
UNIVERSITÀ DEGLI STUDI DELL'AQUILA
DIPARTIMENTO DI INGEGNERIA E SCIENZE DELL’INFORMAZIONE E MATEMATICA

(DISIM)

Dottorato di Ricerca in Ingegneria e Scienze Dell’Informazione

Curriculum Systems Engineering, telecommunications and HW/SW platforms

XXXII° ciclo

Titolo della tesi

A Security Framework for Wireless Sensor Networks

SSD ING-INF/05

Dottorando

Walter Tiberti

Coordinatore del corso Tutor

Prof. Vittorio Cortellessa Prof. Luigi Pomante

_____________________ __________________

A.A. 2018/2019

A Framework for Wireless Sensor Network security
Extended abstract

Walter Tiberti
walter.tiberti@graduate.univaq.it

DEWS, University of L’Aquila, Italy

November 13, 2019

1 Introduction
Wireless Sensor Networks (WSN) are networks composed of small, wireless, battery-powered and sensor-
equipped nodes, called motes. Thank to their characteristics, WSNs are often adopted as monitoring plat-
forms in environments where the deployment of conventional networks are unfeasible. Typical applications of
WSNs can be found in the smart home scenarios, in industrial applications, in safety-related and in military
contexts.

The reference protocol stack for WSNs is the IEEE 802.15.4 [1], which defines the first two layers of the
ISO/OSI network stack (PHY and MAC).

Providing security in WSNs is a non-trivial challenge: the performance limitations, the limited amount of
storage and the finite energy resources cause the implementation of well-known state-of-art security solutions
to be unfeasible. The IEEE 802.15.4 standard defines some security-related specifications, but they do not
cover all the WSNs security issues.

In order to provide a complete solution for WSN security, we propose a framework to provide a set of
lightweight security solutions which take WSN constrains into account. In particular:

• we address the confidentiality security requirement by mean of a set of lightweight cryptographic
schemes based on hybrid cryptography, Elliptic Curve Cryptography (ECC) and new key transport pro-
tocols; at the same time, we introduce a hardware accelerator to overcome the performance limitations;

• we address the need for dynamic security checks on the WSN with the improvement of a misuse-based
WSN Intrusion Detection System;

• we address the integrity requirements of both data and WSN motes by introducing a novel lightweight
anti-tampering mechanism based on the blockchain technology;

• finally, we use an enhanced version of a famous mobile-agent middleware for WSN. The new version
support additional features (e.g. energy-awareness) and integrate all the above techniques to build up
a complete secure platform based on mobile agents for WSN.

2 Framework description

2.1 TAKS, ECTAKS and ECC-HAxES
TAKS [5][3][4] is a hybrid-cryptography scheme which uses vector algebra over a prime-field or a finite field
to provide WSNs a lightweight yet effective solution for encryption and authentication. In our work, we
extended TAKS implementation to support star and cluster-tree topologies. Also, we developed a version of
TAKS suitable to be included as Key Management Protocol (KMP) in the recent IEEE 802.15.9 [2].

1

In order to increase the security level offered by TAKS, ECTAKS [6] has been introduced. ECTAKS
combines the security of standard ECC protocols with the lightweight mechanism of TAKS. In our work, we
provided a first real-word implementation of ECTAKS based on the TinyECC [12] library.

Finally, in order to overcome the performance limitation of public-key cryptography protocol implementa-
tions on WSN motes, in our work we designed and implemented a novel hardware accelerator for ECC-based
protocols: the ECC Hardware Accelerator for Embedded Systems (ECC-HAxES). ECC-HAxES is an RTL
design with minimum-area policy which has been designed to be configured on top of FPGA platforms and
interfaced with a (master) embedded system (e.g. a WSN mote) to provide it with on-demand encryption
(ECIES) and signature computation and verification (ECDSA).

2.2 WIDS and TinyWIDS
WIDS [7][3][4] is a misuse-based intrusion detection system for WSN which uses Weak Process Models (a
variant of the Hidden Markov Models) to estimate and track the state of a WSN mote from a series of of
observable events. In our work, we enriched WIDS and provided a new TinyOS-based implementation called
TinyWIDS [8].

2.3 Agilla evolution
Agilla [10] is a TinyOS-based mobile-agent middleware (MAMW) for WSN. In Agilla, software applications
are deployed as agents which can move or clone themselves across the WSN. We ported Agilla [11] to the
newer TinyOS platforms.

2.4 Anti-tampering solution
In order to address both the data security and the node capture attacks, we developed WSN-LBC, a novel
lightweight blockchain-based anti-tampering mechanism for WSN monitoring applications. WSN-LBC uses
a ledger composed of a selectable number of blockchains with different reliability levels. Upon reception
of data messages, the receiver (usually the coordinator) can check the validity of the message and decide
(depending of the message itself and the reliability associated to the sender node) whether the data should
be stored in one of the blockchains or refused. The coordinator also update the reliability associated to the
sender so that a good-behaving node will always see its data stored in high-reliability blockchains, while
bad-behaving nodes will be, after a selectable number of invalid messages, forbidden entirely from the WSN
communication. This help solve node capture attacks since, when a captured node is removed from the WSN,
it will lose the ability to produce valid messages (e.g. failing to produce the correct hashes required). Once
the captured node is re-injected into the WSN, this will make it to lose its reliability and, eventually, causing
the coordinator to systematically discard its messages.

2.5 Security Framework
The proposed security framework integrate all the previously described components into a new lightweight
environment for developing secure WSN applications. Starting from [9], we adopted the new version of Agilla
and integrate it with the new TAKS-based scheme (i.e. ECTAKS) used as KMP in the IEEE 802.15.9-based
stack. We added the support for using ECC-HAxES and added TinyWIDS as background intrusion detection
system. Finally, the WSN-LBC mechanisms has been added as optional anti-tampering mechanism.

References
[1] IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2015 (Revision of IEEE Std

802.15.4-2011) , vol., no., pp.1-709, 22 April 2016 doi: 10.1109/IEEESTD.2016.7460875

[2] IEEE Recommended Practice for Transport of Key Management Protocol (KMP) Datagrams," in
IEEE Std 802.15.9-2016 , vol., no., pp.1-74, 17 Aug. 2016 doi: 10.1109/IEEESTD.2016.7544442

2

[3] Pugliese M., "Managing Security Issues in Advanced Applications of Wireless Sensor Networks", PhD
Thesis, 2008

[4] Marchesani S., "A Middleware approach for WSN security: Cryptography and Intrusion Detection for
Real-World Application", PhD Thesis, 2013

[5] M. Pugliese and F. Santucci, "Pair-wise network topology authenticated hybrid cryptographic keys for
Wireless Sensor Networks using vector algebra," 2008 5th IEEE International Conference on Mobile
Ad Hoc and Sensor Systems, Atlanta, GA, 2008, pp. 853-859. doi: 10.1109/MAHSS.2008.4660137

[6] Pugliese, Marco & Pomante, Luigi & Santucci, Fortunato. (2012). Secure Platform Over Wireless
Sensor Networks. 10.5772/34607.

[7] Pugliese, Marco & Giani, Annarita & Santucci, Fortunato. (2009). Weak Process Models for Attack
Detection in a Clustered Sensor Network Using Mobile Agents. Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering. 24. 33-50. 10.1007/978-
3-642-11528-8_4.

[8] Bozzi Luciano , Giuseppe Lorenzo , Pomante Luigi , Pugliese Marco , Santic Marco , Santucci
Fortunato & Tiberti Walter. (2018). TinyWIDS: a WPM-based Intrusion Detection System for
TinyOS2.x/802.15.4 Wireless Sensor Networks. 13-16. 10.1145/3178291.3178293.

[9] L. Pomante, M. Pugliese, S. Marchesani and F. Santucci, "WINSOME: A middleware platform for
the provision of secure monitoring services over Wireless Sensor Networks," 2013 9th International
Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, 2013, pp. 706-711.
doi: 10.1109/IWCMC.2013.6583643

[10] C. L. Fok, G. C. Roman, and C. Lu, "Agilla: A Mobile Agent Middleware for Self-Adaptive Wireless
Sensor Networks", ACM Transactions on Autonomous and Adaptive Systems, Vol. 4, No. 3, Article
16, 2009

[11] L. Corradetti, D. Gregori, S. Marchesani, L. Pomante, M. Santic and W. Tiberti, "A renovated mobile
agents middleware for WSN porting of Agilla to the TinyOS 2.x platform," 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI),
Bologna, 2016, pp. 1-5. doi: 10.1109/RTSI.2016.7740615

[12] A. Liu and P. Ning, "TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless
Sensor Networks," 2008 International Conference on Information Processing in Sensor Networks (ipsn
2008), St. Louis, MO, 2008, pp. 245-256.

3

UNIVERSITÀ DEGLI STUDI DELL'AQUILA
DIPARTIMENTO DI INGEGNERIA E SCIENZE DELL’INFORMAZIONE E MATEMATICA

(DISIM)

Dottorato di Ricerca in Ingegneria e Scienze Dell’Informazione

Curriculum Systems Engineering, telecommunications and HW/SW platforms

XXXII° ciclo

Titolo della tesi

A Security Framework for Wireless Sensor Networks

SSD ING-INF/05

Dottorando

Walter Tiberti

Coordinatore del corso Tutor

Prof. Vittorio Cortellessa Prof. Luigi Pomante

_____________________ __________________

A.A. 2018/2019

2

Contents

1 Introduction 13
1.1 Context . 13
1.2 Objectives . 14
1.3 Thesis Contributions . 15
1.4 Thesis Organization . 15

I Background 17

2 IEEE 802.15.4-based Wireless Sensor Networks 19
2.1 Wireless Sensor Networks . 19

2.1.1 Main Features . 20
2.1.2 Hardware . 21
2.1.3 Software . 23

2.2 IEEE 802.15.4 Standard . 25
2.2.1 Channel Access . 26
2.2.2 Frame Structure . 27
2.2.3 IEEE 802.15.4e Standard and MAC behaviors 28

2.3 ZigBee . 28
2.4 IoT protocol stack . 29

2.4.1 6loWPAN . 30
2.4.2 ROLL . 30
2.4.3 CoAP . 31

3 TinyOS 33
3.1 Introduction . 33
3.2 NesC Language in a nutshell . 34
3.3 TKN154 . 35

4 Middlewares for WSN 37
4.1 Introduction . 37
4.2 Agilla . 39

4.2.1 Agilla agents . 39
4.2.2 Agilla and TinyOS 2.x . 40

3

4 CONTENTS

5 WSN Protocols Security 41
5.1 IEEE 802.15.4 Security . 41

5.1.1 Security-related Header Fields 41
5.1.2 Symmetric Cipher . 42

5.2 IEEE 802.15.9 Standard . 42
5.3 ZigBee Security . 43

6 Cryptography for WSN 47
6.1 Overview . 47
6.2 Symmetric Cryptography . 48

6.2.1 Block Ciphers . 48
6.2.2 Operating Modes . 48
6.2.3 Authenticated Encryption 49
6.2.4 Stream Ciphers . 49

6.3 Public-Key Cryptography . 50
6.3.1 Protocols . 50
6.3.2 Factorization-based Ciphers 50
6.3.3 Discrete Logarithm-based Ciphers 51

6.4 Hybrid Cryptography . 51
6.5 Cryptography-related Topics . 51

6.5.1 Secure Random Numbers Generation 51
6.5.2 Hash Functions . 52
6.5.3 Message Authentication 52
6.5.4 Message Integrity . 53

7 Elliptic Curve Cryptography 55
7.1 Overview . 55
7.2 Curves . 56

7.2.1 Prime-fields Curves . 57
7.2.2 Binary-fields Curves . 57

7.3 Field Operations . 57
7.3.1 Modular Additions, Subtractions and Multiplications . . . 57
7.3.2 Modular Reduction . 58
7.3.3 Modular Inversion . 59
7.3.4 Exponentiation . 59

7.4 Point Operations . 59
7.4.1 Point Addition . 60
7.4.2 Point Doubling . 60
7.4.3 Point Multiplication . 61

7.5 Elliptic Curve Discrete Logarithm Problem 62
7.6 Protocols . 62

7.6.1 ECIES . 62
7.6.2 ECDSA . 63
7.6.3 ECDH . 64
7.6.4 ECQV . 64

7.7 ECC Optimizations . 65

CONTENTS 5

8 Intrusion Detection Systems for WSN 67

II Research activities 71

9 The WSN security framework 73

10 TAKS 75
10.1 Motivation . 75
10.2 TAKS Introduction . 76
10.3 Definitions . 76

10.3.1 Pair-Wise scheme . 77
10.3.2 Cluster-Wise scheme . 78

10.4 TAKS Enhancements . 79
10.4.1 Flexibility in TAKS key component sizes 79
10.4.2 Random number generation 79
10.4.3 Symmetric Encryption . 80
10.4.4 TAKS Key Generation . 80

10.5 TAKS Implementations . 81
10.5.1 TinyOS 1.x implementation 81
10.5.2 TinyOS 2.x TKN154-enabled and Atmel-based implemen-

tations . 81
10.5.3 Cluster- and Mesh-enabled implementation 81
10.5.4 New implementation . 81

10.6 TAKS IEEE 802.15.9 KMP . 82
10.7 TAKS-enabled Open-ZB . 83
10.8 Related publications . 84

11 ECTAKS 85
11.1 Overview . 85
11.2 Vector Operations . 85
11.3 Research contribution . 86

11.3.1 ECTAKS-ECIES . 86
11.3.2 ECTAKS-ECDSA . 87

11.4 Implementation . 88
11.5 ECMQV . 89
11.6 Results and Future Works . 89

12 ECC-HAxES 91
12.1 Overview . 91
12.2 ECC-HAxES . 93
12.3 Components . 96

12.3.1 Comparison of the design approaches 96
12.3.2 Basic RTL . 97
12.3.3 Basic Arithmetic . 98
12.3.4 Modular Reduction . 98

6 CONTENTS

12.3.5 Modular Arithmetics . 99
12.3.6 Modular Inversion . 100
12.3.7 EC Point Addition and Doubling 100
12.3.8 EC Multiplication . 101
12.3.9 Misc components . 101
12.3.10Top layers and work in progress 102

12.4 FPGA technology analysis . 103
12.5 Implementation . 103
12.6 Validation & Results . 103
12.7 Future works . 104

13 WSN Intrusion Detection System (WIDS) 107
13.1 Motivation . 107
13.2 WIDS . 108
13.3 TinyWIDS . 108

13.3.1 Architecture . 109
13.4 Validation and Results . 110
13.5 Intrusion Reactions . 111

13.5.1 Intrusion scenarios and reactions 111
13.6 Related publications . 113

14 Blockchain-based security techniques for WSN 115
14.1 Anti-tampering techniques for resource- contrained devices 115
14.2 Lightweight Blockchain (WSN-LBC) technique 116

14.2.1 Message Format . 117
14.2.2 Message Checking . 119

14.3 Implementation and Results . 120
14.4 Related publications . 124

15 Agilla Evolution 125
15.1 Towards Agilla2 . 125

15.1.1 Motivations and Contributions 125
15.1.2 Model-based Porting . 126
15.1.3 Agilla2 performance & quality analysis 132

15.2 Agilla Energy-awareness . 135
15.3 WIDzilla . 137

15.3.1 WIDzilla: incremental design 138
15.3.2 Implementation issues and Future Works 140

15.4 Related Publications . 142

III Use cases 143

16 VISION 145
16.1 VISION . 145
16.2 Agilla MW in VISION . 146

CONTENTS 7

16.3 VISION Fire Rescue Use case . 146
16.4 Results . 147

17 SEAMLESS 149
17.1 SEAMLESS . 149
17.2 Results . 150
17.3 Related publications . 150

18 SafeCOP 153
18.1 SafeCOP Use Case 5 . 153

18.1.1 UC5 Road-side Unit - Sensor Network (RSU-SN) 155
18.2 Results . 156

19 DESTAK 159
19.1 DESTAK: TAKS over DSME . 159
19.2 OpenDSME . 160
19.3 Secure OpenDSME . 160

19.3.1 TAKS for Omnet++ . 160
19.3.2 TAKS Information Elements 160
19.3.3 Payload representation . 162
19.3.4 Integration in OpenDSME 162

19.4 Results . 163
19.5 Related publications . 164

IV Conclusions 165

20 Conclusions 167
20.1 Future Works . 169
20.2 List of Pubblications . 170

8 CONTENTS

List of Figures

2.1 A WSN . 19
2.2 WSN applications . 20
2.3 telosb-like WSN mote . 24
2.4 IEEE 802.15.4 layers service access points 25
2.5 IEEE 802.15.4 supported network topologies 26
2.6 IEEE 802.15.4 spectrum bands 26
2.7 IEEE 802.15.4 Superframe structure 27
2.8 IEEE 802.15.4 frame format . 27
2.9 ZigBee . 29
2.10 ZigBee topologies . 30

3.1 UML model of a NesC/TinyOS application 34
3.2 TKN154 architecture . 36

4.1 Agilla MW architecture . 39
4.2 Agilla Agent Injector with the code of an agent 40

5.1 IEEE 802.15.4 Auxiliary Security Header 42
5.2 IEEE 802.15.9-based protocol stack 43
5.3 ZigBee Cryptographic Keys . 44

7.1 ECC security level comparison with RSA 55
7.2 Examples of elliptic curves . 56
7.3 ECC Point Addition (in R2) . 60
7.4 ECC Point Addition C = A+B(in Z/Zp) 61

8.1 Common anomaly detection techniques [113] 68
8.2 Example of misuse-based detection 68

9.1 Overview of the proposed security framework 73

10.1 TAKSv2 Pair-Wise scheme . 78
10.2 New TAKS version: performances 82
10.3 New TAKS version: memory footprint 82

9

10 LIST OF FIGURES

11.1 TinyECC support for Iris platform: results in comparison with
the MicaZ . 88

12.1 ECC-HAxES: Example scenario 93
12.2 ECC-HAxES: comparison of the RTL and the HLS implementations 96
12.3 ECC-HAxES: Basic RTL components 97
12.4 ECC-HAxES: Basic Arithmetics Components 98
12.5 ECC-HAxES: Modular Reduction 99
12.6 ECC-HAxES: Modular Addition/Subtraction and Multiplication 99
12.7 ECC-HAxES: Modular Inversion (RS) 100
12.8 ECC-HAxES: EC Point Adder/Doubler 101
12.9 ECC-HAxES: EC Point Multiplier 101
12.10ECC-HAxES: Miscellaneous components 102
12.11ECC-HAxES: Point Multiplication top layer results (R = 13G) . 104
12.12ECC-HAxES: area occupation (target: Xilinx Zybo board) . . . 105

13.1 WIDS: a sample WPM (on the left) and a representation of WIDS
state estimation (on the right) 109

13.2 TinyWIDS Architecture . 109

14.1 Proposed Lightweight Blockchain Technique: message format . . 118
14.2 Proposed Lightweight Blockchain Technique: message checking . 120
14.3 Proposed Lightweight Blockchain Technique: UML diagram . . . 121
14.4 Validation: messages are sent, received and verified successfully . 122
14.5 Validation: simulation of an attacking mote 123
14.6 Results: sink mote (containing the Ledger) 124
14.7 Results: device motes . 124

15.1 Model-based porting overview . 127
15.2 Model-based porting: Component hierarchies 129
15.3 Model-based porting: Component hierarchies 129
15.4 Agilla2: successful validation . 132
15.5 Agilla2: successful Oscilloscope validation 132
15.6 Adopted Matrics for Porting Evaluation 133
15.7 Metrics evaluation results (micaz target) 134
15.8 Agilla2 instruction execution times (µs) 134
15.9 WSN node energy consumption (radio ON/OFF cycles) 135
15.10Batteries discharge curves . 136
15.11Proteus Engine and Agilla: architecture and decision process for

reconfiguration . 137
15.12Power and energy consumption results 138
15.13(1) First instance of WIDzilla . 139
15.14(2) WIDzilla with TKN154 . 139
15.15(3) Passive security using TAKS KMP via the IEEE 802.15.9 layer140
15.16(4) Passive security using ECTAKS KMP via the IEEE 802.15.9

layer . 140

LIST OF FIGURES 11

15.17(5) Introducing the ECC-HAxES ECC hardware accelerator . . . 141
15.18(6) Final WIDzilla platform . 141

16.1 VISION platform overview . 145
16.2 VISION: Fire-rescue scenario . 147
16.3 VISION: modified MDA100CB sensorboard on an Iris node . . . 148

17.1 SEAMLESS overview . 150
17.2 SEAMLESS: geographical visualization of sensor data 151

18.1 SafeCOP: overview . 154
18.2 SafeCOP UC5: overview . 155
18.3 SafeCOP UC5: RSU-SN . 156

19.1 DSME multi superframe structure 159
19.2 TAKS IEs: Header IE case . 161
19.3 TAKS IEs: Payload IE case . 162
19.4 DESTAK IEEE 802.15.4 frame 162
19.5 TAKS IEs: Payload IE case . 163
19.6 DESTAK results . 164

12 LIST OF FIGURES

Chapter 1

Introduction

1.1 Context

Today, after more than 40 years of following the Moore Law, the modern com-
puting platforms have incredible computational power, almost endless memory
storage and they are reaching the point at which the physics (in the form of
heat dissipation, energy limitations, etc.) start to pose non-trivial issues to
technology improvement.

With the introduction of the Internet of Things paradigm, in some fields of
technology the form factors, the amount of consumed energy and the flexible
and innovative applications, made the performance and memory storage aspects
less important. Among such platforms, the Wireless Sensor Networks (WSN)
represent a core technology for distributed monitoring applications. WSN uses
nodes (often called motes) which are designed and constructed to provide a very
low-energy platform capable of retrieving sensor measurements and forwarding
them to more powerful platforms. The absence of a wired link across the nodes
makes the WSNs a very flexible platforms which can be adopted in almost any
context, e.g., industrial monitoring, smart grids [123], battlefield monitoring
[124] etc. Comprehensive lists of possible WSN applications can be found in
[125][126].

Flexibility comes at a cost: WSN nodes are usually powered by batteries
and their performance, memory and capabilities are very limited in favor of a
prolonged battery life. As a consequence, the software running on WSN needs
to be as much optimized as possible. Moreover, in order to further reduce
the impact on performance and on memory, all those features which are not
functional requirements are usually removed. Security-related features are one
example of those features.

Providing a good level of security in resource-constrained platforms like
WSNs is a non trivial issue. From one side, those platforms are more prone to
attacks due the lack of a full networking stack including dedicated security lay-
ers; from the other side, the lack of computational resources causes developers to

13

14 CHAPTER 1. INTRODUCTION

decide whether include security features or leave more space for the applications.
For example, providing confidentiality in transmissions though a cryptographic
scheme implies a considerable overhead in latencies and in throughput, addi-
tional space required for encryption/decryption code and data and additional
requirements such as key management and distribution, secure random number
generators, etc.

Luckily, the research community proposed and still propose new ad-hoc tech-
niques to provide security features in resource-constrained platforms. Those
techniques are developed so that it is possible for the target resource-constrained
platforms to have a valuable security level while being lightweight on the com-
putation and the memory storage required.

However, due to the heterogeneity of the platform involved, little efforts have
been made to provide a full security solution which can both grant security
features to resource-constrained platforms and be flexible enough to be adapted
to the requirements and limitations of the target application.

1.2 Objectives

The objective of this thesis is to define a security framework composed of tools,
(agent-based WSN middlewares, intrusion detection systems) techniques (hybrid
cryptography, elliptic curve cryptography, hardware acceleration for cryptogra-
phy, blockchains as anti-tampering mechanism) and methodologies (model-based
porting for WSN software applications) specifically designed for the resource-
constrained devices, with particular focus on Wireless Sensor Networks. In
order to do so, the thesis objective has been split into the following three sub-
objectives:

• Objective 1: to analyze existing state-of-the-art techniques and tools
and test, adapt and enhance them to create new versions able to provide
additional and/or empowered features.

• Objective 2: to study new techniques which could be useful in the context
of resource-constrained platforms; then to design new tools and compo-
nents which exploits such new techniques while fulfilling the requirements
and limitation of the target platforms.

• Objective 3: to provide all the necessary abstractions and components to
adapt and harmonize the components to provide a set of tools which can
be flexibly combined together to offer the security features required. Con-
sidering the work described in [12], the final objective is to use the defined
security framework and its components to realize an updated, full-featured
security platform for Wireless Sensor Networks which could be exploited
in real scenarios and real Wireless Sensor Network node platforms.

1.3. THESIS CONTRIBUTIONS 15

1.3 Thesis Contributions
The main contributions provided by the research activities described in this
thesis are the following:

• Refinement and re-development of the TAKS [19] cryptographic scheme

• The implementation of the refined TAKS on the TinyOS operating system.

• The definition and development of a IEEE 802.15.9 [17] compliant version
of TAKS.

• The definition and development of a Elliptic Curve Cryptography version
of TAKS: ECTAKS.

• The definition and development of a elliptic curve cryptography hard-
ware accelerator on reconfigurable platforms for embedded systems: ECC-
HAxES.

• The refinement and development of WIDS intrusion detection system for
WSN: TinyWIDS [1].

• The porting and enhancement of the Agilla Middleware [34]: Agilla2.

• The definition and development of a blockchain-based anti-tampering mech-
anism for WSN: WSN-LBC.

• The integration of TAKS into the DSME IEEE 802.15.4 [16] MAC Be-
havior (DESTAK) and the development of an Omnet++ based simulator
for validation and performance evaluation

• Contribution to the following research projects (and related deliverables):

– European: VISION, SafeCOP

– National : SEAMLESS

1.4 Thesis Organization
This thesis is organized in three parts. In Part I, the basic knowledge and soft-
ware tools required for a quick understanding of the presented research activities
are described. In particular, Chapter 2 analyzes the main Wireless Sensor Net-
work architectures, the hardware and the communication protocols; Chapter 3
and 4 focus on the software environments in which WSN applications are de-
veloped. Existing security measures are analyzed in Chapter 5, with a focus on
cryptography in Chapter 6 and Chapter 7 while Intrusion Detection Systems
are described in Chapter 8.

Part II presents the research activities that represent the core of this Thesis.
An overview on the proposed contributions is provided, describing also how
they have been integrated to form a complete security framework (Chapter 9).

16 CHAPTER 1. INTRODUCTION

This Part contains the TAKS analysis in Chapter 10, ECTAKS in Chapter 11,
ECC-HAxES in Chapter 12, WIDS and TinyWIDS in Chapter 13, the Agilla
Middleware in Chapter 15 and WSN-LBC in Chapter 14.

Part III brings the attention on some important use cases (related to several
research projects) which have seen the exploitation of the results of our research
activities, representing also a de-facto validation. In Chapter 16, 17 and 18
National and Europeans project contributions are presented, while in Chapter
19 a joint work in the context of an industrial application is presented.

Finally, Part IV concludes this work with a resume on the provided contri-
butions and an overview on the future works and improvements.

Part I

Background

17

Chapter 2

IEEE 802.15.4-based Wireless
Sensor Networks

This chapter introduces the IEEE 802.15.4-based Wireless Sensor Networks.
In Section 2.1 the main concepts and features of Wireless Sensor Network are
described while in Section 2.2 a brief introduction on the IEEE 802.15.4 standard
is reported. The chapter ends with a description of the additional layers which,
together with the IEEE 802.15.4 standard, forms a complete networking stack.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (abbr. WSN, Figure 2.1) is a network composed
of nodes (often called motes) equipped with a set of sensors and interconnected
by means of a wireless medium such as radio waves.

Figure 2.1: A WSN

WSNs can be adopted in various context and applications, although WSNs
find their optimal usage in monitoring applications, where one or more environ-

19

20 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

mental phenomena needs to be measured across an area in which it is difficult or
unpractical to deploy a conventional wired network. WSNs cover also an impor-
tant role in industrial applications as a tool to monitor and control industrial
processes.

Typical WSN applications are found also in the so-called smart home sys-
tems, e.g., to perform distributed monitoring, to control other devices or as a
mean to provide small-range communication capabilities in the whole environ-
ment.

WSNs are used also in application domains where the public safety is con-
cerned, from public roads safety (e.g., [98]) to wildfire monitoring (e.g., [103])
or as landslide prevention and monitoring platform [15].

Finally, WSNs find application in military contexts e.g., battlefield moni-
toring, supply storage, management and localization, soldiers coordination or
augmented reality applications.

Figure 2.2 shows a summary of the common WSN applications.

Figure 2.2: WSN applications

2.1.1 Main Features

Thanks to the combination of a computing platform, sensors (sometimes also
actuators) and one or more RF transceivers, WSN motes and the WSNs them-
selves have a set of peculiar features that make them a solid choice for a wide
range of contexts.

The main features of WSNs are briefly described below. The deployment
and installation times of WSNs are greatly reduced, since the motes are usually
light, small and require no or light maintenance once operational, e.g., minimal
deployment scenario could consist in just the dissemination of the WSN motes
in the area of interest, with no need for configuration, connection-checking, etc.

Thanks to these features, WSNs are scalable in size and they are the platform
of choice in applications requiring dense (or redundant) monitoring capabilities,

2.1. WIRELESS SENSOR NETWORKS 21

since the WSN communication protocols are designed to allow WSN nodes to
associate/disassociate from a WSN dynamically and it is trivial to increase the
number of WSN nodes while keeping the WSN operational.

The overall costs are also reduced: the WSN motes are less expensive than
other solutions and there is no need for any special equipment to start using
them. In fact, a large number of software applications are already available and
free to be used without charge. Also, in typical WSN, the radio frequencies
adopted in the inter-communication are among the unlicensed spectrum bands
(ISM bands), so no license has to be acquired and there are no costs involved.

The WSN motes are usually battery-powered to avoid being dependent on
electric power grids. However, this feature highlights an important constraint of
WSN nodes: the energy consumption. Since the energy available to WSN nodes
comes from a fixed capacity battery, the hardware platforms and the software
applications are designed to be energy-efficient, so that a careful usage of the
available energy results in a prolonged WSN mote battery life.

2.1.2 Hardware

From the hardware point-of-view, WSNs can differ in many aspects. In fact, this
is another characteristic of WSN: the heterogeneity of the hardware platforms.
It is common for a WSN to have different classes of devices running and commu-
nicating together at the same time with the same communication stacks. While
heterogeneity of the hardware platforms can be seen as an advantage in term
of costs and upgradeability, this characteristic of WSN often causes software to
be more complex.

Despite of the differences of the platforms themselves, the jargon1 adopted
in the context of WSNs is similar. Below, a list of common terms is presented:

• Mote - a (generic) WSN node;

• Personal Area Network (PAN) Coordinator - the WSN node re-
sponsible of the coordination of all or a part of the WSN; in some network
topologies, there can be various local Coordinators and a "master" Coor-
dinator.

• Reduced Function Device (RFD) - a mote capable of performing only
basic tasks as sensor reading and communication.

• Full Function Device (FFD) - a WSN node with enough computational
power to perform additional computation apart from the basic tasks of a
RFD. The PAN Coordinator role needs to be covered by a FFD. Every
RFD or FFD other than the Coordinator is also often called simply device
node.

• Cluster - a part of a WSN consisting of a group of motes and a local
coordinator. The coordinator of a cluster is also called Cluster Head.

1Some of the terms are taken directly from the IEEE 802.15.4, which is discussed in 2.2

22 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

Hardware: Micro-controllers

Each WSN mote has usually one micro-controller unit (MCU). A typical MCU
for WSN is a Harvard-based low-cost 8-bit or 16-bit MCU with relevant features
in energy management (e.g., the ability to power down single parts of the MCU
in order to reduce energy consumption).

Examples of common MCUs are the MSP430 [21] from Texas Instruments,
the ATMega family of MCU [22] such as ATMega128 or the ATMega328p.

In Table 2.1 a comparison of the most famous and adopted MCU for WSN
motes is presented.

TI
MSP430
F1611

TI
MSP430
F2618

Atmel
ATMega
128

Atmel
ATMega
1281

Bits 16 16 8 8
CPU/MCU Freq. 8 MHz 16 MHz 16 MHz 16 MHz
Flash Memory 48 KB 116 KB 128 KB 128 KB

RAM 10 KB 8 KB 4 KB 8 KB
Energy consumption 330 µA 365 µA 500 µA 500 µA

Table 2.1: Comparison of common WSN MCUs

The second hardware core component of a WSNmote is the radio transceiver,
usually deployed in the form of a radio chip and an external antenna. The ra-
dio chips adopted are various, but one of the most used in WSN motes is the
CC2420 [23] from Texas Instruments. This radio chip is present in numerous
platforms and many communication stacks are designed to use its features.
Atmel-based WSN motes optionally adopt the AT89 RF230 [24]. A brief com-
parison of these two transceiver is reported in Table 2.2.

