over a prediction 
horizon by solving an optimization problem aimed at minimizing a cost 
function (Alleman, Torfs, and Nopens, 2020). Basically, at regular time 

intervals, the values of the state variables in the prediction model are 
updated, hence the control is re-optimized and the new strategy is 
applied to the system until the next update time, thus ensuring that the 
approximate model and the control strategy closely match at each time 
interval (Bussell et al., 2019). The main strength of this procedure is that 
it allows to directly take into account the unavoidable uncertainties in 
the model (Alleman et al., 2020). In effect, MPC has been already 
applied, in conjunction with some SIR-based predictive model, in some 
previous studies on epidemiological models, showing that coupling 
feedback control with simulation models can help designing effective 
and robust action strategies for managing epidemics (Bussell et al., 
2019). For instance, the contribution in Sélley et al. (2015) investigates 
the dynamical control of a generic SIS (i.e., 
Susceptible-Infectious-Susceptible) epidemic model through a 
non-linear MPC method aimed at minimizing an objective function 
(which includes the predicted future outputs of the model) over a finite 
predictive horizon (which is moved forward at each control step). The 
work in Sélley et al. (2015) shows that the MPC algorithm allows to 
guide the system to the desired target once the values of the control 
parameters are carefully chosen. A robust economic MPC for the 
containment of a generic stochastic SEIV (i.e., 
Susceptible-Exposed-Infected-Vigilant) epidemic process is presented in 
Watkins, Nowzari, and Pappas (2019), with the final aim of deciding 
who to quarantine, and for how long, in the presence of an epidemic 
contagion. Furthermore, the work in Bussell et al. (2019) studies a 
generic stochastic SIR model to optimally allocate vaccination resources 
while minimizing the costs of an epidemics, showing that the use of MPC 
allows improving the disease management, reducing cost, and ensuring 
more robustness to uncertainty, thus performing well on complex 
models. 

In the COVID-19 framework, to the best of the authors’ knowledge, 
the joint use of predictive epidemiological models and MPC has been 
studied in just very few papers. More in detail, the work in Alleman 
et al. (2020) proposes a methodology based on an extended SEIR-model 
and MPC to determine the optimal government strategy to tackle the 
COVID-19 in Belgium under dynamic circumstances. First, the model is 
calibrated by means of the available data over time on the number of 
active cases and that of deaths. Then, the MPC is used to optimize the 
time course of social measures with respect to the available Intensive 
Care Units under three different scenarios: no government action; the 
current policy (i.e., with mild social restrictions); on-off strategy and 
immunization of the herd. Similarly, the contribution in Köhler et al. 
(2020) combines a SIDARTHE model and a robust MPC approach that 
adapts the social distancing measures to minimize the number of fatal-
ities over a range of two years when measurements are inaccurate and 
infection rates cannot be precisely evaluated. First, the model parame-
ters and the initial conditions are calibrated according to the COVID-19 
outbreak in Germany. Then, the outcomes obtained through a 
closed-loop control via MPC are compared with those obtained when a 
multi-objective open-loop optimal control is performed, showing that 
the latter approach may lead to intermediate increases in the number of 
new infections, thus requiring an additional lockdown period, while the 
former method is able to avoid such a behavior, thus significantly 
reducing the number of fatalities. 

Against this background, this paper presents a multi-region SIRQTHE 
model in conjunction with a non-linear MPC approach which is able to 
simultaneously take into account both the specific strategies undertaken 
at the regional level (i.e., restrictions on the intra-region activity) and 
the actions taken at the upper level in terms of border activities between 
the regions (i.e., restrictions on the inter-region activity). We remark 
that, in this paper, we refer to the control actions to be undertaken in 
order to mitigate the effect of secondary waves of pandemic, that is, we 
are assuming that the basic non-pharmaceutical interventions (such as, 
for instance, social-distancing and the use of face-masks) have been 
ineffective or measures have been relaxed, and as such some more 
restrictive (but still non-pharmaceutical) measures, such as restrictions 
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on the intra-region and on inter-region activities, are needed. 
The analysis is conducted in Italy, since this is one of the countries 

where the pandemic effect has been the most significant, particularly in 
some regions (such as in Lombardy), as well as diversified in the terri-
tory. In addition, the healthcare system is a regionally based national 
health service (known as Servizio Sanitario Nazionale), in which public 
healthcare facilities strongly vary in terms of quality depending on the 
region. The presented approach can be easily applied to different levels 
of the spatial scale, provided the availability of data to calibrate the 
model. 

With respect to the existing state of the art, the novel contributions of 
this paper are as follows:  

• We define a networked SIR-based model (a SIRQTHE model) to 
represent the spread of COVID-19 in multi-region areas where the 
economic and healthcare systems are characterized by strong 
regional heterogeneity. More in detail, we extend the model pro-
posed by Brugnano and Iavernaro (2020) by defining a more accu-
rate single-region epidemic model, where seven compartments are 
introduced (namely, Susceptible, Infected, Removed, Quarantined, 
Threatened, Healed, and Extinct). We remark that, differently from 
the six-compartment model presented in Della Rossa et al. (2020), in 
this work we split the compartment of recovered individual into two 
classes: the class of Healed people (i.e., recognized individuals that 
heal after transition in the status of Quarantined or Threatened), and 
that of Removed people (i.e., completely recovered people that have 
never been detected). However, it is important to remark that, even 
employing more classes than the model in Della Rossa et al. (2020), 
our approach has fewer connections between the classes and hence 
fewer parameters are to be estimated, to the benefit of the model 
simplicity. Moreover, while in Della Rossa et al. (2020) the model 
parameters are dynamically identified by splitting the fitting period, 
in our work we identify time-varying functions to model 
time-varying parameters, such as the recovery and the death rate. 
Finally, another improvement with respect to the model presented in 
Della Rossa et al. (2020) is that we leverage on the Google mobility 
reports to better take into account the time-dependency of the 
infection rate.  

• While in the related literature modeling and controlling the 
pandemic contagion is typically addressed on a national basis, this 
paper proposes an optimal control approach that supports govern-
ments in defining the most effective strategies to be adopted during 
post-lockdown mitigation phases in a diversified multi-region sce-
nario. The proposed approach allows policy makers taking targeted 
intervention decisions on different regions by an integrated and 
structured model, thus both respecting the specific regional health-
care systems characteristics and improving the system-wide perfor-
mance by the avoidance of uncoordinated behavior by individual 
regions.  

• Differently from the related literature, where the addressed control 
strategies aim at minimizing the number of fatalities or ensuring that 
the healthcare systems is not overloaded, this paper also focuses on 
the economic impact of the control strategies. Indeed, the approach 
aims at minimizing the cost of the mitigation strategies on a multi- 
region area, while ensuring that the capacity of the network of 
regional healthcare systems is not violated.  

• By applying the proposed methodology to the network of Italian 
regions, we show its effectiveness and flexibility in properly sup-
porting the definition of effective regional strategies for managing 
the COVID-19 disease under different government policies. We 
discuss the results achieved by the MPC scheme when control actions 
within and on the border of regions are applied both by a region-by- 
region basis or by an inter-region coordination mechanism. In 
particular, we analyze and compare the following scenarios: uniform 
intra-region activity and inter-region travel restrictions, differenti-
ated intra-region activity restrictions and uniform inter-region travel 

restrictions, and differentiated intra-region activity and inter-region 
travel restrictions. 

The rest of this work is structured as follows. In Section 2, we first 
present the single-region SIRQTHE model, providing the formulation of 
the dynamic equations and the description of the parameters’ identifi-
cation process; subsequently we focus on the extension of the SIRQTHE 
model to a multi-region framework. In Section 3, we present the multi- 
region MPC framework, describing the control variables, the corre-
sponding constraints, and the control objectives, and formulating the 
optimal control problem. In Section 4, we show the numerical results of 
the simulations of the Italian country based on real data (Italian Civil 
Protection Department, 2020a) and we provide a comparison with 
respect to the results obtained by benchmark control strategies. Finally, 
in Section 5, we conclude the paper and discuss an outlook for future 
works. The parameters identification procedures for the SIRQTHE model 
are reported in Appendix A, distinguishing into A.1 that describes the 
available data for the Italian case, A.2 presenting the parameters iden-
tification procedure for the single-region SIRQTHE model, and A.3 pre-
senting the parameters identification procedure for the multi-region 
SIRQTHE model; while the list of parameters used in the MPC scheme is 
reported in Appendix B. 

2. Model of the COVID-19 dynamics 

Currently, governments all around the world are struggling to 
contain the COVID-19 pandemic. In this context, mathematical models 
are extremely valuable to simulate and control the spread of the 
pandemic. In fact, mathematical models are widely used to estimate the 
contagion parameters and predict the effects of any control action on 
populations. 

