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Abstract: The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining 11 

clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure 12 

maintenance, and vascular signaling. This review focuses on the interactions of the ECM for home- 13 

ostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, 14 

Bruch’s membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and 15 

tenon’s layer as it relates to glaucoma. Alterations contributing to disease states such as wound 16 

healing, diabetes-related complications, Fuchs endothelial cell dystrophy, angiogenesis, fibrosis, 17 

age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are 18 

also reviewed. In addition, a novel ex vivo organotypic culture model of porcine choroid-sclera ex- 19 

plant as a therapeutic screening tool for mammalian tubulogenesis is detailed.  20 
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 23 

1. Introduction 24 

The extracellular matrix (ECM) is an essential and major component of the ocular 25 

microenvironment. It forms a complex but organized meshwork surrounding cells and 26 

confers not only cellular structural and mechanical support, but also regulates cellular 27 

homeostasis and signaling[1]. Proteoglycans (including heparan sulfate, chondroitin sul- 28 

fate, and keratin sulfate), hyaluronic acid, collagen, elastin, laminin, fibronectin, and fi- 29 

brillin represent major components of the ECM[2, 3]. Other components include extracel- 30 

lular proteases (such as matrix metalloproteinases, aka MMPs), immune mediators and 31 

growth factors[4].   32 

The first portion of this manuscript is a review loosely organized from the front to 33 

the back of the eye, starting with the cornea, then addressing parts of the eye involved in 34 

intraocular pressure maintenance and glaucoma (i.e. trabecular meshwork, optic nerve, 35 

conjunctiva and tenon’s layer), vitreous, retina, retinal pigment epithelium, Bruch’s mem- 36 

brane, and choroid. Each section describes how ECM components are involved in home- 37 

ostasis but also details its alterations resulting in disease states such as wound healing, 38 

diabetes-related complications, Fuchs endothelial cell dystrophy, angiogenesis, fibrosis, 39 

age-related macular degeneration, choroidal neovascularization, retinal detachment, and 40 

posteriorly inserted vitreous base.  41 

The final section details a novel ex vivo organotypic culture model of porcine choroid- 42 

sclera explant as a therapeutic screening tool for mammalian tubulogenesis. This adult 43 

pig choroid-sclera explant culture model is a short-term system that provides the ability 44 

to evaluate pro- and anti-angiogenic effects of pharmacologic compounds on choroid vas- 45 

cular biology. 46 
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2. Cornea 47 

Under normal conditions, the cornea is able to support visual transparency by re- 48 

maining avascular. A complex counterbalance of homeostatic mechanisms exist to main- 49 

tain corneal avascularity. In the most anterior layers of the cornea, these mechanisms in- 50 

clude soluble factors in the precorneal tear film that mediate corneal immune privilege, 51 

such as transforming growth factor- β (TGF- β); the limbal stem cell niche, which prevents 52 

conjunctivalization of the epithelium; and structural factors in the stroma that prevent 53 

vascular ingrowth mechanically, such as tight packing of the collagen lamellae and dense 54 

corneal innervation[5]. Perturbations of these homeostatic conditions, such as those oc- 55 

curring with trauma, aging and various infectious and inflammatory diseases, can result 56 

in degeneration of these functional barriers against opacification due to vascular infiltra- 57 

tion and fibrosis of the cornea. Corneal opacification due to scarring and vascularization 58 

may require optical rehabilitation with contact lenses or surgical rehabilitation with kera- 59 

toplasty and can lead to blindness. 60 

In addition to corneal avascularity, the cornea under normal conditions is able to 61 

support visual clarity by maintaining appropriate hydration. The corneal endothelium- 62 

Descemet membrane (EDM) complex – the functional unit that comprises the two inner- 63 

most layers of the cornea – is the primary regulator of corneal hydration. Within this com- 64 

plex, the corneal endothelial cell (CEC) monolayer functions as the primary boundary be- 65 

tween the corneal stroma and the anterior chamber. CECs maintain the clarity of the cor- 66 

nea by regulating corneal stroma hydration through barrier and pump functions. How- 67 

ever, the EDM undergoes changes with aging. There is a high density of endothelial cells 68 

at birth, but these cells are arrested in G1 phase and therefore do not repopulate them- 69 

selves following death of adjacent cells. As a result, corneal endothelial cell density de- 70 

creases with age, averaging 0.4% cell loss annually. Descemet membrane, the basement 71 

membrane of the corneal endothelium, also undergoes age-related changes. This special- 72 

ized extracellular matrix is comprised of a fetal anterior banded layer that is present at 73 

birth and a posterior non-banded layer that thickens with age as CECs continue to secrete 74 

extracellular matrix proteins. Reductions in endothelial cell density and alterations to 75 

Descemet membrane occur together in aging and in pathological conditions affecting the 76 

posterior cornea. Because CECs do not divide readily, sodium-potassium adenosine tri- 77 

phosphatase pump sites and cell-cell junctions also decline when the endothelial cell den- 78 

sity falls below a critical level. When the EDM undergoes cell death that exceed age-pre- 79 

dicted changes, premature corneal edema and vision loss can occur, and keratoplasty us- 80 

ing donor CECs may be indicated.  81 

We will review the effects of damaging conditions on the anterior corneal layers, and 82 

the interplay between corneal neovascularization and extracellular matrix alterations after 83 

epithelial and stromal wounding. With the wide variety of disease conditions that can 84 

lead to the development of corneal neovascularization (e.g. infection, inflammation, 85 

trauma, degeneration), it is important to understand the mechanisms by which neovascu- 86 

larization can lead to loss of stromal clarity. We will also review the effects of two common 87 

diseases affecting cell-matrix interactions in the EDM complex – Fuchs endothelial cell 88 

dystrophy and diabetes mellitus – and the impact of these pathologies on posterior cor- 89 

neal health and function over time. With the emergence of single-layer endothelial kera- 90 

toplasty techniques such as Descemet membrane endothelial keratoplasty (DMEK) and 91 

Descemet stripping automated endothelial keratoplasty (DSAEK), it is imperative to un- 92 

derstand cell-matrix interactions in the posterior cornea in more detail, particularly be- 93 

cause posterior lamellar donor tissues may be altered by disease states such as diabetes[6- 94 

8]. 95 

2.1. Stromal Extracellular Matrix Alterations and Corneal Neovascularization 96 

The cornea is able to maintain clarity and avascularity, even in most cases after sus- 97 

taining injury to the epithelium and stroma, by a variety of mechanisms that preserve the 98 
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homeostatic balance between pro-angiogenic and anti-angiogenic factors. However, cor- 99 

neal neovascularization can occur in a variety of conditions – including microbial keratitis, 100 

autoimmune and systemic inflammatory conditions, corneal graft rejection, neurotrophic 101 

keratitis, chemical injury, contact lens overwear, and limbal stem cell deficiency – where 102 

angiogenesis is initiated despite the presence of homeostatic anti-angiogenic regulatory 103 

mechanisms. Most often, when corneal neovascularization does occur, it involves the an- 104 

terior two-thirds of the stroma (89%) and is frequently associated with corneal edema 105 

and/or inflammatory cell recruitment[9]. 106 

Corneal stromal wound healing occurs in 4 phases.[5] In the first phase, keratocytes 107 

at the area of wounding undergo apoptosis, which initiates a healing response and leaves 108 

a central acellular zone[10]. In the second phase, adjacent keratocytes immediately begin 109 

to proliferate to repopulate the wound area, and transform into fibroblasts that migrate 110 

into the wound area, a process that can take days. In the third phase, transformation of 111 

fibroblasts into myofibroblasts occurs, and in the fourth phase cell-mediated remodeling 112 

of the stroma occurs, which can take more than 1 year. The process of stromal wound 113 

healing is mediated by signaling of transforming growth factor-beta (TGF- β)[11], matrix 114 

metalloproteinases (MMPs), and a balance between pro-angiogenic factors (vascular en- 115 

dothelial growth factor [VEGF], basic fibroblastic growth factor [bFGF, also referred to as 116 