TI CC2420 Atmel
AT89RF230

IEEE 802.15.4 compliant? Yes, with issues [31] Yes
HW Encryption? Yes, AES 128bit No

Energy Consumption ∼17 mA ∼16 mA
Communication with MCU SPI SPI

Table 2.2: Comparison of common WSN RF transceivers

Another component of WSN motes is worth additional considerations: the
available memory storage. In fact, this can represent one of the main constraint
when developing applications on top of a WSN mote. The storage available to
a mote can take different forms, usually:

• Internal (Flash) memory, located inside the MCU, is used mainly for stor-
ing the code of the applications;

• RAM memory, used as work memory. Application data is stored in RAM;

2.1. WIRELESS SENSOR NETWORKS 23

• EEPROM memory, used as additional storage. It can be internal or ex-
ternal (i.e. off-chip). In newer platforms, the external EEPROM memory
is replaced with an equivalent Flash memory.

An exhaustive list of WSN mote platforms is reported in [39].
Finally, the last core component of a WSN mote is the available set of sen-

sors. Depending on the platform, the sensors can be found directly on the mote
board or as a separate board (i.e. the sensor-board) which can be connected to
the mote expansion ports. Common sensors found in WSN mote platforms are
light, temperature, humidity sensors, accelerometers, magnetometers, gyroscopes
and GPS modules.

In Table 2.3 a number of commonly used WSN hardware platforms are listed
and compared.

Model MCU RF Chip Storage
(Flash/RAM/Ext.)

Sensors

CM5000 (telosb) MSP430
F1611

CC2420 48KB 10KB
1MB

Temp.+Hum/Light

XM1000 MSP430
F2618

CC2420 116KB 8KB
1MB

Temp.+Hum/Light

MicaZ ATMega128l CC2420 128KB 4KB
512KB

(via sensorboards)

Iris ATMega1281 RF230 128KB 8KB
512KB

(via sensorboards)

Table 2.3: Comparison of common WSN hardware platforms

An image of a telosb mote is shown in Figure 2.3.

2.1.3 Software

The software part of a WSN mote is usually subdivided into layers, depending
on the final application of the WSN mote.

First of all, the protocol stack is a set of layers which takes care of interfac-
ing with the radio chip to achieve physical radio communication and providing
user-level applications a series of common networking interfaces (e.g., ISO/OSI
protocol stack) which can be used to send arbitrary application-specific data.
Usually, a minimal but functional IP-based protocol stack implementation is
provided. In particular, the software implementation starts with the radio chip
interface (which provides the PHY layer and the lower part of the MAC layer),
then the upper part of the MAC layer (e.g., de/association, channel scheduling,
etc.). The upper layers (NWK, TSP and APL) are all software-based and, if
present, they are implemented with common solutions, described in the further
sections.

A second aspect of WSN mote software is the low-level infrastructure. Due
the differences in the hardware platforms, this part of software is usually strongly

24 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

Figure 2.3: telosb-like WSN mote

hardware-dependent. As a consequence, software developers need to adopt
hardware-abstraction libraries or provide different implementations of the same
application for each given hardware platform.

The former is the preferred approach, since it allows developers to focus on
the final application functionalities instead of the low-level hardware details. In
order to support this approach, a number of different frameworks (sometime
improperly called operating systems) have been proposed. TinyOS [30] is one
of the most famous framework for WSN; it is examined with more details in
Chapter 3. Contiki and its evolution, Contiki-ng [36] is an alternative OS
for WSN platforms. It focuses on providing IPv6 and TSCH [25] support.
Contiki-ng support different WSN mote platforms and some 32-bit ARM-based
platforms. RiotOS [37] is a recent OS, targeting not only WSN platforms but
also generic Internet-of-Things platforms. It focuses on real-time capabilities,
lightweight inter-process communication and a solid hardware abstraction layer.

Despite using a framework allows to reduce the hardware-dependency of low-

2.2. IEEE 802.15.4 STANDARD 25

level software layers, sometime such abstractions are not enough to provides a
comfortable environment for software development. In such cases, an additional
software layer can be adopted, a Middleware (MW). A MW is a software layer
that stands in themiddle between the low-level software layers (e.g. frameworks,
OSes, etc.) and the final application layer. A MW allows developer to raise the
abstraction level and provide powerful software primitives, usually oriented to
the final application. A taxotomy of modern MWs for WSN is reported in [40].
Also, in Section 4.2, a particular class of MW (Mobile-Agent Middlewares) is
discussed and analyzed.

2.2 IEEE 802.15.4 Standard
The IEEE 802.15.4 [16] is the reference standard for the low-rate wireless
personal area networks (LR-WPAN), the class of networks in which WSNs is
widely considered to belong.

The IEEE 802.15.4 standard describes the first two layers of the ISO/OSI
network stack (PHY and MAC). Each layer provides a set of services (Figure 2.4
via the so-called service access points (SAP). For the PHY and the MAC layer,
the SAP exposed to the upper layers are two: one used to provide management
primitives (the Physical Layer Management Entity SAP, PLME-SAP and the
MAC Layer MLME-SAP)

Figure 2.4: IEEE 802.15.4 layers service access points

The standard defines two types of network nodes: the Full Function Devices
and the Reduced Function Devices. Only the FFDs could take the role of PAN
Coordinator.

The two main topologies explicitly supported by the standard, apart from the
basic point-to-point connection, are the star topology (i.e. a collection of point-
to-point connections with a single coordinator) and the Cluster-Tree topology.

26 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

The latter consists in a set of clusters, each logically grouping a set of nodes
under a Local PAN Coordinator which, in turn, is connected to a hierarchically
higher level of connections, ending with a main, global WPAN Coordinator for
the whole WPAN. Figure 2.5 shows the two topologies.

Figure 2.5: IEEE 802.15.4 supported network topologies

The IEEE 802.15.4 standard PHY layer uses the frequency bands shown in
Figure 2.6.

Figure 2.6: IEEE 802.15.4 spectrum bands

2.2.1 Channel Access

The IEEE 802.15.4 WPANs can choose between two mode of operations: the
beacon-less and beacon-enable mode. In the former, communications (and chan-
nel accesses) happen asynchronously and the channel access mechanism adopted
is the CSMA-CA. In the latter, a special periodic message (the beacon) emitted

2.2. IEEE 802.15.4 STANDARD 27

by the Coordinator dictates when the communication can happen. In particular,
the beacons define a superframe structure (Figure 2.7).

Figure 2.7: IEEE 802.15.4 Superframe structure

The IEEE 802.15.4 superframe is divided into an active portion, when the
communication can happen, and an inactive portion, where nodes can sleep and
save energy because no communication should happen.

The active portion is also divided in two periods. The first, the Contention
Access Period (CAP) is where the channel access is contended by nodes and
regulated by the CSMA-CA mechanism. The second period, called Guaranteed
Time Slots (GTS) is a optional period in which a set of nodes (or even all) gets
a specific per-node time slot which can be used to access the channel without
competitors.

2.2.2 Frame Structure

The the complete frame structure for an IEEE 802.15.4 is shown in Figure 2.8.

Figure 2.8: IEEE 802.15.4 frame format

Starting from a bird eye view of the structure, the IEEE 802.15.4 frame is
divided into a MAC Header (MHR), a MAC Payload and a MAC Footer
(MFR).

The MAC Header contains meta-information about the frame itself and the
so-called addressing fields, i.e., the source/destination mote addresses of the

28 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

mote and of the WPAN. The addresses can be short (16 bit) or long (64 bit).
The size can be chosen depending on the number of nodes in the WPAN.

The MAC Header contains also some security-dedicated fields and exten-
sions, which are analyzed in details in Section 5.1.

The MAC Footer consist of a field with link quality information, a field
for a 8-bit Received Signal Strength Indicator (RSSI) and the 16-bit ITU-T
Cyclic Redundant Code CRC [26] (or, optionally, the ANSI X3.66-1979 32-bit
version) used by receivers to detect and eventually correct bit errors in the frame.
The CRC is computed on MHR and on the Payload using the polynomial (the
generator)

x16 + x12 + x5 + 1

.
Despite the absence of any restriction about the content of the MAC Payload,

it deserves some additional considerations: since the full PSDU size for a frame is
127 byes, depending on which field is used or omitted in the MHR, the available
size as MAC Payload is often limited to be half or less bytes long. A practical
MAC Payload size, considering only the mandatory fields in the MHR and
MFR, could be 100 bytes. Also, when using additional fields and the Payload
Information Elements (Payload IE, see Chapter 19), the space available as MAC
Payload can quickly be exhausted.

2.2.3 IEEE 802.15.4e Standard and MAC behaviors

The first version of the IEEE 802.15.4 standard has been released in 2008. The
following years, a number of revisions have been released. As the time of writing,
the last standard revision is the IEEE 802.15.4-2015.

One of the reason behind the release of multiple revisions of the standard is
due to the merge of parallel standards targeting and providing adaptation of the
IEEE 802.15.4 to specific environments. This is the case of the IEEE 802.15.4e
standard.

The IEEE 802.15.4e standard was a proposed amendment aimed to provide
some additional features in the direction of the industrial applications. The pro-
posal has been merged into the recent versions of the IEEE 802.15.4 in the form
of new MAC behaviors. Examples of well-known MAC behaviors for industrial
application are the Time-Slotted Channel Hopping (TSCH) and the Determin-
istic Synchronous Multichannel Extension (DSME). The latter is reviewed in
Chapter 19.

2.3 ZigBee

The IEEE 802.15.4 provides standardized PHY and MAC layers, with no ad-
ditional information on upper layers. ZigBee is a protocol that uses IEEE
802.15.4 standard as lower layers (Figure 2.9) and provides a set of upper layers
to be used in the IoT domain.

2.4. IOT PROTOCOL STACK 29

Figure 2.9: ZigBee

ZigBee stack specification is maintained by the ZigBee Alliance [73], a con-
sortium of tens of industrial companies which take care of the ZigBee releases
(the current version is the 3.0) and the certification of products.

ZigBee defines three classes of nodes:

• the ZigBee Coordinator (ZC): the device which acts as Coordinator and
gateway to external networks;

• the ZigBee Routers (ZR): the devices which route and forward packets;

• the ZigBee End-devices (ZED): the devices which perform basic tasks and
communicate only with ZR or the ZC.

Figure 2.10 shows the evolution of the classic IEEE 802.15.4 topologies and
the Mesh topology (defined in ZigBee).

2.4 IoT protocol stack

This section analyze some common techniques, methods and protocols which
are adopted to enhance the communication capabilities and experience within
IEEE 802.15.4 WSNs.

30 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

Figure 2.10: ZigBee topologies

2.4.1 6loWPAN

An attempt to bridge the gap between the conventional TCP/UDP-IP networks
with IEEE 802.15.4 WPANs is the 6LoWPAN specification. 6LoWPAN defines
a set of techniques to embed classical IPv6 packets in IEEE 802.15.4 data frames.
It is defined in the RFC 4944 and further extended in later RFCs [27].

One of the techniques 6LoWPAN adopts to adapt IPv6 packets is to use
Link-local IPv6 addresses (e.g., FF80::xxxx:xxxx:xxxx:xxxx) as WPAN node
IPv6 address, where the xs are the 64-bit EUI-64 MAC Extended Address of
a mote. The RFC 4944 defines various other techniques to adapt or construct
valid IPv6 addresses from IEEE 802.15.4 long/short addresses and to simulate
the IPv6 Multicast capabilities on top of IEEE 802.15.4 WPANs.

Since the available MAC payload of IEEE 802.15.4 is limited to ∼80 bytes,
6LoWPAN proposes various compression techniques to increase the space avail-
able for applications. Moreover, it requires the MAC layer to support the Frag-
mentation and Reassemble of data transmissions.

From the security point-of-view, 6loWPAN offers no additional features. In
fact, common attacks such as address duplication are still possible (see Section
13 in [27])

2.4.2 ROLL

In Low-Power and Lossy Networks (LLN) such as WSNs, implementing a solid
and fast routing algorithm is a non-trivial issue. The Routing over LLN (ROLL)
working group of the Internet Engineering Task Force (IETF) proposed the
RPL routing algorithm as a solution to the routing in LLNs. RPL [68] is a

2.4. IOT PROTOCOL STACK 31

lightweight intra-domain distance-vector routing algorithm for IPv6. It uses
source addressing (i.e., the sender can decide part or the full path to the des-
tination) by mapping the network topology to a Direct Acyclic Graph (DAG)
structure composed of one or mode Destination-Oriented DAG (DODAG). It
supports 6LoWPAN, loop-detection and self-repair.

TinyOS offers a open-source RPL implementation called TinyRPL [69].

2.4.3 CoAP
The Constrained Application Protocol (CoAP) [28] is a web transfer protocol
optimized to work on constrained environments (e.g., WSN) using 6LoWPAN
as base and targeting Machine-To-Machine (M2M) communications. It imple-
ments some basic HTTP requests in a REST-like [29] fashion on top of UDP.

32 CHAPTER 2. IEEE 802.15.4-BASED WIRELESS SENSOR NETWORKS

Chapter 3

TinyOS

This Chapter introduces TinyOS operating system and how it is commonly used
to develop WSN software applications

3.1 Introduction

TinyOS [30] is a framework (i.e., a set of libraries, ready-to-use code and utili-
ties) for developing software application on WSN motes. It provides developers
a level of abstraction from the underlying hardware interfaces which allows them
to write code without having to focus on the hardware platform details. For this
reason, TinyOS is often improperly regarded as a operating system1 is followed.

TinyOS was born as a C language-based software framework, but, after the
introduction of the NesC language (see Section 3.2), TinyOS has been re-written
to adopt such language as the standard programming.

During the evolution of TinyOS, the TinyOS community adopted an "open
proposal" approach, in which developers can submit documents describing one
or more features they wish TinyOS to support. Those documents, called TinyOS
Enhancement Proposals or TEPs, are discussed and, when eventually approved,
the features are implemented in TinyOS. TinyOS approved TEPs can be re-
trieved both via the TinyOS website [30] or simply in any TinyOS code distri-
bution in the doc/txt/ directory.

Due to the deep architectural changes introduced in the second version of
TinyOS (2.x.x), old TinyOS-based applications are not compatible and have to
be re-written. To address this and similar issues, one of the main results of this
thesis is the proposal of a software evolution process, as described in Chapter
15.

1Despite the terminology ambiguity, in the following sections, the common approach of
referring to TinyOS as an ’operating system’

33

34 CHAPTER 3. TINYOS

3.2 NesC Language in a nutshell

The Networked Embedded System C (NesC) is a C-language dialect which add
various features and programming paradigms to the C-language, offering to
WSN application developers an easy-to-use and powerful programming envi-
ronment. The NesC language, during the compilation of an application, is
trans-compiled into C source code, which is later passed to the cross-compiling
toolchain of the target platform for the usual compilation and linking.

The NesC language introduces an event-based programming style. WSN
software applications are developed as components, each one made up by a
configuration and a module: the module implements the application logic, while
the configuration tell the trans-compiler how to connect the component to other
components by specifying the so-called wirings.

The connection among components is achieved by means of the interfaces. A
NesC interface contains the definition of a set of commands (i.e., the functions
callable by means of the interface) and a set of events (i.e., asynchronous call-
back functions).

Every components can provide (i.e., implement) interfaces or just use them.
Components providing an interface have to implement all the commands func-
tionalities, while the events have to be implemented by the components who use
the interface.

NesC (and TinyOS) applications can be modeled through the standard UML
Component Diagram, in particular, using the "lollipop" (or "ball"). Figure 3.1
shows an example application model.

Figure 3.1: UML model of a NesC/TinyOS application

3.3. TKN154 35

The NesC language provides the so-called split-phase operations as support
for event-based programming. A split-phase operation is an function invocation
which is splitted into a command and an event. The command is used to re-
quest the start of the operation. This commands almost immediately returns
to the caller code (with a return code). Only when the corresponding event is
asynchronously called (by the interface provider) the operation is meant to be
concluded.

For example, consider the operation of starting up the RF transceiver. Sup-
pose an interface called Radio with a split-phase operation with:

• the command Radio.start()

• the event Radio.startDone()

The caller component (i.e., the component which uses the interface) can call
the command to start such operation (Radio.start()), which returns immedi-
ately to the caller. Since the caller component has to implement the events of
the interfaces it uses, it has also implemented the Radio.startDone() event.
This event will be called automatically (asynchronously) when the component
providing the Radio interface signals that the operation has finished. At this
point, the caller components can insert (inside the event implementation) the
code that need to run after the RF transceiver has been started.

Other NesC features are the following:

• The tasks, a lightweight multi-tasking primitive which allows to run long
and complex operations in the background;

• the atomic contexts, used to delimit critical code sections and data so that
the access is in mutual-exclusion;

• the Generic configurations and modules, which allows to defines one con-
figuration for multiple modules or vice-versa.

TinyOS Active Messages — From version 2.x, TinyOS started using a
generic data structure for handle the radio and wired (serial) communications:
the Active Message (AM). The AMs are defined around the IEEE 802.15.4
frame format and also include metadata used by TinyOS to retrieve additional
information from the RF transceiver. The AMs support a send-receive commu-
nication paradigm which is platform-generic. TinyOS provides user applications
with a set of interfaces (e.g., AMSend) and a set of components (both generic and
platform-specific) which can be used or wired to use AMs easily both for radio
communications (when the components implement the AM interfaces related
to the radio transceiver) or for serial communication (when the components
implement the AM interfaces related to a serial communication link).

3.3 TKN154
The communication layer in TinyOS is composed of only a set of abstractions
which aims to provide a simple frame-level send-receive paradigm, which is what

36 CHAPTER 3. TINYOS

most applications requires. Developers who require a full IEEE 802.15.4 MAC
layer have few alternatives apart from manually writing a MAC layer themselves.

A first open-source IEEE 802.15.4 MAC layer to be used in WSN motes
was OpenZB [67]. At the same time, other research groups were working on
providing a hardware-independent MAC layer. The combined efforts resulted
in the TKN154 [31] MAC layer. The TKN154 is a MAC layer implementation
for WSN motes and for TinyOS-based applications. It is written in NesC and
it provides the core components for IEEE 802.15.4 compliant communications.

The TKN154 focuses on platform independence, modularity and extensibil-
ity. It provides the core services of the MAC layer using the available PHY layer
provided by TinyOS and the RF transceiver drivers. The TKN154 is organized
into different abstraction levels, from the low-level RF transceiver communi-
cation components to the high-level wrappers components (for both beacon-
enabled and beaconless communications) which provide the standard MAC SAP
and its interfaces (e.g., MLME-ASSOCIATE). Figure 3.2 shows an overview of the
TKN154’s architecture.

Figure 3.2: TKN154 architecture

As highlighted by [31], tests performed on common WSN mote platforms
equipped with the CC2420 shown that there are timing issues (drifts) which
causes WSN motes to lose their synchronization. These issues have been re-
cently solved by the radio chip manufacturer, with the release of a new version
(CC2520) which, however, still not replaces the old version in the designs of the
WSN platforms mentioned in Section 2.1.2 at the time of writing.

Chapter 4

Middlewares for WSN

This Chapter briefly report on the state-of-art of the middleware for WSN, fo-
cusing then on a particular class of middleware, calledMobile-Agent Middleware,
which was adopted for our research activities.

4.1 Introduction
Although TinyOS (or any other solution) offers a solid hardware abstraction
layer, often the complexity of the final application requires an additional level of
abstraction to e.g., ease the development or to provide context-specific features.
In these situations, a Middleware (MW) can be adopted. As the name suggests,
a MW is an intermediate software layer which lies between the low-level software
layer (e.g., the operating system) and the final application.

In general, a MW provide context-specific features and/or an application-
oriented software environment. In the context of WSN, using a MW can greatly
enhance the application development experience.

WSN MW should guarantee the following extra-functional requirements [40]:

• Reliability. WSN are vulnerable to node failures so, a robust MW should
be able to overcome such failures without interrupting the WSN services.
This requires that WSN should implement appropriate recovery strategies.

• Re-configurability. MW must be able to handle ever changing networks,
both in term of number of nodes and network topology/architecture. Ide-
ally, the mote reconfiguration should be provided without interrupting the
WSN service.

• Heterogeneity. A MW should provide an abstract interface whatever kind
of nodes composes the WSN, since different hardware nodes from different
technologies could be present in the network.

• Battery life. Energy management is always very relevant in MW for WSNs.
To guarantee long life for the battery, MW should provide an effective use

37

38 CHAPTER 4. MIDDLEWARES FOR WSN

of the energy-aware communication protocols, Smart HW handling (i.e., to
power off unused HW components) and the Data Aggregation support (i.e.,
to select or aggregate data, reducing as much as possible transmissions to
the sink node).

• QoS. A MW should help QoS management by measuring performance,
network capabilities, throughput, power-consumption and transmission
delays.

• Real-Time requirements. When WSN applications need real-time data, a
MW should provide real-time services in spite of limited node computa-
tional power and HW resources.

• Context-Awareness. A MW should be able to adapt itself to surround-
ing environment, composed by HW/SW resources, physical characteristics
and constrains, that are not under the control of the WSN, that the MW
should be aware of.

• Security. Since WSN are developed to be deployed also into sensible en-
vironments, in some WSN applications, security is even more important
than data. For this, a MW should be capable of providing security-centric
mechanisms, granting data integrity, authentication techniques, and se-
cure transmissions. However, common techniques are not always applica-
ble, since there could be performance issues and/or unacceptable power
consumption. So, they are often simply ignored. In other cases (e.g.,
[18]), such mechanisms are customized to reduce the performance draw-
back while being still quite effective.

Trying to take into account previously listed design issues, WSN MW tech-
nologies are in continuous progress. So, while it is not possible to describe
details of specific products, it is possible to identify a common classification.
The reference architectures for WSN MW are:

• Data-base MWs. MWs of this kind view the WSN itself as a distributed
database. Data retrieval is performed by means of query-based abstrac-
tions. A famous example of this category is TinyDB [38].

• Virtual Machine-based MWs. This kind of MWs uses a virtual machine ap-
proach, providing a flexible environment and an interpreter. An example
is reported in [41].

• Application-driven MWs. As the name suggests, this kind of MWs are
driven by the final application requirements, which define how the network
should operate. An example is Milan [42].

• Mobile-Agent MW (MAMW). An Agent is an object, composed of code
and some supporting data structure, that can move (migrate) among dif-
ferent nodes of the network. Such MWs provide the features of VM-based
MWs enriched with high-level primitives to control migrations.

4.2. AGILLA 39

An MAMW allows to achieve better resilience (by adding code and data
redundancy) and scalability (by offering a dynamic way to remotely pro-
gram new devices). Moreover, it is possible to re-program WSN nodes
on-the-fly while keep them operative.

4.2 Agilla

Agilla [34] is an MAMW for WSNs based on TinyOS. It allows the agents to be
created, substituted and destroyed at run-time, without stopping the execution
of the code. The agents are written in a assembly-like language that is inter-
preted by the corresponding virtual machine. Agilla middleware allows to use a
new paradigm for programming and using sensor networks, where applications
consist of special programs called mobile agents that can migrate their code
and state from one node to another as they execute. Mobile agents offer an
unprecedented level of flexibility by allowing applications to spread throughout
the network and to position themselves in the optimal location for performing
their task.

Agilla guarantees a high degree of reconfigurability (i.e., agents can be in-
jected, moved, cloned, replaced and every physical node can run multiple agents
at a time), reliability (i.e., if an agent crashes, it does not affect the functionality
of the hosting WSN node nor the other agents running on it). Also, since the
deployment of the agents (i.e., the application) is dynamic, there is the pos-
sibility to dynamically create and distribute agents to fit the specific context
requirements.

Figure 4.1 shows an overview of Agilla’s architecture.

Figure 4.1: Agilla MW architecture

4.2.1 Agilla agents

Agilla agents are small pieces of assembly-like code which are compiled into
a bytecode before being sent and loaded in one or more motes of the WSN
(i.e., agent injection). The agent, then, is executed (i.e., interpreted) by the

40 CHAPTER 4. MIDDLEWARES FOR WSN

Agilla Engine component. The Agilla agent Instruction Set Architecture can be
consulted in [43] while Figure 4.2 shows an example agent.

Figure 4.2: Agilla Agent Injector with the code of an agent

Multiple agents can run at the same time on a single mote. Each agent
has a operand stack which is used by the Agilla ISA as temporary storage for
operands. The Heap is instead used as a more permanent storage for data. A
different data structure is instead the so-called tuplespace. The tuplespace (of
a node) is shared by all the agents running on the same mote and can store
tuples, which are key-value pairs.

Agents can register reactions by specifying a code label and a tuple template
to be matched against all the tuple in the tuplespace of a mote. When a tuple
match the template, the agent execution is immediately moved to the label in
a interrupt-like behavior.

4.2.2 Agilla and TinyOS 2.x
Since the transition of TinyOS from version 1.x to 2.x and the lack of compati-
bility between the two versions, Agilla cannot be compiled successfully against
newer versions of TinyOS and thus it cannot gain the introduced advantages
and the support for new platforms and protocols. Chapter 15 describes the
research activities addressing this problem.

Chapter 5

WSN Protocols Security

This chapter introduces the security primitives which the IEEE 802.15.4 pro-
vides, the drawbacks and what is missing to secure out WSN communications.
In particular, first section describes what the IEEE 802.15.4 baseline is, then
a new standard (the IEEE 802.15.9 aimed to solve the key-transport problem
is described and, finally, the chapter closes with a discussion on the security
measures adopted in higher layers (e.g., ZigBee).

5.1 IEEE 802.15.4 Security
The IEEE 802.15.4 standard describes the expected security-related features in
term of CIA triad (confidentiality, integrity and authentication).

In particular, the standard describes:

• optional frame header fields for enabling the security features;

• a set of parameters used to decide which level of security to adopt;

• the symmetric cryptographic algorithm to be used and its mode of oper-
ation;

5.1.1 Security-related Header Fields
In the first field of the MAC frame header, the Frame Control Field, the Security
Enable bit tells whether the receiver of a frame should expect the presence of
additional security-related fields or not. If so, the Auxiliary Security Header
(ASH, Figure 5.1 is the first and most important field about the security aspects
of IEEE 802.15.4.

The ASH has a variable length, from 1 to 14 bytes. Only the first byte
is mandatory and contains the Security Control Field. This field contains the
selected security level (in term of key length and authentication), how the key
is specified (explicitly or implicitly e.g., via an index) and how long are the
following fields if present.

41

42 CHAPTER 5. WSN PROTOCOLS SECURITY

Figure 5.1: IEEE 802.15.4 Auxiliary Security Header

Following the first byte, there is the optional Frame Counter, which, if
present, it is used to generate the nonce used in the symmetric cipher and
for general replay protection.

The last optional field is the Key Identifier. Its content depends on the
Security Control field and it contains the originator of the key and an index to
the key to use.

5.1.2 Symmetric Cipher

The standard uses the Advanced Encryption Standard (AES, Rijndael) [44] sym-
metric block cipher with a fixed key length of 128 bits (16 bytes). The mode
of operation to be used is a variant of the Cipher Block Chaining with Counter
Mode (CCM) called CCM*. This mode of operation provides both encryption
and an variable-length authentication tag obtained via the CBC-MAC [81]. Ad-
ditional information on the CCM* mode can be found in the appendices of the
standard ([16]).

Unfortunately, the standards lacks of the description on how the symmetric
keys are deployed, exchanged and updated dynamically in the WPAN. A partial
solution to this issue has been introduced by a further standard, the IEEE
802.15.9.

5.2 IEEE 802.15.9 Standard

The IEEE 802.15.9 standard [17] describes the recommended practices for imple-
menting a IEEE 802.15.4-compliant Transport and Key Management Protocol.
It introduces a new layer on top of the IEEE 802.15.4 MAC, the MPX which
is meant to adapt an existing key management protocol (KMP) to be used to
generate and transport cryptographic keys. The IEEE 802.15.9-based protocol
stack is shown in Figure 5.2.

The MPX layer provides also additional features:

• Support to fragmentation and re-assembly. The standard adds the pos-
sibility to break up a single message into multiple fragments which are
collected and re-assembled by the receiver. This allows to transport long
cryptographic material with a single logical transmission.

• Support for the Multiplexing of communications. An additional field in
the IEs is added to support different upper-layer protocols.

5.3. ZIGBEE SECURITY 43

Figure 5.2: IEEE 802.15.9-based protocol stack

The KMP service is the adapter layer used to connect the MPX layer with
the real KMP. This service provides the upper layers with a SAP for generating,
changing or deleting keys via the inner KMP.

Although in the standard, additional information about some already sup-
ported KMP are present (in the appendices), the presented research activity
sets the bases for a new KMP service featuring a hybrid cryptography scheme
as inner KMP, as discussed in Section 10.6.

5.3 ZigBee Security

Security in ZigBee is based on the security primitives already defined in the IEEE
802.15.4 standard and add additional security-related features in the NWK layer
to improve and manage lower-level security mechanisms. ZigBee provides three
basic security features:

• Encryption/Decryption

• Anti replay-attacks mechanisms

• Access control lists

44 CHAPTER 5. WSN PROTOCOLS SECURITY

Normally, ZigBee security is distributed, but, if required, it can be centralized
into a single entity (which could be the WPAN coordinator) called Trust Center
which is responsible for authenticating the joining nodes and distributing the
keys.

Encryption is based, as in IEEE 802.15.4, on the AES cipher with 128bit
keys and CCM* mode. There are different sets of keys:

• The Network Key (NK). This key is shared among all the network nodes
and it is used for broadcast communications. The NK is also used to
protect node communications when joining the network.

• The Link Key (LK). This key is used for point-to-point communications.
Depending on the security mode (centralized or distributed), the LK can
be a global key (used by the Trust Center), a TC Link key (used by the
Trust Center and a single node) or a Application Link Key.

Figure 5.3 shows the summary of the ZigBee cryptographic key types.

Figure 5.3: ZigBee Cryptographic Keys

Depending on the ZigBee protocol configuration, it is possible to adopt a

5.3. ZIGBEE SECURITY 45

Certificate-based key establishment: every node stores its certificate (which has
to be issued by a certification authority) which is sent/verified to establish a
shared key. For this step, ZigBee adopts the ECMQV protocol [76].

Additional information on ZigBee security and Key establish mechanisms
can be found in [74] and in [75].

46 CHAPTER 5. WSN PROTOCOLS SECURITY

Chapter 6

Cryptography for WSN

This chapter describes the cryptography-related techniques and software tools
adopted in the context of WSN. As first step, the requirements, constraints
and the basic cryptography protocols involved are described; then some of the
solutions adopted to overcome to the WSN limitations are presented.

6.1 Overview

Although it is not its only application, Cryptography is widely used as mean
to protect communications from unauthorized parties. In the context of WSN,
cryptography is even more important, since WSN nodes communicate using a
channel (electromagnetic waves) which are easily accessible to everyone who is
equipped with a compatible radio apparatus.

Cryptography protect communications by providing solutions which fulfill,
among the other requirements, the so-called CIA Triad. The CIA triad is rep-
resented by the following three requirements:

• The Confidentiality requirement states that communications sent to a
party should be accessible only to it and no other party.

• The Integrity requirement states that there should be possible to deter-
mine whether a message has been modified prior to be received by the
destination.

• The Authentication requirement states that should be possible for a re-
ceiver to determine which is the source of the communication (i.e., the
sender). Authentication is also linked to the Non-Repudiation of a com-
munication, i.e., a sender, once authenticated, should not be able to repu-
diate a message it sent.

In addition to these requirements, depending on the context, other require-
ments can be considered:

47

48 CHAPTER 6. CRYPTOGRAPHY FOR WSN

• The Availability requirement, i.e., the parties should be operational at any
given time, despite any workload or any malicious attempt to slow down
or stop their operations (e.g., Denial of Services attacks).

• The Resistance to Tampers, i.e., the parties should be resistant to physical
tampering activities (e.g., node sabotage) and to data tampering activities
(e.g., node reprogramming).

• The Ability to detect network threats, i.e., the parties should be able to de-
tect incoming or in-progress attacks and attackers to possibly react and/or
to send notifications to network operators.

The following sections provide a description of the state-of-the-art solutions
used to fulfill the above requirements.

6.2 Symmetric Cryptography

In order to fulfill the Confidentiality requirement, one core component of any
cryptography-related solution is the Symmetric Cryptography. As the name sug-
gests, in symmetric cryptography ciphers the key used to encrypt and decrypt
data is the same for all the parties involved in a given communication. Symmet-
ric schemes algorithms are usually fast and lightweight, with the only drawback
in the fact that the (shared) key has to be distributed before any encrypted
communication.

6.2.1 Block Ciphers

Block Ciphers are, as the name states, symmetric-key ciphers which operate on
the plaintext by splitting it intro blocks of a fixed length. The cipher takes the
key and an input block of plaintext and produces a output block of the same
size. Common block sizes are 8, 16 or 32 bytes.

