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Normal form in Hecke-Kiselman monoids

associated with simple oriented graphs∗

R. Aragona and A. D’Andrea

Communicated by V. Mazorchuk

Abstract. We generalize Kudryavtseva and Mazorchuk’s
concept of a canonical form of elements [9] in Kiselman’s semigroups
to the setting of a Hecke-Kiselman monoid HKΓ associated with
a simple oriented graph Γ. We use confluence properties from [7]
to associate with each element in HKΓ a normal form; normal
forms are not unique, and we show that they can be obtained from
each other by a sequence of elementary commutations. We finally
describe a general procedure to recover a (unique) lexicographically
minimal normal form.

Introduction

Let Γ be a simple mixed graph, i.e., each pair of distinct vertices in Γ
has at most one connection, which can be either oriented or unoriented;
thus, there are no oriented cycles of length two and no vertex in Γ has a
self loop.

One may use [5] the combinatorial content of Γ to give a presentation
of a Hecke-Kiselman semigroup HKΓ. If V is the set of vertices of Γ, HKΓ

is generated by idempotent elements ai, i ∈ V , which satisfy the relations:

• aiaj = ajai if there is no connection between the vertices i, j ∈ V ;
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• aiajai = ajaiaj if there is an unoriented connection between i and
j;

• aiajai = ajaiaj = aiaj if there is an arrow connecting i to j.

If Γ is an unoriented simple graph, i.e., if relations in the above pre-
sentation are all of the first two kinds, then we obtain the Coxeter monoid
associated to the simply laced Dynkin diagram Γ. This is also known in
the literature either as Richardson-Springer [15] or 0-Hecke monoid [6], as
its monoid algebra [13] may be obtained as the q = 0 specialization of a
Iwahori-Hecke algebra.

The third type of relation has been first observed by Kiselman [8].
When Γ = Γn is the graph on the vertex set {1, 2, . . . , n} with a single
oriented connection between i and j each time that i < j, one obtains
the so-called Kiselman semigroups, so that Kiselman’s original example
corresponds to Γ3. These semigroups also occur in the study [3] of some
graph-dynamical systems related to SDS [2].

Understanding which mixed graphs Γ yield finite Hecke-Kiselman
monoids is a difficult problem and the only nontrivial results so far seem
to be [1] and [10, 11]. In the same vein, a characterization of reduced
expressions of elements as words in the idempotent generators are only
known in the Kiselman case Γ = Γn [9] or when Γ is an unoriented graph
and one may reduce to standard Coxeter combinatorics. The present
paper deals with the easier case where only oriented connections occur.
We should stress that our result is implicit in [5], where the focus is on
equioriented Dynkin graphs of type An, and in [14], where a Gröbner basis
approach is used, though only the case where Γ is an oriented cycle of
length n is mentioned.

We employ Huet’s reformulation [7] of Newman’s results [12] to extend
the strategy outlined by Kudryavtseva and Mazorchuk [9] for Kiselman’s
semigroups, to all (possibly infinite) Hecke-Kiselman monoids correspond-
ing to simple oriented graphs. The concrete statement is that normal
forms of each element in HKΓ all arise via a decreasing sequence of cancel-
lations, that all decreasing sequences of cancellations may be continued to
a normal form, that such normal forms all have the same length, and may
be obtained from each other by a sequence of elementary commutations
between pairs of disconnected idempotent generators. We end the paper
with some final comments on how to select a lexicographically minimal
normal form.
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1. Normal Form in HKΓ

In what follows, Γ = (V,E) will be a simple oriented graph, i.e., a
directed graph that does not have oriented cycles of length 1 or 2, so
that there are no self-loops and there is at most one connection between
two given vertices. Here V denotes the (possibly infinite) vertex set and
E ⊆ V × V is the arrow set, where (a, b) ∈ E if and only if there is an
arrow connecting a to b; indeed, we will use the shorthand notation a−→−→−→−→−→−→ b

as equivalent to (a, b) ∈ E. Notice, however, that we will spare the symbol
−→ for a different context, in order to adhere to notations from [7].

Any given choice of Γ yields a Hecke-Kiselman monoid HKΓ defined
by the presentation

HKΓ = 〈a ∈ V | a2 = a, for every a ∈ V ;

aba = bab = ab, if a−→−→−→−→−→−→ b;

ab = ba, if a 6−→6−→6−→6−→6−→6−→ b and b 6−→6−→6−→6−→6−→6−→ a〉.

If we denote by F (V ) the free monoid on the alphabet V , then we
have a canonical projection

π : F (V ) → HKΓ.