FGF-2], and platelet-derived growth factor [PDGF]) and anti-angiogenic factors (angio- 117 

statin, endostatin, pigment epithelium-derived factor [PEDF], thrombospondin-1, and sol- 118 

uble VEGF receptor 1 [VEGFR1])[5, 12] (Figure 1).  119 

 120 

Figure 1. Corneal stromal wound healing. Stromal wound healing in the cornea is mediated by 121 
signaling of transforming growth factor-beta (TGF-β), matrix metalloproteinases (MMPs), and a 122 
balance between pro-angiogenic and anti-angiogenic factors. In some cases, corneal neovasculari- 123 
zation can occur. 124 
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When the balance between pro-angiogenesis and anti-angiogenesis is not main- 125 

tained, corneal neovascularization can occur (Figure 2). As a result of corneal epithelial 126 

and stromal injury, bFGF becomes upregulated and mediates fibroblast activation, 127 

whereas stromal fibroblast MMP-14 initiates enzymatic activity[5]. bFGF-mediated fibro- 128 

blasts and stromal fibroblasts show upregulation of VEGF, and MMP-14 potentiates 129 

bFGF-induced corneal NV[13]. In addition, MMP-14 also mediates the degradation of 130 

ECM. Both VEGF upregulation and ECM degradation enhance vascular endothelial cell 131 

proliferation, migration, and tube formation. In addition to MMP-14 and VEGF, vascular 132 

growth in the corneal stroma is also associated with MMP-2, tissue inhibitors of metallo- 133 

proteinases-2 (TIMP-2), and Src[5, 14], and requires both cell proliferation/migration and 134 

extracellular matrix turnover. 135 

 136 

Figure 2. Corneal neovascularization with stromal scarring secondary to atopic keratoconjunctivi- 137 
tis. 138 

Of note, MMP-14 is the most prevalent MMP involved in angiogenesis and ECM re- 139 

modeling in the cornea[15, 16], and induces angiogenesis and ECM degradation by a va- 140 

riety of other signaling pathways in addition to the bFGF pathway.[5] MMP-14 activity 141 

leads to the disruption of endothelial tight junctions, reorganization of the actin cytoskel- 142 

eton, and proteolysis of the basement membrane and interstitial matrix. Further, MMP-14 143 

cleaves ECM molecules such as type I collagen, degrading the ECM as well as stimulating 144 

migration, organization, and guidance of vascular endothelial cells to form new blood 145 

vessels[17]. 146 

2.2. Fuchs Endothelial Cell Dystrophy (FECD) and EDM pathology  147 

FECD, the most prevalent indication for endothelial keratoplasty in the United 148 

States[18], results in both CEC dysfunction and abnormal extracellular matrix deposition 149 

that are observable clinically as corneal edema and characteristic excrescences on the pos- 150 

terior cornea (guttae)[19]. Endothelial cell characteristics of FECD include channel protein 151 

dysfunction, mitochondrial dysfunction, reactive oxygen species accumulation, endoplas- 152 

mic reticulum stress, DNA alterations, unfolded protein response, and cell apoptosis and 153 

dropout[19, 20].  154 
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Experimental data using tissues from patients with FECD as well as expanded, im- 155 

mortalized cell cultures that model FECD demonstrate the overexpression of collagen 1, 156 

fibronectin, and collagen 4 in the EDM complex[21]. These protein expression changes are 157 

the result of zinc finger E-box binding homeobox 1 (ZEB1) and Snail1 activation in FECD, 158 

which can be stimulated and/or augmented with TGF- exposure. The result of this dis- 159 

ease-mediated overexpression is both thickening of Descemet membrane and buildup of 160 

matrix proteins that result in corneal guttae formation. 161 

Corneal guttae indicate regions of endothelial cell dropout in FECD. Until recently, 162 

it was not clear whether extracellular matrix buildup caused cellular dropout or whether 163 

cell loss resulted in matrix changes and guttae formation. Importantly, Kocaba et al. have 164 

tested the impact that Descemet membrane tissues with guttae have on normal corneal 165 

endothelial cell health. After seeding healthy immortalized CECs on decellularized 166 

Descemet membrane explants from FECD patients undergoing surgery, they observed a 167 

decrease in the coverage area and number of normal cells seeded onto these abnormal 168 

membranes, and an increase in apoptosis surrounding large diameter guttae, compared 169 

to decellularized membranes from healthy guttae-free control donor corneas[22]. The 170 

same group also noted an increase in the expression of alpha-smooth muscle actin, N- 171 

cadherin, Snail1, and NOX4 in normal CECs that were grown in the presence of large 172 

diameter guttae. These expression footprints indicate that endothelial-mesenchymal tran- 173 

sition (EndoMT) with loss of cell phenotype, as well as increased extracellular matrix com- 174 

ponent transcription, occur in conjunction with apoptotic cell death in FECD. Taken to- 175 

gether, these findings indicate that the presence of extracellular matrix alterations alone 176 

are capable of causing altered expression of EndoMT proteins and additional matrix pro- 177 

teins, yielding a vicious cycle of aberrant cell and matrix changes that over time can result 178 

in Descemet membrane thickening, guttae formation, and ultimately endothelial cell phe- 179 

notype loss and cell death (Figure 3). 180 

 181 

Figure 3. Extracellular fibrosis and dense guttae in the posterior cornea secondary to Fuchs endo- 182 
thelial cell dystrophy. 183 

2.3. Diabetes and EDM pathology 184 

Type II diabetes mellitus (T2DM) causes dramatic pathological effects on the corneal 185 

EDM complex and can result in vision loss due to corneal edema. Characteristic disease- 186 
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related changes include lower than average CEC densities[23], greater than average post- 187 

operative cell loss[7]. altered matrix properties altering EDM biomechanical stiffness[24], 188 

and reduced mitochondrial quality. Endothelial cell dropout in patients with diabetes 189 

may result in greater than average need for keratoplasty. Importantly, changes in both cell 190 

health and Descemet membrane that occur in tandem due to diabetes are important indi- 191 

cators for keratoplasty surgical outcomes, particularly as they relate to donor tissue 192 

health[6].  193 

T2DM CECs have several functional changes that may explain the greater amount of 194 

cell loss observed in donor corneal tissues. As described by Aldrich et al, CECs from do- 195 

nors with a history of advanced diabetes have lower mitochondrial respiratory capacity 196 

than control cells, as measured using the Seahorse Extracellular Flux Analyzer (Agilent 197 

Technologies; Santa Clara, CA). Looking closely at diabetic CEC mitochondrial morphol- 198 

ogy using transmission electron microscopy, there are increases in cristae dropout, inclu- 199 

sion body formation, and average surface area in donor tissues with T2DM. Taken with 200 

the functional data, these findings demonstrate that the mitochondria in CECs with T2DM 201 

have a decreased functional capacity despite a larger surface area, and indicate an imbal- 202 

ance in mitochondrial dynamics related to mitochondrial fission and mitophagy (mito- 203 

chondrial autophagy). Without proper clearance of dysfunctional mitochondria, CECs 204 

may become taxed to the point of cell death, leading to the higher amounts of dropout 205 

observed. Additional studies are indicated in this area, particularly given recent prospec- 206 

tive randomized clinical trial data documenting increased graft failure rates and greater 207 

CEC loss three years following DSAEK surgery using diabetic graft tissues[7, 8]. 208 

In addition to these functional changes, T2DM CECs have several structural matrix 209 

properties that may explain their tendency to tear during surgical preparation. Mechani- 210 

cal peel testing during controlled separation of donor corneal EDM tissues from stroma 211 

showed higher mean values for elastic peel tension (TE), average delamination tension 212 

(TD), and maximum tension (TMAX) in advanced diabetic donor corneas compared to 213 

non-diabetic donor corneas[24]. The region being peeled, between Descemet membrane 214 

and the stroma, is known as the interfacial matrix. Alterations occurring in diabetes to this 215 

region may be responsible for the higher mechanical peel test results, but further research 216 

is required. Using transmission electron microscopy (TEM), Rehany et al. found there 217 

were abnormal 120-nm wide-spaced collagen fibril bundles within both Descemet mem- 218 

brane and the stroma of noninsulin dependent diabetic patients (N=16) compared to 219 

nondiabetic controls (N=16)[25]. The authors hypothesized that the wide spacing was due 220 

to excessive glycosylation products. Together, the mechanical abnormalities and struc- 221 

tural abnormalities in Descemet membrane, the interfacial matrix, and the stroma may 222 

explain the increased risk of tearing diabetic EDM grafts during donor tissue preparation 223 

for Descemet membrane endothelial keratoplasty[6]. 224 

3. Glaucoma 225 

Abnormalities of the ECM have been implicated in some models of glaucomatous 226 

optic neuropathy. Cellular and extracellular matrix (ECM) interactions contribute to the 227 

resistance at the trabecular meshwork to aqueous outflow[26]. Increased deposition or 228 

impaired remodeling of extracellular matrix, changes in actin fiber contractility and ar- 229 

rangement, and regulatory derangements of cell adhesion all appear to play a role in the 230 

pathophysiology of glaucoma[27]. Vascular signaling also appears to play a role, as recent 231 

studies of nitric oxide and cyclic guanosine monophosphate signaling show alterations in 232 

vascular tone in many anterior segment structures as well as improved outflow facility[28, 233 