If the plaintext length is not divisible by the block size, a padding scheme
has to be adopted. A common padding scheme is the one described in the Public
Key Cryptography Standard N#7 (PKCS#7) [50] which consists in, given the
length of the plaintext l and the required block size k, appending k− (l mod k)
bytes to the plaintext with a value of k. For example, consider the following
stream of bytes as plaintext 0x11 0x22 0x33 0x44 0x55 0x66 i.e., l = 6 and a
block size of k = 16. Since 16− (6 mod 16) = 10 = 0x0A, the padded plaintext
will be 0x11 0x22 0x33 0x44 0x55 0x66 0x0A 0x0A 0x0A 0x0A 0x0A 0x0A
0x0A 0x0A 0x0A 0x0A

6.2.2 Operating Modes

When processing a plaintext composed by multiple blocks, block ciphers can
use different operating modes. The trivial operating mode, called Electronic
Code Book (ECB), consists in processing each input block separately and then

6.2. SYMMETRIC CRYPTOGRAPHY 49

concatenating each output block. This operating mode, however, makes the
block cipher vulnerable to different attacks, e.g., block-reuse attack and replay
attacks.

In order to overcome the ECB mode issues, various other modes can be used:

• Cipher Block Chaining (CBC): each input block is XORed with the pre-
vious output block. The first block is instead XORed with a special value
called Initialization Vector (IV). CBC mode is vulnerable to padding or-
acle attacks i.e., attacks which attacks the padding scheme to infer, one
byte after the other, the plaintext.

• Cipher FeedBack (CFB): each input block is the output block of the pre-
vious iteration. Each output is the result of the cipher XORed by the
corresponding block of plaintext. The first input is an IV. The Output
FeedBack mode is similar, with the only difference being that input blocks
are directly the result of the cipher (before being XORed with the plain-
text).

• Counter (CTR): each input block is created by the combination of a nonce
and the value of a counter. The result of the block cipher is XORed with
the plaintext and the counter is incremented. Since CTR mode is fast and
lightweight, it is often used in WSNs and in other performance-sensible
platforms,

6.2.3 Authenticated Encryption

In addition to the operating modes mentioned above, some Authenticated Modes
has been introduced. These modes of operation generate also an authentication
tag which can be used to perform plaintext/message authentication:

• Counter with CBC-MAC (CCM) uses the CTR mode for encryption and
CBC mode for producing the authorization tag. The latter is the result of
the last processed block in CBC mode (using an IV of 0x00 bytes). This
mode is vulnerable if the key used to encrypt in CTR mode is the same
as the key used to compute the CBC-MAC. A variant of the CCM mode
is also used in the IEEE 802.15.4 standard.

• Galois Counter Mode (GCM) uses the CTR mode for encryption and the
GHASH function for computing the authentication tag. More information
can be found in [45].

An example of well-known and reliable block cipher is the Advanced Encryp-
tion Standard (AES), which uses 16-bytes blocks and it is commonly used with
CTR, CBC, CCM or GCM.

6.2.4 Stream Ciphers
The stream ciphers are symmetric-key ciphers that process streams of bytes
instead of blocks. To do so, a infinite key stream is created from the initial key

50 CHAPTER 6. CRYPTOGRAPHY FOR WSN

with a Pseudo Random Number Generator (PRNG). They are commonly used
in scenarios where the length of the input plaintext is often unknown.

A recent, famous and reliable stream cipher is the Salsa20/ChaCha20, a
family of stream ciphers [46].

6.3 Public-Key Cryptography

In the Asymmetric Cryptography, commonly referred as Public-Key cryptogra-
phy, a set of two keys has to be used for cryptographic operations. Of the two
keys, one is called Private key and is meant to be kept secret by its owner. The
other is called Public key and should be available to every party.

Public-key cryptography solves the key distribution issue of symmetric cryp-
tography. In particular, it is common to use Public-key cryptography to safely
exchange (or, better, agree on) a symmetric key (e.g., using the Diffie-Hellman
protocol, [47]).

Public-keys are commonly distributed by means ofDigital Certificates. These
certificates are used to prove the ownership of a public key, hence, they provide
both authorization and non-repudiation of messages encrypted using it. Digital
Certificates are issued by the so-called Certificate authority (CA).

The set of all the roles, platforms and procedures associated with Public-Key
cryptography and the distribution of certificates is commonly referred as Public
Key Infrastructure (PKI).

6.3.1 Protocols

In the case of Public Key Encryption, the sender (e.g., Alice) uses the receiver’s
(e.g., Bob) public key to encrypt the message. In this way, only who possesses
the corresponding private key (i.e., Bob) can successfully decrypt the message

In contrast, if Alice wants to append a Digital Signature to a message, she
uses hers private key to forge a Þublic Key Signature from the message. When
Bob receive such message, he can verify the signature by using Alice’s public
key. If the verification is successful, Bob knows that the message has Alice as
sender and, at the same time, Alice (whose public key can be checked by Bob
and the CA) cannot repudiate the message sent.

Different classes of Public-Key cryptography schemes exist. In the follow-
ing sub-sections, the two main classes are considered: the factorization based
ciphers and the discrete logarithm based ciphers.

6.3.2 Factorization-based Ciphers

The foundations of the Factorization-based ciphers is in the factorization prob-
lem. Given a very large number n which is product of a set of large prime
numbers p1, p2, ..., pk, it is easy to compute n given the primes (by a simple
multiplication) but it is very expensive to find the primes from just the value

6.4. HYBRID CRYPTOGRAPHY 51

of n. In fact, in the general scenario, the only way to find the primes is actually
factorize n, a problem which has no efficient solution.

The best-known factorization-based Public-Key cipher is RSA [48].

6.3.3 Discrete Logarithm-based Ciphers
Given the set of integers modulo a large prime number p, a base a and an integer
b, the Discrete Logarithm problem (DLP) is to find x such that:

b = ax mod p

Computing the value of b is easy if x is known, but, without such knowledge,
there are no trivial solution for the general case apart from using brute force
techniques. In some special cases (e.g., when using a sub-group with an order
which is a smooth integer), the computation speed can be enhanced using special
algorithms.

The Discrete Logarithm Problem over Elliptic Curves (ECDLP) is a similar
problem but has a different construction. It is used in the elliptic curve -based
Public-Key ciphers, which is introduced in Chapter 7.

One of the most famous DLP-based cipher is ElGamal [49].

6.4 Hybrid Cryptography
Apart from Symmetric and Public-Key cryptography, it is possible to adopt
mixed approaches (Hybrid Cryptography). In particular, these approaches are
commonly adopted to overcome specific limitation or increase the flexibility of
the schemes.

Hybrid Cryptography schemes are very different one from the other. This
thesis focuses on Hybrid Cryptography schemes based on vector algebra. Two
of these schemes are described in Chapter 10 and in Chapter 11.

6.5 Cryptography-related Topics

6.5.1 Secure Random Numbers Generation
One often overlooked problem in cryptography is the secure generation of ran-
dom numbers. This topic is very important, since the security level of most of
the cryptography schemes depends directly the real randomness of the gener-
ated random values. Generating real random numbers is not possible for any
deterministic machine, so in practice, Pseudo random numbers are generated.
Although they are not as random as random numbers, sequences of pseudo-
random numbers are constructed so that is unfeasible for anyone to replicate
them. An example of a pseudo-random number, is the number of current count
of clock cycles of a processor at a given time. This number is difficult to guess
but, it is not random since it is possible, with proper devices or additional
information, to find it.

52 CHAPTER 6. CRYPTOGRAPHY FOR WSN

Although there are various methods and algorithms for generating pseudo-
random numbers, in cryptography often this is not enough. In fact, cryptogra-
phy relies on Cryptographically-Secure random number generators (CSPRNG),
which have the mathematical assurance that the number generated are unfea-
sible to replicate. To do so, such generators needs a seed (i.e., a value used
to initialize the generator) which must come from a source with Very High
entropy. In computers, such entropy comes often by mixing different source
(e.g., time, keyboards, mouse movements, sensor reading etc.). An example of
CSPRNG is the Blum-Blum-Shub algorithm [33], which is formally proven to
generate secure pseudo-random numbers with a proper source of entropy.

6.5.2 Hash Functions

A Hash (called also Message Digest or just Digest) is a fixed-sized value which
represent an arbitrary-length data. Hashes are created from specific functions
called Hash Functions. Such functions have the following properties:

1. They are trap-door functions, i.e., it is easy to compute a hash from a
message but is unfeasible to find a message which gives a target hash.

2. They are resistant to collisions, i.e., it is difficult (although not impossible)
to find two or more different messages on which the hash function returns
the same hash value.

Hash functions applications are various, although the two main contexts are
Hash Functions for Hash-based data structures (e.g., Hash tables) and crypto-
graphic hashes. The former focuses on generating a small hash value (e.g., 32
or 64 bits) and collisions are tolerated and/or avoided using different techniques
(e.g., linear hashing, double hashing etc.). The latter, instead, have no hard
restrictions on the size (224/256/512 bits are common sizes) but collisions are
absolutely to avoid, since they could undermine the security of the function
itself.

In cryptographic protocols and, in particular, in digital signature protocols,
cryptographic hash functions are adopted to create a fixed-size equivalent of the
message to sign so that it is usable (and verifiable) no matter the original size.

Common secure cryptographic hash functions which are still considered se-
cure (i.e., no methodology to find collisions is known) are the SHA 2 suite (e.g.,
SHA-256) [51] and the recent SHA-3 (Kekkak) [52].

6.5.3 Message Authentication

Message Authentication Codes (MAC), also called Keyed-hashes are fixed-size
values that are similar to hashes but also are bound to a particular crypto-
graphic key i.e., the MAC of a message computed with a key KA is different
from the MAC of the same message computed with a key KB 6= KA. The
functions used to compute MACs (MAC Functions) are usually built on secure
cryptographic hash functions or on symmetric ciphers. A good MAC function

6.5. CRYPTOGRAPHY-RELATED TOPICS 53

is easy to compute if both the message and the key are known. If the key is
missing, it is difficult to compute the same MAC from a message even with the
message available.

As an additional property, a MAC computed on a message using a shared-
key by a party (e.g., Alice), binds the MAC computation to the party itself, so
that any other party (e.g., Bob) receiving both a message and such MAC can
recompute it (assuming he knows the shared key) and compare the computed
MAC with the one received. If they are equal, Bob can be sure that was Alice
(or anyone knowing the shared key) to send the message.

As the name suggests, MACs and MAC functions are used to provide authen-
tication similarly to digital signatures but without the public-key mechanism.
Every secure communication protocols usually uses encryption and a MAC to
both achieve confidentiality and authentication. In this sense, two approaches
are usually adopted:

• Encrypt-Then-MAC: the message is encrypted and the MAC is computed
on the ciphertext and left un-encrypted.

• MAC-Then-Encrypt: the MAC is computed on the plaintext and then
encrypted along with the message itself.

Typical MAC functions are the HMAC [51] which is defined upon an hash
function H(m):

HMAC(M,K) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||M ′))

where M ′ and K ′ are, respectively the message and the key padded to the
required bit length while ipad = 0x363636...36 and opad = 0x5C5C5C...5C are
special padding values.

Another common MAC function is the CBCMAC [81] which is computed
from a symmetric block cipher used in CBC mode and taking its last output as
MAC. A notable example is the AES-128bit-CBCMAC.

As final note, notice that is not recommended to use the same key both for
encryption and MAC computation, since it can lead to well-known attacks (e.g.,
[82]

6.5.4 Message Integrity

The Integrity requirement is usually fulfilled by inserting in a message an in-
tegrity code. This integrity code is computed using Error Correction Codes
generation, which allow both to detect integrity violations and, in some cases,
correct them. In the context of security, those codes can detect when messages
are tampered by an attacker intentionally to disturb the communication.

Despite hash functions could be used to perform a similar task, error-correcting
codes are usually smaller and easier to compute.

A basic example of integrity code is the parity bits i.e., an additional bit is
appended to data to indicate whether the number of 1s (or 0s) is odd or even.

54 CHAPTER 6. CRYPTOGRAPHY FOR WSN

A little more complete approach is to compute a checksum (i.e., summing up
all the bytes values in the messages) or, even better, using a Cyclic redundant
code (CRC)[26] which is a special class of error-correcting codes which adopts
a checksum computed using Galois field arithmetics.

Chapter 7

Elliptic Curve Cryptography

This Chapter introduces the Elliptic Curve Cryptography, the operations de-
fined on a Elliptic Curve (EC) and the cryptographic protocols used to provide
confidentiality and authentication.

7.1 Overview

The Elliptic Curve Cryptography (ECC) is a set of cryptographic techniques
introduced in 1985 by Miller and Kobliz [53]. In the recent years, it has been re-
discovered and adopted as mean to provide public-key cryptographic schemes.
ECC is based on operations and existing relations found in elliptic curves defined
over finite fields and their points. ECC, when used in the context of crypto-
graphic protocols, provide mechanisms for encryption, digital signatures, key
exchange, random number generation and in integer factorization algorithms.

The main advantage of ECC is the reduced size of the cryptographic keys in
comparison with other public-key protocols. Table 7.1[70] shows a comparison
of the size of keys (in bits) in respect of the security level.

Figure 7.1: ECC security level comparison with RSA

55

56 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

7.2 Curves
This section analyze the required mathematical background needed to construct
the ECC.

An elliptic curve is the set of points (x, y) which are solution of:

y2 = x3 + ax+ b (7.1)

or of:
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 (7.2)

. An elliptic curve can be defined in various numerical field. Equation 7.1 can
be used in every field of characteristic different from 2.

In ECC, the common numerical fields adopted are:

• Prime-based fields (or prime fields, prime curves, etc.), which are the
integers modulo a prime number p, i.e., Z/Zp;

• Galois finite fields (or binary fields, binary curves) which are the polyno-
mials with characteristic 2 modulo an irreducible polynomial.

In Figure 7.2 some example curves are shown (in R2).

Figure 7.2: Examples of elliptic curves

The effective number of proper points in a prime/binary curve is not directly
computable, the only approximation (i.e., a limitation) is given by the famous
Hasse Theorem [71]:

|N − (q + 1)| ≤ 2
√
q

In order to clearly define the set of available points, a cyclic sub-group is
defined on the curve. To do so, a special point, called Generator (G) is chosen
for a given curve. This point has the property that, by multiplying it (see Section
7.4) by n + 1, the result is G itself. The number n is another curve parameter
which is defined once G is chosen and represents the number of different points
which can be obtained as multiple of G. The selection of G is performed to
obtain the best mathematical properties and the larger possible value for n.

In addition to the proper points on the curve, the infinity point O is added
to the set. This point represents the neutral value for addition (i.e., every point
added to O results in the point itself). Using the affine coordinates (carthesian),
O cannot be represented directly but it is assumed to be at (0,+∞) and at

7.3. FIELD OPERATIONS 57

(0,−∞). Using other kind of coordinate systems (e.g., projective coordinates)
the point O is instead represented in a closed form (e.g., (·, ·, 0)).

Depending on the field used to define the curve, a set of parameters and
operations are defined on the curve and on the curve points. The sections below
describe the prime-fields and the binary-fields cases and the basic arithmetics
used in ECC in those fields

7.2.1 Prime-fields Curves

A curve defined on a prime-fields has the following Domain parameters:

D = {a, b, p,G, n, h}

where a and b are the constants used in the formula of the curve (Equation 7.1),
p is the prime number which defines the field, G is the generator of the cyclic
sub-group, n is the order such that nG = ∞ and h is the co-factor and it is
an integer which represents the ratio of the total number of points in the curve
and the number of points in the sub-group.

7.2.2 Binary-fields Curves

In the case of binary-fields, the curve is described by Equation 7.2 with the
following parameters:

D = {m, f, a,G, n, h}

where m and f define the irreducible polynomial used to define the Galois Field
(F (x) = xm+fm−1x

m−1+...+f0), while a stands for the coefficients an...a0 used
in the curve definition. G, n and h keep the same meaning also in binary-fields
curves.

7.3 Field Operations

Before describing the core operations on elliptic curves, this section recaps on
the basic (modular) arithmetics involved.

7.3.1 Modular Additions, Subtractions and Multiplications

All the basic operations are performed in modular arithmetics. In the case of
prime-fields, the set involved is Z/Zp with p prime number (i.e., the set of posi-
tive integers less than p). Addition and subtraction results are reduced modulo p
(see next section) but, in the case of multiplications, often additional techniques
are used (e.g., the Karatsuba multiplication [72]) to improve performances.

When binary-fields are involved, the arithmetic operations are performed
modulo an irreducible polynomial F (x). Polynomials can be represented in
sequences of bits and addition and subtraction are the same operation and it

58 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

is performed via the XOR binary operation. Multiplications can be performed
with a series of XOR-and-Shift operations. For example:

F (x) = x8 + x4 + x3 + x+ 1

a = x3 + 1

b = x6 + x

ab = x9 + x6 + x4 + x

ab mod F (x) ≡ x6 + x5 + x2

in binary representation:

F = 0100011011

a = 0000001001

b = 0001000010

ab = a ∗ x+ a ∗ x6 = (a << 1)⊕ (a << 6) =

0000010010⊕ 1001000000 = 1001010010

ab mod F ≡ 0001100100

7.3.2 Modular Reduction

The modular reduction is one of the most important field operation. It com-
putes, given an integer a and a prime number p, the remainder of the division
of a over p. Basic techniques are the classical division or repeated subtractions.
When the size of the operands involved is big (e.g., hundreds of bits), these
techniques are performance bottlenecks. In prime-fields, to overcome this issue,
specific techniques can be used, e.g., the Montgomery Reduction [60]. This tech-
nique involves applying a transformation from the original adopted field (e.g.,
Z/Zp) into a more convenient Z/ZR field with R = 2n and such that R > p.
Using Z/ZR, it is possible to perform modular reductions with simple and ex-
tremely efficient AND-masking operations, while divisions and multiplications
can be performed with binary shifts. Once the modular reductions have been
performed, the inverse transformation can be applied to return to the original
modular field.

For example, consider the field Z/Z13, i.e., the set of all the positive integers
modulo N = 13. Normally, modular reductions would involve at least one
division by 13 (considering the value to be transformed be T = 10). Using
Montgomery transformation, we choose k = 5 and R = 2k = 32. We start by

7.4. POINT OPERATIONS 59

computing the value N ′ such that 13 ∗ N ′ ≡ −1 mod 32, which, in this case
results in N ′ = 27 mod 32. Then, we can retrieve the transformed value t:

m = ((T mod R) ∗N ′) mod R = (10 + 27) mod 32 ≡ 14 mod 32

t = (T +Nm)/R = (10 + 13 ∗ 14)/32 = 192/32 = 6

The anti-transformation consists in a simple division by R (i.e., a multiplication
with the modular inverse of R mod N):

R′R mod N → R′ ≡ 11 mod 13

t ∗R′ mod N = 6 ∗ 11 mod 13 ≡ 10 mod 13

.
An application of this transformation is to efficiently compute products by

transforming the operands, computing the product and anti-transforming.

7.3.3 Modular Inversion
Modular inversion is the most complex core arithmetic operation in modular
fields. This operation is equivalent to the division for integers, i.e., to find a
value x−1 such that x∗x−1 = 1 mod p. In general modular fields, this operation
has a guaranteed result only if p is prime, while in binary fields, F (x) has to be
an irreducible polynomial of the field i.e., the polynomial cannot be expressed
by the product of other polynomials different from itself or 1.

Some techniques for computing an inverse are:

• By checking every other element in the field (bruteforcing)

• Using the Eulerian Extended Algorithm (EEA)

• Computing x(p−1) mod p or x(F (x)−1) mod F (x)

• Using the LS algorithm [56]

• Using the RS algorithm [56]

• Itoh-Tsujii algorithm [79] (GF (2m))

7.3.4 Exponentiation
Exponentiation i.e., computing xn mod p given n is generally performed with a
square-and-add algorithm, which consists in squarings and additons depending
on the bits of the exponent. Improvements of such algorithm are the Brauer
algorithm and the Sliding window approach.

7.4 Point Operations
Using the operations described in the previous section, it is possible to define
the core operations on elliptic curves. These operations are used to realize the
encryption, digital signature and all the other ECC protocols.

60 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

7.4.1 Point Addition

Point Addition is the core operation on EC. Given two points lying on the curve,
say P and Q, the sum R = P +Q is a point on the curve located as follows:

1. Given the EC formula, tracing the line intersecting both P and Q also
intersects a third point R′.

2. The result R is obtained by R′ and inverting its y coordinate.

An example is shown in Figure 7.3

Figure 7.3: ECC Point Addition (in R2)

In Figure 7.4 the point addition as in Z/Zp is shown.
The basic formula involves the computation of the slope s. It can computed

as:
s =

∆y

∆x
= (Py −Qy)(Px −Qx)−1

Once s is computed, the resulting point R is equal to:

Rx = s2 − xP − xQ

Ry = s(xP − xR)− yP

7.4.2 Point Doubling

The case P = Q is a special case in which the line through the P and Q points
is indeed the tangent line in P . The computation of the slope adopted in the
point addition in this case, cannot be applied. Instead, the derivative of the EC
equation is computed to obtain s = 3x2+b

2y for prime-curves and s = x + y
x for

binary curves.

7.4. POINT OPERATIONS 61

Figure 7.4: ECC Point Addition C = A+B(in Z/Zp)

Then, the second part of the computation is equal to the point addition for
prime-curves and, for binary-curves:

Rx = s2 + s+ a

Ry = s(x+Rx) +Rxy

7.4.3 Point Multiplication

Point Multiplication is the most important field operation in ECC. It is defined
as the product of a scalar value k in the considered field and a point P lying on
the curve:

R = kP = P + P + P + ...+ P

The simplest way to compute such a product is to perform k additions. A better
approach is to use the so-called Double-and-Add algorithm. An example is the
following:

1. Initialize R =∞

2. For each bit ki in the binary representation of k, starting from the least-
significant:

(a) If the bit is 1, perform the point addition R = R+P . Otherwise, do
nothing

62 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

(b) Perform the point doubling R = 2R

This algorithm works by splitting k in a sum of powers of 2 e.g.,

k = 456789 = 20 + 22 + 24 + 26 + 211 + 212 + 213 + 214 + 215 + 217 + 218

kR = 20P + 22P + 24P + 26P + 211P + 212P + 213P + 214 + 215P + 217P + 218P

Since the performance of the point multiplication is critical, a vast number
of optimizations are usually employed, including using pre-computed points,
different multiplication schemes, alternative coordinate systems or different bi-
nary representations (e.g., the non-adjacent format, NAF [80]). Most of such
optimization techniques will be briefly described in Section 7.7.

7.5 Elliptic Curve Discrete Logarithm Problem

Given the point multiplication R = kP . The Discrete Logarithm Problem (DLP)
on elliptic curve (ECDPL) is the problem of finding k given R and P , which is
demonstrated to be mathematically equivalent of computing a classical discrete
logarithm on the field in which the curve is defined.

The naïve solution involves computing the point multiplication R′ = k′P for
each value of k′ = 1...(n − 1) until R′ = R. However, if k is large enough, this
bruteforcing approach is unfeasible due the time required.

All the ECC public-key protocols are based upon the ECDLP. The key pair
is formed by a private key which is a scalar value in the numerical field chosen
(e.g., priv ∈ GF (p)), while the associated public-key is just the point P = privG
where G is the point generator of the cyclic sub-group defined on the curve.

7.6 Protocols

The cryptographic protocols provided by ECC are built upon the operations
described in the previous sections. The public-key encryption and decryption
are provided by the Elliptic Curve Cryptography Integrated Encryption Scheme
(ECIES), the digital signature forging and verifying are provided by the Elliptic
Curve Cryptography Digital Signature Algorithm (ECDSA) and the (symmetric)
key establishment protocol is provided by a Diffie-Helman adaptation over ellip-
tic curves (ECDH). Also, protocols for the use of Implicit Certificates have been
proposed, e.g., the Elliptic Curve Mezenes-Qu-Vadstone (ECMQV) protocol.

7.6.1 ECIES

In ECIES, a source (Alice) encrypts a message m with the public-keyKpubbob of
the destination (Bob) so that the receiver, using its own private key kpribob, can
decrypt the message. In addition, ECIES attach an authentication tag t that
Bob can use to authenticate Alice’s messages. The protocol is the following:

7.6. PROTOCOLS 63

1. Alice generates a secure random number 0 < k < n and computes the
point R = kG which "stores" the k value while hiding it.

2. Alice computes also the point Z = hkKpubbob, which has to be different
from ∞. If not, Alice starts again from 1.

3. Using a Key Derivation Function (KDF) on R and Z, two symmetric keys
key1 and key2 are generated.

4. Alice uses key1 to encrypt m using a symmetric cipher, obtaining a ci-
phertext c

5. Alice uses key2 to compute the authentication tag t (a Message Authenti-
cation Code)

6. Finally, she sends (c,R, t) to Bob

7. ...

8. Bob receives (c,R, t). First, he tries to recompute Z from hkpribobR. If
Z =∞, he discards the message

9. Using Z and R, Bob uses the KDF to recreate the keys key1 and key2

10. Bob checks the authentication tag with ey2 and decrypt the message with
key1

7.6.2 ECDSA
ECDSA is used to create a digital signature s from a ciphertext (or from a
plaintext, depending on the strategy adopted). The signature can be later
verified to decide whether to accept or refuse a message. The signature is forged
by using the sender private key kprialice and thus can be verified by anyone (e.g.,
Bob) using Alice’s public key Kpubalice. The protocol is the following:

1. Alice generates a secure random number 0 < k < n and computes the
point R = kG = (rx, ry). If rx = 0, Alice generate a new k

2. Alice uses an hash function H to obtain an hash of the message to sign:
e = H(m)

3. The signature of the message is s = k−1(e+ kprivalicerx

4. Alice sends Bob s and rx

5. ...

6. Bob receives s and rx and checks if 0 < rx, s < n. If the check fails, Bob
refuses the message

7. Bob re-compute the hash of the message e = H(m) and the following
values:

64 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

• w = s−1 mod n

• u1 = ew mod n

• u2 = rxw mod n

• The pointX = u1G+u2Kpubalice. IfX = 0, Bob refuses the message

8. Finally, Bob checks if Xx ≡ r mod n. If so, the signature is verified and
Bob can accept the message

7.6.3 ECDH
ECC also includes a key establishment protocol based on the Diffie-Helman
approach. Once they have generated their key pairs, Alice and Bob exchange
their public-keys. Then both multiply the public-key obtained with his/hers
private key to obtain the same point:

P = kprivaliceKpubbob = kprivbobKpubalice

= kprivalicekprivbobG

From this point, Alice and Bob take the x-coordinate Px as shared key.
A variant of ECDH is the ephemeral version (ECDHE). The difference in

ECDHE is that the key pairs used by the parties are temporary (i.e., generated
on-the-fly) and not the real key pairs. This allows to avoid using directly the
real keys but lose the ability to authenticate the parties via the transmitted
public-keys.

An authenticated key establishment protocol alternative to ECDH/ECDHE
is the Elliptic Curve Mezenes-Qu-Vadstone (ECMQV)[83].

7.6.4 ECQV
The Elliptic Curve Qu-Vadstone (ECQV) is a protocol for using implicit certifi-
cates to generate keys pairs. Let U the identity (expressed as a bit-string) of a
target user and let the Certificate Authority (CA) key pair be (CApriv, CApub).
The CA, upon user request, issues the user’s implicit certificate CU which is
a point on the curve. This certificate allows to extract the user public-key
Kpubuser once its identity U and the public-key of the CA that emitted the
certificate are known.

The implicit certificate generation (and the user key pair) is performed as
follows:

1. The user generates a secure random number k mod n and computes the
point R = kG

2. The user sends R and its identity U to the CA

3. The CA chooses a secure random number k′ and computes the implicit
certificate CU = R + k′G and an implicit signature (used to verify the
certificate) γU = CApriv + k ∗H(CU ||U). Those two values are sent back
to the user

7.7. ECC OPTIMIZATIONS 65

4. The user generate its new key-pair: its private key kprivuser = γU +
kH(CU ||U) and its public key Kpubuser = kprivuserG

The public key extraction can be performed as:

KpubU = CApub +H(CU ||U) · CU

which is correct, since:

CApub +H(CU ||U) · CU =

= CAprivG+H(CU ||U) · (R+ k′G) =

= (CApriv + (k + k′)H(CU ||U))G =

= kprivuserG = Kpubuser

Additional information on ECQV can be found in [84] and in [85].

7.7 ECC Optimizations

This section provides a non-exhaustive list of the common optimizations adopted
in the ECC.

• Barret Reduction. This is an algorithm which can be used to avoid
modular reduction by using the (approximating) equation a mod n =
a − bascn where s = 1

n . The result accuracy depends on the accuracy of
s.

• Montgomery Reduction. This reduction allows to move from a prime
field to a (temporary) Z/Z2k . This allows modular reduction to be per-
formed with fast bitwise AND operations.

• Alternative Coordinate Systems. Using different coordinate systems
(e.g., projective coordinates) can reduce the number of complex operations
(e.g., modular inversions), improving the performances.

• Point Compression. The elliptic curves are reflected along the x-axis,
so, fixed a value for x, only two points (x, y) and (x,−y) can be found.
Using Point compression, points are represented by their x value and a
single bit to indicate the sign of the y value (which can be re-computed
by applying the elliptic curve equation). This drastically reduces (almost
halving) the amount of memory required to store points.

• Shamir’s Trick. When computing aP +bQ (e.g., ECDSA), the Shamir’s
Trick can be used to perform the addition directly when applying the
double-and-add multiplication algorithm on the multiplications, improv-
ing the performances.

66 CHAPTER 7. ELLIPTIC CURVE CRYPTOGRAPHY

• Karatsuba Multiplication. TheKaratsuba Multiplication is a technique
which can be used to reduce the number of word-sized multiplications.
The idea is to split the binary representation of the scalars into two parts,
e.g., A = A1||A2 and B = B1||B2, then the product C = AB can be
performed as (A << n) + (Z << n/2) + B where n is the number of bit
used to represent the numbers and Z = (A1 +A2)(B1 +B2)−A−B. This
technique improves the performances when multiplications are slow while
additions are fast.

• Point Pre-computation (table). If the chosen elliptic curve has been
fixed, it is possible to pre-compute sets of points in order to speed-up the
multiplications. For example, given the base point G, by pre-computing
G, 2G, 3G, ...15G and storing them in a lookup table, it is possible to
perform multiplications by scanning n = 4 bits at a time and using the
lookup table to select the point to add to the accumulator.

• Sliding Windows. Similar to point pre-computation, but the points to
pre-compute are those whose scalar has the most significant bit set.

• Different Number Representations. In order to reduce the total num-
ber of operations in point multiplication algorithms, alternative number
representation can be used. A notable example is the Non-Adjacent Form
(NAF) which is a signed bit representation. This representation allows
to express numbers using less symbols, improving the performance and
reducing the memory footprint when using also the pre-computation of
points.

• Alternative Curves. Finally, it is worth mentioning that there exists
other classes of elliptic curves which are designed to have better perfor-
mances and other features. For example, the Edwards Curves (x2 + y2 =
c2(1+dx2y2)), and the twisted version (ax2 +y2 = 1+dx2y2). This latter
class include the famous Ed25519 curve [86].

Chapter 8

Intrusion Detection Systems
for WSN

This chapter introduces the Intrusion Detection Systems (IDSs), i.e., those sys-
tems, platforms, techniques and approaches aimed to detect intruders and/or
incoming attacks targeting the network. Focus is put on the IDS targeting
specifically resource-constrained platforms, in which common state-of-the-art
approaches (e.g., machine learning-based [112]) are not feasible due the lack of
computation resources and/or storage.

Overview on Intrusion Detection Systems — IDS are commonly clas-
sified by the kind of analysis (i.e., the detection model) they use to detect in-
truders. In particular, there exist two main families of IDSs: the Anomaly-based
and the Misuse-based IDSs.

Anomaly-based IDSs try to detect behaviours which deviates from those
expected for the target platform. In particular, an Anomaly-based IDS classify
platform’s behaviors into expected (normal) behaviors and anomalous behaviors.
To do so, most of such IDSs use sets of rules and heuristics. Anomaly-based
IDSs need also to be pre-trained to recognize the normal behaviors. This is
also one of their weakness: the number of false-positive detections can represent
an issue. Also, if the protected platforms has software bugs or vulnerabilities,
attackers can still manage to carry out an attack while avoiding the platform
to behave anomalously, hence avoiding the detection itself. A review on the
common techniques adopted to classify anomalies can be found in Figure 8.1.

Misuse-based IDSs attempt to detect intruders by matching common attack
signatures or patterns. Depending on the IDS, these signatures can be matched
against the current state of the platform, the inputs, the outputs or on other
sequences of events of the platform. Misuse-based IDS are usually fast, trading
speed for the storage required to store all the needed signatures and patterns.
Common examples of Misuse-based IDSs are the commonly used Anti-virus
softwares used on unconstrained platforms. The main issue of Misuse-based
IDSs is the detection of non-yet-known attacks, since no signature to be matched

67

68 CHAPTER 8. INTRUSION DETECTION SYSTEMS FOR WSN

Figure 8.1: Common anomaly detection techniques [113]

is available. So, while the detection of well-known attacks is always successful,
future attacks are hardly detected using signatures of other attacks. An example
of misuse-based detection can be found in Figure 8.2.