2.1. Basics on SIR-based epidemiological models 

Compartmental models are traditionally considered suitable to 
model the spread of a virus within a large population (Hethcote, 2000). 
In these models, the overall population is divided into different com-
partments, where people can flow from one compartment to another 
based on specific rate values. In particular, in the SIR-based models, we 
can assume that the dynamics of the pandemic is quicker than the dy-
namics of birth and death, therefore, the latter two events are usually 
omitted. Hence, the simplest SIR model can be expressed by the 
following set of ordinary differential equations (Hethcote, 2000): 

dS
dt

= − β
IS
N

(1)  

dI
dt

= β
IS
N

− γI (2)  

dR
dt

= γI (3)  

where N denotes the overall population, S, I, and R represent respec-
tively the compartments of the Susceptible, Infected, and Removed 
(dead or recovered) individuals, β ∈ R+ is the infection rate, and γ ∈ R+

is the recovery rate. Since N corresponds to the sum of compartments 
populations, it holds: 

dS
dt

+
dI
dt

+
dR
dt

= 0. (4)  

Consequently, in (1)-(3) it is sufficient to analyze only two equations 
since the third is dependent. 

Finally, it is to be noticed that, as an alternative to (1)-(3), the 
discrete-time version of the SIR can be straightforwardly formulated 
(since a comparison between the two variants is out of the scope of this 
contribution, we refer the interested reader to the work in Chen (2019) 
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for details). Independently from the choice of the time domain, the SIR 
model is able to characterize in broad terms the spread of a pandemic, 
thus disregarding the multiple and complex facets of a real pandemic. 
Consequently, several models have been proposed in the related litera-
ture to improve the classical SIR model for a specific pandemic, for 
instance, by adding additional compartments and by better modeling 
the relation among them. 

2.2. Single-region SIRQTHE model 

The proposed epidemiological model for the COVID-19 is a novel 
time-varying discrete-time model, named SIRQTHE, which distinguishes 
between detected and undetected infected people, healed, dead, and 
hospitalized. As a major assumption, we suppose that the probability of 
becoming susceptible after being healed is negligible, which seems 
reasonable based on the current level of knowledge (Bai et al., 2020). 

More in detail, in our model, the overall population in a given region 
is divided into the following compartments:  

• S: Susceptible;  
• I: Infected (infected and undetected);  
• R: Removed (undetected and completely recovered);  
• Q: Quarantined (infected and detected)  
• T: Threatened (hospitalized in a life-threatening or noncritical 

situation);  
• H: Healed (completely recovered);  
• E: Extinct (dead). 

The overall interconnections between the above compartments are 
shown in Fig. 1. 

The SIRQTHE model is composed by seven time-varying difference 
equations, which characterize the flows of the individuals between the 
different compartments. More in detail, by designating all the state 
variables (the fraction of the overall population) by a Latin letter, and 
denoting the time step as k, the model is described as follows: 

S̃(k + 1) = S̃(k) − β(k) Ĩ(k)S̃(k) (5)  

Ĩ(k+ 1) = Ĩ(k) + β(k) Ĩ(k)S̃(k) − (γ + θ+ λ) Ĩ(k) (6)  

R̃(k+ 1) = R̃(k) + γĨ(k) (7)  

Q(k + 1) = Q(k) + θ Ĩ(k) − (δ+ μ) Q(k) (8)  

T(k + 1) = T(k) + μ Q(k) + λ I(k) − (π(k) + ε(k)) T(k) (9)  

H(k + 1) = H(k) + δ Q(k) + π(k) T(k) (10)  

E(k + 1) = E(k) + ε(k) T(k) (11)  

where the state variables indicated with a tilde are those that cannot be 
directly observed with a reasonable confidence, i.e., there are no data 
from official sources (Calafiore et al., 2020). 

Let us describe in detail the model parameters and the assumptions 
underlying the model conceptualization. As shown in Fig. 1, the seven 
classes are related by different parameters, which are able to capture the 
system dynamics. In particular, β(k) is the time-varying infection rate, 
whose value is strongly dependent on the population behavior and the 
social distancing measures. In Appendix A, we show that this parameter 
may be highly correlated with people’s mobility. Parameter θ is the rate 
of infected that are recognized and Quarantined, γ is the rate of healing 
when the Infected and unrecognized people do not need to be hospi-
talized, δ is the rate of healing of Quarantined people, λ is the rate of 
people that have been recognized only when a strong symptomatic 
condition occurs and therefore an immediate hospitalization is needed. 
Moreover, μ is the rate of Quarantined people that need to be hospi-
talized, π is the rate of healing of the Threatened people and ε is the 
death rate. 

The justification of this model construction lies in achieving a good 
compromise between the model accuracy, which allows representing all 
the facets of the pandemic diffusion, and the simplicity that helps 
identifying the characteristic parameters from the available data. As 
shown in Section 1, several papers on the spread of COVID-19 pandemic 
indeed present compartmental models with more classes; however, 
these works mainly lack of an accurate identification of the model pa-
rameters. In several countries, the available data are scarce and are 
divided into few categories: this makes a more complex model hardly 
implementable in real life. As a consequence, some simplifying as-
sumptions must be indeed made for the sake of preserving the model 
practicality. In reference to the SIRQTHE model, we compress or elim-
inate some classes that are usually employed in more complex models. 
For instance, we consider simply a Quarantined people class not 
discerning from those asymptomatic and those with mild or strong 
symptoms. Moreover, we ignore that hospitalized individuals may in 
fact require different treatments; in fact, several models divide this class 
considering an additional class that takes into account people needing 
intensive care treatments. In addition, we partially neglect the incuba-
tion time of the virus. Lastly, we do not use the so-called Exposed 
compartment, which contains the people that have been infected while 
they are not yet contagious. Despite these hypotheses, as shown in 
Appendix A, the proposed SIRQTHE model shows its effectiveness in the 
identification phase based on a minimal set of measurable epidemio-
logical data that are commonly available across countries. 

2.3. Multi-region SIRQTHE model 

In order to correctly represent the COVID-19 spread, a multi-region 
variant of the model in (5)-(11) is here proposed. In effect, a multi- 
region model is more reliable than a centralized model to reproduce 
the heterogeneous situation in multi-region areas with high-fidelity. In 
particular, as proposed in Brugnano and Iavernaro (2020), we generalize 
our SIRQTHE model to a multi-region case. By assuming the area under 
analysis is composed by M regions, whose index i varies in the set ℳ =

{1,⋯,M}, the equations related to the i-th region can be written as 
follows: 

S̃i(k+ 1) = S̃i(k) − βi(k) Ĩi(k)S̃i(k) +
∑M

j=1
ξi,j(k)S̃j(k) (12)  

Ĩi(k+1)= Ĩi(k)+βi(k) Ĩi(k)S̃i(k) − (γi+θi+λi) Ĩi(k)+
∑M

j=1
ξi,j(k)̃Ij(k) (13)  

R̃i(k+ 1) = R̃i(k) + γiĨi(k) (14)  

Qi(k+ 1) = Q(k)i + θi Ĩi(k) − (δi + μi) Qi(k) (15) 

Fig. 1. Scheme of the SIRQTHE model.  
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Ti(k+ 1) = Ti(k) + μi Qi(k) + λi Ii(k) − (πi(k)+ εi(k)) Ti(k) (16)  

Hi(k+ 1) = Hi(k) + δi Qi(k) + πi(k) Ti(k) (17)  

Ei(k+ 1) = Ei(k) + εi(k) Ti(k). (18)  

Comparing equations (5)-(11) with (12)-(18), we remark that in the 
latter formulation we mark the state variables related to region i with the 
corresponding index, and we add a further term in the right-hand side of 
the first two difference equations to take the migration of individuals 
between regions into account. In particular, we use the time-varying 
coefficients ξi,j(k),∀i, j ∈ ℳ to represent the inter-region mobility: ξi, 

j(k) (∀j ∕= i) is the coefficient of migration from region j to region i at time 
k, whilst ξi,i(k) represents the rate of people leaving the region i at time k. 
We assume that all the parameters ξi,j(k) (∀j ∕= i) get non-negative 
values; thus, ξi,i(k) has a non-positive value equal to: 

ξi,i(k) = −
∑

j∈ℳ\{i}

ξj,i(k), ∀i ∈ ℳ. (19)  

Note that (19) is derived by imposing the balance of the migrations flows 
between all the regions: 
∑

j∈ℳ
ξi,j(k) = 0, ∀i ∈ ℳ. (20) 

The complete model for a network composed by M regions can be 
written in matrix form. First we define: 

S̃(k)=

⎛

⎜
⎝

S̃1(k)
⋮

S̃M(k)

⎞

⎟
⎠, Ĩ(k)=

⎛

⎜
⎝

Ĩ1(k)
⋮

ĨM(k)

⎞

⎟
⎠, R̃(k)=

⎛

⎜
⎝

R̃1(k)
⋮

R̃M(k)

⎞

⎟
⎠, Q(k)=

⎛

⎝
Q1(k)

⋮
QM(k)

⎞

⎠,

T(k)=

⎛

⎝
T1(k)

⋮
TM(k)

⎞

⎠, H(k)=

⎛

⎝
H1(k)

⋮
HM(k)

⎞

⎠, E(k)=

⎛

⎝
E1(k)

⋮
EM(k)

⎞

⎠. (21)  

as the vectors containing all the state variables for each region. Then, we 
define the model parameters matrices as: 

β(k)=

⎛

⎝
β1(k)

⋱
βM(k)

⎞

⎠, γ=

⎛

⎝
γ1

⋱
γM

⎞

⎠, θ=

⎛

⎝
θ1

⋱
θM

⎞

⎠,

δ=

⎛

⎝
δ1

⋱
δM

⎞

⎠, ε(k)=

⎛

⎝
ε1(k)

⋱
εM(k)

⎞

⎠, π(k)=

⎛

⎝
π1(k)

⋱
πM(k)

⎞

⎠,

λ=

⎛

⎝
λ1

⋱
λM

⎞

⎠, μ=

⎛

⎝
μ1

⋱
μM

⎞

⎠, Ξ(k)=

⎛

⎝
ξ1,1(k) ⋯ ξ1,M(k)

⋮ ⋱
ξM,1(k) ξM,M(k)

⎞

⎠.