29]. This has been adapted for therapeutic use[30, 31]. However, it is still unclear whether 234 

this signaling pathway involves any mediation or interaction with extracellular matrix, 235 

therefore the rest of this sub-section will focus on pathways that do. 236 

3.1. Trabecular meshwork  237 
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The ECM is a vital component of all three segments of the trabecular meshwork: the 238 

corneoscleral, uveoscleral, and juxtacanalicular layers. The trabecular meshwork ECM is 239 

comprised of numerous glycosaminoglycans and proteoglycans, collagens, elastic fibrils, 240 

basement membrane, and matrix proteins[26]. In the corneoscleral and uveoscleral layers, 241 

the trabecular meshwork cells wrap around these components to form the trabecular 242 

beams, between which are relatively large intertrabecular pores[27]. In the juxtacanalicu- 243 

lar layer, which is the site of highest resistance to aqueous outflow, trabecular meshwork 244 

cells have a more interwoven and irregular spatial relationship with ECM fibrils[32]. 245 

The components of the trabecular meshwork ECM are dynamic in that their expres- 246 

sion or function can be induced by interaction with other components via bidirectional 247 

signaling, or as responses to environmental stimuli, such as mechanical stretch[27, 33-37]. 248 

As one example, the matrix metalloproteinases (MMPs) can be induced by mechanical 249 

stretch, glucocorticoid steroids such as dexamethasone, laser trabeculoplasty, and the in- 250 

flammatory cytokines TNF-α and TGF-β, leading to ECM remodeling and subsequent al- 251 

terations to outflow facility[38-40]. Processes that impede MMP function and ECM remod- 252 

eling may therefore decrease outflow facility[33, 35, 36, 41, 42]. Similarly, the expression 253 

and/or induction of numerous other proteoglycans and matricellular proteins, such as 254 

tenascin C, thrombospondin-1 and -2, SPARC (secreted protein, acidic and rich in cyste- 255 

ine), connective tissue growth factor (CTGF), fibronectin, various integrins, and periostin, 256 

have also been associated with changes in intraocular pressure[38, 43-65]. These mecha- 257 

nisms are not limited to ECM turnover, and also include modulation of such processes as 258 

cellular contraction, adhesion and migration, proliferation, and phagocytosis[57, 66-69] 259 

(Figure 4). It has been suggested that cell-matrix interactions like these are mechanisms 260 

by which the trabecular meshwork can regulate intraocular pressure homeostasis[65], and 261 

elements in these interactive pathways, such as Rho kinase inhibitors, have shown prom- 262 

ise as therapeutic targets[69-71].  263 

264 
Figure 4. Overview of cellular and extracellular matrix interactions in glaucomatous tissue remod- 265 
eling. The interplay of numerous factors, including environmental stressors, enzymatic reactions, 266 
growth factors, glycoproteins and proteoglycans as well as cytoskeletal elements all contribute to a 267 
feedback loop where outflow facility is disturbed. Red circles indicate negative situational change. 268 
Green circle indicates positive situational change. Dark blue diamonds highlight critical signaling 269 
factors. Light blue diamonds indicate extracellular matrix glycoproteins and proteoglycans. Red 270 
rhombuses indicate negative catalysts. Green rhombus indicates positive catalysts. White circle 271 
indicates exogenous factors. ECM: Extracellular matrix; TGF: Transforming growth factor; CTGF: 272 
Connective tissue growth factor; α-SMA: Alpha smooth muscle actin; CLANs: Cross-linked actin 273 
networks; TIMP-1: Tissue inhibitors of metalloproteinases 1. 274 
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3.2. Optic nerve  275 

Optic nerve head (ONH) remodeling in the glaucomatous excavation process also 276 

appears to be modulated by cellular and ECM interactions. The lamina cribrosa is a po- 277 

rous support structure for retinal ganglion cell axons passing through the scleral canal 278 

and out of the eye. The lamina cribrosa contains three cell types, including astrocytes, 279 

lamina cribrosa cells, and microglia[72-74], all of which are interspersed with the ECM. 280 

The ECM of the lamina cribrosa is comprised of proteoglycans as well as the relatively 281 

stiff collagens and relatively flexible elastin[75]. The last two mediate the distensibility of 282 

the lamina cribrosa, which overall becomes less mechanically compliant with age that is 283 

further accentuated in glaucoma[34, 75, 76]. In glaucomatous eyes, astrocytes at the pre- 284 

laminar region have relatively enhanced expression of collagen type IV mRNA, while 285 

lamina cribrosa astrocytes have de novo expression of elastin mRNA. Animal models of 286 

glaucoma have more elastotic fibers at the lamina cribrosa compared to models of nerve 287 

transection or fellow eyes, suggesting that the increased elastin synthesis is a response to 288 

increased intraocular pressure[72]. Stress-strain models and analyses further support the 289 

notion that ECM deposition and dysregulation of ECM remodeling are eventual re- 290 

sponses to mechanical stretch[77-79]. TGF-β1 and MMPs appear to have a role in mediat- 291 

ing this pathway, and many other genes, including elastin, collagens IV, VI, VIII and IX, 292 

thrombospondin, perlecan, and lysl oxidase, show increased expression in response to 24 293 

hour cyclical stretch[39, 73, 80]. It has been postulated that the intraocular pressure-in- 294 

duced changes in the laminar ECM may even impede axonal nutrition despite stable lam- 295 

inar capillary flow[77].  296 

3.3. Conjunctival and Tenon’s layer  297 

Subconjunctival fibrosis is also a process involving overproduction of ECM and is of 298 

particular interest for subconjunctival glaucoma surgeries such as trabeculectomy. After 299 

a filtration procedure, fibroblasts of Tenon’s layer (human Tenon’s fibroblasts, HTFs) may 300 

be chemoattracted to the surgical area by such factors as fibronectin in the aqueous[81]. 301 

after which there is increased ECM synthesis and collagen contraction[81-83]. Component 302 

proteins of the subconjunctival ECM include fibronectin and collagen type I, which are 303 

further induced by TGF-β1[84]. One matricellular protein, SPARC, has been noted to be 304 

significantly increased in HTFs after exposure to TGF-β1 or TGF-β2, and relatively more 305 

SPARC is found in scarred blebs compared to normal Tenon’s. Additionally, SPARC-null 306 

knockout mice have HTFs that do not respond to TGF-β1, and filtration surgery in these 307 

mice functioned longer and with more expansive blebs than compared to wild type 308 

mice[85, 86]. Another matricellular protein, CTGF, seems to promote bleb scarring and 309 

has been found to be overexpressed in filtration blebs[87, 88]. Subconjunctival injection of 310 

a CTGF antibody after filtration surgery in rabbits also led to relatively larger blebs and 311 

lower intraocular pressure[89]. These matricellular proteins may hold promise as thera- 312 

peutic targets for enhancing filtration surgery efficacy. 313 

4. Vitreous 314 

The vitreous humor is unique in that it is comprised almost entirely (>98%) of water 315 

but has various ECM components that give its gel-like consistency at birth and liquefies 316 

with age. Multiple blinding disorders can result from pathologic changes at the vitreoret- 317 

inal interface. Normal vitreous is nearly completely acellular except for some macro- 318 

phage-like hyalocytes[90]. The vitreous contains a network of glycosaminoglycans 319 

(GAGs), primarily hyaluronan, that supports a scaffold of collagen fibrils allowing a 320 

swelling osmotic gradient to inflate the gel[91]. 321 

The most prevalent form of collagen found in the vitreous is type II, which is secreted 322 

as procollagen prior to cleavage. Alternative splicing of exon 2 pre-mRNA can yield two 323 

forms: if exon 2 is expressed it is called procollagen IIA (which more prevalent in the vit- 324 

reous); if exon 2 is excluded it is procollagen IIB[92, 93]. Other collagens that are less 325 
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prevalent but have a relatively prominent role in the vitreous include types V/XI,[94] 326 

IX,[92] XVIII, and VI[95].  327 

Orientation of collagen fibrils varies in different regions of the eye. The central vitre- 328 

ous fibrils tend to course parallel in an anterior-posterior direction as opposed to the vit- 329 

reous base where the fibrils insert directly into the internal limiting membrane (ILM) per- 330 

pendicularly[96, 97]. The precise mechanisms for adhesion of the vitreous to the ILM are 331 

not fully understood but differs at the vitreous base compared to the rest of the eye.  332 