Figure 8.2: Example of misuse-based detection

Apart from the standard classification, there are hybrid IDSs which use
a combination of the anomaly-based and misuse-base techniques or use non-
standard solutions. Specification-based IDSs are a notable example of this kind

69

of IDSs. Also, in [104] the proposed IDS focuses on reducing the amount of
consumed energy using a specific set of algorithms. Other hybrid approaches can
be found in [105] [106] [107]. Other solutions, including a detailed comparative
analysis of the techniques and IDSs for WSNs, can be found in [108].

70 CHAPTER 8. INTRUSION DETECTION SYSTEMS FOR WSN

Part II

Research activities

71

Chapter 9

The WSN security framework

The main objective of this work is to provide to WSN platforms an updated
and enhanced security framework in respect of similar solutions e.g., [12]. The
proposed framework is composed of a set of different sub-projects, each one
addressing a particular security requirement or issue in WSNs.

Figure 9.1 shows the overall diagram of the framework.

Figure 9.1: Overview of the proposed security framework

73

74 CHAPTER 9. THE WSN SECURITY FRAMEWORK

The security requisites addressed are:

• Confidentiality

• Authentication

• Integrity

• Availability

• (Active) Intrusion Detection

• Data Tampering Protection

In the proposed framework, Confidentiality andAuthentication are addressed
by using ad-hoc hybrid cryptographic schemes for WSN, which ensure good se-
curity and performances with a small memory storage impact. Such schemes
have been enhanced to support different network (physical) topologies, new
protocols, recent state-of-art cryptographic solutions and Hardware-based solu-
tions. The research activities regarding these aspects are described in Chapters
10, 11 and 12

Despite Integrity features are already provided by the IEEE 802.15.4 stan-
dard, this thesis propose additional active Integrity Checks in the detection rules
described in Chapter 13.

The framework, as already suggested by [18], uses a MAMW as software
environment for WSN software applications. Using a MAMW allows network
operators to manage running agents dynamically in both execution and move-
ments. This ensures a high level of Availability since agents can be moved,
replicated or re-injected on-the-fly. The research activities related to the evolu-
tion of the MAMW are described in Chapter 15.

In order to provide protection also for what concerns the data exchanged
and stored, the framework includes a lightweight blockchain-based mechanism
for providing the framework with an anti-tampering solution. As an additional
feature, the proposed mechanism is able to detect and forbid communications
to WSN nodes sending unreliable data. This anti-tampering mechanism is de-
scribed in Chapter 14.

Intrusion detection in our proposed framework is provided by an IDS based
on a enhanced version of [13]. The final IDS is merged with the MAMW and
the previously described security solutions to an overall agent-based security
solution. The research activities describing the evolution of the IDS and the
design of the overall security platform are described in Chapter 13.

Chapter 10

TAKS

This chapter describes TAKS, a hybrid cryptography scheme designed for WSNs.

10.1 Motivation

In resource-constrained devices as the WSN nodes, providing an efficient crypto-
graphic scheme is crucial, since it represents the first and most important defence
to protect the WSN confidentiality. Symmetric schemes, thanks to their perfor-
mance and low resource requirements, are the perfect candidates for protecting
and concealing data and messages from malicious third parties. However, as
mentioned in Section 6.2, the lack of a secure mechanism for exchanging the
symmetric key makes symmetric schemes alone not enough to protect the WSN
node. This is the so-called Key Distribution problem.

In literature, the Key Distribution problem is addressed by various works.
The default solution is to adopt the Key Agreement or Key Establishment pro-
tocols (e.g., [47]) which are based on public-key cryptographic schemes (e.g.,
[116][117]). However, given the resource-constrained WSNs nodes, this solution
is generally avoided, since it could cause unbearable performance losses, unsat-
isfactory throughput, increased energy consumption or an excessive impact on
memory.

Another common solution to the Key Distribution problem to pre-distribute
the keys to WSN nodes during their installation. This solution is efficient but,
at the same time, makes the WSN nodes and the symmetric scheme vulnerable,
since if an attacker manages to capture a node and read the symmetric key from
it, the security is defeated.

Other solutions proposed in literature address the problem by adopting ad-
hoc techniques that take advantage of the WSN features. For example, in [121]
the authors propose a pre-distribution key management scheme which aims to
establish groups key inside the WSN. This is useful for cluster-tree WSNs since
the so-called groups could be mapped to the WSN clusters.

Among the ad-hoc techniques, the hybrid cryptography is one of the most

75

76 CHAPTER 10. TAKS

promising, since it combines the benefits of both the symmetric cryptography
(performances, small memory footprint, etc.) and public-key cryptography (key
management, authentication, etc.) into a single scheme. Examples of hybrid
cryptographic schemes for WSNs are [19][119][119]. Moreover, a systematic
review on hybrid cryptography schemes is proposed by authors in [118].

Given the advantages of hybrid cryptography, it has been selected to solve
the key exchange problem and to provide confidentiality to WSN nodes. In
particular, given the previous works its compatibility with TinyOS and the
possibility to directly authenticate messages, TAKS [19] has been chosen.

The next sections briefly resume TAKS and the thesis’ research activities
aimed to create an improved and enhanced version of it.

10.2 TAKS Introduction
The Topology-Authenticated Key Scheme (TAKS) [19][20] is a hybrid cryptog-
raphy scheme which exploits vector algebra to provide a lightweight mechanism
for distributing keys, encrypting and authenticating messages in WSNs.

The idea behind TAKS is to use partial key components (called Key Com-
ponents) and distribute them according to a logical topology. The components
can be combined together to re-construct the full cryptographic key for encryp-
tion and authentication. Only by combining the right set of components (i.e.,
the components owned by the nodes which are allowed to communicate in the
defined logical topology) the right key is generated by both the sender and the
receiver of a message. This allows to:

• reduce the amount of memory used to store keys, since in TAKS only the
components are stored;

• defend against attackers, which cannot guess the key without having al-
ready compromised both the parties involved in a communication.

The current version of TAKS is 2 (TAKSv2) [20]. The main difference with
the first version ([19]) is the number of steps required to complete a communi-
cation (in TAKSv1, two steps are required, while in TAKSv2 all is accomplished
with one step).

In this thesis research activities, starting from [19], [10], [20] and [11], TAKS
has been extended, implemented in different versions and evaluated its secu-
rity and performances in different scenarios. All of those are described in the
following sections.

10.3 Definitions
In TAKS, the cryptographic keys are constructed starting from key components.
There exists the following key component types:

• The Local Key Component (LKC) is a private component which is kept
secret by its owner.

10.3. DEFINITIONS 77

• The Transmit Key Component (TKC) is a public component. The TKC
is known by all the parties which are enabled to exchange messages with
its owner (in the chosen logical topology).

• the Topology Vector (TV) is a public component. It coincides with the
TKC in simpler configurations (e.g., pair-wise schemes).

Each component is a vector of d components. For example, if d = 3,
LKC = (l1, l2, l3) where each lx is a value in the mathematical field considered
(e.g., GF (2k) with an irriducible polynomial p(x)) The set of all the compo-
nents stored in a motes (along some additional metadata) constitutes the Local
Configuration Data (LCD).

The combination of the key components is performed by the so-called TAK
function. This function is not fixed: every function defined according the pre-
requisites described in [20] can be a valid TAK function. The default TAK
function adopted is the vector cross-product. The result of the TAK function is
a Shared Secret (SS), which in TAKS is used to derive the keys used for encryp-
tion and authentication. Symmetric encryption is performed via the so-called
ENC function. TAKS can use any stream or block cipher as ENC function.
Section 10.4 describes the research activities on providing TAKS implementa-
tions also a IEEE 802.15.4-compliant encryption function. The authentication
function, called AUTH, is a verification function which can be based on any
cryptographic Message Authentication function (MAC). Following the IEEE
802.15.4 standard, the AUTH function is defined to be the comparison of the
AES CBC-MAC computations.

The message format (i.e., the IEEE 802.15.4 MAC payload) to be used to
support TAKS consists in three fields:

• the ciphertext (c) obtained by encrypting the plaintext with the chosen
symmetric cipher with the SS as key;

• the authentication tag τ , obtained by theMAC function using SS as key;

• the Key Reconstruction Information KRI, which is the TKC of the sender
obfuscated by the nonce value α.

Finally, depending on the physical topology of the WSN and the intended
communication directions, TAKS can be used in Pair-Wise mode (PW) [19] or
in Cluster-Wise mode (CW).

10.3.1 Pair-Wise scheme

In a PW scheme, only the LKC and TKC components are used (since TKC =
TV). A private LKC is assigned to each mote in the WSN along the TKCs
of the motes enabled to communicate with the considered mote in the defined
topology.

78 CHAPTER 10. TAKS

Figure 10.1: TAKSv2 Pair-Wise scheme

The PW scheme is shown in Figure 10.1. The TAK function computed by
mote i for sending a message to mote j is the following (considering d = 3):

TAKi→j = α ∗ LKCi × TKCj = αTKCi × LKCj = KRI × LKCj

= α ∗

∥∥∥∥∥∥
î ĵ k̂

lkc1 lkc2 lkc3
tkc1 tkc2 tkc3

∥∥∥∥∥∥ =

∥∥∥∥∥∥
î ĵ k̂

lkc1 lkc2 lkc3
kri1 kri2 kri3

∥∥∥∥∥∥
10.3.2 Cluster-Wise scheme

The TAKS-CW scheme is a variation designed to work on cluster-tree physi-
cal topologies. In this scheme, the TAK function results for communications
from the cluster-head to the cluster members has to be independent from the
destination member [20]. To do so, the key components are combined as follows:

TAKi→j = α ∗ LKCi × TVi→j = αTKCi × LKCj = KRI × LKCj

= α ∗

∥∥∥∥∥∥
î ĵ k̂

lkc1 lkc2 lkc3
tv1 tv2 tv3

∥∥∥∥∥∥ =

∥∥∥∥∥∥
î ĵ k̂

kri1 kri2 kri3
lkc1 lkc2 lkc3

∥∥∥∥∥∥

10.4. TAKS ENHANCEMENTS 79

10.4 TAKS Enhancements

10.4.1 Flexibility in TAKS key component sizes
In the previous works [19][10][11][20], the proposed TAKS versions uses tridi-
mensional vectors as key components (i.e., d = 3). Although the previous works
describe the vector sizes to be variable, no additional information are provided.
During the thesis research activities, other possibilities for vector dimensions
have been investigated. In particular:

• d > 3 i.e., iper-vectors. In this configuration, the key components are
longer but the security level is enhanced. The regular TAK computation
has no issue and it can be used to compute the SS normally

• d = 2 i.e., bidimensional vectors. In this configuration, the key com-
ponents are shorter but the cross-product cannot be computed as usual
(i.e., there not exists two-dimensional vector which is perpendicular to two
two-dimensional vectors lying on a plane)

In order to solve the cross-product issue in d = 2 case, the chosen approach has
been to extend the two key components by adding a third component which is
assumed to be 0. In this way, when computing the TAK function, the result
will be a tridimensional vector with only one vector component different from
0. This third component will be used as SS.

10.4.2 Random number generation
In the previous works, no additional information is provided on a very important
aspect: the generation of the α nonce value. On standard computing platforms,
a Cryptographically-Secure Pseudo-Random Number Generator (CSPRNG) is
fed with a seed value coming from a source of entropy to produce non-replicable
random numbers (i.e., an attacker is unable to re-create the random number
sequence obtained by the CSPRNG). Since in WSN nodes there is no good
source of entropy for generating seeds to be used to generating random numbers,
there is the need for ad-hoc approaches.

This thesis provides the following solutions:

• Amodified version of the famousMercenne Twister [32]. This is a lightweight
version which is optimized for WSN nodes both in performances and stor-
age footprint.

• A lightweight implementation of the Blum-Blum-Shub CSPRNG [33].

• A seed generator, which combines:

– the current values of the free-running timers on the WSN node
– the current battery voltage (expressed in ADC steps)
– the current values on the available sensors (expressed as ADC steps

for analog sensors)

80 CHAPTER 10. TAKS

– the current EM energy measurements coming from the radio tran-
ceiver

Although the proposed solution do not solve entirely the issue, it increases the
resilience of TAKS in respect to nonce-based attacks, timing-synchronization
attacks, etc.

10.4.3 Symmetric Encryption
In the previous works, the symmetric cipher adopted in TAKS (AES-128 bits in
CCM* mode) is not detailed in its implementation. In order to clarify and en-
hance this component, this thesis propose a new optimized AES-128-CCM* im-
plementation in software, then, for the WSN nodes platforms using the CC2420
radio chip, the approach proposed in [54] has been followed to provide a software
wrapper around the hardware implementation available in the transceiver. In
this way, it was possible to obtain better performances and reduced the mem-
ory storage (e.g., AES tables). Note that, in this version, since the encryption
and authentication are performed directly on incoming frames (which are hid-
den from the MCU if decryption/authentication fails) TAKS needs to split each
communication in two steps, one for exchanging KRI to allow both parties
to re-construct and set the key inside the CC2420 transceiver and one for the
actual communication.

10.4.4 TAKS Key Generation
One aspect not yet described in this chapter is how the key components are
actually generated. In the previous works, key components are computed with
specialized Matlab-based scripts once the logical topology is known and inserted
as input one node/link at a time.

In order to automatize the key component generation, a new approach has
been provided. Given the number of nodes and the key length, all the possible
components combinations are created (both for the pair-wise and the cluster-
wise scheme). Developers can, then, take only the components needed in the
chosen logical topology.

The idea behind the new generator is the following. In the pair-wise version
of TAKS, it has to be that:

αLKCi × TKCj = SS = αTKCi × LKCj

To achieve this result, a random LKC is generated for every node in the WSN;
then a random target SS for each possible pair is computed and by inverting
the TAK function and the TKC of the both nodes in the pair is obtained.

A similar approach is followed for the cluster-wise version. Given that:

αLKCi × TVi→j = SS = αTKCi→j × LKCj

we generate the LKC for every node, the SS and TV for every possible clus-
ter/pair and finally compute the proper TKC to verify the equation.

10.5. TAKS IMPLEMENTATIONS 81

The Python code for the generator is available at the author’s GitHub page
[55].

10.5 TAKS Implementations

This section describes all the implementations of TAKS in previous works and
the new enhanced version resulted from the presented research activities.

10.5.1 TinyOS 1.x implementation

The first TAKS implementation (based on TinyOS 1.x and the NesC language)
is described in [11] and in [20]. Here, the pair-wise version of TAKS (using
AES 128bit CBC + CBCMAC) is described and pseudo-code is provided. This
implementation is based on the GenericComm component of TinyOS 1.x. No
proper MAC layer is used.

This version was developed for MicaZ motes and ceased to work after the
introduction of TinyOS 2.x.

10.5.2 TinyOS 2.x TKN154-enabled and Atmel-based im-
plementations

This second version is a major review of the previous. It is a re-written ver-
sion compatible with TinyOS 2.x, supporing a larger number of platforms and
using the TKN154 MAC layer and the Atmel 802.15.4 proprietary MAC layer.
The overall architecture has been improved and made more flexible for later en-
hancements (e.g., adopting specific software engineering design patterns). This
implementation of TAKS supports the pair-wise scheme and the star-topologies.
Additional information can be found in [3].

10.5.3 Cluster- and Mesh-enabled implementation

Starting from the previously described implementation as baseline, a third im-
plementation of TAKS has been provided in the context of the SEAMLESS
project. This version, in particular, enables support for a TKN154-based cluster-
tree topology and generic mesh topologies along with a routing algorithm. Ad-
ditional information on SEAMLESS are reported in Chapter 17.

10.5.4 New implementation

Starting from the previous work and considering all the enhancements described
in Section 10.4, a new versions of TAKS has been released. This new version is
compatible with all the major WSN node platforms, has a very limited memory
footprint and better performances. Also, CC2420’s hardware based encryption
is supported for the WSN node equipped with it.

82 CHAPTER 10. TAKS

This new version has been evaluated and Figure 10.2 shows the performance
results while Figure 10.3 shows the memory footprint obtained when adopting
TAKS on a sample TinyOS application.

Figure 10.2: New TAKS version: performances

Figure 10.3: New TAKS version: memory footprint

10.6 TAKS IEEE 802.15.9 KMP

In order to take advantage of the introduction of the IEEE 802.15.9 standard
to solve the key transport issues of the IEEE 802.15.4, the research activities
focused on creating also an adapted version of TAKS which adhere the interfaces
proposed by the IEEE 802.15.9 standard. In particular, given the structure of
the layer introduced by the standard (see Figure 5.2) TAKS was adapted to be
a valid KMP component. The adaptation grants IEEE 802.15.9-enabled WSN
the possibility to adopt the TAKS topology.authenticated keys, overcoming the
necessity of a strict key management scheme.

In order to adapt TAKS, the following mapping between TAKS mechanisms
and the KMP interfaces has been created:

• The KMP-CREATE interface is used to establish a secure connection (or,
in IEEE 802.15.4 jargon, a Security Association (SA)). TAKS, in order

10.7. TAKS-ENABLED OPEN-ZB 83

to provide a compatible functionality, uses the primitives of this interface
(request, confirm, response and indication) to exchange the Shared Secret.
The idea is that the sender, using the KMP-CREATE.request primitive,
generates the KRI to be sent to the receiver. The receiver, once a KMP-
CREATE.indication is received, uses the KRI re-construct the Shared
Secret.

• TheKMP-FINISHED is used to inform the requester (KMP-CREATE.request)
that the SA is established. TAKS, uses the KMP-FINISHED.indication
to inform both sender and receivers that the Shared Secret has been suc-
cessfully reconstructed.

• The KMP-DELETE interface is used to remove a previously established
SA. TAKS does not use such interface, but it could be used in more
complex scenarios as consequence of the de-association of a WSN node
from the WSN.

• The KMP-PURGE is used to abort a current key creation/deletion. In
TAKS it is not implemented.

As for the Information Elements involved, TAKS uses a reserved KMP ID of
255, since it is not yet proposed for registration to the IEEE registrar authorities.

In order to complete this research branch, a future work is to provide also
a lightweight instantiation of the IEEE 802.15.9 MPX layer. In this way, a full
(and world-first at the time of writing) IEEE 802.15.9-compliant stack imple-
mentation could be provided to the research community.

10.7 TAKS-enabled Open-ZB

The OpenZB project [67] is the combination of a ZigBee protocol implemen-
tation with a IEEE 802.15.4 MAC implementation for TinyOS-based applica-
tions. In this version of TAKS, apart from supporting the AES-128-CCM via
the CC2420 transceiver (see [54]) the security aspects are not fully implemented
(e.g., key management). In order to provide a lightweight cryptographic scheme
supporting key management, this thesis proposes a prototype implementation
of TAKS on top of OpenZB.

This implementation takes advantages of the fact that OpenZB uses a MAC
layer which is very similar to the TKN1541. So, the TK154-based TAKS version
has been used and adapted to the OpenZB codebase so that every data frame
(MCPS-DATA.indication) is encrypted and decrypted according using TAKS.
Finally, we provided also a variant in which the TAKS encryption/decryption
happen at the NWK layer, targeting the NCPS-DATA.indication data "packets"
instead of the MAC frames.

1In fact, OpenZB contributed to the current TKN154 implementation

84 CHAPTER 10. TAKS

10.8 Related publications
Details on the TAKS enhancements obtained from authors’ research activities
can be found in [3] and in [5].

Chapter 11

ECTAKS

This chapter describes the evolution of TAKS in the direction of elliptic curve
cryptography: ECTAKS. Here the idea behind ECTAKS is introduced along
with the supported protocols and the result of the research activity: a working
implementation based on TinyOS 2.x and the TinyECC project [35].

11.1 Overview

In [14] ECTAKS has been proposed as an evolution of TAKS towards ECC.
ECTAKS grants a better security level and, thanks to the ECC, reduced key
sizes. The main idea behind ECTAKS is to map TAKS mechanisms on ECC
standard protocols so that the TAK function result is used as scalar for creating
an ECC key pair.

11.2 Vector Operations

In ECTAKS [14], new vector product operations are introduced to compute
the final Shared Secret. The first one is the scalar vector by point product: it
computes a vector of EC Points by multiplying each vector component by the
point operand:

(s1, s2, s3, ..., sn) · P = (s1P, s2P, ..., snP)

The second operation, the scalar vector by point vector product, computes
a vector of EC points performing a component-by-component multiplication:

(s1, s2, s3, ..., sn)× (P1, P2, ..., Pn) = (s1P1, s2P2, ..., snPn)

In the next sections the variation introduced in the standard ECC-based
encryption and digital signature protocols are analyzed.

85

86 CHAPTER 11. ECTAKS

11.3 Research contribution
In [14], only the construction of the key components is thoroughly described.
The protocols constructed on top of ECC and adapted to follow TAKS mecha-
nisms has not been developed.

Pugliese et al. developed two prototype of the ECTAKS’ Integrated Encryp-
tion Scheme (ECTAKS-ECIES) and the ECTAKS’ Digital Signature Scheme
(ECTAKS-ECDSA). In the thesis research activities focused on refining these
protocols and implementing them using the TinyECC library as baseline.

11.3.1 ECTAKS-ECIES
In order to adapt the TAKS hybrid mechanism to ECC, the key components
LKC and TKC are initially mapped to the private key pij and public key Pij .
ECTAKS enforces that:

(αLKCi × TKCj) = takij = pij

and:
takijG = pijG = Pij = ECTAKij

In order to match the ECC bi-dimensional representation, the dimension of
the TAKS vectors is d = 2 and the adapted cross-product operation is used (see
Section 10.4).

In ECIES, data is encrypted with the public-key and decrypted with the
private key. The encryption is performed with a symmetric cipher and a key
obtained by a Key Derivation Function computed on R = αG and the point
Z which, during encryption is computed as Z = αhPij , while in decryption is
computed as Z = hpijR. The result of the protocol is a triple (c,R, τ) where c
is the ciphertext, τ is the authentication tag and R is a point used to reconstruct
the symmetric key.

In ECTAKS, this mechanism is modified as follows. R is constructed to be
the equivalent of the TAKS’ KRI in following way:

R = αTKCj ·G

while Z, in the encryption case:

Z = αhECTAKij = αhTAKijG = αh(LKCi × TKCj)G

and in the decryption case:

Z = hLKCj ·Rreceived

In both cases, the resulting SS used for encryption/authentication tag is ob-
tained by SS = KDF (Z,R). The overall ECTAKS-ECIES protocol is the
following.

Encryption:

11.3. RESEARCH CONTRIBUTION 87

1. select a random integer α

2. compute ECTAKij = (LKCi × TKCj)G

3. compute R = αTKCi ·G

4. compute Z = hECTAKij . If Z = 0, go back to 1

5. compute SS = (SS1, SS2) = KDF (Z,R)

6. c = Encryption(m,SS1)

7. τ = MessageAuthentic(c, SS2)

8. return (c,R, τ)

Decryption:

1. compute Z = hLKCj ·R = αECTAKij . If Z = 0, refuse the message

2. compute SS = (SS1, SS2) = KDF (Z,R)

3. τ ′ = MessageAuthentic(c, SS2)

4. check if τ = τ ′. If different, refuse the message

5. m = Decryption(c, SS1)

6. return m

11.3.2 ECTAKS-ECDSA
The variation on the ECDSA protocol is a bit more complex. Given the secure
hash of the message e, the signature of the message m from node i is created as
follows:

1. select a random integer α

2. compute R = kG and r = Rx. If r = 0, go back step 1

3. compute S so that Sx = k−1(e+ LKCixr) and Sy = k−1(e+ LKCiyr)

4. return (r, S).

The signature can be verified by node j as follows:

1. check if 1 ≤ r ≤ n− 1 and if 1 ≤ S∗ ≤ n− 1. If not, refuse

2. compute z = S · TKCj = (k−1(e+ TAKijxr), k
−1(e+ TAKijyr))

3. compute w = z−1

4. compute u1 = ew(TKCjx + TKCjy)G

5. compute u2 = rwTAKij

6. compute X = u1G+ u2G

7. check if Xx = r. If so, accept the signature, otherwise refuse it.

88 CHAPTER 11. ECTAKS

11.4 Implementation
As stated before, the thesis research activities on ECTAKS started by collecting
information on the state-of-the-art of ECC software libraries (e.g., OpenSSL
[109]). however, do not fit the requirements imposed by WSN platforms. The
only library which address the WSN constraints while offering a large set of
optimizations is TinyECC [35]. Although TinyECC is not the best available in
terms of performances and memory footprint, it is still one of the few libraries
which is almost independent on the (prime) curve selected. Other libraries,
instead, offer better performances in exchange of a limited set of available curves
(often, just one).

Since TinyECC did not support all of available WSN node platforms, the
first part of the proposed implementation focused on adding such support (in
particular, for the Iris WSN platform). The resulting version of TinyECC
supporting the Iris motes (compared with the similar MicaZ platform) is shown
in Figure 11.1. A second pre-implementation step has been to update the set of

Figure 11.1: TinyECC support for Iris platform: results in comparison with the
MicaZ

available elliptic curves to contain only the curves which are currently considered
secure according to [77].

Then, the implementation has proceeded as follows:

1. The two new product operations have been implemented in a new NesC
component

2. Two new components have been added, one for ECTAKS-ECIES and the
other for ECTAKS-ECDSA

3. Following the description provided in the previous sections, the variations
introduced in ECTAKS have been implemented

4. The test components of TinyECC have been updated to support the EC-
TAKS components

5. Finally, the whole TinyECC code has been cleaned up and re-organized
to put the focus on protocols.

11.5. ECMQV 89

11.5 ECMQV
The Elliptic Curve Mezenes-Qu-Vadstone [127] (ECMQV) is an authenticated
key exchange protocol largely adopted as alternative to Diffie-Helman based
approaches thanks to its resistance to active attackers. It is also adopted in
the some ZigBee profile specifications [128] as main key exchange protocol. A
brief overview on how this protocol works follows. Alice and Bob start with
their own key pairs (A, al) and (B, bo). They generate (each one) a new key
pair, i.e., (KA, ka) for Alice and (KB , kb) for Bob. Then, Alice computes Sa =
ka + R(KA)al while Bob does the same with Sb = kb + R(KB)bo, using R as
the function that, given a point on the chosen elliptic curve, returns the L least
significant bits of the x coordinate of the point. At this point, Alice and Bob send
each other KB and KA. Finally, they can compute K = h∗Sa(KB +R(KB)∗B)
and K = h ∗ Sb(KA +R(KA) ∗A) to retrieve the (shared) secret K, since:

K = hSa(KB +R(KB) ∗B)

= h ∗ Sa(kb ∗G+R(KB) ∗ bo ∗G)

= h ∗ Sa(kb +R(KB) ∗ bo) ∗G

= h ∗ Sa ∗ Sb ∗G

= h ∗ (ka +R(KA) ∗ al) ∗ Sb ∗G

= h ∗ (ka ∗G+R(KA) ∗ al ∗G) ∗ Sb

= h ∗ (KA +R(KA) ∗A) ∗ Sb = K

In comparison with ECMQV, using the topology-authenticated keys, once
the key components have been deployed, ECTAKS has no need for a key ex-
change phase to obtain a suitable symmetric key at the price of less resistance
against active attackers.

11.6 Results and Future Works
Current ECTAKS source code is available at author’s GitHub page [63]. A series
of tests has been conducted to validate ECTAKS and evaluate its performance.
However, the first results demonstrated that, at the current state, ECTAKS has
unsatisfactory performance: for example, using a 192 bit curve, a single point
multiplication (e.g., TAK G) took over 30 seconds. Although this performance
issue is still under investigation, other solutions are currently under examination,
including the shift from a software implementation to a hardware-accelerated
implementation, as it is discussed in the next Chapter.

Apart from the performance aspects, another planned improvement is the
support for different type of EC. In particular, considering the updated list of
secure curves in [78], a future work will be adding the safe curves in the set of
supported curves.

90 CHAPTER 11. ECTAKS

Chapter 12

ECC-HAxES

This chapter describes the ECC Hardware Accelerators for Embedded Systems
(ECC-HAxES). A basic introduction on the motivations and the design con-
siderations is reported in Section 12.1, while in the following sections the design
and its implementation are discussed. Finally, the validation step and the per-
formance analysis are described.

12.1 Overview

The implementation of public-key cryptographic protocols on the WSN mote is
often unfeasible due the hard performance and storage limitations. In order to
overcome this issue, one solution is to use an application-specific hardware ac-
celerator suitable for an energy-constrained device. In this context, a hardware
accelerator is meant to provide a boost in terms of performance by moving a
computation or part of it from software to hardware via e.g., FPGA platforms
or ASIC designs.

There exists various hardware designs for cryptography-oriented hardware
accelerator, in particular for ECC. In order to be as light and performant as
possible, most of them adopt compromises which, in most of the cases, restrict
the flexibility (e.g., by fixing the used curve) of the accelerator.

For example, in [57] a full crypto-processor is designed to provide ECC over
GF (2163). The solution has been verified and evaluated on multiple FPGA
platforms, however, the flexibility of the hardware is very limited, since the
inner circuits have been designed only to work with the standard 163-bit curves
(sect163k1 and sect163r1).

Shahid et al. [58] present a ECC co-processor featuring a execution unit,
composed by an Arithmetical and Logic Unit (ALU) with multiple modular
multiplier, and a scheduler. Despite this solution grants a good level of flexibility,
its area occupation grows steadily and it is not in line with our pre-requisites
(see below).

The area issues are addressed by solutions as [59], where authors describe

91

92 CHAPTER 12. ECC-HAXES

a ECC accelerator supporting dual field arithmetics i.e., both 160-bit prime
curves in GF (p) and binary curves in GF (2163. This platforms uses a set of
instructions, a control unit and an ALU composed by multiple clusters. The
accelerator was implemented in 90-nm CMOS technology with interesting results
in the final area occupation.

In respect of the state-of-art solutions, this thesis proposes ECC-HAxES,
an ECC hardware accelerator designed with the following requirements and
considerations in mind:

1. All-around flexibility : it shall be possible to switch to a different elliptic
curve at runtime, different mathematical field or different features with
the least possible number of fixed parameters. Flexibility, however, come
with a price: most of the state-of-art solutions fix the curve so that it
is possible to easily perform off-line pre-computations, which translates
to improved and optimized algorithms. The challenge is to obtain both
flexibility and high performances.

2. The design is also focused on a minimum area occupation. While this
requirement could result also in non-optimal performances1, it allows to
greatly reduce costs and open the way to design small break-out board
(and small and low-power FPGA chip) which dimensions are comparable
to the embedded system using the accelerator. In this way, for example,
a WSN mote would be still small and cost-effective.

3. It should provide on-demand services. The accelerator should be, when
unused, in a reduced-consumption state (e.g., stand-by) but ready to
switch to an active mode when required. In this way, even with the adop-
tion of this hardware accelerator, energy consumption could be limited.
Ideally, since the accelerator operations are quicker than their software
counterpart, the combination of an embedded system and a hardware
accelerator could event be more energy-efficient than the pure software
solution when computation-intensive tasks are considered (e.g., ECC).

4. The accelerator should provide the best possible performances along with
a good design quality, so that it would be easy to perform post-release
modification to fit different requirements.

5. To reduce costs and development time, the hardware accelerator is (at
least, initially) developed for reconfigurable hardware platforms (e.g., FP-
GAs) using a hardware design language (HDL) when implementing the
design.

6. Since the hardware accelerator needs to be used by a separated embedded
system, a custom communication protocol over a common serial interface
(e.g., UART, SPI, I2C) shall be defined. The protocol shall define the

1those performances, in every case, would be orders of magnitude better than the software
counterpart

12.2. ECC-HAXES 93

format of the messages used to exchange commands and data between the
embedded system and the hardware accelerator.

The following sections describe our ECC hardware accelerator, its design,
its implementation and the results in terms of area and performances.

12.2 ECC-HAxES
ECC-HAxES basic idea is to provide the implementation of ECC public-key
encryption/decryption and digital signature creation/verification to a (client)
embedded system. In particular, ECC-HAxES aims to provide the implemen-
tation of the Elliptic Curve Integrated Encryption Scheme (ECIES) and the
Elliptic Curve Digital Signature Scheme (ECDSA) as basic services.

Figure 12.1 shows an example (digital signature request) scenario.

Figure 12.1: ECC-HAxES: Example scenario

The client and the accelerator use a defined communication protocol to send
commands and data. The first command a client issues to the accelerator is for
waking it up from the stand-by state. Once the accelerator is ready, it sends an
acknowledgement to the client and enters in a waiting state. At this point, the
client can issue other commands, e.g., a request for signing a block of data, and
sends the actual data to the accelerator. Then, the accelerator processes the
data, sending the results to the client. Once the client has no more commands
to issue, it sends a sleep command to let the accelerator go in the stand-by state.