(22)  

where all the parameter matrices are diagonal, except for matrix Ξ(k) of 
the migration coefficients between regions. 

Finally, the overall multi-region SIRQTHE model can be written as 
follows: 

S̃(k+ 1) = S̃(k) − β(k)̃I(k)∘S̃(k) + Ξ(k)S̃(k) (23)  

Ĩ(k + 1) = Ĩ(k) + β(k)̃I(k)∘S̃(k) − (γ+ θ+ λ)Ĩ(k) + Ξ(k)Ĩ(k) (24)  

R̃(k+ 1) = R̃(k) + γĨ(k) (25)  

Q(k + 1) = Q(k) + θĨ(k) − (δ+ μ)Q(k) (26)  

T(k + 1) = T(k) + μQ(k) + λI(k) − (π(k) + ε(k))T(k) (27)  

H(k + 1) = H(k) + δQ(k) + π(k)T(k) (28)  

E(k + 1) = E(k) + ε(k)T(k) (29)  

where the symbol ∘ represents the operator of the component-wise 
product (i.e, the Hadamard product). 

For the sake of clarity, Fig. 2 shows the schematic diagram of the 
multi-region SIRQTHE model, where the links between the different sin-
gle-region SIRQTHE models highlight the migration fluxes in terms of 
exchanged Susceptible and Infected individuals. 

3. Multi-region optimal control of the COVID-19 outbreak 

Before introducing the multi-region MPC framework we prelimi-
narily recall that the aim of this paper is to support decision makers in 
identifying the optimal control actions to mitigate the effect of sec-
ondary pandemic waves, when the basic NPIs actions (e.g., in terms of 
social-distancing and use of face-masks) are ineffective or such measures 
are relaxed, thus requiring some more restrictive measures. As an 
example, in China, restrictions were eased as cases declined, but by the 
mid of May 2020, new pandemic clusters were reported. In effect, 
although the adopted NPIs countermeasures reduced the number of 
reported cases, the absence of herd immunity against COVID-19 suggests 
that contagions could easily rise again when these interventions are 
relaxed, as business, factory operations, and schools resume. Therefore, 
as no vaccine is currently available, we assume that any long term 
management of the COVID-19 spread should aim at reaching the heard 
immunity while not exceeding the regional healthcare capacity and 
limiting the loss of the regional economic systems. This goal can be 
reached by applying some interventions that are more restrictive than 
the basic NPIs (Ferguson et al., 2020) in accordance with an optimal 
control strategy, whose aim is to keep low the number of fatalities while 
minimizing the effects on the economic framework. In addition, in 
multi-region areas with a strong regional heterogeneity, it is crucial to 
find targeted and coordinated optimal exit and restarting strategies on a 
regional basis to effectively cope with the possible onset of further 
epidemic waves, while efficiently returning economic activities to their 
standard level of intensity. As a consequence, in this section we present 
an optimal control approach based on a receding horizon scheme, which 
supports regional governments in defining the most effective strategies 
to be adopted during post-lockdown mitigation phases in a multi-region 
scenario. 

Throughout the rest of the paper, we consider the same length for 
both the prediction and control horizon. In particular, at the generic 
time instant h ∈ Z+ the horizon - denoted as 𝒦(h) = {h,⋯, h + K − 1} - is 

Fig. 2. Scheme of the multi-region SIRQTHE model.  
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composed by K time slots with equal length Δk. 

3.1. Possible control and mitigation actions 

In this section, we introduce some different control actions that can 
be used to contain the impacts of the COVID-19 pandemic. On the one 
hand, we assume that the parameters related to the healthcare system 
cannot be directly modified. On the other hand, we assume that any 
control action is focused only on reducing the parameters βi(k) and ξi, 

j(k), i.e., the intra-region infection rate and the inter-region migration 
coefficient at each time k, respectively. These parameters are indeed 
controllable in some way. For instance, a reduction of the internal ac-
tivities of region i would reduce significantly the corresponding βi(k), 
whilst travel restrictions between region i and region j will reduce co-
efficients ξi,j(k). Therefore, we model two classes of control and miti-
gation interventions:  

• intra-region activity restrictions;  
• inter-region travel restrictions. 

As for the first class, for each region i we preliminarily define a vector 
of control variables ui := ui(h : h+K − 1) that models the interventions 
on the activities performed within the given region (in terms of per-
centage reduction) over the given control horizon. In addition, we as-
sume that the control action ui(k) related to the restriction of activities in 
region i at time k gets a finite set 𝒰 i of discrete values. For instance, when 
𝒰 i = {0,0.2, 0.8}, ui(k) = 0.8 corresponds to a complete lockdown, ui(k)
= 0 is the normal condition, and ui(k) = 0.2 corresponds to telework and 
closure of schools and universities in region i at time k. Subsequently, we 
assume that a reduction of the activity level linearly produces a decrease 
of the infection coefficient for all the regions (Ferguson et al., 2020). 
Hence, we correlate the intra-region infection rate for time slot k with 
the intra-region activity restriction measures in accordance with the 
following linear equation: 

βi(k) = (1 − ui(k))β0
i , ∀i ∈ ℳ, ∀k ∈ 𝒦(h) (30)  

where β0
i is the infection rate when no measures are applied. 

We model the second class of control actions similarly to the first 
class. For each region i we preliminarily define a vector of control var-
iables ri := ri(h : h+K − 1) that models the restrictions on the mobility 
from and towards the given region over the given control horizon. 
Moreover, we assume that the control action ri(k) related to the re-
striction of mobility from and towards region i can get a finite set ℛi of 
discrete values. For instance, in the case of on/off strategy, ℛi = {0,1}: 
ri(k) = 1 corresponds to the situation where inbound and outbound 
mobility is forbidden, whilst ri(k) = 0 means that no inter-region travel 
restriction are imposed to region i at time k. Subsequently, we assume 
that a reduction of the inter-region mobility produces a linear decrease 
in the Susceptible and Infectedin region i (see Brugnano & Iavernaro 
(2020)) in accordance with the following linear equation: 

ξi,j(k) = (1 − ri(k))ξ0
i,j, ∀i, j ∈ ℳ, ∀k ∈ 𝒦(h) (31)  

where ξ0
i,j denotes the coefficient of migration from the region j to the 

region i when no mobility restrictions are applied. 
Finally, we denote as u := (u⊤

1 ,…,u⊤
M)

⊤ and r := (r⊤1 ,…, r⊤M)
⊤ the 

vectors collecting the intra-region activity and inter-region restriction 
strategies over all the regions in ℳ, respectively. We assume that the 
intra-region activity and inter-region restrictions can be either applied 
on a region-by-region basis or by an inter-region coordination mecha-
nism. Such a kind of policies can be reflected in the control system by 
properly defining constraint sets 𝒰 and ℛ on the given decision 
variables: 

u ∈ 𝒰

r ∈ ℛ.
(32)  

For instance, the control actions could be applied to the whole network 
of regions in accordance with the following policies:  

• Uniform intra-region activity and inter-region travel restrictions. 
This case is applicable to a multi-region structure controlled by an 
upper-level government that does not allow each individual region to 
implement differentiated control actions. Under such a policy, the 
definition of the constraint sets 𝒰 and ℛ is given by: 

𝒰 = {u1 ∈ 𝒰1,⋯, uM ∈ 𝒰M | u1 = ⋯ = uM}

ℛ = {r1 ∈ ℛ1,⋯, rM ∈ ℛM | r1 = ⋯ = rM}.
(33)  

An example of application of this policy was implemented by the 
Italian government during the so-called COVID-19 Phase 1: the 
lockdown and the boundary closure was simultaneously imposed to 
each Italian region, i.e.: ui(k) = 0, ri(k) = 0,∀i ∈ ℳ.  

• Differentiated intra-region activity restrictions and uniform inter- 
region travel restrictions. This case is applicable to a multi-region 
structure where the regional jurisdiction allows implementing indi-
vidual control actions on internal activities without having an effect 
on the status of the regional boundaries. Under such a policy, the 
definition of the constraint sets 𝒰 and ℛ is characterized by coupling 
between the control variables related to different regions: 

𝒰 = 𝒰1 × ⋯ × 𝒰M
ℛ = {r1 ∈ ℛ1,⋯, rM ∈ ℛM | r1 = ⋯ = rM}.

(34)  

An example of applying this policy was implemented by the Italian 
government during the so-called Phase 2: all the regional boundaries 
were kept closed (ri(k) = 0,∀i ∈ ℳ), while each region determined 
the restarting strategies on a local basis. 