4.1. Age-induced ECM changes in the vitreous causing retinal detachment  333 

Aging results in vitreous liquefaction and weakening of vitreoretinal adhesion that 334 

is associated with loss of type IX collagen and its chondroitin sulfate side-chains, and a 335 

four-fold increase in ‘sticky’ type II collagen predisposing to fibril fusion[98, 99]. Opticin 336 

on the surface of cortical vitreous collagen fibrils may bind heparan sulphate proteoglycan 337 

chains on the ILM, including type XVIII collagen, which can also mediate vitreoretinal 338 

adhesion[100, 101]. The role of opticin in angiogenesis from proliferative diabetic reti- 339 

nopathy (PDR) is discussed further in section 5.1 but it is noteworthy that complete pos- 340 

terior vitreous detachment is protective against PDR as the collagenenous scaffold net- 341 

work for neovascularization is no longer present.  342 

Vitreoretinal adhesion is critical in formation of retinal breaks and ensuing rhegma- 343 

togenous retinal detachment during the process of posterior vitreous detachment[102, 344 

103]. Lattice degeneration increases risk for retinal tears as there is increased vitreoretinal 345 

adhesion in these lesions with overlying vitreous liquefaction as well as alterations in the 346 

ILM, absence of basement membranes over the lattice, and increased presence of astro- 347 

cytes[104, 105]. 348 

4.2. Posteriorly inserted vitreous base 349 

The vitreous base can migrate posteriorly with advanced age that could be due to 350 

synthesis of new collagen by retinal cells[106]. Posteriorly inserted vitreous base (PIVB), 351 

generally defined as a wider than average vitreous base that straddles the ora serrata, has 352 

been observed in human donor eyes[107-109]. We defined vitreous base as posteriorly 353 

inserted if the posterior hyaloid membrane could not be elevated during pars plana vitrec- 354 

tomy anterior to the vortex veins, which approximates the equator of the eye that averages 355 

a distance of 7.6 mm posterior to the ora serrata in human donor eyes (Figure 5). PIVB can 356 

present challenges to eyes undergoing vitrectomy due to the increased number retinal 357 

tears (average 3.1) pre-operatively, high incidence of new breaks occurring during vitrec- 358 

tomy (30%), and increased risk for proliferative vitreoretinopathy needing re-opera- 359 

tion[110]. Primary scleral buckle can be used for some of these cases but if vitrectomy is 360 

employed for a retinal detachment with PIVB, use of a wider buckle, meticulous shaving 361 

of the vitreous base, 360 degree laser, longer-acting tamponade agents, and potentially 362 

removal of crystalline lens[111] may help reduce rates of re-operation and vision loss[112]. 363 

364 
Figure 5. Schematic of vitreous base inserting into the retina. At the pars plana normally (A), when 365 
it is posteriorly inserted (B), or at posterior the equator, averaging 7.6 mm posterior to the ora ser- 366 
rata which predisposes to more retinal tears (C). Adapted from Sohn et al106. 367 
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5. Retina and retinal pigment epithelium (RPE) 368 

In the retina, ECM is organized into the interphotoreceptor matrix (IPM) and the ret- 369 

inal ECM (RECM)[4]. The IPM (Figure 6) represents the meshwork occupying the sub- 370 

retinal space between the photoreceptor cells and the retinal pigmented epithelium (RPE), 371 

and is comprised of a unique array of glycoproteins, while the RECM represents ECM 372 

outside the IPM. Structurally, ECM is found in basement membranes including the inner 373 

limiting membrane, the vasculature and Bruch's membrane (BM)[1]. The major source of 374 

RECM are the Müller cells, intraretinal and migrating glial cells[113] while most of the 375 

IPM components, of which hyaluronan (HA) forms the basic scaffold, are synthesized by 376 

either the RPE or photoreceptors[114]. 377 

Within a given tissue, the ECM is a milieu in constant evolution and could show var- 378 

iation in its composition and organization over time[4]. For instance, age-related posterior 379 

vitreous detachment[115]. a well-known physiologic phenomenon, and ILM increasing in 380 

thickness and stiffness[116]. are both ECM-driven processes mediated by changes in reti- 381 

nal cellular differentiation, migration, and adhesion[1, 117-119]. Other physiologic pro- 382 

cesses related to ECM functionality and breakdown include tissue wound healing, innate 383 

immune defense, and angiogenesis [120-123]. 384 

 385 

Figure 6. Insoluble interphotoreceptor matrix glycoproteins, the gene products for IMPG1 and 386 
IMPG2 are distributed in domains surrounding rod and cone photoreceptors. The relative distri- 387 
butions of cone matrix sheaths labeled with peanut agglutinin (red) is depicted compared to rod 388 
outer segments labeled with anti-rhodopsin (green). 389 

5.1. Retinal endothelial cells and angiogenesis  390 

The pathophysiology of angiogenesis with relation to ECM are complex and not fully 391 

understood yet. Retinal angiogenesis is vitally important in age-related macular degener- 392 

ation (AMD; discussed in 5.3) and blinding retinal vascular diseases such as proliferative 393 

diabetic retinopathy (PDR) and retinal vein occlusion, where preretinal neovasculariza- 394 

tion could result in massive pre-retinal hemorrhage, contractile fibrovascular membranes 395 

and tractional retinal detachment. Before detailing the role of ECM in vessel formation, it 396 

is useful to understand two concepts of angiogenesis: sprouting and intussusceptive.[124] 397 

In sprouting angiogenesis, new vessels are formed after an initial endothelial “tip cell” 398 

degrades the pre-existing vessel basement membrane, migrates into the surrounding 399 

ECM, proliferates and directs the remaining “stalk cells” in the formation of a cord (see ex 400 

vivo model for this in section 7)[124]. This process is dependent on ECM-based growth 401 



Cells 2021, 10, x FOR PEER REVIEW 11 of 31 
 

 

factor signaling including vascular endothelial growth factor (VEGF)[124]. Intussuscep- 402 

tive angiogenesis, which is the basis for preretinal neovascularization in PDR[125] is dif- 403 

ferent as the newly formed vessel emerges from the splitting of pre-existing blood ves- 404 

sels[124].  405 

The ECM plays a critical role in most, if not all, aspects of vascular biology. ECM 406 

vasculogenic functionality includes the following: 1) supporting key signaling events in 407 

endothelial cell adhesion, proliferation and survival, 2) providing a scaffold and organi- 408 

zational cues for endothelial cells, 3) control and orchestration of the endothelial cells’ 409 

cytoskeleton via integrin-dependent signal transduction pathways, 4) tubulogenesis and 410 

three-dimensional remodeling of endothelial cell sheets, and 5) vessel maturation and sta- 411 

bilization[126].  412 

Endothelial cell morphogenesis follows a programmed stepwise chain of events that 413 

starts with basement membrane breakdown, followed by cellular migration and prolifer- 414 

ation, and ending with lumen formation and stabilization[127, 128]. The concept of “fire 415 

and ice” was introduced to describe the role of endothelial ECM in vascular biosynthesis, 416 

remodeling, morphogenesis, and stabilization[126]. In fact, there is an ECM-based signal- 417 

ing balance which dictates when endothelial cells are activated or stabilized[126]. The pro- 418 

cess of activation will eventually lead to basement membrane degradation, cellular inva- 419 

sion, proliferation, migration and lumen formation. Both collagen (via interaction with 420 

α1β1, α2β1 integrins), fibrin, and fibronectin (via interaction with α5β1 and αVβ3 integ- 421 

rins) are essential for the “fire” chain of events, in conjunction with VEGF (Figure 7)[126]. 422 

 423 

Figure 7. Extracellular matrix mediated endothelial morphogenesis. The diagram illustrates the 424 
concept of “fire and ice” representing balance of extracellular matrix-based signaling which dic- 425 
tates endothelial cellular activation and tubulogenesis with endothelial cell stabilization. The com- 426 
plex process is mediated by the interaction between extracellular matrix components (including 427 
collagen I, fibrin, fibronectin and laminin) and various integrins. Abbreviations: VEGF: vascular 428 
endothelial growth factor; TGF-β: transforming growth factor beta. 429 

During new blood vessel sprouting from pre-existing vasculature, membrane-type 430 

matrix metalloproteinases (MT-MMPs) are important regulators of cellular invasion into 431 

adjacent collagen or fibrin matrices due to their role in degrading ECM proteins at the cell 432 