Note that, the client private cryptographic keys are never transmitted through
the communication channel: the accelerator manages them internally to help
keeping them as safer (and secure) as possible. In that sense, the client can only
issue a initialization command which causes the accelerator to generate a new
set of keys.

Following the ECIES and ECDSA algorithms [53], below the high-level block
diagram of ECC-HAxES are shown.

a
b

G
nh

p

PU
BLIC

KEY

PrivateKey

k

RZ

Pseudo-R
andom

N

um
ber G

enerator

Seed

PointM
ultiply

PointM
ultiply

M
ul (m

od n)

Is_Zero?

KD
F

Key1

Key2

Sym
m

etric
D

ec/Encryption

M
ode

Input
Plaintext/C

iphertext
C

iphertext/Plaintext

M
AC

G

eneration

Transm
itted M

AC

C
om

parator
C

om
puted M

AC

M
ux

Tansm
itted R

Mux

Mux

Transm
itted

C
iphertext

R
esult

Zresult

Sel

Sel

Sel

EC
C

-H
A

xES - EC
IES

a
b

G
n

h

p

PU
BLIC

KEY

PrivateKey

k

R

Pseudo-R
andom

N

um
ber G

enerator

Seed

PointM
ultiply

Is_Zero?

EC
C

-H
A

xES - EC
D

SA

H
ash

R
xZero

Plaintexte

Inv (m
od n)

M
ul (m

od n)

R
x

Add (m
od n)

pa R
x

e+pa R
x

M
ul (m

od n)

s
Is_Zero?

sZero

k -1

Transm
itted s

Transm
itted R

x

R
ange C

heck
R

ange C
heck

sValid
rValid

Inv (m
od n)

w
M

ul (m
od n)

u2

M
ul (m

od n)

u1

PointM
ultiply

PointM
ultiply

PointAdd
u1 G

u2 P
a

X

Is_Zero?

XZero

R
x

C
om

parator

C
m

pR
esult

96 CHAPTER 12. ECC-HAXES

12.3 Components
Starting from the block diagrams, a bottom-up approach has been adopted, i.e.,
the accelerator design started from the building block components, integrating
them as the design phase proceeded.

The following sub-sections briefly describe these building blocks and how
they work together to realize the final design. The following sections assume
that the EC is defined over a prime field i.e., over Z/Zp with p prime.

12.3.1 Comparison of the design approaches
As stated in Section 12.1, the process for designing an accelerator architecture
can be complex. In the recent years, new design techniques have been proposed
to reduce the complexity of hardware design. In particular, a technique, called
High Level Synthesis (HLS) [66] allow developers to use a software programming
language to describe the required functions and, using a specific tool (the HL
synthesizer), the hardware design (in the form of HDL code) is automatically
created. In contrast to HLS, the Register-Transfer Level (RTL) design method-
ology could be used. An RTL architecture requires a deep knowledge of the
digital design techniques and it is, in general, more time-consuming and error-
prone. Despite to this disadvantages, it provides full control on the generated
hardware, best quality, best performances and a simpler and cleaner design.

In order to evaluate, which design approach fits best the requirements listed
in Section 12.1, both the HLS and the RTL approaches have been used and
their results compared. Figure 12.2 shows the comparison of ECC-HAxES and
its HLS counterpart.

Figure 12.2: ECC-HAxES: comparison of the RTL and the HLS implementa-
tions

Although the development time of the HLS took us a small development
time, the results are orders of magnitude worse than the RTL architecture.
However, improving the HLS architecture is possible by refining the HLS code
using proper syntax, directives and optimizations, but, in general, this would
cause the lost of its main advantage the reduced design time.

As conclusion, HLS could be used as first development step when the devel-
opers have a solid background in software development. After this step, however,
a shift toward standard RTL design practices is advised, since the quality and
performances of the resulting hardware is un-comparable.

Given the results above, in the presented research activities, the RTL design
approach has been selected for the design of the accelerator. The rest of the

12.3. COMPONENTS 97

chapter describes the design steps and the validation of the inner components
of the accelerator using the RTL approach.

12.3.2 Basic RTL
The first set of components are the basic building blocks for any digital elec-
tronics design (Figure 12.3).

Figure 12.3: ECC-HAxES: Basic RTL components

• Parallel-In, Parallel-Out Register (PIPO register). This is the classical
digital register, designed to have arbitrary size and an asynchronous reset
pin. On every rising edge of the clk, data is read from input and stored
and accessible by the output port.

• Parallel-In, Parallel/Serial-Out Register (PIxO register). This register
allows the least significant bit to be set on the serial output pin. The size
is arbitrary, data inside the register can be shifted in both the directions
for an arbitrary number of bits. A mode pin is added to select the parallel
load mode (MODE=0) or the shift mode (MODE=1). During shifts, input serial
data is read from an external pin.

• Serial-In, Parallel-Out Register (SIPO register). Similar to the PIPO
register, but it has only a 1-bit serial input instead of a parallel port.

• Two-to-One Multiplexer. A multiplexer with two arbitrary-sized input
ports and one output port. The sel pin is used to select the input port
to replicate on the output port.

• Four-to-One Multiplexer. Similar to the Two-to-One Multiplexer, but it
has four input ports, a 2-bit selection port and one output port.

• Up-Down Counter. A arbitrary-sized counter which can be configured to
count up or down. It also has an asynchronous reset pin and a port to
pre-set a value in the counter state when a reset is issued.

98 CHAPTER 12. ECC-HAXES

12.3.3 Basic Arithmetic
This second set of components provide basic arithmetics for large integers in
2-complement representation (Figure 12.4).

Figure 12.4: ECC-HAxES: Basic Arithmetics Components

• Full Adder and Subtractor (FAS). This component is a full combinatorial
1-bit Full Adder combined with a Full Subtractor to minimize area. The
operation can be selected with a specific pin (addition: OP=0, subtraction:
OP=1).

• Ripple FAS. This is a arbitrary-sized adder/subtractor obtained by mul-
tiple cascaded FAS. This adder (in respect of other solutions), when the
size is large (e.g., 128 bits) ensure a reduced area occupation.

• Serial Multiplier. As for the RippleFAS, in order to minimize area, a
serial architecture for the multiplier has been chosen. This component
uses a RippleFAS as internal adder and, when the computation is started
(START=1) it requires O(n) clock cycles to complete the computation where
n is the number ob bits of the operands. The result is a 2n bit value and
it can be retrieved when DONE=1.

• 2-Complementer. This components computes the 2-complement of the
input value.

12.3.4 Modular Reduction
The reduction modulo p of an input value is one of the most important compu-
tation in a cryptography-related accelerator. Given an operand a and a number
p (often a prime-number), it computes y where y = a mod p i.e., the remainder
of a/p. While this operation is trivial in software, in hardware it requires a divi-
sion which is not easy to perform efficiently in comparison with other operations.
In literature there exists solutions to avoid divisions (e.g., the Montgomery Re-
duction [60]), but, after various tests performed on area occupation and perfor-
mance, the modular reduction has been implemented with an optimized divisor
which operates linearly with the size of the operands. The component is shown
in Figure 12.5. The computation starts at the first rising edge of clk when
START=1 and the result is available when DONE=1. DIV_ERROR is 1 when the
inner division operation failed (i.e., P=0...0).

12.3. COMPONENTS 99

Figure 12.5: ECC-HAxES: Modular Reduction

12.3.5 Modular Arithmetics
After the definition of the basic arithmetic components and a modular reduc-
tion component, the modular arithmetics components required for the further
EC computation have been designed. This section describes the modular addi-
tion, modular subtraction and the modular multiplication (Figure 12.6). The
latter, in particular, is a core, performance-critical computation for the whole
accelerator.

Figure 12.6: ECC-HAxES: Modular Addition/Subtraction and Multiplication
.

• Modulo-p Adder and Subtractor. The modular addition and subtraction
are combined together to minimize area. It computes:

1. y = (a+ b) mod p when OP=0;

2. y = (a− b) mod p when OP=1.

This component uses a RippleFAS and the modular reduction to obtain
the result. It assumes the input to be already reduced modulo p and,
as other previously described components, the computation starts when
START=1 and the result is available when DONE=1.

• Modulo-p Multiplier. Despite the adder/subtractor which requires only a
subtraction/addition of p if the operands are already reduced modulo p,

100 CHAPTER 12. ECC-HAXES

the multiplication component cannot make this assumption. This compo-
nent combines the serial multiplier and the modular reduction to produce
y = ab mod p. a, b, p and the result have the same (configurable) bit
length.

12.3.6 Modular Inversion

One of the most critical and complex component of the whole hardware ac-
celerator is the modular inversion component. The modular inversion is the
operation which computes y such that ay = 1 mod p. y is guaranteed to exists
only if p is a prime number. In modular arithmetics, this operation is usually
preceding a multiplication for computing an division-equivalent. There exists
various way to compute the modular inversion, for example, using the Extended
Euclidean Algorithm (EEA). In [56] the authors analyze the common modular
inversion computation algorithms for hardware-based solutions and concluded
that the RS algorithm shows the best performance.

Using this result, in this thesis the RS algorithm has been adopted to im-
plement the modular inversion hardware component (Figure 12.7).

Figure 12.7: ECC-HAxES: Modular Inversion (RS)

12.3.7 EC Point Addition and Doubling

Given all the previous components, EC basic operations can be implemented
i.e., the Point Addition and the Point Doubling. The point addition performs
R = P + Q, while the point doubling computes R = 2P . P , Q and R are EC
points expressed in carthesian (affine) coordinates (x, y) and encoded as x||y
(i.e., the concatenation of x and y). Since the two operations are the same, with
the only difference in the computation of the slope s, a single component has
been designed which combined both computations. (Figure 12.8). The slope
is computed as s = ∆y

∆x in the point addition while s = 3x2+a
2y in the point

doubling (a is a EC curve parameter). Once s is computed, Rx = s2− xP − xQ
and Ry = s(xP − xR)− yP .

If OP=0, the point addition P + Q is performed. Instead, if OP=1, the 2P
point doubling is performed. In both cases, the result is available when DONE=1.
When INF=1, the result is the infinity point O and RESULT should be ignored.

12.3. COMPONENTS 101

Figure 12.8: ECC-HAxES: EC Point Adder/Doubler

12.3.8 EC Multiplication

Another core component of the whole hardware accelerator is the EC Point
Multiplier. It computes R = kP with k a scalar value such that k < p with p
the prime number of the considered field. The component (Figure 12.9) uses
the Double-and-Add algorithm using the point adder/doubler defined above.

Figure 12.9: ECC-HAxES: EC Point Multiplier

12.3.9 Misc components

In addition to the components described above, some miscellaneous components
have been developed to fill the gaps in the designs (Figure 12.10):

• Ripple Comparator. This component is a full-combinatorial comparator

102 CHAPTER 12. ECC-HAXES

Figure 12.10: ECC-HAxES: Miscellaneous components

which adopts a ripple approach to save area. In particular, it is designed
to compare bits from the most-significant to the least-significant.

• Zero Detector. This component uses the XNOR reduce port (i.e., perform-
ing the XNOR on all the bits of the operand) to check whether the input
operand is zero (OUTPUT=1).

• Range Checker. This component combines two comparators to check
whether the input operand x is in the range defined by a and b.

• −(2n) generator. This is a component used to quickly compute, given the
exponent n, the corresponding power of 2 with its sign inverted.

• Random Number Generator. This component uses the Blum-Blum-Shub
pseudo-random number generator algorithm to output a series of random
numbers mod n using SEED as seed. A new random number generation
is started by START=1 and it is concluded when DONE=1. The internal state
of the generator can be reset setting RST=1.

12.3.10 Top layers and work in progress
At the time of writing, not all the components required for performing the full
hardware accelerator are designed. In particular, the components which are
currently under design are the following:

• The Key Derivation Function (KDF) component, which generate a sym-
metric key from a point in the EC. The candidate function to perform
such a task is PBKDF2 [64].

• The Symmetric Encryption component, which encrypts or decrypt a plain-
text. The candidates are AES [44] (block) or ChaCha20 [46] (stream).

12.4. FPGA TECHNOLOGY ANALYSIS 103

• The Hash Function component, which computes the cryptographic hash
of a stream of bytes. The candidate is SHA-256 [51].

• The Message Authentication Function component, which computes the
message authentication code given a stream of bytes and a key. The
candidates are CBC-MAC [81], HMAC [51] or Poly1305 [65].

Once all the components will be designed, the design of the protocol-oriented
components (ECIES and ECDSA) will take place in conjunction with the defi-
nition of a communication protocol for the accelerator and eventual adaptation
components (e.g., a SPI/I2C slave component).

12.4 FPGA technology analysis

One question which arises when designing an hardware accelerator for embedded
platform is the effective feasibility of attaching, using and powering an external
board with the accelerator (as reconfigurable logic device or in ASIC).

To answer this question, the thesis research activities focused on investi-
gating through the available FPGA platforms which provide a good amount
of reconfigurable resources with a sustainable energy consumption, so that the
WSN node could power the accelerator itself without the need of an external
power supply unit.

Nowadays, all major FPGA vendors have a specific low power product
branch, in particular, Lattice Semiconductor [100] and Microsemi [101]. At
the time of writing, the FPGA platforms of both vendors consuming the lowest
amount of power are the Lattice iCE40 LP FPGA family and the Microsemi
IGLOO2 FPGA family. Each product family offers different product with differ-
ent performances, available area and power consumption, which is in the order
of milli-Watts with a power supply voltage compatible with the one commonly
provided by AA batteries (1.2 - 1.5 Volts).

12.5 Implementation

All the components described in the previous section have been implemented
using the VHDL language. The implementation was performed using the GHDL
synthesizer [61] and the Xilinx Vivado suite [62]. In particular, a top-level
component consisting of a Point Multiplier and the required digital interfacing
components have been implemented successfully.

The current implementation is available at the author’s github page [63].

12.6 Validation & Results

The validations of the implemented components have been performed in three
phases:

104 CHAPTER 12. ECC-HAXES

1. for each component, a testbench component has been created and simu-
lated. The testbench is a non-synthesizable component used to provide
a black box -like environment for testing a design (often called unit under
testing, UUT) which can be simulated through a simulation engine for
observing the behavior and results of the UUT.

2. a set of top level components have been created. These components aggre-
gate a set of smaller components to provide an intermediate self-contained
component useful for testing its inner components and their integration.

3. the top level components have been synthesized in order to configure them
in a FPGA platform for validate the included set of components on a real
environment.

The validation was performed using the GHDL simulator [61] and the Xilinx
Vivado Suite [62]. Each component-level testbench was simulated and the com-
ponents validated successfully across different tests. In order to provide a first
top level, a component consisting of input SIPO registers, the ECC Point Multi-
plier component and output PISO registers to limit the amount of GPIO needed
has been designed. We simulated successfully this top layer (Figure 12.11), im-
plemented and synthetized it obtaining the area occupation results shown in
Figure 12.12. The simulations and the implementation involve the kG compu-
tation using the secp192k1 curve with various values of k.

Figure 12.11: ECC-HAxES: Point Multiplication top layer results (R = 13G)

12.7 Future works
As discussed in Section 12.3.10, the current and future works are the design of
the missing components of the accelerator and the development of the high-level
protocol-oriented components. A validation phase on real FPGA platform and
the performance evaluations will follow.

The work will conclude with the validation and deployment of the accelerator
on a stand-alone board connected to a WSN mote, performance evaluation and
comparison with software based approaches.

12.7. FUTURE WORKS 105

Figure 12.12: ECC-HAxES: area occupation (target: Xilinx Zybo board)

106 CHAPTER 12. ECC-HAXES

Chapter 13

WSN Intrusion Detection
System (WIDS)

Passive security functions described in the previous chapters ensure an high level
of security for communication. However, they do not protect against attackers
who already managed to get a foothold in the WSN (e.g., they captured and
exploited a sub-set of the nodes). In order to address those threats, active
security measures have to be employed. This chapter introduces WIDS [13], a
lightweight Intrusion Detection System (IDS) specific for WSN. In the presented
research activities, WIDS has been enhanced and implemented as a library
(TinyWIDS) on top of TinyOS 2.x which other TinyOS-based applications can
use to use its functionalities.

13.1 Motivation

As analyzed in Chapter 8, adopting an IDS in resource-constrained platforms
is a non-trivial decision due to the impact it has on performances, throughput
and memory. Among the two classes of IDS mentioned in Section 8, the choice
for an IDS for WSN falls into the Misuse-based IDSs since they lighter than the
Anomaly-based IDSs.

In literature, various approaches are proposed (e.g., [108][112] [104][105][106][107])
but none of them is able to provide a solution which takes into account the per-
formance, the memory footprint, the energy consumption and the ability to
detect newer attacks at the same time.

In [13], WIDS, a misuse-based IDS specific for WSN. As other misuse-based
IDSs, WIDS is able to detect attacks with good accuracy and with a low im-
pact on resources. Moreover, despite the limitation of other misuse-based IDSs,
by using the Weak Process Models to describe attacks, WIDS is able to de-
tect new attacks which shares a common behavior with existing attacks, hence
outmatching the misuse-based IDSs limitation.

107

108 CHAPTER 13. WSN INTRUSION DETECTION SYSTEM (WIDS)

Thanks to this aspect, this research activities described in this thesis selected
WIDS for further analysis and as base for the development of an IDS on top of
the TinyOSv2 platform.

13.2 WIDS
The Weak-Process-Model Intrusion Detection System (WIDS) [13] is an IDS
specifically designed to work in the high-constrained WSN platforms. WIDS
is a misuse-based IDS which uses the Weak Process Models (WPMs) to detect
when an attacker is targeting the WSN.

WPM are a special case of parametric Hidden Markov Models, where the
hidden sequence of states of a WSN node is estimated through the observable
events it produces. WIDS detects those events, collects the possible state se-
quences on the WPM and estimates the current state of the node. If such state
is known to be a dangerous state, WIDS sends an alarm to the higher software
layer or directly to the application.

WIDS models WPMs though a graph representation, where the nodes are
the possible states and the edges are the possible state transitions. Each graph
node has associated a list of the observables produced by a WSN node in that
state. Some of the graph nodes represents the dangerous states, which are the
states indicating an intruder currently attacking the WSN.

During the estimation, WIDS keeps a threat score value for each state se-
quence computed from the partial threat scores associated to every state tran-
sition. This value is used to measure the danger level reached at the current
time.

Two are the types of dangerous states in WIDS: the Low-Potential-Attack
(LPA) and the High-Potential-Attack. While in LPA states the threat score is
evaluated before deciding whether send a notification or not, when HPA states
are reached by any given state sequence, a notification of intrusion is sent, no
matter the threat score.

An overview of a WPM and how WIDS works is shown in Figure 13.1.
In previous works on WIDS [13][10][11], WIDS has been designed to support

the detection of various attacks, for examples:

1. Different classes of Jamming attacks

2. Replay and Replay-Protection attacks

3. HELLO-Flood attacks

4. Workhole and Sinkhole attacks

13.3 TinyWIDS
Previous works (e.g., [13]) validated WIDS through a series of simulation tests.
The research activities of this thesis focused instead on providing a WIDS imple-

13.3. TINYWIDS 109

Figure 13.1: WIDS: a sample WPM (on the left) and a representation of WIDS
state estimation (on the right)

mentation on real WSN node platform. As result, TinyWIDS, a first TinyOS-
based implementation of WIDS, has been created.

13.3.1 Architecture

The basic architecture of TinyWIDS is shown in Figure 13.2.

Figure 13.2: TinyWIDS Architecture

110 CHAPTER 13. WSN INTRUSION DETECTION SYSTEM (WIDS)

During the development of TinyWIDS, WIDS had the opportunity of being
improved in different aspects. In particular, this thesis introduces the concept
of Metrics i.e., components that keep track of a particular events or values from
the hardware or from the driver layer (provided by TinyOS). Examples of what
a Metric could be are the following:

• The number of successfully received frames (RecvFramesMetric)

• The number of frames failing the (hardware) CRC check (CRCFailMetric)

• The number of failed Clear Channel assessments (CCAs) (CCAFailMetric)

• The maximum RSSI value in the frames sent by neighbor nodes (RSSIMetric)

The Metrics allow us to have more flexibility in the definition of the WIDS Ob-
servables. In fact, in TinyWIDS, Observable are derived from a set of conditions
(defined by the observable itself) on some metrics of interests. In this way, for
example, a ChannelBusyObservable could be defined as:

{RecvFramesMetric < x ∨ CCAFailMetric > y ∨RSSIMetric > z}

where x, y, z are numerical constants derived by the specific WSN context. The
actual observables are created by a separated component called Observable No-
tifier. This component examines the metrics of interests and checks the condi-
tions defined by the observables and, if any of the observables has met all of its
conditions, it creates and insert such observable in a queue.

Another improvements brought by TinyWIDS is Attacks modeling. Describ-
ing an attack directly in a WPM is not an easy task neither a flexible solution.
In TinyWIDS, we created a JSON-based syntax to describe an attack in terms
of a graph and conditions. Then, a set of Python scripts are provided to build
the NesC source code containing the definition of the WPM. In this way, unlike
classical WIDS, in TinyWIDS it is possible to add, remove or change attack
models easily.

Starting from the set of included attack models and a queue of observable,
the WIDS Engine uses the WIDS mechanisms to walk the WPM and esti-
mate the state of the node. When a HPA state is reached or the threat score
reached a given threshold, the WIDS Engine creates a concrete Attack compo-
nent, containing all the information on the current detected attack and all the
audit/logging information retrieved during the state estimation. This compo-
nent is then notified to upper layers (e.g., to the Intrusion Reaction Logic (IRL)
or directly to the application) and stored for later analysis.

13.4 Validation and Results

TinyWIDS has been validated using the Iris WSN platforms and providing it
with the attack models for a simple test attack (i.e., detecting when a frame with
sequence number equal to 3) and for a more complex Jamming Attack based on

13.5. INTRUSION REACTIONS 111

CRC and CCA failure rate. Tests have been conducted by putting a set attacker
nodes trying to broadcast frames at maximum frequency, maximum power and
ignoring any channel access policy. The conducted tests shown that TinyWIDS
is able to detect such attacks with a good accuracy.

In respect of performance drawback, when using TinyWIDS as stand-alone
components, the performance decreases linearly with the number of attack mod-
els embedded and the complexity of the observables involved. The memory
overhead is, instead, linked to the complexity (in terms of nodes, edges, etc.) of
the resulting attack WPMs.

In order to overcome such limitations, Section 15.3 describes a proposed
integration of TinyWIDS with a MAMW.

13.5 Intrusion Reactions

In [13], it is not specified what actions to undertake when an intruder is detected,
i.e., the so-called Intrusion Reaction Logics. This section presents one core
enhancement of the presented research activities, the analysis of the possible
intrusion scenarios and a set of possible automatic reactions aimed to both
locate where the attacker is and to reduce its operativeness by confusing or
isolating him/her.

13.5.1 Intrusion scenarios and reactions

Scenario 1: Node Injection

In this first scenario an attacker manages to silently intrude in the WSN some
non-authorized nodes, with the aim of acquiring information, damage the WSN
infrastructure or taking control of it via some exploits. The following assump-
tions are made:

• The WSN architecture (as well as topology, nodes position, protocols etc.)
is known to the attacker

• The non-authorized nodes are indistinguishable copies of the original ones

• The WSN has an agent-based middleware (e.g., the one described in Sec-
tion 15.1) , where:

– Some agents gather data from node sensors

– Some others check WSN status/parameters

After a notification from the IDS (Intrusion-detection system) a reconfiguration
plan could be adopted to put the WSN into a safe condition, so that operators
could be sent to physically remove non-authorized nodes (when possible). The
reconfiguration plan can be one of the following:

112 CHAPTER 13. WSN INTRUSION DETECTION SYSTEM (WIDS)

1. Buffer plan. If the WSN contains only few non-authorized nodes, the idea
is to create "isolation areas" around non-authorized nodes to exclude them
temporarily from the WSN. An example is to power off (or just disable
communication systems) every node in a circular (buffer) area around the
non-authorized ones, with a radius of 1 or 2 hops. Using a mobile-agent
MW, once the attacker and the injected nodes are located, a single agent
could be injected to the WSN nodes in the buffer to power off/disable
them.

2. Jamming Buffer plan. In this alternative, the nodes around send more
and more random/un-useful data (jamming) to the non-authorized ones
to confuse, slow down, overload or disable them while operators get on
field for removal.

Scenario 2: Node Tampering/Destruction

In this scenario, the attacker performs physical tampering aimed to disable or
destruct WSN nodes. The following assumptions are made:

• The WSN is deployed with a star- or cluster-tree topology, with one or
more PAN coordinators (star centers or cluster heads)

• The data and software application running on the nodes is critical, hence
powering-off nodes is not feasible solution.

When the attack has been detected, the WSN could be in a post-attack scenario,
in which:

1. Some clusters/star have both PAN coordinators and device nodes in per-
fect conditions. In this case, no action needs to be taken.

2. Some clusters/star have a working PAN coordinator with one or more
damaged device nodes. In this case, a Change Coordinator reaction
could be undertaken. Since the cluster/star is under attack, the PAN
coordinator and the sane device nodes are in danger. So, the sane device
nodes in proximity of a second (sane) PAN coordinator, starts to pre-
associate to it so that they can quickly perform a disassociation from the
old coordinator when it eventually starts to not responding. In this way
the functionality of the device nodes is preserved for longer.

3. Some clusters/star have a disabled PAN coordinator with one or more
device nodes still in good conditions (orphan nodes). In this case, a Co-
ordinator re-election reaction could be undertaken. Sane orphan nodes
starts a temporary coordinator election among them (if possible), prefer-
ring the nodes with the best communication capabilities (e.g., number or
reachable nodes) so that there is a better chance to restore most of the
communications. Once the new temporary coordinator has been elected,
it starts brodcasting its presence and accepting node association. This
reaction require node-reprogramming capabilities, which can be provide
by e.g., a MAMW.

13.6. RELATED PUBLICATIONS 113

4. Some clusters/stars are almost disabled. In this case, re-building a working
cluster/star is not possible, so a possible reaction could beMute Cluster,
in which every sane node stops all the data transmissions to preserve
energy, waiting for network operators to stop the attack before performing
transmissions again. If the communications are also critical, a WSN
Remap reaction could be undertaken as alternative. In this reaction,
every remaining node floods the WSN signaling its presence. The global
PAN coordinator (or the network operators) then, dynamically rebuild
a valid cluster-tree/star WSN on the remaining nodes. As in the case
of the Coordinator re-election, this reaction is deeply based on the node-
reprogramming capabilities offered by the MAMWs.

13.6 Related publications
TinyWIDS concept description has been described by authors in [1] and its
mechanisms illustrated in the poster session of the DATE 2019 University Booth
[2]. Current version of TinyWIDS can be found in the GitHub repository located
at [63].

114 CHAPTER 13. WSN INTRUSION DETECTION SYSTEM (WIDS)

Chapter 14

Blockchain-based security
techniques for WSN

This chapter describes the issues and the proposed approaches in respect of WSN
node data tampering. The chapter starts by analyzing the state-of-the-art (data)
anti-tampering solutions for costrained-platforms; then this thesis describes a
proposed solution involving the design of a blockchain-based anti-tampering
mechanism which takes into account the WSN platform limits. Finally, some ex-
perimental results are reported, in terms of effectiveness and resource-footprint.

14.1 Anti-tampering techniques for resource- con-
trained devices

Apart from protecting WSN node communications via encryption and intrusion
detection, often the overall security of the WSN resides in the nodes physical
integrity as well as the integrity of the data they contain and manage. A WSN
node with corrupted data can represent for an attacker a first foothold which
can be used to further attack the target system. In fact, even subtlest data
corruption (e.g., a 1-byte off buffer overflow) in a innocuous buffer can provide
attackers a way to corrupt and overwrite other memory areas, ultimately leading
to remote code execution (RCE). While bigger and performance unconstrained
platforms have different mechanisms to enforce data protection, WSN platforms
in general have little or none protection in this sense.

This chapter, presents a recent research line which tries to address the data
vulnerabilities in WSN monitoring applications before they happen. In par-
ticular, the research activities described in this thesis focused on providing a
technique which validate the data incoming from WSN nodes before actually
storing them. As positive side-effect, the WSN gained the ability to distinguish
the WSN nodes which send valid data from those which send invalid data, al-
lowing to provide a way to cut down the bad-behaving nodes similarly to an

115

116CHAPTER 14. BLOCKCHAIN-BASED SECURITY TECHNIQUES FOR WSN

intrusion detection but with increased effectiveness on the cases of WSN node
substitution attacks.

WSN nodes are prone to both physical and logical tampering. In the former
case, the WSN node is compromised with a physical modification (e.g., in its
hardware components) to break, to misbehave or to cause damage around it.
In the latter case, instead, the node is compromised in its behaviour (e.g., by
changing its firmware) so that it is no longer behaving as when it was deployed.

In literature, various anti-tampering solutions have been proposed, also some
specific to resource-constrained devices.

The physical tampering of a WSN node can be detected by using an interrupt-
based technique through a low-cost trigger device as proposed in [87]. However,
this technique requires the node to perform a checking procedures to reveal the
tampering.

In [88] the authors propose the use of the Integrated Circuit metrics (IC-
metrics) for the computation of metrics based on hardware and software char-
acteristics. These metrics are used to generate cryptographic keys, so that they
are dynamic and, in the case of tampering, they change.

In [89] Unpredictable Software-based Attestation Solution (USAS) is pre-
sented, which is an evolution of Software-based Attestation for embedded de-
vices (SWATT) [90]. USAS is an algorithm for compromised nodes detection
with the use of a hierarchical RC4 pseudo-random number generation, which
starts from a Initiator node (I-node) and continues on multiple Follower nodes
(F-nodes). For tampering detection the Base Station (BS) requests the I-node
to perform a random challenge involving a checksum computation. The result of
the computation is used to generate a series of new random challenge messages
for F-nodes. The checksum results are checked by the BS for the compromised
nodes’ detection. Both USAS and SWAT introduce an overhead that can reduce
the lifetime of the nodes.

In [91] the authors propose the use of Parameter Grouping for the detection
of compromised node. Although the idea is valuable, there is a drawback: the
whole test is conducted in a simulated environment where key parameters, like
e.g., residual node energy, are provided by the simulator, whereas in a real
environment these measured parameters could have been altered by the attacker.

In respect to the above mentioned works, this research activities described in
this thesis focus on the logical anti-tampering and to provide a novel technique
based on a lightweight blockchain to empower the WSN nodes with the ability
to detect a compromised node into the network without introducing significant
overhead. Nevertheless, it guarantees a good level protection of sensitive data
and nodes operations and mission-critical operations.

14.2 Lightweight Blockchain (WSN-LBC) technique

The approach proposed by this thesis makes use of the blockchain technology,
adapted to provide its benefits (e.g., immutable and verifiable data storage) also
in the context of WSNs. This lightweight blockchain enabled to construct a anti-

14.2. LIGHTWEIGHT BLOCKCHAIN (WSN-LBC) TECHNIQUE 117

tampering solution which makes compromised node detection easy and effective
keeping, at the same time, all the blockchain-based data storage features.

In order to clarify the terminology adopted in this chapter, we adopt the
following terms and meanings:

• blockchain, as immutable and verifiable data-structure, without any addi-
tional meaning from the digital cash context;

• Ledger as a term to indicate with a single, short and meaningful name
the WSN node and the TinyOS component responsible of the blockchains
management.

Considering a classical WSN monitoring application, consisting of a WSN
PAN Coordinator node acting also as sink node, and a set of device nodes
equipped with sensors. Our proposed approach defines a Ledger software com-
ponent located in the sink node. The Ledger is responsible of the message
checking, blockchains management and data storage tasks.

The message checking task is performed by means of a Hash Function compo-
nent and a Timestamp reader component. The hash provides the Ledger and the
user applications in the device nodes with a method to compute cryptographically-
secure hashes. The Timestamp reader is instead used to compute time intervals.
In Section 14.2.2 the message checking is thoroughly described.

The Ledger stores a set of multiple blockchains. These blockchains are or-
dered by the reliability of the data stored inside of them (e.g., the first contains
high-reliable data while the last contains data with low reliability). The concept
of reliability of WSN nodes and of their data is a central aspect of the proposed
technique. We dynamically assign a reliability level (via reliability points) to
WSN device nodes which determines the blockchain which the Ledger (located
in the sink node) has to use to store node data. If a node have no enough re-
liability points, the sink node will eventually start to systematically refuse and
discard its messages. Reliability points are increased or decreased depending on
the result of the Ledger message checking task.

As already stated, data storage is performed by the Ledger using blockchains.
The Ledger is configured with a variable number of blockchains. Due to the
memory limitation of the WSN nodes, the size of each blockchain has to be a
fixed (and usually small) value. Considering that sink nodes act also as bridges
to traditional networking platforms forwarding (hence, consuming) the data
gathered by the device nodes, a time-windowing approach with a circular-buffer
mechanism has been implemented to replace the old data (which probably has
already been forwarded) with the fresh incoming data. In this way, data can
still be stored (and verified) into small and fixed-length blockchains.