• Differentiated intra-region activity and inter-region travel re-
strictions. This is the most general case of a multi-region structure 
where the regional jurisdiction allows implementing individual 
control actions both on regional internal activities and boundaries. 
Under such a policy, in the definition of the constraint sets 𝒰 and ℛ
there is no coupling between the control variables related to different 
regions: 

𝒰 = 𝒰1 × ⋯ × 𝒰M
ℛ = ℛ1 × ⋯ ×ℛM .

(35)   

We finally remark that, to avoid too frequent and unpractical 
changes in the strategies, the control actions can be kept constant over a 
given period equal to Δl = ω Δk (i.e., for ω time slots). For instance, if Δk 
is one day, it could be meaningful to set the periodicity of the control 
actions to one week (i.e., ω = 7). Assuming that K = L ω, with L ∈ N, the 
following additional constraints on the control actions are then 
introduced: 

Fig. 3. Scheme adopted for state model and control action time intervals.  
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ui(l) = ui(l + 1) = ⋯ = ui(l + ω − 1), ∀i ∈ ℳ, ∀l = 1,⋯, L
ri(l) = ri(l + 1) = ⋯ = ri(l + ω − 1), ∀i ∈ ℳ, ∀l = 1,⋯, L. (36) 

In Fig. 3 we show the different time intervals used to update the state 
model and the control actions. 

3.2. Control multiple objectives 

The proposed MPC approach aims at simultaneously optimizing the 
objectives of all the regions. Thus, the objective function of the overall 
online optimization problem is formulated as the summation of the 
single-region objective functions. In turn, the objective function related 
to region i - denoted as Ji (∀i ∈ ℳ) - is composed by multiple cost terms 
as follows: 

Ji(Si, Ii,Ri,Qi,Ti,Hi,Ei,ui, ri)

=
∑

k∈𝒦(h)

(
CTmax

{(
Ti(k) − Tmax

i

)
, 0
}
+ Cu

i ui(k) + Cr
i ri(k)

) (37)  

where vectors Si, Ii, Ri, Qi, Ti, Hi, Ei collect the predicted values of 
compartment members in region i over the control horizon (e.g., Si =

Si(k : k + K − 1)). Note that coefficients CT, Cu
i , and Cr

i have a twofold 
function: on the one hand, they provide a prioritization among the 
multiple cost terms in (37); on the other hand, they ensure that these 
terms are homogeneous (namely, they make the three terms 
dimensionless). 

More in detail, the first term in (37) - weighted by coefficient CT - 
represents the cost incurred by the healthcare system of region i, which 
is consequent to the predicted epidemic evolution over the whole con-
trol horizon. By properly assigning a very large value to CT, we ensure 
that the number of Threatened individuals Ti(k) related to region i is 
lower than a prefixed maximum Tmax

i for each time slot k. 
The second term in (37) - weighted by coefficient Cu

i - is the cost 
incurred by the regional economic system, as a result of applying the 
intra-region activity restriction in region i over the entire control hori-
zon. It assumes that there is a linear correlation between the level of 
restriction imposed to the internal activities and the loss of the regional 
economic productivity. 

The third term in (37) - weighted by coefficient Cr
i - represents the 

cost incurred by the regional economic system, as a result of regulating 
the closure of boundaries to region i over the entire control horizon. It 
assumes that there is a linear correlation between the level of restriction 
applied to the in- and out-bound mobility and the loss of the regional 
economic productivity, according to (30). 

Summing up, the objective function defined in (37) allows finding a 
control policy that minimizes the economic loss –quantified through the 
last two terms of (37)– and simultaneously keeps the number of 
Threatened under a safety threshold –thanks to the presence of the first 
term of (37). 

Finally, note that weighting coefficients Cu
i and Cr

i are region- 
dependent: this ensures that regional policy makers can adjust these 
coefficient in accordance with the importance and priority that can be 
assigned to the above mentioned costs in each region depending on local 
scenarios, according to (31). 

3.3. The proposed multi-region optimal control problem 

Having defined the state model, the control variables with the cor-
responding constraint set, and the objective function related to the on-
line optimization, the optimal control problem is formulated as follows: 

minimize
u,r

∑M

i=1
Ji(Si, Ii,Ri,Qi,Ti,Hi,Ei,ui, ri)

subject to multi-regionSIRQTHEmodel(23) − (29),∀k ∈ 𝒦(h),
constraints on control variables (32) and (36).

(38) 

The optimization problem (38) has 2MK integer and 7MK real 

decision variables (i.e., u, r and Si, Ii,Ri,Qi,Ti,Hi,Ei, ∀i ∈ ℳ, respec-
tively); furthermore, it presents non-linearities both in the objective 
function and state model. Consequently, the optimization problem (38) 
is a mixed-integer non-linear programming (MINLP) problem. 

Due to (36), the optimization problem (38) is iteratively solved every 
ω time slots in accordance with the receding horizon paradigm (see 
Fig. 3), based on the most recent input data. Only the results referring to 
the first ω time slots are applied to the system as the optimal control 
signals, whilst the horizon is shifted ahead. Then, for the next group of ω 
time slots, a new optimization problem is solved using the updated in-
formation on forecasts and system states. This results in the closed-loop 
control scheme shown in Fig. 4. 

Note that the presented closed-loop feedback control technique may 
rely both on directly measurable and not directly measurable quantities. 
In fact, since not all SIRQTHE classes may be directly estimable, at each 
time shift a procedure for the identification of the model parameters 
should be conducted. More in detail, at each time shift, the latest data 
related to the available classes should be used to update the remaining 
SIRQTHE parameters by employing the dynamical identification pro-
cedure (e.g., referring to the Italian scenario, see the identification 
description defined in Appendix A). 

The MPC integrates both the control actions and multi-region 
epidemic models (described in the previous sections), taking into ac-
count the mutual interaction between the effects of the intra-region 
activity and the inter-region mobility restrictions and the multi-region 
epidemic dynamics. The MPC law is defined in accordance with an 
output-feedback formulation. The optimization problem aims at deter-
mining the control actions (e.g., intra-region activity restrictions and the 
inter-region mobility restrictions) for each region, whilst the measured 
responses coincide with the main epidemic parameters (e.g., number of 
hospitalized or Quarantined, level of mobility, etc.) monitored by the 
regional government agencies. Obviously, the estimation of all the 
variables influencing the epidemic dynamics in the network of regions 
(i.e., the variables that are not monitored by sensors), as well as the 
presence of disturbances, can affect the accuracy of the model response. 
The application of the MPC strategy allows limiting the effects of such 
uncertainties thanks to the computation of feedback control actions that 
are based on periodical updates of the actual system state and on the 
prediction of its evolution in a rolling horizon approach. 

4. Numerical experiments on the Italian scenario 

In order to validate the optimal control approach of the COVID-19 
outbreak, we test the proposed multi-region methodology on the 

Fig. 4. The proposed framework of MPC integrating the multi-region 
SIRQTHE model. 
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Italian scenario. In particular, in this section we report and analyze the 
results of the optimal mitigation strategies on the network of M = 20 
Italian regions, i.e., the second level administrative body in Italy. In 
effect, the Italian scenario suits well the proposed control approach due 
to two main aspects. On the one hand, the Italian national healthcare 
system is regionally based. In fact, all the regions have a different level of 
quality for the healthcare facilities; in addition, each region has different 
regulations and policies regarding swabs, hospitalization, treatment, 
and prevention. On the other hand, the spread of COVID-19, and the 
consequently adopted containment measures, produced extremely het-
erogeneous effects on the Italian regions: while the North of Italy, and 
particularly Lombardy, has been facing a tremendous amount of COVID- 
19 cases (with about one hundred thousand of confirmed cases and 
sixteen thousand of confirmed deaths as of August 13, 2020 Italian Civil 
Protection Department, 2020b), the South of Italy is experiencing a 
relatively stable situation. 

First, based on the real data available for the Italian pandemic (see 
Italian Civil Protection Department, 2020a), we estimate the model 
parameters for both the single-region and the multi-region SIRQTHE 
model. Then, we discuss the long-term outcomes that can be achieved by 
applying the proposed optimal control approach for different restriction 
policies. We also provide a comparison with respect to the results ob-
tained with three performance evaluation benchmarks, that is: (1) the 
minimization of the economic cost; (2) the minimization of the 
Threatened; (3) the threshold rule-based feedback control scheme 
inspired by the Italian government’s existing protocol (Gazzetta Uffi-
ciale Repubblica Italiana, 2020). 

4.1. Definition and set-up of test scenarios 

This section reports the main results of the identification to be used 
as initial conditions for the considered control schemes. The detailed 
description of the fitting procedure is reported in Appendix A. 

The time slot Δk is set to one day, whilst the simulation period is one 
year. Moreover, since a daily application of the restrictive measures 
would be unrealistic and impossible to be implemented in real-life, we 
assume that the control actions are implemented on a weekly basis (i.e., 
Δl = ω Δk, with ω = 7). 

The initial number of Quarantined, Threatened, Recovered, and 
Extinct individuals are set to the values of August 13, 2020, according to 
the real data in Italian Civil Protection Department (2020a). Conse-
quently, the corresponding number of Susceptible, Infected, and 
Removed individuals is estimated according to the identification pro-
cedure reported in Appendix A for the considered date. 