Cells 2021, 10, x FOR PEER REVIEW 12 of 31 
 

 

surface–ECM interface[127, 129-131]. MMPs themselves are regulated by tissue inhibitors 433 

of metalloproteinases (TIMPs), including TIMP-1, TIMP-2, TIMP-3, and TIMP-4, and it is 434 

the balance between MMPs and TIMPs that controls membrane degradation[131, 132]. For 435 

instance, the “tip cell” utilizes MT1-MMP to degrade the surrounding ECM[133]. TIMP-2 436 

and TIMP-3 are then subsequently produced when “stalk cells” contact pericytes in an 437 

attempt to halt the MT1-MMP induced ECM degradation[134].  438 

Endothelial cells must then structurally adhere to the adjacent ECM in order to mi- 439 

grate[135]. The process of adhesion to ECM is mediated via specific surface integrins and 440 

ensures endothelial cell proliferation, survival and directional motility[136-139]. Endothe- 441 

lial cell proliferation is potentiated by activation of the p44/p42 (Erk1/Erk2) mitogen-acti- 442 

vated protein kinase (MAPK) signal transduction pathway, which is itself activated by 443 

adhesion to fibronectin, a key ECM component[140-142]. Endothelial cell survival is also 444 

ensured by their adhesion to the ECM, which is a powerful regulator of Fas-induced apop- 445 

tosis[143]. When attached to the ECM, endothelial cells are protected from apoptosis [143]. 446 

ECM modulates Fas-mediated apoptosis by altering the expression of Fas and c-Flip, an 447 

endogenous antagonist of caspase-8, which is a proteolytic enzyme involved in pro- 448 

grammed cell death[143, 144].  449 

ECM also regulates endothelial cell morphogenesis and contractility. The matrix-in- 450 

tegrin-cytoskeletal signaling axis results in both sprouting (= cord formation) and luminal 451 

vacuolization, which ultimately connect endothelial cells tubular structure together[126, 452 

127]. Collagen I promotes shape changes that lead to precapillary cord formation wit- 453 

nessed during angiogenesis[145-147]. Endothelial cells cytoskeletal contractility, which 454 

drive cord assembly, is potentiated by collagen I interaction with 1) integrins α1β1 and 455 

α2β1, which suppress the cAMP-dependent protein kinase A[148], and 2) integrin β1, 456 

which activates Src kinase and the GTPase Rho[149].  457 

The interaction between laminin and each integrin α1β1, α2β1, α3β1 and α6β1 in con- 458 

junction with TGF-β are essential for “ice” chain of events which result in endothelial cell 459 

differentiation and stabilization via the cessation of cellular proliferation and related mor- 460 

phogenic sequelae[124, 126, 150]. 461 

5.2. Angiogenesis and fibrosis in proliferative diabetic retinopathy  462 

As mentioned above, there is a substantial role for ECM in controlling intussuscep- 463 

tive angiogenesis, which is the basis for pre-retinal neovascularization seen in PDR[124, 464 

125]. This pathologic venous-based angiogenesis is an attempt to re-vascularize the is- 465 

chemic retinal areas. In such cases, the cortical vitreous serves as a structural scaffold for 466 

pre-retinal neovascularization, specifically using vitreous ECM as a primary substrate for 467 

their formation[124, 125]. Initially, the provisional vascular matrix was found to contain 468 

fibronectin and vitronectin[151], followed by collagen types I and III, which are deposited 469 

by fibroblast-like cells[124, 152]. 470 

Interestingly, the vitreous normally hosts an anti-angiogenic milieu thanks to ECM 471 

components such as opticin, thrombospondins and endostatin (a fragment of type XVIII 472 

collagen)[124], which are well-known anti-angiogenic mediators[153-155]. In fact, opticin, 473 

which belongs to a family of ECM leucine-rich repeat proteoglycans[156], is a powerful 474 

dose-dependent inhibitor of preretinal neovascularization[157]. Hence, there must be a 475 

pro-angiogenic signaling shift on the collagen fibril surfaces within the vitreous ECM of 476 

PDR eyes. Opticin and other anti-angiogenic mediators could be affected by the enzymatic 477 

degradation of MMPs (1, 2, 3, 7, 8 and 9) and ADAMTS-4 and -5(a family of extracellular 478 

protease enzymes, short for multi-domain extracellular protease enzyme).[158].   479 

Research in PDR brought up the idea of an ‘angiofibrotic switch’ as a shift in balance 480 

between VEGF and CTGF mediating angiogenesis and fibrosis, respectively[159, 160]. The 481 

basis for this work was done primarily on clinical grading and aqueous fluid extracted 482 

from patients. However, membranes removed from patients in a reverse translational, 483 

randomized controlled trial using VEGF inhibition for end-stage diabetic fibrovascular 484 

membranes demonstrated that VEGF and CTGF were not significantly different between 485 
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intervention groups despite suppression of VEGF fluid levels in those that received 486 

bevacizumab (Figure 8)[161, 162]. CTGF levels in the vitreous and aqueous were also un- 487 

changed in controls and those receiving bevacizumab, but a fair number of these patients 488 

had severely fibrotic, end-stage membranes where a change in CTGF would not have been 489 

as likely[162]. This study as well as others found that eyes receiving bevacizumab may 490 

have higher levels of apoptosis[162, 163], supporting the notion that VEGF inhibition in- 491 

duces contraction of blood vessels rather than obliteration of them[164, 165]. Endothelial- 492 

to-mesenchymal transition may be involved in diabetic membrane formation as there is 493 

evidence that endothelin-1, a potential vasoconstrictor that promotes fibrosis, is present 494 

at higher levels in diabetic compared to non-diabetic epiretinal membranes[166]. 495 

 496 

Figure 8. Representative hematoxylin and eosin (H&E) and immunofluorescence images from four 497 
patients’ membranes in a randomized controlled trial. Co-labeling of antibodies for (A) CD31 498 
(Green)-CTGF (Red) and (B) cytokeratin (Green)-VEGF (Red). Note the H&E-stained sections do 499 
not correspond precisely to the cytokeratin-labeled sections. While intravitreal bevacizumab did 500 
not significantly decrease CTGF (A-top panels) or VEGF (B-top panels) expression in membranes 501 
compared to sham group, VEGF was still expressed in membranes of eyes given bevacizumab (B, 502 
right panels). Scale bar=100μm. Abbreviations: CTGF: connective Tissue Growth Factor; VEGF: 503 
vascular endothelial growth factor. Adapted from Jiao et al162. 504 

5.3. Choroidal neovascularization, autosomal dominant radial drusen and AMD  505 

In degenerative retinal diseases (whether acquired or inherited), there can be a tip- 506 

ping point at which the degenerative process is accelerated, leading to phenotypic mani- 507 

festations of the disease.[4]. This could be represented by the loss of a critical mass of ret- 508 

inal ECM[4]. Evidence supporting this hypothesis stems from numerous studies con- 509 

ducted in age-related macular degeneration (AMD), the most common cause of irreversi- 510 

ble blindness in the developed world[167]. Drusen, which are extracellular lipid filled de- 511 

posits between the RPE and the choriocapillaris, are the earliest hallmarks of AMD and 512 

tend to form over ECM areas with low density or absent choriocapillaris[168-170]. Addi- 513 

tionally, drusen in AMD do not express collagen type IV in contrast to drusen to patients 514 

with genetic mutation in epidermal growth factor–containing fibrillin-like extracellular 515 

matrix protein 1 (EFEMP-1) causing autosomal dominant radial drusen (ADRD, aka 516 

Malattia Leventinese and Doyne Honeycomb Retinal Dystrophy) (Figure 9)[171]. Further- 517 

more, the density of drusen correlates well with the density of “ghost” choriocapillaris 518 

vessels that is independent of RPE cell height[169]. 519 
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 520 

Figure 9. Anti-collagen IV labeling in human donor eyes. Drusen (asterisks) associated with aging 521 
do not show labeling with antibodies directed against collagen type IV (A, B, C). Laminae within 522 
the autosomal dominant radial drusen are immunoreactive with anti-collagen IV antibodies (green 523 
fluorescence). Sections were also labeled with DAPI (blue nuclear fluorescence) and were exposed 524 
in the rhodamine channel (red autofluorescence of the RPE). Adapted from Sohn et al171. 525 