14.2.1 Message Format

The message format adopted for communication is shown in Figure 14.1. It is
built on top of the IEEE 802.15.4 MAC to increase data density and to provide

118CHAPTER 14. BLOCKCHAIN-BASED SECURITY TECHNIQUES FOR WSN

Figure 14.1: Proposed Lightweight Blockchain Technique: message format

the proposed features both directly to WSN applications and to higher-level
protocols (e.g., ZigBee).

The message contains:

• the ID of the sender node;

• a nonce value;

• a generic payload field, freely usable by the application/higher layer;

• the prevHash;

• the time interval as computed by the sender;

• a cryptographic digital signature computed on the message.

The sender ID is the assigned to the sender WSN node during the programming
step.

The nonce field is a pseudo-random values obtained by a cryptographically-
secure pseudo-random number generator (CSPRNG) used to avoid replay-attacks
by forcing each message to being different even with the same content.

The application payload field is an application-specific field, which can be
used by applications (or higher software layers) to store the data of interest.

The prevHash is part of the main anti-tampering mechanism: the sender has
to fill this field with the hash of its last un-encrypted message. The receiver
(which should track the prevHash field, message after message) checks the field
against its stored hash to determine the validity of the message. In this way, an
attacker who wish to forge a valid message or perform a spoofing attack, has to
know every previous message hash (down to the first message ever sent by the
victim node) to successfully craft a spoofed message. Also, the attacker has to
know the cryptographic key used both to encrypt the data and the key used to
sign the message, or the message would be incorrectly deciphered or refused.

In order to provide an additional anti-tampering measure, the time interval
field is used. In addition to the hash calculation, each sending node has to

14.2. LIGHTWEIGHT BLOCKCHAIN (WSN-LBC) TECHNIQUE 119

keep track of the intervals between the messages it sends and fill this field by
using one of its local free-running timers. On the other side, the receiver node
does the same, keeping track of the received messages from each sender node
(using its own timers). Even if computed with two not synchronized timers (i.e.,
the sender timer and the receiver timer), the time differences should be almost
the same, and the receiver checks whether this happen to be. In this way, an
attacker needs also to both synchronize with the victim node timer and has to
know (according to this timing) when the last message has been sent. Even if
this security measure is not strong as the previous one, it adds an additional
difficulty level useful to deter attackers.

The digital signature is obtained by a digital signature protocol taking the
message contents as input. The signature allows the receiver to authenticate the
sender nodes and detect malicious attempts in modifying the message content.

All the fields described above are encrypted by the sender and decrypted by
the receiver e.g., using AES with a key length of 128 bits and the CCM* mode
of operation, in compliance with the IEEE 802.15.4 [16].

14.2.2 Message Checking
Upon the reception of a message, the Ledger:

1. Checks if the sender is considered reliable in terms of reliability points.
The reliability points get increased (or kept constant) when the WSN note
sends a valid message; they are decreased otherwise. If the sender is not
reliable enough, its messages are discarded without any further processing.

2. Authenticates (by verifying a digital signature) and decrypts the contents
of the received messages.

3. Performs the Hash check : the hash of the last decrypted legit message from
the sending node is compared with the hash contained in the message. If
they differs, the reliability points of the sender node are decreased.

4. Performs the Time check : the time elapsed from the last message from
the sender node is computed both by the sender and by the Ledger in the
sink node. The Ledger checks whether these time intervals have almost
the same value (i.e., they differs up to a selected threshold). If not, the
reliability points of the sender node are decreased.

5. After updating the reliability points, the Ledger decides whether the
sender node should be promoted or degraded to a different blockchain.
If the node’s reliability points fall below a threshold properly selected, the
Ledger denies the access to the blockchain storage. If not, the message is
stored in the resulting blockchain.

The above described mechanism allows to provide both anti-tampering fea-
tures to the application data (as any other blockchain-based mechanism) and to
the nodes of the WSN themselves. In particular, the described approach allows

120CHAPTER 14. BLOCKCHAIN-BASED SECURITY TECHNIQUES FOR WSN

the detection of a WSN node that is tampered by an attacker, or injected into
the WSN. In fact, actions like these cause the node to send messages which
hardly pass the Ledger checks. Due to the low storage capacity of WSN nodes,
limited data can be stored at the same time in a sink node.

An example of the message checking procedure and its results is shown in
Figure 14.2:

• the WSN node 1 sends to the Coordinator (sink) a valid message, i.e.,
the hash and timing checks performed by the Ledger are successful, thus
its messages are accepted. Subsequently, the reliability points of node 1
are increased or kept constant and its data is stored in a high-reliability
blockchain.

• the WSN node 2 sends a message which contains a wrong prevHash and/or
a bad time interval. So, the message is refused and the reliability of node
2 decreases, eventually causing the coordinator to start storing node 2’s
data into a blockchain of lower reliability;

• the WSN node 3 is classified by the Ledger as having already a very
low reliability, hence when it sends a message which contains a wrong
prevHash or a bad time interval, the message gets refused and, since node
3’s reliability cannot decrease further, i.e., its messages cannot be trusted
anymore, from now on its communications with the sink node will be
discarded.

Figure 14.2: Proposed Lightweight Blockchain Technique: message checking

14.3 Implementation and Results
The proposed technique has been implemented using TinyOS. The Ledger is
a new NesC component called LedgerC. The LedgerC component provide the

14.3. IMPLEMENTATION AND RESULTS 121

LedgerI interface, which can be used by the higher level software layer or by the
application to access the proposed platform features. In this case, the famous
SHA 2 (256bit) [51] cryptographic hash function has been selected, which is
still considered extremely secure at the time of writing. The SHA256 digest
computation has been re-implemented in a new separated component, named
SHA256C. This component provides the HashFunctionI interface, used both by
the Ledger and the application to compute hashes. Since this thesis considers
TinyOS-based software applications, the LocaltimeMicroC component has been
adopted as timestamp reader component. The LocaltimeMicroC is a TinyOS
hardware-independent component, which can be used to retrieve the value of a
free-running hardware timer with a granularity of a micro-second.

The UML diagram of the implementation is shown in Figure 14.3.

Figure 14.3: Proposed Lightweight Blockchain Technique: UML diagram

The proposed approach has been validated in a scenario consisting of four
WSN nodes, three device nodes equipped with light sensors and one node acting
as the sink node. Each device node periodically retrieves a selected number of
samples from the light sensor. When a sufficient number of samples is collected,
a new message is created (as described in Section 14.2.1) and sent to the sink
node. The sink node, using the Ledger, performs the checks and provides as
output (via serial port) the results and some additional logging information.

The validation results are shown in Figure 14.4 and Figure 14.5, where an
example showing a node sending valid messages (Figure 14.4) and a tampered
mote starting sending invalid messages (Figure 14.5). This latter behavior was
obtained by simulating an attack in which the mote gets stolen, re-programmed
and re-injected into the WSN.

The impact on performance and the storage footprint of the proposed ap-
proach is evaluated in terms of the following metrics: the fractional increment
of the Flash and RAM memory occupation on device and sink motes, due to the
introduction of our blockchain technique, and the average Latency introduced
in the communications.

The metrics defined above have been evaluated through 18 different scenarios

122CHAPTER 14. BLOCKCHAIN-BASED SECURITY TECHNIQUES FOR WSN

Figure 14.4: Validation: messages are sent, received and verified successfully

(first column of Figure 14.6), varying the following configurable parameters:

• The number of motes considered in the WSN (3, 5 or 10)

• The length (in term of number of stored data blocks) of each blockchain
in the ledger (3 or 5)

• The number of different blockchains in the ledger (2, 3 or 4)

The tests have been conducted using as test platform the Memsic Iris motes
[99].

In order to evaluate the metrics (and in particular the latency), the WSN
motes have been programmed with a monitoring application consisting of motes
exchanging messages with the sink mote. Each mote retrieves a fixed number of
samples from the light sensors, starts a timer and sends the message to the other
mote. Upon reception, the destination mote checks the message, stores it in its
blockchains and sends a replay message back to the sender. When the replay
message reaches the sender, this latter stops its timer and retrieves the round-
trip time. The latency has been then computed by halving such value. Flash
and RAM memory occupations are available directly by the TinyOS compilation
toolchain when compiling the code.

We evaluated all scenarios, obtaining the results shown in Figure 14.6 for the
sink motes. The resulting overheads are computed in respect of the same mon-
itoring application compiled without using our proposed approach (the baseline
application).

In Figure 14.6, the fifth column shows the overhead in Flash memory (i.e.,
executable code) with respect to the baseline application. Such a number is also
expressed in term of percentage in the sixth column. The seventh and eighth

14.3. IMPLEMENTATION AND RESULTS 123

Figure 14.5: Validation: simulation of an attacking mote

columns show instead the overhead in RAM memory (i.e., data) as relative value
and percentage.

The results show that:

• the Flash memory occupation for sink motes has only a very small varia-
tion across the scenarios (less than 40 bytes). With respect to the baseline
application, however, there is a 40% increase.

• the RAM occupation, instead, can grow very fast. The growth is due the
use of RAM as data memory, so, it is sensible to the number of message
storable in each blockchains and the number of blockchains.

• since rarely the WSN mote software uses a dynamic memory allocator, all
the space needed is pre-allocated. This causes the number of motes in the
WSN to be a direct factor in the RAM increase.

• it was not possible to test Scenarios 12, 14, 15, 16, 17 and 18 for la-
tency evaluation due the amount of RAM required, which is more that
the available in the test platform (8 KB).

Figure 14.7 shows the memory occupation overhead of a device mote in the
case of the application running on the device motes. Those motes need only
to construct a valid message to communicate with the sink mote and are not
required to store data. The Flash memory overhead of device motes is less than
∼ 13% in respect of the baseline application and there is a ∼ 43% increase in
RAM occupation. Notice that, since the device motes need only to be able to
sample sensors, to construct a valid message and to send it to the sink mote,
their memory occupation is independent from the metrics related to the memory
occupation.

124CHAPTER 14. BLOCKCHAIN-BASED SECURITY TECHNIQUES FOR WSN

Figure 14.6: Results: sink mote (containing the Ledger)

Figure 14.7: Results: device motes

14.4 Related publications
The proposed anti-tampering technique has been submitted to the ITASEC
2020 Italian Cyber-Security conference [4].

Chapter 15

Agilla Evolution

This Chapter moves the focus on the base software environment chosen to pro-
vide the security functionalities proposed in the previous chapters: the Mobile
Agent Middleware (MAMW). Given the unique features, Agilla MW has been
selected as baseline for further enhancements.

The following sections describe the progress introduced by the presented
research activities to Agilla and its new features. Finally, this thesis proposes a
first design of a complete MAMW-based security solution which combines the
MAMW with the cryptographic schemes, the intrusion detection and all the
other proposed solutions.

15.1 Towards Agilla2

15.1.1 Motivations and Contributions

In WSN, as well as in other embedded systems, the software development, man-
agement, distribution and update is not as simple as in other computing plat-
forms. The WSN software is usually developed using cross-compilation tech-
niques due to the unfeasibility of hosting a complete development environment
directly on the target platform. This issue causes the necessity for developers to
manually compile (i.e., cross-compile) and transfer the compiled software to the
target platform by means of wired links (e.g., serial ports) and protocols (e.g.,
RS232/UART, JTAG, USB) Moreover, embedded applications often rely on one
or more software layers, namely operating systems, software wrappers, bootload-
ers, etc., that allow the execution of one application on different hardware plat-
forms. The tight relationship between the embedded software application and
the lower software layers makes the compatibility with new software versions a
non-trivial issue. Even a small change to lower layers affects high-level func-
tionality, eventually causing the application to stop working as intended. Often
developers have to re-design and/or re-write the application to restore the full
compatibility with the updated lower software layers.

125

126 CHAPTER 15. AGILLA EVOLUTION

This is the case of Agilla MW, originally developed on top of TinyOS 1.x.
Indeed, during the thesis research activities in WSN and in mobile agent mid-
dleware domain, Agilla has been successfully adopted in many contexts (e.g.,
see Section 16.2) However, the new release of TinyOS (v2.x) caused Agilla and
every other TinyOS 1.x application to stop being compilable on common WSN
hardware platforms.

In this part of this thesis, Agilla compatibility with TinyOS has been re-
stored and new features from the new version of TinyOS has been added. To
do so, the thesis research activities addressed the problem of porting Agilla
from TinyOS 1.x to TinyOS 2.x. Although a simple porting activity might be
not of interest in the research community, in the particular context considered
(i.e WSN, limited resources, energy-constraints, no low-level software support,
hardware heterogeneity), porting activities pose non-trivial issues for which in
the current state of art in software maintainability for embedded systems there
is no general technique. Such activity has been called "porting", since the re-
implementation of the software application aims primarily to fix the features
and functionalities compromised by the changes occurred in the lower software
layers.

During the porting activities, Agilla has been enhanced by adding features or
improving the ones already present. Such operations required a deep knowledge
of Agilla source code and its inner mechanisms in order to improve on-the-fly
parts of it to better suite the new requirements and to gain various advan-
tages, in term of software quality (e.g., performance, energy consumption, etc.).
This knowledge has been used to model the architecture of Agilla and its inter-
dependency with TinyOS 1.x (using UML and graphs). The obtained models
are not provided by its official documentation and are useful in the future Agilla
maintenance.

The followed porting methodology can be applied to different embedded
applications, so it has been generalized. The result is a model-based approach
that helps to keep under control the complexity of the porting of embedded
applications.

15.1.2 Model-based Porting

The knowledge of both the starting application and the target platform is vital
to obtain a good quality porting of a software application. In this sense, this
thesis proposes a Model-based approach which focuses on retrieving one or more
software models from the available source code and documentation to acquire
a deep knowledge of the application while having, at the same time, a solid
environment for code modification and feature additions.

The overall approach is sketched in Figure 15.1.
In the figure, the yellow boxes represent artifacts (e.g., code, models, etc.)

while the rounded blue boxes represent the processing steps.
As first activity, the available source code of the target application is re-

trieved and reverse-engineered in order to obtain an architectural model de-
scribing the software architecture of the software. Standard UML is used as

15.1. TOWARDS AGILLA2 127

Figure 15.1: Model-based porting overview

architecture description language to provide the architectural model required in
the following steps. This step is not completely automated since there is not
any toolkit for retrieving full-featured UML diagrams that works directly on the
starting programming language. More details on the Agilla reverse engineering
and on the derived UML model are reported later in this section.

The second step subdivides the models obtained from the previous step so
that all the components are grouped by the higher level functionality they aim
to provide. These components groups have been called subsystems. This step
is very important in bigger applications, since helps developers to reduce the
analysis surface and focus on functionality-oriented porting process. After this
step, a subsystem-level graph is created.

Using the graph retrieved in the second step, the third step filters the graph
such that it is clear which subsystem has a strict coupling with any of the lower-
level components, thus, identifying the dependency of the target application on
the (different) lower-level software layer. In the Agilla case, this step let us to
identify the porting-critical subsystems of Agilla, i.e., the subsystems containing
components that have a major impact on the porting procedures due the higher
coupling with TinyOS. This step considers the other sources of documentation
available, both for the target application and for the lower-level software. In
particular, the available documentation of both Agilla and the TinyOS Enhance-
ment Proposals (TEP) documents have been analyzed, while focusing on those
describing the differences between TinyOS 1.x and TinyOS 2.x. The depen-
dency analysis, the analysis of the additional documentation and the retrieval
of the porting-critical subsystems are described in Section 15.1.2.

After the third step, the Evolutionary Development Process is then executed.
This process takes as input the Agilla source code, its architectural model and
the list of Agilla porting-critical subsystems to produce the architectural model
and the source code of new version of the target application, in this case, Agilla2.

128 CHAPTER 15. AGILLA EVOLUTION

The process consists of multiple iterations of modeling (Subsystem Model
Refinement steps), coding (Subsystem Code Modification steps), testing (Sub-
system stand-alone Testing steps) and integration/validation phases. Modeling,
coding, testing, integration and validation steps are interleaved rather than sep-
arated, with rapid feedback across activities. The process is repeated for each
subsystem and ends when the source-code and the architectural model for the
subsystems considered are validated and integrated.

Finally, a general application-wise validation step is conducted. This step
ensures that the ported application can be used with all its features in place of
the old version. If the validation is successful, the application is evaluated in
terms of performance gain/loss, memory occupation or other relevant metrics. If
not, the Evolutionary Development Process is started over to refine the models
and correct the source code.

In particular, to evaluate the porting results, the improvements and the
software quality, a set of metrics have been defined and measured on Agilla2.

Agilla Reverse-Engineering

The first step in the model-based approach starts with the analysis of the avail-
able source-code of the application, in order to perform the reverse-engineering
and obtain an abstract and possibly standardized architectural model; the model
can help developers to comprehend the application features, behaviour and,
most important, give a dynamic support tool for the following steps of the pro-
posed approach. Also, a model can be useful in future, for maintainability of
the application and to easily provide further improvements.

Using the UML notation it is possible to describe large systems but, in Agilla
case, the output diagram could be not so lean and easy to understand due the
high number of components and interconnections (i.e., interfaces provided or
used). The proposed solution is to focus on the description not on every single
component, but on every component hierarchy of the application (as shown in
Figure 15.2). In this way, it was possible to obtain diagrams at different levels
of granularity e.g., from system-level diagrams to component level diagrams.

The diagrams have been created by using TinyOS nesdoc utility and the
MagicDraw software application.

Agilla Models

The UML Component Diagram obtained in the first step is complete and of-
fers a description of Agilla down to the components and hierarchies relations.
However, this fine-grained level of information poses a non-trivial challenge on
the developers which, in the next steps, have to work on it. In the proposed
approach, the second step (Subsystem Analysis) tries to provide a solution: the
creation an additional, coarse-grained model from the starting UML Component
Diagram to highlight the logical group of cohesive components (and components
hierarchies) considering the features they mean to provide in the overall appli-
cation. Such groups of components are the subsystems of Agilla (Figure 15.3).

15.1. TOWARDS AGILLA2 129

Figure 15.2: Model-based porting: Component hierarchies

Figure 15.3: Model-based porting: Component hierarchies

Agilla and TinyOS Dependency

In order to proceed with the next step, the diagrams obtained from the previous
steps have been investigated to separate application-related components from
low-level basic components and reduce the analysis surface. For example, in

130 CHAPTER 15. AGILLA EVOLUTION

Agilla, components like LedsC or SounderC (core TinyOS components used to
control the LEDs and the buzzer) can be pruned from the analysis since their
inner mechanisms are out of the scope of the porting. Instead, the analysis
focuses on Agilla-only components, which may need to be reworked to obtain a
working porting, An example is the OPSleepM component: it is the component
responsible of the implementation of the agent macro-instruction sleep, used
to introduce a user-defined delay in the agent code. Since it internally uses
some of the TinyOS interfaces which have been changed in the 2.x version, this
component is more prone to be changed during the porting procedure in order
to restore its functionality.

In this step, any additional available documentation on the target application
and on the changes that affected the lower-level software can provide valuable
information to help developers both to analyze the dependency of the target
application and, later on, to identify which components need to be reworked.
In the Agilla case, the proposed changes and those then introduced in TinyOS
from version to version are documented in a collection of documents called
TinyOS Enhancement Proposals (TEPs) [114] available in every distribution of
TinyOS. By reading the TEPs, it was possible to identify and track almost all
the changes introduced in TinyOS 2.x, thus identifying the impact on Agilla
affected subsystems.

After the dependency analysis, the models (both the UML Component Dia-
gram and the Component Graph) were refined again, pruning out all the unused
TinyOS components and adding additional description on the Agilla components
to include information (from the TEPs) useful for the next steps. The remain-
ing subsystems and components are, respectively, the Critical Subsystems and
Crtitical Components.

Agilla Evolutionary Development Process

The Evolutionary Development Process consists of 4 steps (Figure 15.1). The
first step is the Model refinement : focusing on the subsystem components, this
step refines and enhances the information quality and quantity on the UML
Component Diagram and Component Graph models. For example, added in-
formation on where the components are located, which algorithms and data
structure use to achieve their functionalities and so on. As a consequence, the
refined subsystem models contain information that is useful to the developers
in the following step of source code modification. Moreover, as said previously,
in this step developers can decide to improve some aspects of the architecture
of the subsystems.

Once a refined model of the target subsystem is ready, the actual source
code modification can take place (the Code Modification Step). Using the orig-
inal source code and the refined model as supports, the original source code is
analyzed and reworked to fit the requirements of the target platform.

In order to ensure that each reworked subsystem is working, even before the
validation, this step creates a stand-alone testing environments (testbeds) for
testing the subsystem without compiling the whole application. This step helps

15.1. TOWARDS AGILLA2 131

developer to quick check and fix problems from the previous step, potentially
reducing the number of issues that may appear after the integration of the re-
worked subsystem after the integration in the application. Also, by testing only
the target subsystem in its testbed, developers can focus on the subsystem func-
tionalities, reducing the quantity of code to review/test and the time required
to perform such operations. The creation of the testbeds for Agilla consisted
in creating new, small, TinyOS 2.x applications which include only the target
subsystem and some basic boot code.

The final step of each iteration in the process consist in integrating the sub-
system in the application. With a successful integration, the target subsystem
is connected back as drop-in replacement into the application. Since the inter-
faces used and provided by the target subsystem may have been modified, in
this phase developers can discover and list inter-subsystem problems which can
be handled in a subsequent iteration of the process of the same subsystem.

Agilla2 Validation

After the execution of the Evolutionary Development Process, a runnable ver-
sion of the ported application is ready. The final step of our model-based ap-
proach consists in an overall validation which ensures that the new version of
the application can actually replace the old version. The ported Agilla (Agilla2)
has been compiled by exploiting the TinyOS make system, which automatically
launch the current cross-compiling tools to produce the final programmable bi-
nary file. A first validation check can be performed just after compilation, by
analyzing the compilation results against the capabilities of the target platform.
In this sense, the compiled Agilla2 storage requirements (obtained directly from
the compilation phase) was compared against the memory storage available in
the target mote hardware (MicaZ). The obtained Agilla2 have an occupation of
56 KB of ROM (code) and 3.6 KB of RAM (data). These values are compatible
with the MicaZ mote storage limits (128 KB of ROM and 4 KB of RAM).

After a correct compilation of Agilla2, was the turn of the AgillaAgentInjec-
tor. The AgillaAgentInjector Java GUI application is used to connect to motes
and inject agents into them. The compilation was successful and in Figure 15.4
the two compilation outputs are shown.

The final validation step has been to check the runtime correctness of Agilla2.
The goal has been to check if it was possible to run an agent-based application
correctly on Agilla2, using all the available features, such as sensor readings,
communications, and migration of agents. Among the available agent-based
application in Agilla, Oscilloscope is one of the most meaningful: it offers a
oscilloscope-like visualization of the sensor data retrieved from all the mote in
the WSN against time, visualizing a waveform. In order to perform the vali-
dation, Agilla2 has been installed on the MicaZ and then the proper agent has
been injected through the AgentInjector, which started to successfully retrieve
data and forward them to the PC. On the PC, the AgentInjector interface and
its Oscilloscope component has shown, as expected, a waveform related to col-
lected data. This scenario has been tested both on PC and on an Android-based

132 CHAPTER 15. AGILLA EVOLUTION

Figure 15.4: Agilla2: successful validation

device, with successful results (Figure 15.5).

Figure 15.5: Agilla2: successful Oscilloscope validation

Finally, after the successful validation, Agilla2 has been released and it can
be found in [95].

15.1.3 Agilla2 performance & quality analysis

After-Porting analysis

This section discusses and compare the ported version of Agilla and its original
version in terms of software quality, performances and maintainability. Also,
from an higher point of view, the objective has been to determine whether the
cost of the model-based porting approach (e.g., in terms of men/hours spent
to obtain a working Agilla2) is worth the efforts. In order to estimate the cost
of performing the porting, the differences in terms of performance and memory
footprint between the original Agilla (on top of TinyOS 1.x) and Agilla2 (on
top of TinyOS 2.x), we have defined a set of metrics (Table 15.6).

Then, the original Agilla and Agilla2 source code have been instrumented,
compiled and investigated to retrieve such metrics.

15.1. TOWARDS AGILLA2 133

Figure 15.6: Adopted Matrics for Porting Evaluation

• Source code lines (NesC) are retrieved by a summing the lines of each
source file.

• The resulting C source code lines can be retrieved by counting the lines
of the app.c file, which is generated by the NesC trans-compiler upon
compilation. Although a raw measure of the source code lines has no
strong meaning, it is useful to consider the ratio between the two metrics:

CLoC

nesCLoC

The resulting value is higher when few lines of NesC code generate a high
number of C source code lines. This is good indication of the expressivity
of the NesC source code.

• The storage occupation (both RAM1 and ROM storage) are computed di-
rectly upon a successful compilation of Agilla/Agilla2. As in any embed-
ded system, the desired value for those two metrics is as little as possible.

• Finally, the quality of the documentation in the Agilla/Agilla2 source code
was analyzed. Two metrics have been used: the comment-ratio and the
artifact ratio which definitions can be found in [96]. Apart from the source
code, this step consider also the documentation created during the porting
operations.

Table 15.7 shows the values retrieved for the defined metrics. These results
show a general improvement of Agilla2 source code and documentation over the
original Agilla.

1RAM occupation takes into account only statically allocated data. Dynamically allocated
data is not included, although it can be neglected since Agilla use only pre-allocated data

134 CHAPTER 15. AGILLA EVOLUTION

Figure 15.7: Metrics evaluation results (micaz target)

Instruction-level performance analysis

An additional performance evaluation was performed on Agilla2 Instruction Set
Architecture (ISA). Agilla2 has been instrumented in its core execution engine
(the AgillaEngine component) in order to retrieve the execution time of each
executed instructions. The latency of every instruction has been retrieved by
crafting ad-hoc agents to cover the entire ISA. The results (expressed in micro-
seconds) are shown in Figure 15.8. In the figure it is possible to observe the

Figure 15.8: Agilla2 instruction execution times (µs)

slowest instructions (highlighted in cyan). Apart from the sleep instruction
(which is meant to have such a latency) and the in/rd instructions (which are
blocking instructions), those slow instructions can be grouped into:

• Remote Tuplespace management (rout, rinp, routg, rrdp, rrdpg)

• Agent movement (wmove, smove, wclone, sclone)

Radio communication is the common trait of the two groups. In particular,
instruction in the first group can exchange a number of messages which depends
on the number of neighbor nodes before their conclusion (e.g., routg). Instead,
the latency of agent-movement instructions depends on the size of the agent code

15.2. AGILLA ENERGY-AWARENESS 135

and data structures, which is translated into a variable number of messages to
be sent, before the destination node could parse, rebuild the agent and send an
acknowledgement which allow the sender to finish the instruction execution.

Those results confirm that, in order to have a fast and lightweight MAMW-
based application, it is necessary to optimize those agents which are more prone
to be cloned/moved and to avoid remote tuplespace group instructions.

15.2 Agilla Energy-awareness
The energy available to WSN nodes usually comes from batteries with limited
capacity (e.g., 1000-3000 mAh). The main source of energy consumption is the
the radio transceiver; as it is possible to observe in Figure 15.9, the energy
consumption when the radio transceiver is active waiting for incoming trans-
missions (RX) is about 10 − 15 times higher than the consumption measured
with the transceiver powered off. The consumption raises even further when the
transceiver switches to transmission mode (TX).

Figure 15.9: WSN node energy consumption (radio ON/OFF cycles)

MAMWs make intense use of the radio transceiver, since both data and
agents are transmitted and received through the radio channel. A non-optimized
approach in design a MAMW-based application can lead to a (relatively) fast
battery wear, at the point that a battery-substitution action is needed.

In order to overcome these issues, this thesis focuses on the following objec-
tives:

• Provide Agilla2 with Energy-awareness i.e., the ability to infer the current
available energy by reading the state of the batteries

• Design a set of reconfiguration plans which can be activated when the
battery level is low.

The Agilla Energy-awareness has been obtained through the addition of the
battery instruction in the Agilla ISA. The battery instruction reads, through
the WSN node ADC, the batteries voltage. Despite the voltage measurement

136 CHAPTER 15. AGILLA EVOLUTION

is not directly useful for measuring the consume of energy, by considering the
common discharge curves for batteries, the battery voltage can be used to infer
the state of the battery itself. In Figure 15.10, four zones can be delimited:

Figure 15.10: Batteries discharge curves

• A safe zone, where the battery can be considered charged (1.5V-1.2V)

• A constant zone, where the battery voltage is almost constant (1.2V-1.1V)

• A knee, where there is a rapid drop in battery voltage

• A dead zone, where the current voltage level is not enough to allow digital
circuits to work correctly (<1.1V)

Using the aforementioned considerations, the battery instruction uses a thresh-
old to determine two states: battery OK and Low Battery. The threshold voltage
is set so that there is enough time for the WSN operators to act and change the
batteries, e.g., in the constant zone of the discharge curves.

In addition to energy-awareness, in order to increase the battery duration
the Proteus Engine[9] is adopted. Proteus is a reconfiguration framework that
exploits its language, grounded on a proprietary XSD, aimed at building and
managing rules for software reconfiguration. It deals with obtaining, parsing,

15.3. WIDZILLA 137

interpreting and executing a reconfiguration plans. Every reconfiguration con-
tains information about the properties that nodes under reconfiguration must
respect, the reconfiguration action to be taken, and the agent snippet code to
be injected.

The scenario is shown in Figure 15.11 (left). A monitoring application,
developed as a MAMW application, reads temperature samples from an area of
interest. Using Agilla2 and the Proteus Engine, a set of rules (Figure 15.11, on

Figure 15.11: Proteus Engine and Agilla: architecture and decision process for
reconfiguration

the right) has been defined to decide whether a reconfiguration of the application
agents is needed to preserve as much energy as possible. In particular, when
this happen, the duty cycle of the temperature readings is decreased to reduce
the energy consumption.

The power and energy consumption have been evaluated in different scenar-
ios. The results are shown in Figure 15.12, where the effects of reconfiguration
plans on energy consumption can be observed: the measure instantaneous elec-
tric current is shown in blue, the energy consumption (in green) is obtained
by integrating the current value and by normalizing the result by the voltage
value. Figure 15.12 shows the energy consumption in the generic oscilloscope
units U and the resulting values converted in one of the commonly adopted
energy measurement units, mAh.

15.3 WIDzilla

Using an MAMW for security purposes, as described in Section 13.5, can open
the way to multiple techniques useful to dynamically protect the WSN from

138 CHAPTER 15. AGILLA EVOLUTION

Figure 15.12: Power and energy consumption results

attackers by injecting code (by mean of agents) to quickly react to the attacker
moves.

This section describes the research activities related to the incremental de-
sign of WIDzilla, a MAMW based on the improved version of Agilla (Agilla2)
and the TinyWIDS intrusion detection system, starting from the basic concept
and using the tools and techniques in the proposed security framework to pro-
duce a full-featured security platform which aims to update the previous works
described in [11] and in [12]. Notice that, as it will be pointed out in Section
15.3.2, although various versions of WIDzilla have been designed, at the time
of writing, not all those versions are implementable in real WSN nodes.

15.3.1 WIDzilla: incremental design

The first instance of WIDzilla is shown in Figure 15.13. In this section, the
TinyWIDS components have been added to Agilla2 and connected TinyWIDS’
attack notifications to an Agilla reaction which inserts an Attack Tuple in the
Agilla2 tuplespace of the current node. These tuples can be monitored (locally or
remotely by other nodes) and read by agents, which can then perform defence-
related actions. For sake of clarity, the TinyOS radio transceiver drivers are
represented as a separated component.

Starting from the first WIDzilla concept, the MAMW has been extended to
embed also the passive security features and the other techniques described in
this work to finally obtain the proposed security framework. A first improvement
has been to adopt a real IEEE 802.15.4 MAC layer. The TKN154 has been
chosen since that, at the time of writing, it is the MAC layer with the largest
number of supported WSN node platforms.

Figure 15.14 shows the resulting software stack. The TKN154 adoption
implies Agilla2 to be modified to conform the standard IEEE 802.15.4 interfaces
instead of the TinyOS Active Message-based primitives.

With the inclusion of a proper MAC layer, the research activities moved

15.3. WIDZILLA 139

Figure 15.13: (1) First instance of WIDzilla

Figure 15.14: (2) WIDzilla with TKN154

forward to design a third version of WIDzilla which also includes the passive
security mechanisms, i.e., cryptography. Although the last version of TAKS
(Section 10.5.4) could be added on top of TinyOS/TKN154, thanks to research
activities described in Section 10.6, it has been decided to include TAKS in
the form of a IEEE 802.15.9-compliant KMP and, as requirement, the IEEE
802.15.9 MPX layer. The third version of WIDzilla featuring the IEEE 802.15.9
layer and the TAKS KMP is shown in Figure 15.15.