We highlight that, since the aim of our work is to reduce the infection 
rate β(k) so as to contain the number of Threatened people under a well- 
defined maximum level Timax , we assume that β(k) is a function of the 
mobility level, computed on the basis of the daily Google mobility re-
ports (Google, 2020). Note that Tmax

i is specifically defined for each re-
gion, due to the high heterogeneity of the Italian healthcare system. 
Moreover, we assume that parameters γ, δ, θ, λ, and μ are constant over 
the prediction horizon and are computed by means of the identification 
procedure described in Appendix A. Parameters π(k) and ε(k) are 
time-dependent; however, in the simulations, we set their value to the 
last fitted value. This hypothesis is reasonable because, although these 
two parameters are highly variable during the first stage of the 
pandemic, for long-time observations they settle to a stable value, as 
shown in Appendix A. Finally, the time-varying migration coefficients ξi, 

j(k) (∀i, j ∈ ℳ) are adapted from Della Rossa et al. (2020). 
The optimal control problem (38) is implemented in the Matlab 

environment (MATLAB, 2020) using the Global Optimization toolbox on 
a laptop equipped with a 1.3 GHz Intel Core i5 CPU and 8 GB RAM. Since 
problem (38) falls into the class of MINLP problems, its resolution is non 
trivial due both to its combinatorial complexity and non-linearity. 
Therefore, a two-step genetic algorithm approach is here applied for 
the resolution of (38). In the first phase, being n the number of control 

variables, we perform 1, 000 n parallel computations of the genetic al-
gorithm with 1, 000 n generations, i.e., an initial population size of 1, 
000 n. In the second phase, the outcomes of the first phase are used as 
the initial population of an additional genetic optimization process. 

As for the objective function of (38), the cost coefficients Cu
i and Cr

i 
are set for each region based on the corresponding per capita regional 
Gross Domestic Product (GDP) normalized by the per capita national 
GDP (see Appendix B). The coefficient CT is much bigger than Cu

i and Cr
i ,

i.e., it is considered equal to 10,000. In fact, we assume that CT is much 
higher than the other coefficients because our objective is to keep the 
number of Threatened cases below a maximum level Tmax

i , i.e., the first 
term represents a soft constraint. We do not impose such a condition by 
means of an explicit additional constraint because, with some settings 
for the model (e.g., a high infection rate), the problem may become 
infeasible. Note that, on the basis of the Italian data (Italian Civil Pro-
tection Department, 2020b), we set Tmax

i equal to three times the num-
ber of Intensive Care Units (ICUs), reported in Appendix B. 

Finally, we assume that three different intra-region activity re-
strictions can be implemented by each region at each time k: lockdown 
(i.e., ui(k) = 0.8), partial lockdown corresponding to the closure of 
specific activities, such as universities and schools (i.e., ui(k) = 0.2), or 
no action (i.e., ui(k) = 0). Hence, we have: 𝒰 i = {0,0.2, 0.8} (∀i ∈ ℳ). 
As for the inter-region travel restriction, an on-off strategy can be 
implemented by each region at each time k: open borders (i.e., ri(k) = 0) 
and closed borders (i.e., ri(k) = 1). Hence, we have: ℛi = {0,1}
(∀i ∈ ℳ). 

4.2. The proposed multi-region control approach: results and discussion 

In this section we show the results obtained by the proposed MPC 
over the given simulation period of one year using a prediction horizon 
of eight weeks (i.e., K = 56, L = 8) with the application of the following 
restriction policies:  

• U-U policy : Uniform intra-region activity restrictions and Uniform 
inter-region travel restrictions. 

• D-U policy: Differentiated intra-region activity restrictions and Uni-
form inter-region travel restrictions.  

• D-D policy: Differentiated intra-region activity restrictions and 
Differentiated inter-region travel restrictions. 

As a first outcome, we analyze all the considered restriction policies 

Fig. 5. Policy U-U, α = 1: Threatened cases (blue line), intra-region activity 
(red line) and inter-region travel (green dotted line) restrictions, the maximum 
number of Threatened cases that can be treated by the region (black line). For 
each region, the x-axis reports the time in days, the left y-axis represents the 
number of Threatened individuals, and the right y-axis represents the value of 
the control actions. 
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using several sets of weights by changing the relative importance of 
intra-region activities with respect to inter-region mobility (that is, by 
varying parameter α in Cr

i = αCu
i ,∀i ∈ ℳ). 

Figures 5, 6, 7 show the results obtained for the three above policies 
when α = 1. The blue line represents the time evolution of the Threat-
ened cases, the red line represents the time evolution of the intra-region 
control actions, and the green dotted line represents the time evolution 
of the inter-region travel restrictions, while the black line represents the 
maximum number of Threatened cases that can be treated by the i-th 
region (i.e., Tmax

i ). 
In particular, Fig. 5 highlights that, by adopting the U-U policy, the 

trend of the control actions is the same for all regions, while the time 
evolution of the Threatened cases largely varies depending on the 
considered region. Note that such a policy seems to be unnecessary in 
some regions, such as Aosta and Trentino-South Tyrol that present a very 
small amount of Threatened cases with respect to the remaining regions. 
We highlight that with this policy only the intra-region control policy 
are applied. Finally, the overall optimal value of the objective function Ta
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Fig. 6. Policy D-U, α = 1: Threatened cases (blue line), intra-region activity 
(red line) and inter-region travel (green dotted line) restrictions, the maximum 
number of Threatened cases that can be treated by the region (black line). For 
each region, the x-axis reports the time in days, the left y-axis represents the 
number of Threatened individuals, and the right y-axis represents the value of 
the control actions. 

Fig. 7. Policy D-D, α = 1: Threatened cases (blue line), intra-region activity 
(red line) and inter-region travel (green dotted line) restrictions, the maximum 
number of Threatened cases that can be treated by the region (black line). For 
each region, the x-axis reports the time in days, the left y-axis represents the 
number of Threatened individuals, and the right y-axis represents the value of 
the control actions. 
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in problem (38) is equal to 462.85. 
Figure 6 (D-U policy, with α = 1) shows that the trend of the control 

actions differs from region to region and the time evolution of the 
Threatened cases still largely varies depending on the considered region. 
It has to be noticed that, similarly to Policy U-U, Policy D-U imposes that 
the regional borders must be open during the observing period. On the 
contrary, differently from Policy U-U, the intra-region control actions 
are set coherently to the specific pandemic evolution occurring in each 
region. In fact, in Aosta no unnecessary restrictions are applied on the 
intra-region activities. It is also important to remark that the overall 
optimal value of the objective function in problem (38) is equal to 
191.31, that is, about 60% lower than in the Policy U-U, thanks to the 
differentiated and coherent intra-region control actions. 

Moreover, Fig. 7 (D-D policy, with α = 1) shows that the control 
actions vary from region to region as well as the time evolution of the 
Threatened cases, but the trend now differs from the previous policies 
because also the inter-regional control actions are applied. In this case, 
both intra-region and inter-region control actions are coherently applied 
depending on the specific pandemic evolution occurring in each region 
and depending on its economic framework. It is also important to 
remark that the overall optimal value of the objective function in 
problem (38) is equal to 171.70, which is the lowest value among the 
considered policies. In effect, the differentiated intra- and inter-region 
control actions are coherently set, thus leading to the minimum objec-
tive function value for the regional healthcare and economic system. 

However, we remark that the emerged finding is an expected 
outcome. Indeed, the D-D policy presents the least restricted control 
action set with respect to the D-U and U-U policies, thus leading to a 
global objective function value that is lower than or equal to that of the 
other policies (i.e., from a global perspective, the D-D policy generally 
outperforms the other two policies). Nevertheless, since the objective 
function (37) is composed by the weighted summation of multiple terms, 
this conclusion is no more valid when analyzing and comparing the 
single contributions of the objective function for the three policies. 
Consequently, the various policies have to be evaluated using further 
performance indicators different from the composite objective function 
value, such as the average number of Threatened people and the dura-
tion of the control actions. Such a comparative analysis is indeed very 
useful to policy-makers in supporting the choice of the most suitable 
strategy to be implemented. As matter of fact, the selection of the best 
performing policy (i.e., the D-D) is not so obvious due to various 
contributing reasons related to the complexity of the decision making 
context. As a consequence, quantifying the gap between the best per-
forming policy and the others and comparing the different policies from 
various individual points of view actually can help the policy-makers in 
deeply analyzing and choosing the most effective action by taking into 
account the different restrictions that could be implemented in a country 
or a region. 

Therefore, in order to effectively evaluate the different control pol-
icies, in Tables 1, 2, 3 we analyze the results obtained under different 
values of parameter α ∈ {0.5, 1, 2} in terms of following evaluation 
indices: 

• the average number of Threatened individuals over the control ho-
rizon for all the regions and the whole Italy;  

• the duration of the lockdown (measured in days) for all the regions;  
• the duration of the partial lockdown (measured in days) for all the 

regions;  
• the total number of control action switches, both for intra- and inter- 

region control actions;  
• the duration of the border closure (measured in days) for all the 

regions;  
• the overall cost of the policies over the control horizon for all the 

regions and the whole Italy. 