The initial insult driving pathologic changes in AMD is not well understood. Early 526 

pathophysiological changes can be localized to the choriocapillaris, where an abundance 527 

of membrane attack complex (MAC) resulting in aberrant complement activation has been 528 

reported[170, 172-176]. MAC based complement injury to choriocapillaries could be irre- 529 

versible that leads to uncontrolled angiogenic drive and the formation of choroidal neo- 530 

vascular membranes (CNV)[177] and geographic atrophy[178]. Acute complement inju- 531 

ries have been associated with higher levels of MMP-3 and -9[170]. 532 

The pathogenesis of CNV in AMD is complex and several interconnected pathways 533 

including genetic predisposition, oxidative stress, inflammatory/immune mechanism, 534 

and angiogenesis play a role[179, 180]. Monogenic inherited retinal diseases directly af- 535 

fecting extracellular matrix such as ADRD from EFEMP-1 mutation results in early geo- 536 

graphic atrophy and CNV, which is responsive to anti-VEGF therapy[181]. Despite the 537 

overwhelming success of anti-VEGF intravitreal injections (IVI) in treating active CNV 538 

due to exudative AMD,[182-184] there is still a subset of incomplete respondents (~15%) 539 

who have persistent sub-retinal fluid (with or without intra-retinal fluid) despite chronic 540 

continued treatment[185-187]. Interestingly, some incomplete responders may initially 541 

show a good response to anti-VEGF IVI but then become treatment resistant and lose sig- 542 

nificant vision over time[188-190].  543 

The mechanism of resistance to anti-VEGF IVI treatment is unknown. Tachyphylaxis 544 

was previously proposed as a possible explanation, especially in those eyes that show 545 

initial improvement[191-193]. There may also be a special role of MMP-mediated immune 546 

response in angiogenesis and CNV formation[194-197]. Of note, MMPs are essential in the 547 

degradation of ECM and basement membrane[198, 199] and thus are crucial in tissue re- 548 

modeling and repair[200, 201]. Their major targets are elastin, fibrinogen, gelatin and var- 549 

ious types of collagen molecules, including I, IV and V[202]. 550 

Most targets of MMP-9 are structural components of BM, which forms a major angi- 551 

ogenic barrier to CNV-based insult in exudative AMD[171, 203, 204]. There is mounting 552 

evidence of the causal relationship between MMPs, BM pathological remodeling, and 553 

CNV in AMD[203, 205-208]. MMPs were reported to be increasingly expressed in patho- 554 

logically stressed tissue, such as BM of eyes with AMD[209, 210]. Breakdown of BM struc- 555 

tural molecules (specifically elastin and collagen IV) allows for the migration of endothe- 556 

lial cells during angiogenesis[14, 211, 212]. Both MMP-9 enzymatic activity and the inci- 557 

dence of exudative AMD increase with age, suggesting a correlative risk[171, 203, 204]. 558 

MMP-9 is expressed in choroidal macrophages[213] and has also been found near BM the 559 

margins of CNV membranes[194]. Additionally, MMP-9 was found to increase the RPE 560 

VEGF levels by decreasing levels of pigment epithelium-derived factor (PEDF), which is 561 

the main antagonist of VEGF in the RPE[214-216]. Both VEGF and PEDF are highly 562 
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expressed in AMD and their interplay serves as a mediator in the development of 563 

CNV[217-221]. A significant reduction in CNV incidence and severity was reported in 564 

MMP-9 knockout mice artificially subjected to laser injury[222, 223]. In addition, inhibi- 565 

tion of MMP-9 was experimentally found to block CNV development[223, 224]. In hu- 566 

mans, exogenous MMP-9 upregulated the gene expression of VEGF in human RPE 567 

cells[225]. In their study, Liutkevicien et al. showed a significant association between 568 

MMP-9 specific single nucleotide polymorphism and the incidence of AMD at a younger 569 

age (< 65-year-old)[226]. Chau et al. also reported three folds higher plasma[227] and 570 

aqueous humour[228] levels of MMP-9 in AMD patients compared to healthy controls.   571 

Furthermore, MMP-9 is known to interact with TIMP-3, mutations of which cause 572 

Sorsby fundus dystrophy in which CNV invariably develops patients by their 4th-5th dec- 573 

ade of life[229-231]. Additionally, AMD eyes with marked choroidal thinning due to geo- 574 

graphic atrophy have been reported to have a marked increase in TIMP-3 activity[232]. 575 

This is could then hinder the normal choroidal physiological angiogenic repair and con- 576 

tribute to the observed choroidal thinning[232]. In addition, there is a genetic association 577 

of the MMP-9 locus with exudative AMD, which was found in the International AMD 578 

Genetics Consortium in a large genome wide association study[233] and independently 579 

confirmed recently in an Iowa cohort of patients with AMD[234]. 580 

6. Bruch’s membrane and choroid  581 

Bruch's membrane is a complex, multilayered extracellular matrix compartment. It is 582 

comprised of two layers with salient features of fibrillar collagen surrounding a central 583 

layer of elastin and related molecules (Figure 10). While the basal laminae of the RPE and 584 

choriocapillaris are sometimes considered the inner and outer boundaries of Bruch's 585 

membrane, increasingly investigators find it useful to consider these separately[235]. Both 586 

the structure and pathology of Bruch's membrane are reminiscent of the arterial wall in 587 

atherosclerotic disease[236].  588 

Bruch's membrane itself has numerous functions: it serves as a barrier to abnormal 589 

neovascularization from the choroid, occupying the interface between the abundant vas- 590 

culature of the choriocapillaris and the avascular outer retina. It contains both structural 591 

proteins and matricellular proteins. An abbreviated list of constituents of this unusual 592 

ECM compartment includes collagens I, III, IV, V, VI, VIII, fibrillin-1, fibulins 3 and 5, 593 

TIMP3, MMPs, and antiangiogenic effectors[237-242] Several ECM constituents of Bruch's 594 

membrane become greatly reduced during aging and macular disease, concomitant with 595 

the accumulation of lipidic debris[243, 244], including the anti-angiogenic matricellular 596 

protein thrombospondin[245]. Age-related structural and biochemical changes in Bruch's 597 

membrane are mirrored by an age-related decrease in hydraulic conductivity[246]. The 598 

elastic layer of Bruch's membrane further becomes fragmented in AMD, with a loss of 599 

elastin integrity quantifiable both by histochemical staining and ultrastructural appear- 600 

ance[247]. Elastin degradation results in the liberation of elastin derived peptides (EDPs) 601 

which have been found to be elevated in the circulation of patients with neovascular 602 

AMD[248]. Liberated elastin fragments activate choroidal endothelial cells to migrate to- 603 

ward the source of the peptides, which ECs detect using a heterotrimeric cell surface elas- 604 

tin receptor.  605 

The loss of elastin in Bruch's membrane (whether due to increased metalloproteinase 606 

activity, macrophage extravasation, increased brittleness due to calcification, and/or other 607 

events) has the potential to both create a physical opening for growing vascular tubes as 608 

well as signaling choroidal endothelial cell migration. Moreover, human primary cho- 609 

roidal ECs stimulated with elastin fragments increase MMP-9 expression, potentially pro- 610 

moting further loss of Bruch's membrane elastin and further amplification of angiogene- 611 

sis[249]. The reader is referred to several reviews for more information (Figure 10) [204, 612 

250, 251]. 613 
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 614 

Figure 10. Transmission electron micrograph depicting the layers of Bruch's membrane from a 615 
human eye. Both the basal laminae of the RPE and choriocapillaris (RPE-BL and CC-BL) are de- 616 
picted, in addition to inner collagenous zone (ICZ) and outer collagenous zone (OCZ), occupied 617 
by fibrillar collagens, as well as the elastic lamina (EL), evident by its thick electron dense bundles. 618 
Scale bar=1um. 619 

Outside of Bruch's membrane, the choroidal ECM has been relatively understudied. 620 