A variant of this third version (Figure 15.16) replaces the TAKS KMP with
the ECTAKS KMP, introducing ECC-powered passive security features. Given
the IEEE 802.15.9 interfaces, the two KMP could be interchanged easily or hav-
ing both included and selectable at runtime. In the next paragraphs, however,
ECTAKS KMP is assumed to be the adopted KMP.

With the introduction of ECC via ECTAKS and the research activities de-
scribed in Chapter 12, the next step has been to modify the ECTAKS KMP
to rely on the ECC-HAxES hardware accelerator (if present) to perform ECC
operations, as depicted in Figure 15.17.

Finally, Figure 15.18 presents the final version of WIDzilla, in which the

140 CHAPTER 15. AGILLA EVOLUTION

Figure 15.15: (3) Passive security using TAKS KMP via the IEEE 802.15.9 layer

Figure 15.16: (4) Passive security using ECTAKS KMP via the IEEE 802.15.9
layer

Lightweight Blockchain Anti-Tamper mechanism has been included in the MAC
layer to protect and filter out messages (and agents) coming from unreliable
(and un-trustable) source nodes.

15.3.2 Implementation issues and Future Works

Considering the common WSN node platforms with the biggest amount of Flash
storage (128 KB), only the first version of WIDzilla (Figure 15.13) can be im-
plemented with minor problems. The others, instead, presents different issues:

15.3. WIDZILLA 141

Figure 15.17: (5) Introducing the ECC-HAxES ECC hardware accelerator

Figure 15.18: (6) Final WIDzilla platform

• The TKN154 platform compatibility (for example, the Iris platform is not
supported)

• The amount of memory for code and constant data required is beyond the
available capacity.

• Some components may have unsustainable high RAM requirements (e.g.,
maximum running agents and routing tables for Agilla2 or the WSN-LBC
blockchains)

The first issue could be solved by adding support for the required plat-
forms. In particular, some attempts have been made for the Iris platform [102].

142 CHAPTER 15. AGILLA EVOLUTION

Concerning the memory storage requirement, one solution would be to use the
larger external Flash/ROM memory, which can contain all the required data,
at the price of a slower access (i.e., every chunk of data stored would need to
be read and swapped into RAM before use). The telosb platform, for example,
is equipped with a 1024 KB external serial Flash storage, which would be more
than enough for storing data (and agents code). However, using this storage
solution for code is not as easy, since in most WSN platforms the MCU can
neither execute code directly from the external memory nor re-write the entire
code sections at runtime2.

Future works will analyze new WSN node platforms with increased memory
storage to develop the full WIDzilla platform and, eventually, add new features
and functionalities to make it the reference security-oriented MAMW.

15.4 Related Publications
The Model-based Porting technique is described in [7], while the detailed de-
scription of the Agilla porting process can be found in [94]. The use of Agilla2/3
is proposed in [8] and [9]

2Some platforms allows to re-write code sections with some limitations

Part III

Use cases

143

Chapter 16

VISION

This chapter describes the how the techniques and tools described in the previ-
ous chapters found application in the context of the VISION project.

16.1 VISION

TheVideo-oriented UWB-based Intelligent Ubiquitous Sensing (VISION) Project
[103] is an European Project which aimed to provide real-time sensing services,
in particular 3D video sensing, using mobile and context-aware operations. In
VISION, the 60 GHz Ultra-Wide Band (UWB) radio links are used for broad-
band communications and for real-time 3D video streaming. The Ubiquitous
Sensing, apart from video streaming, is provided by a energy-optimized WSN
in which WSN nodes perform light, temperature, audio and other sensor read-
ings. Due to the UWB issues, in VISION, a set of cross-layer optimizations
have been provided to achieve the best possible Quality of Service (QoS). The
VISION WSN, empowered by real-time video streaming through UWB radio
channels gave the birth to the so-called Wireless Multimedia Sensor Network
(WMSN).

Figure 16.1: VISION platform overview

145

146 CHAPTER 16. VISION

The necessity of such a level of optimization is satisfied in VISION by the
WSN Manager which employs a MW to apply dynamic reconfiguration plans
to the WSN. Those plans are meant to dynamically adjust the QoS and/or the
energy consumption.

An overview of the VISION project platform is shown in Figure 16.1.

16.2 Agilla MW in VISION

The part of the VISION MW running on WSN nodes was provided by the
Agilla2 MW, which, thanks to the research activities described in Section 15.2,
is capable of running the required configuration plans and monitoring the current
power supply (i.e., batteries) status.

During the research activities in the context of the VISION project, a new
feature has been introduced in Agilla2, the Morse-based communication via the
LEDs embedded in the WSN nodes. A new agent instruction (morse) has been
added to Agilla2 ISA to translate a short ASCII message (which is pushed in
the Agilla2 operand stack) into a Morse-encoded sequence of LEDs blinks. This
feature is used in the VISION use-case (described in the next section) to provide
an uni-directional communication channel which is used by the WSN nodes to
signal their presence and identity when harsh conditions (e.g., smoke presence)
are detected. The morse instruction is issued by a proper agent which gets
injected as consequence of an emergency reconfiguration-plan.

16.3 VISION Fire Rescue Use case

The main VISION use case is the Fire rescue scenario, shown in Figure 16.2.
In a building which is supposed to be on fire, a remote-controlled Robot is
released to help rescuers to locate and save endangered people currently in
the building. The robot is equipped with a UWB radio transceiver, a set of
cameras (one of which is an infrared camera providing real-time video even
with the presence of smoke/fire) and a WSN sink node. The Robot act as a
FFD and as a bridge between IEEE 802.15.4 WSN and the UWB receiver in
the main operation server. The camera is also used as mean to detect WSN
node presence and identity by decoding their morse-based communication. The
information coming from the robot, from the cameras and from the WSN are
combined together to provide rescues with an augmented reality video which
can be visualized by rescuers both from the main server or via virtual reality
glasses. This augmented video can be used to find e.g., the shortest or safest
path to reach endangered people.

In the use-case, the dynamic reconfigurations happen in the following sce-
narios:

• When no fire is detected, the WSN nodes sends periodically sensor data
to the sink node. When a low battery status is detected, a reconfiguration

16.4. RESULTS 147

Figure 16.2: VISION: Fire-rescue scenario

plan is adopted to modify the sampling frequency, reducing the energy
consumption.

• When fire is detected (e.g., by room smoke sensors), a reconfiguration plan
is adopted to flood the WSN with fire tracking agents, which are used to
gather information on the affected area.

• Also, a reconfiguration is performed when additional energy-hungry sen-
sors are needed to facilitate the rescuing operations.

• Finally, a reconfiguration plan can be adopted to inject the morse agent
in the WSN.

16.4 Results
The VISION infrastructure has been successfully demonstrated as final part of
the project. The enhanced Agilla2 (with the new morse instruction) has been
validated and actively used in the context of the demonstration on Iris WSN
motes, equipped with a MDA100CB sensorboard modified to embed a bigger
red LEDs used to blink the morse-encoded messages on request (Figure 16.3).

148 CHAPTER 16. VISION

Figure 16.3: VISION: modified MDA100CB sensorboard on an Iris node

Chapter 17

SEAMLESS

This chapter describes the SEAMLESS project and how the technologies de-
scribed in the previous chapters took part in it.

17.1 SEAMLESS

SEAMLESS is a National Italian project in the context of the Military National
Research Program. SEAMLESS objective was to develop a secure platform
formed by a WSN platform, a management system and a set of monitoring
tools. SEAMLESS was carried out by the Italian company RoTechnology with
the support of the University of L’Aquila as technology consultant.

An overview on SEAMLESS is shown in Figure 17.1.
SEAMLESS WSN uses TinyOS and the TKN154 MAC layer [31] to realize

a Cluster-Tree or, optionally, a Mesh topology. To do so, SEAMLESS intro-
duces in TinyOS the support for the previously unsupported Iris platform for
the TKN154, an implementation of the Ad-Hoc On-Demand Distance Vector
(AODV) routing protocol and the Multi-Hop communications support for mesh
topologies.

Each node in the SEAMLESS WSN mounts the MTS420CC, a sensorboard
equipped with various sensors, including a temperature/humidity sensor, a GPS
and a 3-axis accelerometers. These sensors are read by the node and sent to
a message queue and a message broker (using the MQTT protocol [111]) to
a server which offers network operators an HTTP monitoring interface (i.e., a
Dashboard) which can be consulted to visualize sensor data on different formats,
including a geographical representation. An example is shown in Figure 17.2.

From the security point of view, TAKS is adopted to provide both lightweight
encryption and authentication. The inner symmetric algorithm used in TAKS
is AES 128bit in CTR mode and HMAC MAC function is used to generate
the authentication tags. As active security measure, instead, WIDS is used to
detect jamming, Sybil or general Spoofing attacks.

149

150 CHAPTER 17. SEAMLESS

Figure 17.1: SEAMLESS overview

17.2 Results
The SEAMLESS Project has been successful: the WSN confidentiality (pro-
vided by TAKS) was tested against sniffing-based attacks (i.e., using nodes pro-
grammed to catch every valid frame) while the intrusion detection was tested by
simulating jamming attacks, replay attacks, sybil attacks and spoofing. When
one of such attacks has been detected, attack information and the nodes under
attacks are displayed in the Dashboard to alert the network operators.

17.3 Related publications
Additional information on SEAMLESS can be found in the paper presented by
authors in the ITASEC 2020 Italian Cyber-Security Conference [5].

17.3. RELATED PUBLICATIONS 151

Figure 17.2: SEAMLESS: geographical visualization of sensor data

152 CHAPTER 17. SEAMLESS

Chapter 18

SafeCOP

The Safe Cooperating Cyber-physical Systems using Wireless Communication
(SafeCOP[115]) is an ECSEL European Project in which the cooperation of
Cyber-physical systems (CPSs) is adopted as mean to provide security and
safety assurance. The cooperating CPSs are referred as CO-CPSs. To do so,
SafeCOP provides methods and tools, and extensions to technologies towards
safety of CPSs. In general, SafeCOP’s objective have been:

• propose a safety-assurance framework to facilitate the safety certification
process;

• develop a Runtime Manager used to assert the normal behavior of the
target CO-CPS, triggering and switch the CO-CPSs to a safer degraded
mode when needed, i.e. a operational mode which trades performances or
efficiency for safety;

• extends the wireless communication protocols towards security and safety;

• provide contributions to current standards and regulations;

• provide a set of real world scenarios to demonstrate the SafeCOP ap-
proach.

A complete overview on SafeCOP is shown in Figure 18.1. SafeCOP started
in April 2016 and ended in June 2019 involving 28 partners from 6 different
European countries.

18.1 SafeCOP Use Case 5
The SafeCOP UC5 (V2I Cooperation for Traffic Management) demonstrates
the effectiveness of the SafeCOP approach in Vehicle-to-Infrastructure commu-
nication for traffic management. In this context, different Cooperative Intelligent
Transport Systems (C-ITS) communicates together to exchange information and
to warn about possible road problems. This increases the traffic management

153

154 CHAPTER 18. SAFECOP

Figure 18.1: SafeCOP: overview

effectiveness but, in general, increases also the safety concerns. On this side,
the SafeCOP approach tries to:

• adopt new technologies to improve security and safety assurance;

• standardize methods and techniques to favor utilization.

In the UC5, one of the key techniques is the sensor fusion: different tech-
nologies cooperate together to provide the Runtime Manager with data useful
to decide a reaction, eventually causing the C-ITS to switch to the degraded
mode to ensure the safest possible behavior for the C-ITS.

The UC5 scenario is shown in Figure 18.2.
The technologies adopted in the UC5 are the following:

• a Local Control Unit (LCU) which collects data and decides (using the
Runtime Manager) which kind of actions to perform.

• Video Content Analysis (VCA) on the roadside through the use of cam-
eras.

• On-Board Units (OBU) installed on the vehicles. The OBUs provide indi-
vidual vehicle data, such as accelerations, speeds, position etc. These data
is fused to produce derived measures of the vehicle behavior.

18.1. SAFECOP USE CASE 5 155

Figure 18.2: SafeCOP UC5: overview

• Adaptive Traffic Light (A-TLS) and the Green Light Optimal Speed Advi-
sory (GLOSA) to actively control the traffic flow.

• Roadside Sensor Networks (RSU-SN) to monitor the environmental pa-
rameters in the areas in proximity of the road.

This last technology has been deployed through the use of WSN and it will
described in details in the next section.

18.1.1 UC5 Road-side Unit - Sensor Network (RSU-SN)
The RSU-SN is realized by a star-topology WSN deployed in the area around
the road/crossroad of interest. Each WSN mote is equipped with five different
sensors:

• Light sensor (Lumen)

• Temperature sensor (Celsius degrees)

• Humidity sensor (percentage)

• Fog presence sensor (percentage)

• Ice presence sensor (percentage)

The light sensor is used to detect the amount of the current environmental light,
which is useful to detect an eventual dark road situation that could represent a

156 CHAPTER 18. SAFECOP

safety issue. The temperature and the humidity sensor are used to detect safety
issues that could arise when it is raining. The fog sensor is a virtual sensor,
which is created by combining the temperature, the humidity and the seasonal
dew point. Finally, the ice sensor is used to retrieve a percentage of ice presence
on the road, which is a critical information when safety is concerned.

The WSN is show in Figure 18.3. The sink node (center of the star) gathers
data from the device nodes and forwards them to a single-board-computer (SBC)
connected via serial port. The SBC perform basic tests on data and filters
erroneous or corrupted data out before sending them to the LCU.

Figure 18.3: SafeCOP UC5: RSU-SN

The WSN node platforms selected has been the Memsic Iris nodes [99]. Ev-
ery communication among WSN nodes is based on the IEEE 802.15.4 standard
and it is encrypted through TAKS and monitored though TinyWIDS to detect
intruders.

Communications between the SBC and the LCU are instead based on con-
ventional networking protocols (e.g., Ethernet, WIFI or IEEE 802.11p), using
the Message Queue Telemetry Transport (MQTT [111]) protocol, using a spe-
cific syntax defined within the UC5 scenario.

18.2 Results
The SafeCOP UC5 has been part of the SafeCOP final demonstration. The
demonstration has successfully shown the cooperation among the UC5 tech-
nologies, the ability to communicate with the LCU and the switch of every
component to the degraded mode when the safety-concerning scenarios has been
simulated. TAKS and TinyWIDS have been validated successfully during the

18.2. RESULTS 157

demonstration by simulating sniffing attacks, jamming attacks and replay at-
tacks. Sniffing attacks failed (i.e., the attacker could not retrieve the plaintext
messages) thanks to TAKS, while TinyWIDS successfully detected the other at-
tacks, sending notifications causing the LCU to switch the RSU-SN to degraded
mode.

158 CHAPTER 18. SAFECOP

Chapter 19

DESTAK

This chapter presents the TAKS over DSME (DESTAK), a project aimed to
provide a secure environment over the IEEE 802.15.4 MAC Behavior DSME
using hybrid cryptography schemes. After a brief description of the idea, we
present the design and the integration of TAKS in the DSME, its implementation
using a network simulator and some exprerimental results.

19.1 DESTAK: TAKS over DSME
DESTAK is a project resulting from a collaboration between the DEWS cen-
ter of the University of L’Aquila and the CISTER of the ISEP/IPP of Porto.
DESTAK aims to provide a lightweight security solution (with encryption, au-
thentication and key management) for Industrial IoT protocols. In particular,
DESTAK focuses on the IEEE 802.15.4 Deterministic Synchronous Multichan-
nel Extension (DSME) MAC behavior [16]. The DSME add Multi-channel ac-
cess to the radio medium via frequency hopping and channel adaptation (i.e.,
dynamic allocation of channels depending on the channel states). Also, DSME
adds other features e.g.,Multi-superframes, Group Acknowledgements, Enhanced
Beacons to delimit multi-superframes, CAP reduction, etc.

DSME idea can be observed in Figure 19.1, where two Multi-superframe are
shown. In green, the GTSs reserved to a single node are shown.

CAP CFP CAP CFP CAP CFP CAP CFP

Superframe 1 Superframe 2 Superframe 1 Superframe 2

Multi-superframe 1 Multi-superframe 2 Single GTSs

Figure 19.1: DSME multi superframe structure

159

160 CHAPTER 19. DESTAK

19.2 OpenDSME
OpenDSME [92] is a DSME simulator based on the famous Omnet++ project
[93]. In OpenDSME, there are several compound modules such as the DSME
data link layer which handles the GTSs allocations. One of the major limitations
of OpenDSME is the lack of security modules.

19.3 Secure OpenDSME
In order to provide a lightweight security mechanism to DSME, TAKS has been
adopted to be implemented in the OpenDSME simulator.

The adaptation and implementation have been performed as follows.

1. A set of classes for providing a C++ version of TAKS have been designed
and implemented

2. A new set of Information Elements (IEs) have been designed to fit the
limitations and the requirements of TAKS and DSME. As a result, a new
MAC frame format which includes the TAKS IEs has been determined
and proper classes created (Figure 19.5).

3. Additional classes have been created to model application/higher level
protocol payloads.

4. The TAKS classes have been integrated into the OpenDSME code to
encrypt/tag outgoing data frames and decrypting/authenticate incoming
frames using TAKS and the TAKS IEs.

19.3.1 TAKS for Omnet++
TAKS has been implemented in C++ to be inserted and compiled with the
Omnet++ framework. In particular, TAKS key components have been mod-
eled though the introduction of the TAKSComponent<nbits> class. This class
contains all the methods required to store and use a key component of arbi-
trary bit length. The TAKS encryption and decryption function are instead
implemented through the singleton class Taks<>. This class also contains the
TAK function, the symmetric encryption/decryption and the authentication
functions.

19.3.2 TAKS Information Elements
IEEE 802.15.4 IEs in a nutshell

In the IEEE 802.15.4 standard, the IEs are optional fields which can appear
both in the MAC header or at the beginning of the payload. In the first case,
they are called Header IEs, while in the latter they are called Payload IEs.

Despite the differences, an IE usually contains upper-layer information and
data which cannot be entirely considered a payload. The presence of one or

19.3. SECURE OPENDSME 161

more IEs is signaled by the IE present field in the Frame Control Field. If IE
present=1, after the conventional header fields, IE headers (eventually followed
by the IE contents) are found. Also, special headers (called IE Terminations)
are appended at the end of the IEs to signal the beginning of the real MAC
payload.

An Header IE starts with a 2-byte header composed by:

• a length field, which contains the length (in bytes) of the IE

• a elementID field, which denote the specific IE. Some pre-defined IDs are
listed in the standard

• a type field, which is a single bit to specify if the IE header refers to a
Header IE (type=0) or a Payload IE (type=1)

After the header, the content of the IE can be appended. At the end of all the
Header IEs, the 2-byte Header Termination HT2 is required.

Payload IEs are slightly more complex. First of all, in the MAC header
the Header Termination HT1 needs to be inserted. Then, preceding the former
MAC payload, the Payload IE Headers and the relative contents can be spec-
ified. The Payload IE Header structure is similar to the Header IEs (only the
bit-length of the fields changes), with only the type field content as real differ-
ence. After all the Payload IEs, a special termination header (called Payload
Termination needs to be appended before the MAC payload.

TAKS IEs definition

In order to insert the information required by TAKS in addition to the ciphertext
(i.e., the Key Reconstruction Information KRI and the Authentication Tag τ),
the following approaches have been analyzed:

• Appending KRI and τ in the MAC payload

• Using Header IEs for KRI and τ , placing the ciphertext in the MAC
payload

• Using Payload IEs for KRI and τ , then appending the ciphertext in the
MAC payload

The first option have been discarded, since it is a un-structured approach
that could bring to frame parsing problems. The other two options are instead
shown in Figure 19.2 and in Figure 19.3.

Figure 19.2: TAKS IEs: Header IE case

162 CHAPTER 19. DESTAK

Figure 19.3: TAKS IEs: Payload IE case

Due the very limited space available in the MAC frame, the Header IE option
has been selected, since it saves few bytes (a small but important amount in
respect of the available space). Fixing the TAKS key length to 128 bits and
using d = 2, the total amount of space for ciphertext can be estimated to be
∼ 70 bytes or ∼ 50 bytes if extended addresses are used. The final IEEE 802.15.4
frame structure is shown in Figure 19.4

Figure 19.4: DESTAK IEEE 802.15.4 frame

Finally,the required C++ classes for modeling IEs, Header IEs, Payload
IEs and the specific TAKS IEs have been defined and implemented. Proper
methods for parsing and serializing those classes have also been developed for
later inclusion in OpenDSME.

19.3.3 Payload representation

Since the payload is left un-modeled by OpenDSME, simple storage class has
been designed to uniform the overall Secure DSME platform.

19.3.4 Integration in OpenDSME

The integration of TAKS into OpenDSME has been performed in three steps:

1. All the class described in the previous sections have been added in OpenDSME.
The resulting integration is shown in Figure 19.5.

19.4. RESULTS 163

2. The finite state machine which handles outgoing data-only frames has
been injected with the code required to perform TAKS encryption and to
append the resulting TAKS IEs.

3. The finite state machine which handles incoming frames has been injected
with the IE parsing procedures and the TAKS decryption.

Figure 19.5: TAKS IEs: Payload IE case

19.4 Results
In order to validate the simulator, the correct encryption/decryption of data
frames and to evaluate the performance impact of TAKS in OpenDSME, a con-
figurable Omnet++ simulation has been created. In this simulation, a separate
script is used to configure different values for the following parameters:

• The TAKS key length (64, 96, 128 bits)

• The number of nodes in the simulated WSN

• The number of frames generated by every node

• The MAC Beacon Order (BO), Superframe Order (SO) and the DSME-
specific Multi-superframe Order (MO)

• The simulation total time

Figure 19.6, shows the comparison of throughput done for nodes ranging
from 5-30. The setup with no security was able to provide larger throughput
comparatively. The experiment done with the highest order of security (128
bit key length) was able to obtain around 10% lesser than the one without the

164 CHAPTER 19. DESTAK

Figure 19.6: DESTAK results

security; in the case of lesser nodes (5 nodes), the reduction of throughput was
only around 5%. From this test, it very clear that TAKS is an ideal mechanism
to support these low power networks for a smaller number of nodes as it will
greatly compromise on throughput.

19.5 Related publications
DESTAK is described in the technical report [6], which is currently a work in
progress.

Part IV

Conclusions

165

Chapter 20

Conclusions

In this PhD thesis, a framework for proving security to WSNs has been pro-
posed. This framework embeds different features, tools, approaches and tech-
niques which can be adopted and combined to fit the requirements of each
WSN application. In particular, this thesis presented lightweight cryptographic
schemes, a cryptographic hardware accelerator, intrusion detection systems and
a anti-tampering mechanism based on blockchains for WSN. In order to in-
crease the flexibility and the cooperation of such components, an agent-based
middleware has been adopted and enhanced. The framework has been then
adopted to create a WSN secure platform which contains all the above men-
tioned components. The framework and the components it provides, have been
validated through various test cases, including the adoption of them in the con-
text of different European Research Projects (VISION, SEAMLESS, SafeCOP)
deliverables and use-cases.

The punctual list of the described contributions follows.

1. The TAKSv2 re-development, enhancement, on-field validation and per-
formance evaluation. Starting from [11] and other previous works, TAKS
has been re-developed and enhanced to extend its compatibility with soft-
ware platforms (e.g., TinyOSv2) with a new software architecture that
allows to easily integrate future contributions.

2. A secure random number generator for TAKS. In [19], despite to the pres-
ence of randomly-generated values, no details are present on how they are
generated. This thesis proposed two new lightweight CSPRNG to be used
in TAKS.

3. The IEEE 802.15.9-compliant TAKS KMP design. Considering the release
of the IEEE 802.15.9 standard for Cryptographic Key Transportation, this
thesis proposed a new KMP design featuring TAKS.

4. The design of OpenZB-enabled TAKS. This thesis proposed also a adapted
version of TAKS which is integrated to the OpenZB software platform to

167

168 CHAPTER 20. CONCLUSIONS

provide hybrid cryptography encryption, authentication and key manage-
ment.

5. The Elliptic Curve TAKS (ECTAKS) development, validation and perfor-
mance evaluation. This thesis proposed a new version of TAKS extended
to used Elliptic Curve Cryptography as base. This version has been im-
plemented in TinyOS by means of the TinyECC library and validated.

6. The novel TAKS/ECTAKS key components generator. In [19], the TAKS
key components are generated with an outdated generator. This thesis
proposed a new Python-based key components generator which is very fast
and able to generate key components for every logical topology chosen.

7. The development, validation and performance evaluation of a novel hard-
ware accelerator for elliptic curve cryptography for WSN nodes (ECC-
HAxES). Due to the limitation and the performance impact of ECC, this
thesis proposed a new approach featuring the design of a ECC hardware
accelerator for WSN nodes. This accelerator has a low-area policy and can
be deployed in low-power FPGA platforms connected to the WSN node.

8. The implementation of WIDS on TinyOS (TinyWIDS). With respect to
[13]. This thesis proposed a new TinyOS-based implementation of WIDS
with additional features (e.g., Metrics, Rule-generated Observables, etc.).

9. The definition of a syntax for describing attacks in TinyWIDS. In [13],
no standard methodology to describe attacks as WPM is defined. This
thesis proposed a JSON-based syntax in TinyWIDS which is parsed to
automatically create a WPM describing the target attack.

10. The development, validation and performance evaluation of a novel Anti-
tampering blockchain-based mechanism for WSNs. This thesis proposed
a novel anti-tampering mechanism which makes use of the blockchain
technology to detect bed-behaving WSN nodes and excluding them from
the WSN communications. This mechanism is also able to detect in-
jected/captured nodes.

11. The development, validation and performance evaluation of the TinyOSv2-
compatible version of the Agilla MAMW (Agilla2). The Agilla MW is not
natively compatible with the last version of the TinyOS operating system.
This thesis proposed a new version of it resulted from the porting of the
old Agilla and the addition of new useful features.

12. The definition of a new model-based methodology to perform the porting of
WSN software application (Model-based Porting). The porting operations
described in the previous point led to the definition of a general method-
ology to support the porting of WSN software application to different
hardware or software platforms. This methodology makes use of a model-
based technique to locate, inside the target application, the components
requiring the porting and guide the porting operations.

20.1. FUTURE WORKS 169

13. The design of a security-oriented MAMW (WIDzilla). This thesis pro-
posed an integration of the tools and techniques of the proposed framework
in a novel security-oriented MAMW for WSN.

14. The development, validation and performance evaluation of a DSME-
compatible version of TAKS in an Omnet++-based simulator (DESTAK).
Considering the industrial applications of WSNs, this thesis proposed the
integration of TAKS into the Deterministic Synchronous Multi-channel
Extension (DSME) IEEE 802.15.4 MAC Behavior. TAKS has been in-
tegrated into an Omnet++ based simulator (OpenDSME), validated and
evaluated in its performances.

15. Contributions to the VISION project deliverables and demonstrator.

16. Contributions to the SEAMLESS project deliverables.

17. Contributions to the SafeCOP project deliverables and to the UC5 use-case
and demonstrator.

20.1 Future Works

Starting from the results of this thesis, below a list of possible future research
activities is presented.

• TAKS improvement: Post-quantum (EC)TAKS : with the Quantum Com-
puters and thanks to the Shor Algorithm, it will be possible to reduce
the computation time required to perform an exhaustive linear research
(bruteforce) to solve the factorization and the discrete logarithm problems,
causing all the current era public-key cryptography to stop being secure.
However, the research world is actively searching for quantum-resistant
cryptography, i.e., cryptographic schemes which maintain their security
level even when attacked with a quantum computer. In this context, one
of the most promising quantum-resistant problem is based on the com-
putation of elliptic curve isogenies. A future version of TAKS/ECTAKS
could be developed to face the quantum world and, at the same time,
keeping a lightweight profile, so that it could be kept to be usable in
resource-constrained platforms.

• Improved WSN nodes with FPGA. As described in Chapter 12, in this
thesis a hardware accelerator on a reconfigurable platform for WSN nodes
is proposed. However, in the future, two actions could be taken to im-
prove the cooperation between the WSN nodes and their accelerators:
first, the FPGA chip could be mounted directly on the WSN MCU and
radio transceiver to allow developers to have an embedded and wireless-
interconnected reconfigurable platform which could host accelerators of
any kind. A second improvement could be the deployment of the acceler-
ator and the MCU/transceiver in a single chip.

170 CHAPTER 20. CONCLUSIONS

• New MW with High-level language for WSN MW. One practical issue with
Agilla and our enhanced versions is the lack of a proper abstraction level
of the programming language used for developing agents. In fact, Ag-
illa Agent Language is an assembly-like language, with no high-level con-
structs, no software engineering concepts and redundant instructions. A
future advancement would be to exploit common high-level (interpreted)
programming languages and their bytecode as agent language. For ex-
ample, it could be possible to exploit e.g., the Python language to write
agents, convert the Python code into Python byte code and code objects
that could be interpreted by the MAMW engine. A challenge, in this case,
would be to adapt the interpreter to the resource-constrained WSN nodes.

20.2 List of Pubblications

• Conference Paper: Bozzi, Luciano & Giuseppe, Lorenzo & Pomante, Luigi
& Pugliese, Marco & Santic, Marco & Santucci, Fortunato & Tiberti, Wal-
ter. (2018). TinyWIDS: a WPM-based Intrusion Detection System for
TinyOS2.x/802.15.4 Wireless Sensor Networks. 13-16. 10.1145/3178291.3178293.

• Conference Paper: W. Tiberti, A. Camrmenini, D. Cassioli, A Lightweight
Blockchain Technique for Anti-Tampering in Wireless Sensor Networks,
submitted to the ITASEC 2020 Italian Conference on Cyber-Security,
2020, [4]

• Conference Paper: M. Pugliese, L. Bozzi, L. Pomante, W. Tiberti, and F.
Santucci, SEAMLESS Project: Development of a Performing Secure Plat-
form for IEEE 802.15.4 Network Applications, submitted to the ITASEC
2020 Italian Conference on Cyber-Security, 2020 [5]

• Conference Paper: W. Tiberti, H. Kurunathan. "DeSTAK - A secure
approach for low power deterministic networks". Work in progress, [6]

• Conference Paper: Pomante L., Santic M., Tiberti W., ”A Renovated
Mobile Agents Middleware for WSN - Porting of Agilla to the TinyOS 2.x
Platform” in IEEE 2nd International Forum on Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI) (IEEE
RTSI 2016)

• Journal Paper: W. Tiberti, F. Caruso, L. Pomante, M. Pugliese, M. San-
tic, F. Santucci, Development of an extended Topology-based Lightweight
Cryptographic Scheme for IEEE 802.15.4 Wireless Sensor Networks, sub-
mitted to the International Journal of Distributed Sensor Networks, 2019
[3]

• Journal Paper: D. Cassioli, A. Di Marco, L. Pomante, M. Santic, W. Tib-
erti. A Model-based porting of WSN middleware: the Agilla experience,
Work in progress, [7]

20.2. LIST OF PUBBLICATIONS 171

• Journal Paper: Berardinelli L., Di Marco A., Pace S., Pomante L., Tib-
erti W. "Energy Consumption Analysis and Design of Energy-Aware WSN
Agents in fUML", Modelling Foundations and Applications, Springer In-
ternational Publishing, 2015, 10.1007/978-3-319-21151-0_1

• Journal Paper: Vittorio Cortellessa, Antinisca Di Marco, Daniele Di Pom-
peo, Francesco Gallo, Stefano Pace, Luigi Pomante, and Walter Tiberti.
2018. Energy-Driven Reconfiguration of Applications for Wireless Sensor
Networks. In Companion of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering (ICPE ’18). ACM, New York, NY, USA,
79-84. DOI: https://doi.org/10.1145/3185768.3186312

• Journal Paper: Barile G., Leoni A., Muttillo M., Sulli V., Tiberti W.
: ”SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators
Interfacing for Industry 4.0”, Special Issue ”Energy Efficient Systems, Sen-
sors, and Smart Management Approaches for Industry 4.0, (work done in
collaboration with a different research group)

• Journal Paper: (multiple authors), ”Safety and Security in V2I Traffic
Management: The SafeCOP Approach”, Work in progress, [122]

• Poster: TinyWIDS - DATE 2019 University Booth, http://www.safecop.eu/wp-
content/uploads/2019/03/conference_poster_UNIVAQ.pdf

• Poster: ”A Mobile-Agent Security-Oriented Middleware for WSN”, ACACES
2017 (presentation was done by the student)

• Poster: ”A Real-Time and Mixed Criticality Extension for a System-Level
HW/SW Co-Design Methodology”, ACACES 2017

• Poster: ”A Secure Mobile-Agent Middleware platform for WSN” (HiPEAC
2018, presentation was done by the student)

• Poster: Santic M., Pomante L., Tiberti W., Centofanti C.: ”Labsmiling:
a framework, composed of a remotely accessible testbed and related sw
tools, for analysis and design of low data-rate wireless personal area net-
works based on ieee 802.15.4” in Design, Automation and test in Europe
conference (DATE), Lausanne (CH) 27-31 March 2017

172 CHAPTER 20. CONCLUSIONS

Acknowledgements

The author would like to thank all the people, colleagues, researchers, professors
and technical staff which helped in some way to any of the research activities
presented in this work. In particular, I would like to thank

my advisor Luigi Pomante for his guidance, support and advices through my
Laurea, Laurea Magistrale and this PhD; my co-advisors Antinisca Di Marco
and Marco Santic, Prof. Fortunato Santucci and Dr. Marco Pugliese for the
help, information, advices, encouragement and support during all the research
activities. We would like also to thank Dr. Stefano Marchesani, Alessandro
Ranalli, Eugenio Carocci, Lorenzo Di Giuseppe, Luciano Bozzi and Fabio Del
Forno for their previous works on TAKS, WIDS and in the context of the SEAM-
LESS project; Dr. Dajana Cassioli for her support and collaboration in various
activities; Proff. Norberto Gavioli and Riccardo Aragona for their insights and
hints on TAKS theoretical security; Dr. Ricardo Severino, Harrison Kurunathan
and all the great CISTER researchers and staff for all the support given during
author’s exchange period; Dr. Carlo Brandolese and all the people involved in
the SafeCOP UC5.