By analyzing Table 1, it can be observed that, if a similar importance 

weight is assigned to both the intra- and inter-region actions (i.e., for α =

1), then the average number of Threatened people assumes the lowest 
value with the U-U policy, thus making it preferable from a social 
perspective, whereas the average duration of the lockdown is the highest 
with the lowest number of control actions switches. Similar findings 
arise when analyzing Tables 2 and 3, which respectively refer to inter- 
region actions that are twice (i.e., α = 2) and half (i.e., α = 0.5) 
important than intra-region ones. As a result, we can conclude that, 
although the D-D policy, thanks to differentiated actions on intra-region 
activity and inter-region mobility restrictions, ensures the lowest global 
objective function value, it does not guarantee the lowest number of 
Threatened cases. 

4.3. A comparison with benchmark control strategies 

In this section, we introduce some reference strategies to compare 
the examining the effectiveness of the proposed optimal control 
approach. In particular, three simple benchmark strategies are defined:  

• Benchmark control strategy 1: No restrictions are applied for the 
whole simulation period, ignoring the impact on the healthcare 
system.  

• Benchmark control strategy 2: All restrictions are applied for the 
whole simulation period, i.e., all the intra-region and inter-region 
restrictions are used at their maximum value to control and flatten 
the number of cases, ignoring any economic impact.  

• Benchmark control strategy 3: At the beginning of each week, all 
restrictions are applied in a single region if the number of Threatened 
is higher than a safety threshold. 

Note that the first two strategies represent two ideal extreme cases, 
since they correspond to take only the economic or the health perspec-
tive into account, respectively. Instead, the third strategy is a simple but 
at the same time realistic feedback control strategy to mitigate the 
COVID-19 outbreak. Figures 8, 9, 10 show the results obtained for the 
three benchmark control strategies. The blue line represents the time 
evolution of the Threatened cases, the red line represents the time 
evolution of the intra-region control actions, and the green dotted line 
represents the time evolution of the inter-region travel restrictions, 
while the black line represents the maximum number of Threatened 
cases that can be treated by the i-th region (i.e., Tmax

i ). 
In Fig. 8 we show the results of benchmark control strategy 1, i.e., the 

case where no restrictions are applied and the control actions at each 

Fig. 8. Benchmark control strategy 1: Threatened cases (blue line), intra-region 
activity (red line) and inter-region travel (green dotted line) restrictions, and 
the maximum number of Threatened that can be treated by the region (black 
line). For each region, the x-axis reports the time in days, the left y-axis rep-
resents the number of Threatened, and the right y-axis represents the value of 
the control actions. 
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week are null (ui(k) = 0 and ri(k) = 0 for each region i for each time k). 
The reported graph highlights that with the current model parameters, 
applying no control actions would result in an overload of the national 
healthcare system in almost all Italian regions. At the same time, this 
solution corresponds to the minimization of only the last two terms of 
(37), i.e., only the economic part. 

Conversely, in Fig. 9 we show the results of benchmark control 
strategy 2, i.e., the case where all the restrictions are applied at their 
maximum value (ui(k) = 0.8 and ri(k) = 1 for each region i at each time 
k of the simulation period). In this case the number of Infected falls to 
zero; however, the economic cost is the highest (i.e., 19603.17). 

Finally, in Fig. 10, we show the results of benchmark control strategy 
3. In this approach, the control actions are applied when the number of 
Threatened cases is higher than a predetermined threshold. More in 
detail, at the end of each week, if the Threatened cases are higher than 
the threshold level, all the measures (intra and inter-region control ac-
tions) are applied in the subsequent week. This strategy is similar to the 
protocol implemented by the Italian government (Gazzetta Ufficiale 
Repubblica Italiana, 2020). In fact, the current Italian protocol considers 

safety thresholds on the number of infected and Threatened. When these 
thresholds are exceeded in a specific region, the restrictive measures are 
applied to reduce the number of cases. The threshold directly influences 
the total economic cost and the number of Threatened people. In fact, a 
high threshold leads to a large number of Threatened cases that may 
exceed the maximum capacity. Conversely, a low threshold would keep 
the number of cases low by having a higher economic cost. In our 
simulation, we assume a safety level for all the regions equal to 0.8Tmax

i ; 
this results in an economic cost of 830.33., i.e., only the last two terms of 
(37). Moreover, the figure shows that this strategy is ineffective in 
containing the number of Threatened cases. 

We now compare the results of the MPC approach (Section 4.2) with 
respect to the above results. Disregarding the difference between the 
three different policies (i.e., U-U, D-U, and D-D), the objective function 
value is always significantly lower than that of all the benchmark control 
strategies, due to different factors as detailed in the sequel. 

Comparing the proposed MPC results with the benchmark control 
strategy 1, it is apparent that, since no restrictions are applied, the 
number of Threatened largely exceeds the maximum limit in all the 
regions in the latter case. Hence, although the economic cost is null, the 
global objective function value is much higher than that of the proposed 
MPC approach. 

Referring to the benchmark control strategy 2, the number of 
Threatened is kept at the lowest value. Nevertheless, since the economic 
aspect is ignored, the last two parts of the objective function largely 
arise, thus leading to a higher global objective function value with 
respect to that of the presented MPC method. 

The comparison between the proposed MPC and the benchmark 
control strategy 3 is of particular interest. The latter shows an economic 
cost, which is computed by taking into account only the last two parts of 
the objective function, four times higher than that of the D-D policy and 
two times higher than that of the U-U one. In addition, since the 
benchmark strategy 3 is unable to keep the number of Threatened below 
the maximum limit in all the regions, the first part of the objective 
function makes the total cost much higher than the proposed MPC 
approach. 

Summing up, from the above simulations it arises that the proposed 
optimal control approach provides the best compromise between the 
two most important governmental aspects (that is, the economic and the 
social features of interventions), being able to keep the number of 
Threatened cases below a maximum limit while minimizing the eco-
nomic cost of the eventually required lockdown periods. Consequently, 
the proposed methodology represents a useful support tool for policy- 
makers to mitigate the COVID-19 outbreak in case of secondary 
pandemic waves. 

5. Conclusions and future works 

In this paper, we propose a novel feedback control strategy aimed at 
supporting policy-makers in efficiently mitigating the effects of COVID- 
19 pandemic contagions in multi-region areas, such as Italy, where the 
contagion peak has been reached and, in a post-lockdown phase, coor-
dinated regional restarting strategies are needed. 

The presented methodology makes joint use of an epidemiological 
SIR-based model (namely a SIRQTHE model) in conjunction with a non- 
linear Model Predictive Control (MPC) approach, with the final aim of 
minimizing the cost of the adopted mitigation strategies, while ensuring 
that the capacity of the regional healthcare systems is not violated. First, 
the SIRQTHE model allows to consider seven compartments of in-
dividuals (that is, Susceptible,Infected, Removed, Quarantined, 
Threatened, Healed, and Extinct), thus ensuring a detailed representa-
tion of the pandemic dynamics, which is further guaranteed thanks to 
the definition of time-varying parameters. In addition, the multi-region 
framework allows to simultaneously take into account both the actions 
taken at a national level in terms of border activities between the regions 
and the specific strategies undertaken at each regional level. On the one 

Fig. 9. Benchmark control strategy 2: Threatened cases (blue line), intra-region 
activity (red line) and inter-region travel (green dotted line) restrictions, and 
the maximum number of Threatened that can be treated by the region (black 
line). For each region, the x-axis reports the time in days, the left y-axis rep-
resents the number of Threatened, and the right y-axis represents the value of 
the control actions. 

Fig. 10. Benchmark control strategy 3: Threatened cases (blue line), intra- 
region activity (red line) and inter-region travel (green dotted line) re-
strictions, and the maximum number of Threatened that can be treated by the 
region (black line). For each region, the x-axis reports the time in days, the left 
y-axis represents the number of Threatened, and the right y-axis represents the 
value of the control actions. 
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hand, the proposed approach fills a gap in the existing literature, where 
in reference to a multi-region scenario there is a lack of investigations on 
optimal control approaches aimed at effectively coping with possible 
onset of further epidemic waves, while efficiently returning economic 
activities to the standard level of intensity. On the other hand, the 
application to the network of Italian regions based on real data-sets 
highlights the planning utility and flexibility of the proposed MPC 
approach in determining differentiated, as well as coordinated, optimal 
control actions over all the given regions. 

An additional merit of the developed approach is in its generaliz-
ability to different levels of spatial scale. Whilst in the presented nu-
merical experiments we choose the network of Italian regions as the 
multi-region area under control, an interesting development of the 
research can be to apply the MPC approach to determine the differen-
tiated, as well as coordinated, optimal control policies of higher- and 
lower-granularity networks, such as, for instance, the counties in the 
European Union or the districts within the same region. 

Nonetheless, this study is not without limitations, which still need to 
be investigated in future works. In particular, the main limitation of the 
proposed framework relies on the centralized computation of the 
regional optimal control policies. Due to economical, political, and so-
cietal reasons, a centralized control approach may not be appealing in 
the epidemic control of a multi-region framework. At the same time, 

since all the regions are coupled by states and inputs, the cooperation 
between regions should be encouraged to improve the system-wide 
performance through the avoidance of uncoordinated behavior of indi-
vidual regions. Hence, the optimization of the regional strategies may be 
preferably performed through a cooperative distributed framework. 
Therefore, our future work will mainly be devoted to define an iterative 
mechanism to determine the regional optimal control policies in a 
cooperative distributed setting. 