The choroid is comprised of several cell types with their own basal laminae, including 621 

endothelial cells (which differ in composition between cells at different positions in the 622 

vascular tree and between the choriocapillaris and RPE)[241], pericytes/smooth muscle 623 

cells surrounding capillaries and large vessels respectively, and Schwann cells[213]. Other 624 

abundant cells such as melanocytes and especially fibroblasts contribute to ECM synthe- 625 

sis. The choroidal stroma, which occupies the space between and around vascular lumens, 626 

includes abundant fibrillar collagens with a ground substance containing a complex array 627 

of glycosaminoglycans including heparan sulfate and chondroitin sulfate proteogly- 628 

cans[252]. Choroidal thinning, observed in normal aging and in geographic atrophy, is 629 

characterized by persistence of collagen fibrils and loss of ground substance, with a shift 630 

in the balance of serine protease inhibitors and metalloproteinase inhibitors as described 631 

above[253]. Other clinically meaningful aspects of choroidal thickness, such as the 632 

changes that occur in pachychoroid spectrum diseases like central serous chorioretinopa- 633 

thy, remain to be elucidated.  634 

7. Organotypic culture of porcine choroid-sclera explant as a therapeutic screening 635 

tool for mammalian tubulogenesis  636 

In vitro endothelial cell culture models have been commonly used to investigate vas- 637 

culogenesis, however, study of microvessel culture and physiological interaction between 638 

cells remain understudied. Ex-vivo organ culture is an ideal approach because of the abil- 639 

ity to observe rudimentary differentiation and examine the role of inducers and inhibitors 640 

in a controlled environment[254]. Strangeways and Fell developed the first organ culture 641 

of whole chick eyes in plasma clots in 1926[255]. Advancement of this technique has al- 642 

lowed for extension into culturing other mammalian organs such as heart, skin, bone, 643 
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lung, retina, and others[256-263]. The use of heart and aorta ring has been well established 644 

for decades in the study of angiogenesis [256, 264-267]. Ex vivo choroidal tissue culture 645 

was described by Kobayashi et al[268-271] to study pharmaceuticals applied to retinal 646 

diseases. In 2013, Shao et al published an ex vivo angiogenesis model using choroid-sclera 647 

tissue from small rodents and studied the suitability of its use as a tool for the assessment 648 

of various therapies in specific eye disease related angiogenic research[272]. 649 

The pig is a popular large animal species used in translational retinal research[273- 650 

276] due to its anatomical and physiological similarities with the human retina[263, 277- 651 

280]. We sought to establish an organotypic choroid-sclera model from adult pig cultivat- 652 

ing choroid microvessels together with surrounding cells. This model provides a remark- 653 

able opportunity to extend our understanding of physiology and pathology on tubulogen- 654 

esis, which forms the basis for CNV, as described in section 5.1 above, in a relatively nat- 655 

ural eye environment. Moreover, growing vascular cells supported by extracellular matrix 656 

better mimics an in vivo environment than in vitro culture, thus allowing us to investigate 657 

the effects of various agents on choroidal capillaries as well as the interacting role of other 658 

cells. This system bridges the gap between in vitro and in vivo models which can be used 659 

as a screening tool for potentially novel anti-angiogenesis pharmaceutical therapies. 660 

7.1. Animals and materials 661 

Cadaver eyes of pigmented pigs (6 months old, spotted breed) were obtained from a 662 

local abattoir within 4 hours after slaughter. All eyes were kept on ice during transporta- 663 

tion. Gender of the pigs was evenly distributed. In a tissue culture hood, pig eyes were 664 

disinfected with 1% betadine, followed by a rinse with ice-cold, sterile 0.01 M phosphate 665 

buffer saline (1X PBS) with PH7.4, then the eyes were immersed in ice-cold Dulbecco's 666 

modified Eagle's medium (DMEM, ThermoFisher Scientific, Waltham, MA) containing 667 

100U/ml Penicillin, 100ug/ml Streptomycin, and 2.5ug/ml Fungizone (Sigma, St. Louis, 668 

MO) in preparation for further dissection.  669 

7.1.1. Preparation of three-dimensional collagen gels 670 

Collagen type I gels (rat tail collagen, Corning, Bedford, MA) were prepared accord- 671 

ing to the protocol developed by Tomaneck et al[265, 281-284] with some modifications. 672 

In summary, to prepare a collagen mixture with a final concentration of 1.5 mg/ml, the 673 

stock collagen was mixed with 2x M199 (Life Technologies, Bethesda, MD) and neutral- 674 

ized by 1 N NaOH. 50ul of the ice-cold collagen mixture was poured into either 8-well 675 

chambered culture plates for staining purposes or 4-well tissue culture plates. The mixture 676 

was allowed to polymerize at 37°C in a tissue culture incubator with 5% CO2 and 95% 677 

ambient air for 1 hour. The gels were then equilibrated with DMEM supplemented with 678 

10% heat-inactivated fetal bovine serum (FBS, Life Technologies, Bethesda, MD) in the 679 

incubator for at least 30 min up to overnight. 680 

7.1.2. Dissection of choroid-sclera and preparation of explants  681 

In a sterile petri dish, a circumferential incision was made around the limbus of the 682 

eyeball followed by removal of the excess extraocular tissue, anterior segment, lens, and 683 

vitreous. After the retina was carefully peeled away from eyecup, pre-warmed 0.25% 684 

Trypsin EDTA was added to the eye cup and incubated in a 37°C tissue culture incubator 685 

for 10 minutes. Moist 4x4 gauzes were used to support and surround the eyecup to pre- 686 

vent it from drying out. After aspirating all trypsin, the inside of the eyecups was rinsed 687 

with pre-warmed medium containing 10% heat-inactivated fetal bovine serum (FBS). The 688 

RPE cell layer was then gently scratched off using moist gauzes. The posterior pole of the 689 

eyecup was cut into quadrants with a sterile blade, and then the tissue was punched into 690 

small pieces using 2mm biopsy punches. All punched 2mm tissue was kept in culture 691 

medium until planting. Cultured media contained 10% in-activated FBS supplemented 692 
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with 2.8 mM L-glutamine (GIBCO, Waltham, MA), 100 U/ml penicillin, 100 ug/ml of strep- 693 

tomycin, and 2.5ug/ml fungizone (Sigma, St. Louis, MO).  694 

7.1.3. Choroid-sclera explant culture 695 

2mm choroid-sclera explants were planted on three-dimensional collagen matrix 696 

with the choroid side facing downwards. The chamber plates were then maintained at 697 

37°C in an atmosphere containing 5% CO2 without medium for 6-12 hour to allow attach- 698 

ment of the explants onto the gel surface. 500ul of culture medium supplemented with 699 

10% heat-inactivated FBS and antibiotics/Fungizone was carefully added to each well.  700 

After 1 day of culturing in this condition, the explants were first switched to low serum 701 

culture medium for 1 day of starvation, then they were further cultured in the presence 702 

or absence of varying concentrations of VEGF165 recombined protein (R&D, Minneapolis, 703 

MN) at 5ng/ml, 10ng/ml, 50ng/ml; indole-3-acetic acid (IAA) 10-4 uM, 10-2 uM; comple- 704 

ment 5a (R&D, Minneapolis, MN) at 10ng/ml, 50ng/ml; or elastin(Elastin Products Com- 705 

pany, Owensville, Missouri) at 10ug/ml, 50ug/ml respectively for an additional time 706 

course until day 3 or 7 (Figure 11). Each experiment was repeated 2-5 times with duplicate 707 

explants in each condition. 708 

  709 

Figure 11. Schematic of pig choroid-sclera explant culture model. 2mm explant of choroid-sclera 710 
were obtained from adult porcine eyes and cultured on three-dimensional collagen matrix. After 1 711 
day of culture in medium with 10% fetal bovine serum followed by 1 day of serum starvation, the 712 
explants were further cultured in the presence or absence of varying concentrations of com- 713 
pounds. 714 

7.1.4. Tissue processing and immunocytochemistry on explants 715 

The pig choroid-sclera explants, along with the collagen gels were rinsed in ice-cold 716 

0.01M phosphate-buffered saline (1XPBS) and then fixed in freshly prepared 4% para- 717 

formaldehyde (PFA) at 4°C overnight. After three washes in 1XPBS, the samples were 718 

incubated with 0.3% Triton-X100 with 1% bovine serum albumin in PBS for 30 minutes to 719 

block nonspecific binding. Specimens were then incubated with Griffonia (Bandeiraea) Sim- 720 

plicifolia Lectin I (GSL-I, Vector Laboratories, Inc, Burlingame, CA), anti-PECAM (CD31, 721 

BD Pharmingen, San Jose, CA), or anti-NG2 (Abcam, Cambridge, MA) antibodies over- 722 

night at 4°C, followed by fluorescent secondary antibodies Cy2 or Cy3 (Vector Lab) re- 723 

spectively.  Negative control experiments were performed by omitting the primary anti- 724 

body and incubating the tissue in PBS alone. The specimens were examined and scanned 725 

with 710 ZEISS confocal microscope.    726 

7.1.5. Quantitation of sprouting growth  727 
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To perform image analysis, all images from the same experiment were taken under 728 

the same observation conditions such as magnification (4X objective), brightness, and con- 729 

trast. After automerging the images with Photoshop software, sprouting growth from en- 730 

tire explants were semi-quantified by measuring the total area of the tubes in Image J[272]. 731 

7.1.6. Statistical analysis 732 

Data were analyzed in GraphPad Prism 8 (GraphPad Software, Inc., San Diego, CA) 733 

using a paired student t-test followed by F-test or ANOVA followed by post-hoc Bonfer- 734 

roni correction for multiple comparison among means. Results were expressed as mean ± 735 