Last but not least, I would like to thank my beloved Roberta, who, with her
support, encouragement, patience and understanding, enlighted me during the
writing part of this thesis.

173

174 CHAPTER 20. CONCLUSIONS

Bibliography

[1] Bozzi, Luciano & Giuseppe, Lorenzo & Pomante, Luigi &
Pugliese, Marco & Santic, Marco & Santucci, Fortunato & Tib-
erti, Walter. (2018). TinyWIDS: a WPM-based Intrusion Detec-
tion System for TinyOS2.x/802.15.4 Wireless Sensor Networks. 13-16.
10.1145/3178291.3178293.

[2] TinyWIDS - DATE 2019 University Booth, http://www.safecop.eu/
wp-content/uploads/2019/03/conference_poster_UNIVAQ.pdf

[3] W. Tiberti, F. Caruso, L. Pomante, M. Pugliese, M. Santic, F. Santucci,
Development of an extended Topology-based Lightweight Cryptographic
Scheme for IEEE 802.15.4 Wireless Sensor Networks, submitted to the
International Journal of Distributed Sensor Networks, 2019 https:
//univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_
univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=
zYZ20o

[4] W. Tiberti, A. Camrmenini, D. Cassioli, A Lightweight Blockchain
Technique for Anti-Tampering in Wireless Sensor Networks, submitted
to the ITASEC 2020 Italian Conference on Cyber-Security, 2020, https:
//univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_
univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=
zYZ20o

[5] M. Pugliese, L. Bozzi, L. Pomante, W. Tiberti, and F. Santucci,
SEAMLESS Project: Development of a Performing Secure Platform
for IEEE 802.15.4 Network Applications, submitted to the ITASEC
2020 Italian Conference on Cyber-Security, 2020 https://univaq-my.
sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/
EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

[6] W. Tiberti, H. Kurunathan. "DeSTAK - A secure approach for low
power deterministic networks". Work in progress, https://univaq-my.
sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/
EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

175

http://www.safecop.eu/wp-content/uploads/2019/03/conference_poster_UNIVAQ.pdf
http://www.safecop.eu/wp-content/uploads/2019/03/conference_poster_UNIVAQ.pdf
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

176 BIBLIOGRAPHY

[7] D. Cassioli, A. Di Marco, L. Pomante, M. Santic, W. Tib-
erti. A Model-based porting of WSN middleware: the Ag-
illa experience, Work in progress, https://univaq-my.
sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/
EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

[8] Berardinelli L., Di Marco A., Pace S., Pomante L., Tiberti W. "En-
ergy Consumption Analysis and Design of Energy-Aware WSN Agents
in fUML", Modelling Foundations and Applications, Springer Interna-
tional Publishing, 2015, 10.1007/978-3-319-21151-0_1

[9] Vittorio Cortellessa, Antinisca Di Marco, Daniele Di Pompeo, Francesco
Gallo, Stefano Pace, Luigi Pomante, and Walter Tiberti. 2018. Energy-
Driven Reconfiguration of Applications for Wireless Sensor Networks. In
Companion of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’18). ACM, New York, NY, USA, 79-84. DOI:
https://doi.org/10.1145/3185768.3186312

[10] Pugliese M., "Managing Security Issues in Advanced Applications of
Wireless Sensor Networks", PhD Thesis, 2008

[11] Marchesani S., "A Middleware approach for WSN security: Cryptogra-
phy and Intrusion Detection for Real-World Application", PhD Thesis,
2013

[12] L. Pomante, M. Pugliese, S. Marchesani and F. Santucci, "WINSOME: A
middleware platform for the provision of secure monitoring services over
Wireless Sensor Networks," 2013 9th International Wireless Communica-
tions and Mobile Computing Conference (IWCMC), Sardinia, 2013, pp.
706-711. doi: 10.1109/IWCMC.2013.6583643

[13] Pugliese M., Giani A., Santucci F. (2010) Weak Process Models for At-
tack Detection in a Clustered Sensor Network Using Mobile Agents. In:
Hailes S., Sicari S., Roussos G. (eds) Sensor Systems and Software. S-
CUBE 2009. Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, vol 24. Springer,
Berlin, Heidelberg

[14] M. Pugliese, L. Pomante, and F. Santucci “Secure Platform over Wireless
Sensor Networks,” in Applied Cryptography and Network Security, ISBN
978-953-51-0218-2, INTECH Publishers, 2012

[15] P. Giri, K. Ng and W. Phillips, "Wireless Sensor Network System for
Landslide Monitoring and Warning," in IEEE Transactions on Instru-
mentation and Measurement, vol. 68, no. 4, pp. 1210-1220, April 2019.

[16] IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011) , vol., no., pp.1-709, 22 April
2016 doi: 10.1109/IEEESTD.2016.7460875

https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

BIBLIOGRAPHY 177

[17] IEEE Recommended Practice for Transport of Key Management Proto-
col (KMP) Datagrams," in IEEE Std 802.15.9-2016 , vol., no., pp.1-74,
17 Aug. 2016 doi: 10.1109/IEEESTD.2016.7544442

[18] M Pugliese, L Pomante, F Santucci. "Agent-based scalable design of a
cross-layer security framework for wireless sensor networks monitoring
applications". Ultra Modern Telecommunications & Workshops, 2009.
ICUMT’09. International, 2009.

[19] M. Pugliese and F. Santucci, "Pair-wise network topology authenti-
cated hybrid cryptographic keys for Wireless Sensor Networks using
vector algebra," 2008 5th IEEE International Conference on Mobile
Ad Hoc and Sensor Systems, Atlanta, GA, 2008, pp. 853-859. doi:
10.1109/MAHSS.2008.4660137

[20] Marchesani S., Pomante L., Pugliese M., Santucci F. (2013) Definition
and Development of a Topology-Based Cryptographic Scheme for Wire-
less Sensor Networks. In: Zuniga M., Dini G. (eds) Sensor Systems and
Software. S-CUBE 2013. Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, vol 122.
Springer, Cham

[21] Texas Instruments MSP430 Micro-controllers homepage, http:
//www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview.html

[22] Microchip homepage, https://www.microchip.com

[23] Texas Instrument CC2420 homepage, http://www.ti.com/product/
CC2420

[24] RF230 product datasheet, http://ww1.microchip.com/downloads/en/
devicedoc/doc5131.pdf

[25] T. Watteyne et al., "Industrial Wireless IP-Based Cyber –Physical Sys-
tems," in Proceedings of the IEEE, vol. 104, no. 5, pp. 1025-1038, May
2016. doi: 10.1109/JPROC.2015.2509186

[26] CRC16-CCITT, http://srecord.sourceforge.net/crc16-ccitt.
html

[27] Transmission of IPv6 Packets over IEEE 802.15.4 Networks, https://
tools.ietf.org/html/rfc4944

[28] The Constrained Application Protocol (CoAP), https://tools.ietf.
org/html/rfc7252

[29] Representational state transfer, https://en.wikipedia.org/wiki/
Representational_state_transfer

http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
https://www.microchip.com
http://www.ti.com/product/CC2420
http://www.ti.com/product/CC2420
http://ww1.microchip.com/downloads/en/devicedoc/doc5131.pdf
http://ww1.microchip.com/downloads/en/devicedoc/doc5131.pdf
http://srecord.sourceforge.net/crc16-ccitt.html
http://srecord.sourceforge.net/crc16-ccitt.html
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

178 BIBLIOGRAPHY

[30] TinyOS project homepage, http://www.tinyos.net

[31] J. Hauer, "TKN15.4: An IEEE 802.15.4 MAC Implementation for
TinyOS 2", TKN Technical Report TKN-08-003, Berlin, March 2009,
URL: http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/TKN154.pdf

[32] Matsumoto, Makoto and Nishimura, Takuji, Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number gen-
erator, ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, pages 3-30, 1998

[33] Lenore Blum, Manuel Blum, and Michael Shub, "A Simple Unpredictable
Pseudo-Random Number Generator", SIAM Journal on Computing, vol-
ume 15, p.364–383, may 1986

[34] C. L. Fok, G. C. Roman, and C. Lu, "Agilla: A Mobile Agent Middle-
ware for Self-Adaptive Wireless Sensor Networks", ACM Transactions
on Autonomous and Adaptive Systems, Vol. 4, No. 3, Article 16, 2009

[35] A. Liu and P. Ning, "TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks," 2008 International Confer-
ence on Information Processing in Sensor Networks (ipsn 2008), St. Louis,
MO, 2008, pp. 245-256.

[36] Contiki-ng homepage, https://www.contiki-ng.org/

[37] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann,
Martine Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt,
Matthias Wählisch, RIOT: An Open Source Operating System for Low-
End Embedded Devices in the IoT, IEEE Internet of Things Journal,
Vol. 5, No. 6, pp. 4428-4440, December 2018.

[38] TinyDB homepage, http://telegraph.cs.berkeley.edu/tinydb

[39] https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes

[40] Hadim and N. Mohamed, "Middleware: middleware challenges and ap-
proaches for wireless sensor networks", in IEEE Distributed Systems On-
line, vol. 7, no. 3, pp. 1-1, March 2006.

[41] Levis, P. and Culler, D., "Mate: A Tiny Virtual Machine for Sensor
Networks", Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), (2002).

[42] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho and M. A. Perillo,
"Middleware to support sensor network applications", in IEEE Network,
vol. 18, no. 1, pp. 6-14, Jan/Feb 2004.

[43] Agilla ISA: http://mobilab.wustl.edu/projects/agilla/isa.html

http://www.tinyos.net
https://www.contiki-ng.org/
http://telegraph.cs.berkeley.edu/tinydb
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
http://mobilab.wustl.edu/projects/agilla/isa.html

BIBLIOGRAPHY 179

[44] FIPS PUB 197, Advanced Encryption Standard (AES), National
Institute of Standards and Technology, U.S. Department of Com-
merce, November 2001. http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf

[45] Morris J. Dworkin. 2007. SP 800-38d. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (Gcm) and GMAC. Techni-
cal Report. NIST, Gaithersburg, MD, United States.

[46] Daniel J. Bernstein, Salsa20 and ChaCha20 home page, https://cr.
yp.to/hash.html

[47] RFC 2631 – Diffie–Hellman Key Agreement Method. E. Rescorla. June
1999. https://tools.ietf.org/html/rfc2631

[48] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method
for obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM 21, 2 (February 1978), 120-126.
DOI=http://dx.doi.org/10.1145/359340.359342

[49] Taher El Gamal. 1985. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Proceedings of CRYPTO 84 on Advances
in cryptology, G R Blakley and David Chaum (Eds.). Springer-Verlag
New York, Inc., New York, NY, USA, 10-18.

[50] PKCS #7: Cryptographic Message Syntax, https://tools.ietf.org/
html/rfc2315

[51] US Secure Hash Algorithms (SHA and HMAC-SHA), https://tools.
ietf.org/html/rfc4634

[52] FIPS PUB 202, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf

[53] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,
48 (1987), pp. 203-209

[54] R. Daidone, "Experimental evaluations of security impact on IEEE
802.15.4 networks," 2011 IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks, Lucca, 2011, pp. 1-2. doi:
10.1109/WoWMoM.2011.5986151

[55] Walter Tiberti, TAKS fast key component generator,

[56] P. Choi, J. Kong and D. K. Kim, "Analysis of hardware modular in-
version modules for elliptic curve cryptography," 2015 International
SoC Design Conference (ISOCC), Gyungju, 2015, pp. 313-314. doi:
10.1109/ISOCC.2015.7401713

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://cr.yp.to/hash.html
https://cr.yp.to/hash.html
https://tools.ietf.org/html/rfc2631
https://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc4634
https://tools.ietf.org/html/rfc4634
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

180 BIBLIOGRAPHY

[57] Imran, Malik, Imran Shafi, Atif Raza Jafri and Muhammad H. Rashid.
“Hardware design and implementation of ECC based crypto processor
for low-area-applications on FPGA.” 2017 International Conference on
Open Source Systems & Technologies (ICOSST) (2017): 54-59.

[58] R. Shahid, T. Winograd and K. Gaj, "A Generic Approach to the
Development of Coprocessors for Elliptic Curve Cryptosystems," 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 158-167. doi:
10.1109/IPDPSW.2017.166

[59] Su-Wen Yi, Wei Li, Zi-Bin Dai and Jun-Wei Liu, "A compact and effi-
cient architecture for elliptic curve cryptographic processor," 2016 13th
IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT), Hangzhou, 2016, pp. 1276-1280. doi: 10.1109/IC-
SICT.2016.7998714

[60] P. L. Montgomery, "Modular Multiplication Without Trial Division",
Mathematics of Computation, vol. 44, num. 170, 1985

[61] GHDL - VHDL compiler and simulator, http://ghdl.free.fr/

[62] Xilinx Vivado Design Suite, https://www.xilinx.com/products/
design-tools/vivado.html

[63] Walter Tiberti GitHub page, https://www.github.com/wtiberti

[64] PBKDF2 Key Derivation Function, https://en.wikipedia.org/wiki/
PBKDF2

[65] D.J. Bernstein, Poly1305 message authentication code, https://en.
wikipedia.org/wiki/Poly1305

[66] Vivado High Level Synthesis, https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html

[67] OpenZB homepage, http://www.open-zb.net/

[68] Routing Requirements for Urban Low-Power and Lossy Networks,
https://tools.ietf.org/html/rfc5548

[69] TinyRPL homepage, http://tinyos.stanford.edu/tinyos-wiki/
index.php/TinyRPL

[70] https://www.silabs.com/community/blog.entry.html/2016/05/
27/iot_security_part7-UeMh

[71] Hasse, Helmut (1936), "Zur Theorie der abstrakten elliptischen
Funktionenkörper. I, II & III", Crelle’s Journal, 1936 (175),
doi:10.1515/crll.1936.175.193, ISSN 0075-4102, Zbl 0014.14903

http://ghdl.free.fr/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.github.com/wtiberti
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Poly1305
https://en.wikipedia.org/wiki/Poly1305
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.open-zb.net/
https://tools.ietf.org/html/rfc5548
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyRPL
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyRPL
https://www.silabs.com/community/blog.entry.html/2016/05/27/iot_security_part7-UeMh
https://www.silabs.com/community/blog.entry.html/2016/05/27/iot_security_part7-UeMh

BIBLIOGRAPHY 181

[72] A. Karatsuba and Yu Ofman, Multiplication of Many-Digital Numbers
by Automatic Computers. Doklady Akad. Nauk SSSR Vol. 145 (1962),
pp. 293–294

[73] ZigBee Alliance Home, https://zigbeealliance.org

[74] Fan X., F. Susan, W. Long, S. Li, "Security Analysis of ZigBee", 2017

[75] Ended Yüksel, "Analysing ZigBee Key Establishment Protocols",
arXiv:1205.6678, May 2012

[76] Law L., Menezes A., Qu M., Solinas J., Vanstone S. : "An Efficient
Protocol for Authenticated Key Agreement", Designs, Codes and Cryp-
tography (2003) 28: 119. https://doi.org/10.1023/A:1022595222606

[77] SEC 2: Recommended Elliptic Curve Domain Parameters, http://www.
secg.org

[78] SafeCurves: choosing safe curves for elliptic-curve cryptography, https:
//safecurves.cr.yp.to

[79] T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative
inverses in gf(2m) using normal bases, Inf. Comput., 78 (1988), pp.
171–177.

[80] Rezai, Abdalhossein & Keshavarzi, Parviz. (2012). CCS Representation:
A new non-adjacent form and its application in ECC. Journal Basic
Applied Scienctific Research. 2. 4577-4586.

[81] CBCMAC description, https://cryptography.fandom.com/wiki/
CBC-MAC

[82] Brincat, Karl and Mitchell, Chris J., "New CBC-MAC Forgery Attacks",
in Information Security and Privacy, 2001, Springer, ISBN 978-3-540-
47719-8

[83] IEEE Standard Specifications for Public-Key Cryptography," in
IEEE Std 1363-2000 , vol., no., pp.1-228, 29 Aug. 2000 doi:
10.1109/IEEESTD.2000.92292

[84] S. Scaccialepre, G. Piro, G. Boggia, G. Bianchi. "Public Key Authenti-
cation and Key Agreement in IoT Devices With Minimal Airtime Con-
sumption", in IEEE Embedded Systems Letters, vol. 9, NO. 1, March
2017

[85] D. R. L. Brown, R. Gallant, and S. A. Vanstone, "Provably secure im-
plicit certificate schemes," in Proc. Finan. Cryptogr., Grand Cayman,
Cayman Islands, 2001, pp. 156–165.

https://zigbeealliance.org
http://www.secg.org
http://www.secg.org
https://safecurves.cr.yp.to
https://safecurves.cr.yp.to
https://cryptography.fandom.com/wiki/CBC-MAC
https://cryptography.fandom.com/wiki/CBC-MAC

182 BIBLIOGRAPHY

[86] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
Bo-Yin Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering 2 (2012), 77–89. Document ID:
a1a62a2f76d23f65d622484ddd09caf8. URL: https://cr.yp.to/papers.
html#ed25519. Date: 2011.09.26

[87] H. Nunoo-Mensah, K. O. Boateng, and J. D. Gadze. Tamper-aware au-
thentication framework for wireless sensor networks. IET Wireless Sensor
Systems, 7(3):73–81, 2017.

[88] R. Tahir and K. McDonald-Maier. Improving resilience against node cap-
ture attacks in wireless sensor networks using icmetrics. In 2012 Third
International Conference on Emerging Security Technologies, pages
127–130, Sep. 2012.

[89] X. Jin, P. Putthapipat, D. Pan, N. Pissinou, and S. K. Makki. Un-
predictable software-based attestation solution for node compromise
detection in mobile wsn. In 2010 IEEE Globecom Workshops, pages
2059–2064, Dec 2010.

[90] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-
based attestation for embedded devices. In IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004, pages 272–282, May 2004.

[91] Manyam Thaile and OBV Ramanaiah. Node compromise detection based
on parameter grouping in wireless sensor networks, 2016.

[92] OpenDSME project homepage, http://opendsme.org/

[93] Omnet++ network simulator project homepage, https://omnetpp.
org/

[94] L. Corradetti, D. Gregori,S. Marchesani, L. Pomante,M. Santic and W.
Tiberti. "A renovated mobile agents middleware for WSN porting of
Agilla to the TinyOS 2.x platform".IEEE 2nd International Forum on
Research and Technologies for Society and Industry Leveraging a better
tomorrow, RTSI 2016, Bologna, Italy, pp.1–5.

[95] Agilla2 repository, https://github.com/luigi-pomante/Agilla2

[96] Celia Chen, "How to measure and Estimate Soft-
ware Maintainability for Open Source Projects?", url:
http://csse.usc.edu/new/wp-content/uploads/2017/01/
How-to-Measure-and-Estimate-Software-Maintainability-for-Open-Source-Projects-.
pdf

[97] P. Pop, D. Scholle, H. Hansson, G. Widforss and M. Rosqvist,
"The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical
Systems Using Wireless Communication," 2016 Euromicro Conference
on Digital System Design (DSD), Limassol, 2016, pp. 532-538. doi:
10.1109/DSD.2016.25

https://cr.yp.to/papers.html#ed25519
https://cr.yp.to/papers.html#ed25519
http://opendsme.org/
https://omnetpp.org/
https://omnetpp.org/
https://github.com/luigi-pomante/Agilla2
http://csse.usc.edu/new/wp-content/uploads/2017/01/How-to-Measure-and-Estimate-Software-Maintainability-for-Open-Source-Projects-.pdf
http://csse.usc.edu/new/wp-content/uploads/2017/01/How-to-Measure-and-Estimate-Software-Maintainability-for-Open-Source-Projects-.pdf
http://csse.usc.edu/new/wp-content/uploads/2017/01/How-to-Measure-and-Estimate-Software-Maintainability-for-Open-Source-Projects-.pdf

BIBLIOGRAPHY 183

[98] G. Agosta et al., "V2I Cooperation for Traffic Management with Safe-
Cop," 2016 Euromicro Conference on Digital System Design (DSD), Li-
massol, 2016, pp. 621-627. doi: 10.1109/DSD.2016.18

[99] Memsic IRIS WSN platform datasheet, http://
www.memsic.com/userfiles/files/User-Manuals/
iris-oem-edition-hardware-ref-manual-7430-0549-02.pdf

[100] Lattice Semiconductor homepage, http://www.latticesemi.com

[101] Microsemi homepage, https://www.microsemi.com

[102] TKN154 physical driver for AT86RF230, https://github.com/Loki88/
TKN154-Iris

[103] D. Cassioli, A. Di Marco, F. Gallo, S. Pace, L. Pomante and C. Rinaldi,
"VISION: Video-oriented UWB-based intelligent ubiquitous sensing,"
2016 IEEE International Conference on the Science of Electrical Engi-
neering (ICSEE), Eilat, 2016, pp. 1-5. doi: 10.1109/ICSEE.2016.7806102

[104] T. M. Mubarak, S. A. Sattar, A. Rao and M. Sajitha, "Energy efficient
intrusion detection in three dimensional wireless sensor networks," 2010
IEEE International Conference on Computational Intelligence and Com-
puting Research, Coimbatore, 2010, pp. 1-4.

[105] M. Sheikhan and H. Bostani, "A hybrid intrusion detection architecture
for Internet of things," 2016 8th International Symposium on Telecom-
munications (IST), Tehran, 2016, pp. 601-606

[106] Z. Sun, Y. Xu, G. Liang and Z. Zhou, "An Intrusion Detection Model for
Wireless Sensor Networks With an Improved V-Detector Algorithm," in
IEEE Sensors Journal, vol. 18, no. 5, pp. 1971-1984, 1 March1, 2018.

[107] T. Maphatsoe and M. Masinde, "Asymptotic Analysis of A Fuzzy Based
Intrusion Detection System For Zigbee," 2018 International Conference
on Intelligent and Innovative Computing Applications (ICONIC), Plaine
Magnien, 2018, pp. 1-8.

[108] Alrajeh, Nabil & Khan, Salim & Shams, Bilal. (2013). Intrusion De-
tection Systems in Wireless Sensor Networks: A Review. International
Journal of Distributed Sensor Networks. 2013. 10.1155/2013/167575.

[109] OpenSSL project Homepage, https://www.openssl.org

[110] Remote Code Execution (definition), https://en.wikipedia.org/
wiki/Arbitrary_code_execution

[111] MQTT protocol, http://mqtt.org

http://www.memsic.com/userfiles/files/User-Manuals/iris-oem-edition-hardware-ref-manual-7430-0549-02.pdf
http://www.memsic.com/userfiles/files/User-Manuals/iris-oem-edition-hardware-ref-manual-7430-0549-02.pdf
http://www.memsic.com/userfiles/files/User-Manuals/iris-oem-edition-hardware-ref-manual-7430-0549-02.pdf
http://www.latticesemi.com
https://www.microsemi.com
https://github.com/Loki88/TKN154-Iris
https://github.com/Loki88/TKN154-Iris
https://www.openssl.org
https://en.wikipedia.org/wiki/Arbitrary_code_execution
https://en.wikipedia.org/wiki/Arbitrary_code_execution
http://mqtt.org

184 BIBLIOGRAPHY

[112] P. R. Chandre, P. N. Mahalle and G. R. Shinde, "Machine Learning
Based Novel Approach for Intrusion Detection and Prevention System:
A Tool Based Verification," 2018 IEEE Global Conference on Wireless
Computing and Networking (GCWCN), Lonavala, India, 2018, pp. 135-
140. doi: 10.1109/GCWCN.2018.8668618

[113] Veeramreddy Jyothsna and Koneti Munivara Prasad, Anomaly-Based
Intrusion Detection System, DOI: 10.5772/intechopen.82287

[114] TinyOS TEPs, http://tinyos.stanford.edu/tinyos-wiki/index.
php/TEPs

[115] SafeCOP project homepage, http://www.safecop.eu

[116] M. H. Eldefrawy, M. K. Khan and K. Alghathbar, "A key agreement algo-
rithm with rekeying for wireless sensor networks using public key cryptog-
raphy," 2010 International Conference on Anti-Counterfeiting, Security
and Identification, Chengdu, 2010, pp. 1-6.

[117] H. Ghasemzadeh, M. R. Aref and A. Payandeh, "A novel and low-energy
PKC-based key agreement protocol for WSNs," 2013 10th International
ISC Conference on Information Security and Cryptology (ISCISC), Yazd,
2013, pp. 1-6.

[118] R. B. Gandara, G. Wang and D. N. Utama, "Hybrid Cryp-
tography on Wireless Sensor Network: A Systematic Literature
Review," 2018 International Conference on Information Manage-
ment and Technology (ICIMTech), Jakarta, 2018, pp. 241-245. doi:
10.1109/ICIMTech.2018.8528147

[119] A. Bhave and S. R. Jajoo, "Secure communication in Wireless Sen-
sor Networks using hybrid encryption scheme and cooperative diver-
sity technique," 2015 IEEE 9th International Conference on Intelli-
gent Systems and Control (ISCO), Coimbatore, 2015, pp. 1-6. doi:
10.1109/ISCO.2015.7282235

[120] Y. Alkady, M. I. Habib and R. Y. Rizk, "A new security protocol
using hybrid cryptography algorithms," 2013 9th International Com-
puter Engineering Conference (ICENCO), Giza, 2013, pp. 109-115. doi:
10.1109/ICENCO.2013.6736485

[121] L. Harn and C. Hsu, "Predistribution Scheme for Establishing Group
Keys in Wireless Sensor Networks," in IEEE Sensors Journal, vol. 15,
no. 9, pp. 5103-5108, Sept. 2015. doi: 10.1109/JSEN.2015.2429582

[122] (multiple authors), ”Safety and Security in V2I Traffic Management:
The SafeCOP Approach”, Work in progress, https://univaq-my.
sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/
EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

http://tinyos.stanford.edu/tinyos-wiki/index.php/TEPs
http://tinyos.stanford.edu/tinyos-wiki/index.php/TEPs
http://www.safecop.eu
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o
https://univaq-my.sharepoint.com/:f:/g/personal/walter_tiberti_univaq_it/EihenFEx2yNDp4BcSoVRNVkBxvtlLhBhe9srfzwJbrAv3w?e=zYZ20o

BIBLIOGRAPHY 185

[123] Rasouli, Jafar & Motamedi, Ahmad & Baseri, Mohamad & Parsa,
Mahshad. (2019). A Reliable Communication Model Based on
IEEE802.15.4 for WSANs in Smart Grids. 10.5772/intechopen.84288.

[124] Afzaal, Hamra & Iqbal, Zafar & Saeed, Tahreem & Zafar,
Nazir. (2017). Battlefield surveillance formalism using WSANs. 1-6.
10.1109/ICEE.2017.7893437.

[125] Fahmy, Hossam. (2016). WSNs Applications. 10.1007/978-981-10-0412-
4_3.

[126] Zhao, Jingjing & Ge, Meng & Yang, Yun & Zhang, Lifeng. (2017). A
Brief Review of WSN Applications. 4-7. 10.12792/iciae2017.004.

[127] L. Law, A. Mezenes, M. Qu, S. Vanstone, "An Efficient Protocol for
Authenticated Key Agreement", Designs, Codes and Cryptography n.28,
2003, 10.1023/A:1022595222606

[128] Yüksel, Ender, Hanne Riis Nielson, and Flemming Nielson. "Zigbee-2007
security essentials." Proc. 13th Nordic Workshop on Secure IT-systems.
2008.

	Introduction
	Context
	Objectives
	Thesis Contributions
	Thesis Organization

	I Background
	IEEE 802.15.4-based Wireless Sensor Networks
	Wireless Sensor Networks
	Main Features
	Hardware
	Software

	IEEE 802.15.4 Standard
	Channel Access
	Frame Structure
	IEEE 802.15.4e Standard and MAC behaviors

	ZigBee
	IoT protocol stack
	6loWPAN
	ROLL
	CoAP

	TinyOS
	Introduction
	NesC Language in a nutshell
	TKN154

	Middlewares for WSN
	Introduction
	Agilla
	Agilla agents
	Agilla and TinyOS 2.x

	WSN Protocols Security
	IEEE 802.15.4 Security
	Security-related Header Fields
	Symmetric Cipher

	IEEE 802.15.9 Standard
	ZigBee Security

	Cryptography for WSN
	Overview
	Symmetric Cryptography
	Block Ciphers
	Operating Modes
	Authenticated Encryption
	Stream Ciphers

	Public-Key Cryptography
	Protocols
	Factorization-based Ciphers
	Discrete Logarithm-based Ciphers

	Hybrid Cryptography
	Cryptography-related Topics
	Secure Random Numbers Generation
	Hash Functions
	Message Authentication
	Message Integrity

	Elliptic Curve Cryptography
	Overview
	Curves
	Prime-fields Curves
	Binary-fields Curves

	Field Operations
	Modular Additions, Subtractions and Multiplications
	Modular Reduction
	Modular Inversion
	Exponentiation

	Point Operations
	Point Addition
	Point Doubling
	Point Multiplication

	Elliptic Curve Discrete Logarithm Problem
	Protocols
	ECIES
	ECDSA
	ECDH
	ECQV

	ECC Optimizations

	Intrusion Detection Systems for WSN

	II Research activities
	The WSN security framework
	TAKS
	Motivation
	TAKS Introduction
	Definitions
	Pair-Wise scheme
	Cluster-Wise scheme

	TAKS Enhancements
	Flexibility in TAKS key component sizes
	Random number generation
	Symmetric Encryption
	TAKS Key Generation

	TAKS Implementations
	TinyOS 1.x implementation
	TinyOS 2.x TKN154-enabled and Atmel-based implementations
	Cluster- and Mesh-enabled implementation
	New implementation

	TAKS IEEE 802.15.9 KMP
	TAKS-enabled Open-ZB
	Related publications

	ECTAKS
	Overview
	Vector Operations
	Research contribution
	ECTAKS-ECIES
	ECTAKS-ECDSA

	Implementation
	ECMQV
	Results and Future Works

	ECC-HAxES
	Overview
	ECC-HAxES
	Components
	Comparison of the design approaches
	Basic RTL
	Basic Arithmetic
	Modular Reduction
	Modular Arithmetics
	Modular Inversion
	EC Point Addition and Doubling
	EC Multiplication
	Misc components
	Top layers and work in progress

	FPGA technology analysis
	Implementation
	Validation & Results
	Future works

	WSN Intrusion Detection System (WIDS)
	Motivation
	WIDS
	TinyWIDS
	Architecture

	Validation and Results
	Intrusion Reactions
	Intrusion scenarios and reactions

	Related publications

	Blockchain-based security techniques for WSN
	Anti-tampering techniques for resource- contrained devices
	Lightweight Blockchain (WSN-LBC) technique
	Message Format
	Message Checking

	Implementation and Results
	Related publications

	Agilla Evolution
	Towards Agilla2
	Motivations and Contributions
	Model-based Porting
	Agilla2 performance & quality analysis

	Agilla Energy-awareness
	WIDzilla
	WIDzilla: incremental design
	Implementation issues and Future Works

	Related Publications

	III Use cases
	VISION
	VISION
	Agilla MW in VISION
	VISION Fire Rescue Use case
	Results

	SEAMLESS
	SEAMLESS
	Results
	Related publications

	SafeCOP
	SafeCOP Use Case 5
	UC5 Road-side Unit - Sensor Network (RSU-SN)

	Results

	DESTAK
	DESTAK: TAKS over DSME
	OpenDSME
	Secure OpenDSME
	TAKS for Omnet++
	TAKS Information Elements
	Payload representation
	Integration in OpenDSME

	Results
	Related publications

	IV Conclusions
	Conclusions
	Future Works
	List of Pubblications