Finally, one may observe that results and implications are derived 
from a simple model of control and mitigation actions, since we consider 
a finite set of intra-region activity and inter-region mobility restrictions 
producing additive effects on the reduction of infection. Actually, this 
limitation is only apparent, since the proposed model can be easily 
generalized to more complex cases by adding other terms in the objec-
tive function and constraints to deal with the eventual finer control and 
mitigation actions producing combined non-linear effects on the 
analyzed epidemic dynamics. 
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Appendix A. Parameters identification 

In this Appendix we explain how we calibrate the SIRQTHE model for the considered numerical experiments. In fact, the genuineness of any model 
depends on the number and quality of raw data adopted in the selection of variables to be used and parameters to be calibrated. Therefore, any model 
should rely as much as possible on the available data and on the prior knowledge of the system to model. 

A1. Data availability in the Italian scenario and main assumptions 

The Italian State body largely responsible for the management of natural disasters and catastrophes is the Protezione Civile (Italian Civil Protection 
Department, 2020b) (i.e., the Italian Civil Protection Department) (Italian Civil Protection Department, 2020b). During a pandemic emergency, the 
Protezione Civile is responsible for collecting and elaborating all the data related with the pandemic. 

More in detail, several data (and analyses) on a daily basis are available for the COVID-19 pandemic (Italian Civil Protection Department, 2020a):  

• total cases: cumulative number of people infected, also comprehending healed and dead;  
• hospitalized in a non-critical situation: number of people that are identified as currently infected and as such they are hospitalized, although their 

situation is not critical;  
• hospitalized in a critical situation: number of people that are currently hospitalized in an Intensive Care Unit because of their severe situation;  
• in quarantine: number of people recognized as infected; however, due to their mild or absent symptoms, they are legally obliged to stay in isolation 

at home;  
• healed: number of people recognized as infected, but dismissed because healed;  
• deceased: number of people dead because of COVID-19;  
• swabs: number of swabs made by the national healthcare system. 

Besides the above data, in order to perform a realistic and fruitful selection of the model parameters for the whole Italian outbreak (i.e., from 
February until to the post-lockdown restarting phase in June) we should not neglect that all parameters are variable and time-dependent, especially 
during the first spread of the virus in a country. 

In the literature, a pragmatic and widely adopted approach to overcome this limitation consists in fitting the model by employing different time 
windows, which reflect the different stages of the epidemic, and to set the parameters constant within each of these periods (Bin et al., 2020). This 
leads to an acceptable fitting only when additional information is included in the fitting phase. For instance, it is possible to add constraints on the 
parameters based on the available scientific knowledge. 

Conversely, in this paper, we fit the model by assuming that the required parameters can be predicted with some time-dependent functions. 
Moreover, the following assumptions are made on the parameters:  

• βi(k) (i.e., the infection rate of region i at time k): in the related literature (see, e.g., the work in Della Rossa et al. (2020)), this parameter typically 
ranges between 0.35 and 0.55 in the absence of social distancing policies and people awareness. However, this value highly decreases during 
lockdown periods. In our work, to perform a continuous fitting of the COVID-19 from March to June (that is, during the post-lockdown phase), we 
correlate the evolution of β with the evolution of people’s mobility computed on the basis of the daily Google mobility reports (Google, 2020), 
aggregated on a weekly basis. Therefore, the infection rate at the week w is defined as: 

βi(k) = β0
i Mi(⌊k /ω⌋ − di) (A.1) 
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where β0
i is the infection rate in region i when no containment measures are applied, Mi( ⋅ ) is the weekly mobility level (i.e., Mi( ⋅ ) is a function of 

weeks and it ranges between 0 and 1) in region i, and di is the delay of effects that mobility has on the contagion in region i. Note that, since the 
effects of social restrictions are not immediate, after a sensitivity analysis on the available data we consider a delay of one week in all the regions. 
Hence, we set di = 1, ∀i ∈ ℳ. Also note that the use of a different β0

i for each region would help the model fitting model, since β0
i is likely to increase 

in the regions with a higher population density (we refer the interested reader to the work in Hu, Nigmatulina, & Eckhoff (2013)). Nevertheless, for 
the sake of limiting the number of parameters, we set for all the Italian regions a uniform value for this parameter: β0

i = β0,∀i ∈ ℳ.  
• γ and δ (i.e., the rate of healing of unrecognized infected people who do not need hospitalization and the rate of healing of Quarantined people who 

do not need hospitalization, respectively): the value assigned to these parameters can be approximated by a constant since currently there is no 
proof that the virus has mutated. In theory, these two parameters have different values: in several countries, someone may leave the quarantine 
only after two negative swabs, i.e., a person may be forced to be in quarantine even after clinically healed. Nevertheless, for the sake of reducing the 
model parameters in the identification phase, we assume, without loss of generality, that these two parameters equal. In particular, the literature 
findings show that setting γ = 1/14 is appropriate (see, e.g., the work in Bertozzi, Franco, Mohler, Short, & Sledge (2020)) and therefore we assume 
this value for all the regions.  

• θi (i.e., the rate of infected people that are recognized and Quarantined of region i): this parameter is mainly related with the specific policy adopted 
by each region and the number of laboratory testing capacities (e.g., in terms of tested swabs). However, when the laboratory limits were reached 
at the beginning of March the number of tested swabs became constant. Therefore, we assume this parameter as time-independent, but variable 
from region to region.  

• λ and μ (i.e., the rate of people recognized only when strong symptomatic conditions occur and the rate of Quarantined people to be hospitalized, 
respectively): both parameters represent the rates of people that need to be hospitalized. As these parameters are only related with the virus nature, 
we assume they are both constant and equal for all the regions.  

• πi(k) (i.e., the recovery rate of region i at time k): this parameter is far from being constant during the spread of COVID-19. The national healthcare 
system may not be prepared and does not have therapeutic procedures for patients with symptoms that have never been seen before. This means 
that initially the evolution of the number of recoveries can be slow until a constant value is reached, i.e., when the healthcare system becomes 
ready and prepared. In particular, on the basis of the performed analyses, we impose the parameter π to be time-dependent with the following 
formulation for each region: 

πi(k) = a1,i + a2,i ka3,i . (A.2)    

• εi(k) (i.e., the death rate of region i at time k): the number of deaths is not constant and hopefully decreases with time. This is mainly due to the 
availability of new clinical treatments. Furthermore, at the beginning of an epidemic, when the screening of infected people is low, only the sever 
symptoms cases are recognized and treated. With the ongoing of the pandemic, more cases are recognized as infected, and hence the percentage of 
severe symptoms cases becomes lower. Therefore, taking into account the performed analyses, we set parameter εi as time-dependent with the 
following formulation for each region: 

εi(k) = a4,i + exp
(
− a5,i

(
k+ a6,i

))
. (A.3)    

• ξi,j(k) (i.e., the inter-region mobility coefficient between regions i and j at time k): these parameters are adapted from Della Rossa et al. (2020) due 
to the different model assumptions; in detail, the aforementioned work considers the interaction between the people between different regions. In 
contrast, we consider physical migration between different classes. 

A2. Parameters identification for Single-region SIRQTHE models 

In order to estimate the parameters for the Single-region SIRQTHE model, we adopt a pragmatic approach with a least-squares optimization 
technique based on the real data combined with hard constraints to enforce the prior knowledge on the system. 

The containment measures of the pandemic in Italy can be divided into two main phases, one following February 23, which mainly concerned 
Northern Italy, and a second one following March 09, including the more restrictive measures affecting the whole national territory. The first 
restrictive measures, which comprehend the closure of schools, universities, and bars and restaurants after 6 p.m., had limited effects on the contagion 
dynamics and, as the crisis worsened, the need for more severe restrictions motivated the second phase, which turned into a total lockdown where all 
the non-essential production activities were shut down. Therefore, in this phase, the Italian scenario turns into a network of isolated regions, cor-
responding to the set of M Single-region SIRQTHE models. These models are fitted through the data related to the period when the movements between 
regions were not permitted in Italy (i.e., from March 15 to May 31). Each regional decoupled model is composed by seven equations and seven 
parameters, which are reduced to six equations and six parameters since the Removed are calculated in accordance with (4) adapted to the SIRQTHE 
discrete-time seven-compartments model. Since two of these equations are highly non-linear, the fitting procedure is highly non-convex; indeed, as 
proposed in Della Rossa et al. (2020), improved results can be obtained by splitting each regional model into two simpler sub-models and thus 
performing a two-stage fitting procedure. 