SEM, p<0.05 was considered statistically significant.  736 

7.2. Results 737 

7.2.1. Pig choroid-sclera explant model and growth 738 

2mm explants of choroid-sclera were obtained from adult porcine eyes and cultured 739 

on three-dimensional collagen matrix. The experimental procedure is summarized in Fig- 740 

ure 11. It involved sterile conditions, dissection of the pig eyes, embedding of the pig cho- 741 

roidal-choroid-sclera complex, starvation, feeding, fixing and staining, and imaging and 742 

quantifying micro-vessel sprouts. After 1 day of culture in medium with 10% fetal bovine 743 

serum and 1 day of serum starvation, cells began to proliferate and migrate out from the 744 

cut edges of the choroid-sclera explants. Subsequently, a monolayer of cells was observed 745 

within the surface of matrix gel surrounding the explants. Tubulogenesis was observed at 746 

48 hours, with a marked abundance of vascular tubes by 72 hours (Figure 12) that contin- 747 

ually grew until reaching maximum capacity by day 7 (Supplemental Video). 748 

  749 

Figure 12. Confocal images showing visualization of endothelial cells and vascular tubes from 750 
choroid-sclera explants by staining with the endothelial marker GSL-I. Endothelial marker GSL-I 751 
marked in green. Endothelial cells began to proliferate and migrate out of the explant by 24 hours; 752 
tubulogenesis was observed at 48 hours with a marked abundance of vascular tubes by 72 hours. 753 
The microvascular network reached maximal complexity on day 7. Scale bar = 1mm. 754 
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 To identify the characteristics of the cells derived from the explants, we utilized GSL- 755 

I and anti-PECAM (CD31) as endothelial cell markers, and anti-NG2 as a pericyte marker 756 

to identify cell phenotypes of sprouts by immunohistochemistry and confocal micros- 757 

copy. Fluorescent staining revealed that the sprouts were positive for both GSL-I (Figure 758 

13A and 13B) and CD31 labeling (Figure 13A). There were few, if any, NG2 positive cells 759 

present at this stage (Figure 13C).  760 

 761 

Figure 13. Representative three-dimensional reconstruction of immunostained confocal images 762 
from adult choroid-sclera explant cultured under normal conditions. (A) A stereo pair of confocal 763 
images show interconnection of the tube formation; the tubular structures were dual labeled by 764 
CD31(red) and GSL-I (green). (B) Confocal image of explant labeled with GSL-I. (C) Correspond- 765 
ing planes of sprouting immunolabeled by NG2 and GSL-I. Only a few GSL-I stained endothelial 766 
cells (green) are also positive for NG2 (red) on the gel for this time course. 767 

7.2.2. Treatment of VEGF165 and IAA in pig choroid-sclera explant 768 

VEGF165 has been widely reported as a pro-angiogenic molecule. After 2 days of 769 

initial culture, the explants were further cultured in the presence of VEGF165 protein com- 770 

pound at 0ng/ml, 5ng/ml, 10ng/ml or 50ng/ml in medium. 50 ng/ml of VEGF165 signifi- 771 

cantly promoted sprouting at both day 3 (p<0.005) and day 7 (p<0.005) (Figure 14B and 772 

Figure 14D). 10-4 uM, 10-2 uM of IAA (Figure 14C and Figure 1E) suppressed the growth 773 

of choroid-sclera sprouting during the whole culturing period.  In addition, we tested 774 

elastin and C5a on this model. After 72-96 hours of incubation, both 50ug/ml of C5a and 775 

50ug/ml of elastin showed a tendency toward inducing tubulogenesis on day 3 with no 776 

significant effects observed by day 7.  777 
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    778 

Figure 14. Stimulation of tube formation in a 7 day culture of pig choroid-sclera complex in the 779 
presence of VEGF or IAA. Representative phase contrast micrographs: (A) explant with outgrowth 780 
cultured in medium without additional compounds; (B) explant with outgrowth cultured in the 781 
presence of 50ng/ml of VEGF. Note the high density of branching formation; (C) explant with out- 782 
growth cultured in the presence of 10-4 uM IAA. Scale bar = 200um. (D) Statistical analysis of 783 
sprouting growth under various treatments. At 3 days and 7 days of VEGF165 treatment, 50ng/ml 784 
stimulated significantly greater tube formation compared with the vehicle control of 5ng/ml and 785 
10ng/ml of treatment; (E) Both 10-4 uM and 10-2 uM IAA significantly suppressed outgrowth on 786 
day 3 and day 7. Values = means ± SEM, *P<0.05, **P<0.01. 787 

7.3. Discussion 788 

We demonstrate here that adult pig choroid-sclera explant can be cultured and used 789 

as an ex-vivo angiogenesis model for pig choroidal capillary studies. Collagen matrix has 790 

been used in a variety of studies regarding angiogenesis and tissue regeneration[265, 281, 791 

284]. It not only provides a matrix for endothelial cells in culture but is also a major con- 792 

stituent of the pericapillary connective tissue in vivo. In contrast, in vitro endothelial cell 793 

culturing grew endothelial cells alone, either on or inside the collagen gel, lacking the 794 

ability to establish the relationship between endothelial cells and other cell types with 795 

which they encounter and interact in normal growth[285]. In some other studies, although 796 

the interactions of different cell types were preserved, endothelial cells were not distin- 797 

guished from other cell types; thus, the conclusions drawn from these studies were based 798 

exclusively on morphology[286-288]. Moreover, many studies focused on small rodents 799 

such as mouse or rat explant models, however, due to the 80% similarity rate of pig anat- 800 

omy and physiology compared to humans, the pig model may be a more suitable and 801 

clinically relevant model for comparative studies of human diseases.[289, 290] In this cul- 802 

turing system, explants were cultured directly on a 3-D collagen gel, allowing us to ob- 803 

serve the interaction between endothelial cells and other cell types in a more natural en- 804 

vironment. Additionally, the markers GSL-I and CD31 enabled us to distinguish endothe- 805 

lial cells from other cell types. 806 

 Our model shows that migration of cells from the choroid-sclera explant complex 807 

can be observed 24 hours after placement in collagen matrix, with tubulogenesis begin- 808 

ning at 48 hours, followed by a marked abundance of vascular tubes by 72 hours, and 809 

continuous outgrowth reaching maximum capacity by day 7. The outgrowth showed vas- 810 

cular endothelial cell features when stained with endothelial markers GSL-I and CD31. 811 

Notably, some NG2 positive labeling was detected among the sprouts, indicating that 812 

some of the newly formed vessels were more mature with pericytes. This finding is con- 813 

sistent with the reports from other groups that explant derived sprouting comprises a 814 

mixture of endothelial cells, fibroblasts, perivascular pericytes, and CD45 positive 815 
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monocytes[272].  In addition, the sprouts responded positively to exogenous vascular en- 816 

dothelial growth factor VEGF165 positively. It has been widely accepted that VEGF plays 817 

a crucial role in angiogenesis[282, 284, 291]. The sprouting density and outgrowth migra- 818 

tion area showed significant increase with 50ng/ml of VEGF in both day 3 and day 7 cul- 819 

tures. 820 

IAA has been used to create a retinal degeneration animal model[292, 293], thus we 821 

tested whether IAA has an anti-angiogenetic impact in our model. Results showed IAA 822 

significantly inhibited outgrowth during early stages but showed no significant effect by 823 

day 7. Elastin has been previously reported to play a role in AMD by mediating choroidal 824 

endothelial cell migration[249, 294]. C5a, an important chemotactic protein has been 825 

shown to alter RPE function and promote choroidal neovascularization[177] possibly via 826 

lectin pathway, classical pathway, or alternative pathway as a result of inflammatory re- 827 

cruitments[295], increases in retinal levels of proinflammatory cytokines[296], and mem- 828 

brane attack complex deposition[297]. We evaluated C5a and elastin in the choroid-sclera 829 

explant model and our data indicated that both may have a tendency of promoting angi- 830 

ogenesis in early stages of the culture.   831 

 As it is technically difficult to separate porcine choroid from sclera, our cultured 832 

complex contained both choroid and sclera with the choroid portion attached to a thin 833 

layer of collagen matrix to limit endothelial cell migration from the sclera. Sclera vascular 834 

cells and fibroblasts may contribute to formation of the sprouts in this assay. Future work 835 

could attempt to separate choroid from sclera, isolate endothelial cells for additional stud- 836 

ies, and identify other cell types involved in sprouting. 837 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1: 838 
Video of choroid-sclera sprouting. 839 
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