In the first stage we analyze the following sub-model: 

S̃(k + 1) = S̃(k) − β0Mv(w − 1) Ĩ(k)S̃(k) (A.4)  

Ĩ(k+ 1) = Ĩ(k) + β0Mv(w − 1) Ĩ(k)S̃(k) − (γ + τ) Ĩ(k) (A.5)  

C(k + 1) = C(k) + τĨ(k) (A.6)  
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where C(k) = Q(k) + T(k) + H(k) + E(k) is the cumulative number of Infected people. It is clear that β0, τ = θ + λ, and the initial condition ̃I(0) are the 
only parameters to be estimated. The estimation of such parameters consists in minimizing the mean squared error (MSE) of the model with respect to 
the real data, which is defined as: 

MSE
(

β0, τ, Ĩ(0)
)
=

∑K
k=1‖Ĉ

(
βm, τ, Ĩ(0), k

)
− C(k)‖2

K
. (A.7)  

Figure A.11 reports the real data and the model outputs related to the above introduced class C of Infected people, thus showing the effectiveness of the 
fitting first stage for all the regions. 

In the second stage, we analyze the following sub-model: 

Q(k + 1) = Q(k) + θ Ĩ(k) − (γ + μ) Q(k) (A.8)  

T(k + 1) = T(k) + μ Q(k) + λ I(k) − (π(k) + ε(k)) T(k) (A.9)  

H(k + 1) = H(k) + γ Q(k) + π(k) T(k) (A.10)  

E(k + 1) = E(k) + ε(k) T(k) (A.11)  

where we assume that the parameters π(k) and ε(k) are time-dependent. 
Figures A.12 and A.13 respectively report the real data and the fitted curve for the parameters π(k) and ε(k), confirming that the inferred for-

mulations in (A.2) and (A.3) well fit the real scenario over all the regions. Finally, Figs. A.14, A.15, A.16, A.17 report the real data and the model 
outputs related to the classes Q, T, H, and E addressed by the second sub-model, thus showing the effectiveness of the overall fitting procedure. 

Fig. A.12. The healing rate π(k) for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  

Fig. A.11. Cumulative number of Infected cases for all the Italian regions from March to June 2020: real data (red dashed line) and Single-region SIRQTHE model 
output (blue line). 
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A3. Parameters identification for the multi-region SIRQTHE model 

The estimation of the parameters of the Multi-region SIRQTHE model follows a two-stage fitting procedure similar to that described in A.2, except 

Fig. A.15. Threatened cases for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  

Fig. A.14. Recognized cases for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  

Fig. A.13. The mortality rate ε(k) for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  
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Fig. A.18. Cumulative number of Infected cases for all the Italian regions from March to June 2020: real data (dashed red line) and Multi-region SIRQTHE model 
output (blue line). 

Fig. A.17. Deaths for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  

Fig. A.16. Healed cases for all the Italian regions from March to June 2020: real data (red stars) and Single-region SIRQTHE model output (blue line).  
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Fig. A.20. Threatened cases for all the Italian regions from March to June 2020: real data (dashed red line) and Multi-region SIRQTHE model output (blue line).  

Fig. A.21. Healed cases for all the Italian regions from March to June 2020: real data (dashed red line) and Multi-region SIRQTHE model output (blue line).  

Fig. A.19. Recognized cases for all the Italian regions from March to June 2020: real data (dashed red line) and Multi-region SIRQTHE model output (blue line).  
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for the differences highlighted in the sequel. First, we note that, since the multi-region model takes the migrations between regions into account, the 
corresponding fitting window includes also periods when the inter-region borders are opened in Italy (i.e., from February 29 to June 3). Second, 
instead of individually identifying the parameters of independent single-region sub-models (A.4)-(A.6), we simultaneously fit the parameters of the 
entire network of regional sub-models coupled by the migration coefficients ξi,j(k). These coefficients are adapted from Della Rossa et al. (2020): in 
particular, the authors in Della Rossa et al. (2020) use two sets of average number of people migrated from region i to region j, respectively referred the 
lockdown and post-lockdown phases; in our model we normalize the data used in Della Rossa et al. (2020) with respect to the regional population in 
order to determine the migration rate ξi,j(k) (∀i ∕= j ∈ ℳ) and we compute ξi,i(k) (∀i ∈ ℳ) through (19). Finally, the identification of the parameters of 
sub-model (A.8)-(A.11) is individually performed for each region. Figures A.18, A.19, A.20, A.21, A.22 show the real data and the model outputs 
related to the classes C, Q, T, H, and E addressed by the multi-region model. Observing Figs. A.18, A.19, A.20, A.21, A.22 it is possible to notice that in 
all regions the state variables computed by the Multi-region SIRQTHE model well fit the real data. 

Appendix B. List of parameters used in the MPC scheme 

In Table B.4 we report the list of parameters used in the MPC scheme for the Italian case study, namely the population (Italian Statistics National Institute, 
2020), the number of ICU beds (Italian Ministry of Health, 2020) and the per capita GDP (Italian Statistics National Institute, 2020) for each Italian region. 

Table B.4 
Regional and national data used in case study.  

Region Population (2019) ICU beds (2020) Per capita GDP (2018) [M€ ] 

Piedmont 4 356 406 499 31.49 
Aosta 125 666 30 38.94 
Lombardy 10 060 574 1 600 38.84 
Trentino-South Tyrol 1 072 276 178 42.04 
Veneto 4 905 854 600 33.27 
Friuli-Venezia Giulia 1 215 220 127 31.36 
Liguria 1 550 640 186 32.25 
Emilia-Romagna 4 459 477 539 36.29 
Tuscany 3 729 641 447 31.54 
Umbria 882 015 70 25.29 
Marche 1 525 271 168 28.08 
Lazio 5 879 082 675 33.58 
Abruzzo 1 311 580 109 25.58 
Molise 305 617 31 20.65 
Campania 5 801 692 586 18.59 
Apulia 4 029 053 302 18.65 
Basilicata 562 869 49 21.87 
Calabria 1 947 131 153 16.98 
Sicily 4 999 891 392 17.68 
Sardinia 1 639 591 123 21.01 
Italy 60 359 546 6 864 29.22  

Fig. A.22. Deaths for all the Italian regions from March to June 2020: real data (dashed red line) and Multi-region SIRQTHE model output (blue line).  
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Sélley, F., Besenyei, Á., Kiss, I. Z., & Simon, P. L. (2015). Dynamic control of modern, 
network-based epidemic models. SIAM Journal on applied dynamical systems, 14(1), 
168–187. 

Silva, C. J., & Torres, D. F. (2013). Optimal control for a tuberculosis model with 
reinfection and post-exposure interventions. Mathematical Biosciences, 244(2), 
154–164. 

Watkins, N. J., Nowzari, C., & Pappas, G. J. (2019). Robust economic model predictive 
control of continuous-time epidemic processes. IEEE Transactions on Automatic 
Control, 65(3), 1116–1131. 

Zhao, S., & Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-19 
outbreak in China. Quantitative Biology, 8, 11–19. 

World Health Organization, Coronavirus disease (COVID-19) pandemic, 2020. http 
s://www.who.int/emergencies/diseases/novel-coronavirus-2019, Accessed: 2020- 
08-13. 

R. Carli et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0001
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0001
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0001
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0002
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0002
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0003
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0003
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0004
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0004
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0004
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0005
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0005
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0005
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0006
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0006
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0006
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0007
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0007
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0007
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0007
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0008
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0008
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0009
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0009
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0009
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0009
http://refhub.elsevier.com/S1367-5788(20)30062-6/othref0001
http://refhub.elsevier.com/S1367-5788(20)30062-6/othref0001
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0010
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0010
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0011
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0011
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0011
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0012
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0012
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0012
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0013
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0013
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0013
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0013
https://www.gazzettaufficiale.it/eli/id/2020/04/27/20A02352/sg
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0014
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0014
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0014
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0014
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0015
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0015
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0015
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0016
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0016
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0016
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0017
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0017
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0018
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0018
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0018
http://www.salute.gov.it
http://www.salute.gov.it
https://www.istat.it/en/information-and-services
https://www.istat.it/en/information-and-services
http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
http://www.protezionecivile.gov.it/
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0019
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0019
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0019
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0020
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0020
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0020
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0021
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0021
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0022
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0022
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0022
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0023
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0023
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0024
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0024
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0024
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0024
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0025
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0025
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0025
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0026
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0026
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0026
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0027
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0027
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0028
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0028
http://www.google.com/covid19/mobility
http://www.google.com/covid19/mobility
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0029
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0029
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0029
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0030
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0030
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0030
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0031
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0031
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0031
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0032
http://refhub.elsevier.com/S1367-5788(20)30062-6/sbref0032
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

	Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario
	1 Introduction and paper positioning
	2 Model of the COVID-19 dynamics
	2.1 Basics on SIR-based epidemiological models
	2.2 Single-region SIRQTHE model
	2.3 Multi-region SIRQTHE model

	3 Multi-region optimal control of the COVID-19 outbreak
	3.1 Possible control and mitigation actions
	3.2 Control multiple objectives
	3.3 The proposed multi-region optimal control problem

	4 Numerical experiments on the Italian scenario
	4.1 Definition and set-up of test scenarios
	4.2 The proposed multi-region control approach: results and discussion
	4.3 A comparison with benchmark control strategies

	5 Conclusions and future works
	Declaration of Competing Interest
	Appendix A Parameters identification
	A1 Data availability in the Italian scenario and main assumptions
	A2 Parameters identification for Single-region SIRQTHE models
	A3 Parameters identification for the multi-region SIRQTHE model

	Appendix B List of parameters used in the MPC scheme
	References