Every a ∈ V ⊆ F (V ) will be called a letter ; if w ∈ F (V ) is obtained by
multiplying letters among which a occurs, we will say that (the word) w

contains (the letter) a, or that a occurs in w. The same terminology will
be used when w ∈ HKΓ; this is well defined as the letter content in both
sides of each relation presenting HKΓ is the same, so that all words in
F (V ) projecting via π to the same element of HKΓ have the same letter
content. Note that each letter in HKΓ is idempotent.

Remark 1. HKΓ is finite if and only if Γ is finite and acyclic [1].

First, for the sake of completeness, we give a proof of the following
well known result (see for instance [4, 11]).

Lemma 1. If a ∈ HKΓ is a letter and w ∈ HKΓ is obtained by multiplying
letters that do not admit arrows to (respectively from) a, then awa = aw

(resp. awa = wa).

Proof. If a and b are letters in HKΓ such that b 6−→6−→6−→6−→6−→6−→ a, then either a−→−→−→−→−→−→ b,
whence aba = ab, or ab = ba, whence aba = a(ba) = a(ab) = a2b = ab.
Also, if u and v are words in HKΓ satisfying respectively aua = au
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and ava = av, then auva = (au)va = (aua)va = au(ava) = au(av) =
(aua)v = auv. Now the statement follows by an easy induction.
The case where w is obtained by multiplying letters that do not admit
arrows from a is done similarly.

Let w1, w2, u ∈ F (V ). It is useful to introduce the following elementary
cancellations on words in F (V ).

• Right cancellation: w1auaw2

r
−→ w1auw2, if a is a letter and no

letter in u has an arrow to a;

• Left cancellation: w1auaw2

l
−→ w1uaw2, if a is a letter and no letter

in u has an arrow from a.
Without loss of generality, we may assume above that u does not contain
the letter a and only focus on elementary cancellations between consecutive
occurrences of the same letter. Notice that if v is obtained from w by a
sequence of elementary cancellations, then v, w ∈ F (V ) map to the same
element in HKΓ.

Remark 2. Idempotence of letters and each relation aba = bab = ab in
the presentation of HKΓ are special instances of elementary cancellations.
Thus, elementary cancellations along with commutations of disconnected
letters provide an equivalent presentation of HKΓ.

Definition 1. Let v, w ∈ F (V ). We shall write by w
∗

−→ v if v is obtained
from w by a (possibly empty) sequence of (either right or left) elementary

cancellations. In other words,
∗

−→ is the reflexive-transitive closure of the

relation −→=
r

−→ ∪
l

−→ on F (V ).

A simplifying sequence (with respect to Γ) from w to v is a sequence
of elementary cancellations which transform w into v. This is analogous
to [9, Remark 7]. We take the following definition from [7] .

Definition 2. A word w ∈ F (V ) is a normal form for π(w) ∈ HKΓ if no
elementary cancellation may be performed on w.

We shall denote by N the set of all normal forms in F (V ). Notice that
N depends on Γ, which we consider to be fixed once and for all.

Remark 3. By Lemma 1, w ∈ F (V ) is a normal form for π(w) ∈ HKΓ if
and only if each subword of w of the form aua, where a ∈ V and u ∈ F (V )
does not contain a, contains at least one letter with an arrow to a and
at least one letter with an arrow from a. In [5] these words are called
special when Γ = Γn and strongly special when Γ is an equioriented Dynkin
diagram of type An.
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Note that, by definition, if γ ∈ HKΓ, then any word w ∈ π−1(γ) of
minimal length is a normal form of γ so, in particular, each γ ∈ HKΓ

admits at least one normal form. However, in principle, a normal form of
γ ∈ HKΓ may fail to be of minimal length. We will show that this is not
the case by proving that all normal forms of γ share the same length and,
more precisely, that they can be obtained from each other by a sequence
of commutations between disconnected letters.

Recall that [9, Theorem 6] exploits Newman’s Diamond Lemma [12]
in the case of the complete oriented acyclic Γn, so as to show that:

(1) each γ ∈ HKΓn
has a unique normal form;

(2) every word w ∈ π−1(γ) is connected to the unique normal form for
γ by a simplifying sequence;

(3) each simplifying sequence starting from w may be completed to a
sequence as in (2).

Claim (1) may certainly fail in our generalized setting. Indeed if a, b ∈ HKΓ

are commuting letters then ab and ba are distinct normal forms for the
same element in HKΓ. We want to show that this is basically the only
obstruction to uniqueness.

Definition 3. We denote by ∼ the equivalence relation on F (V ) generated
by elementary commutations

w1abw2 ∼ w1baw2,

where w1, w2 ∈ F (V ) and a, b ∈ V are disconnected letters, i.e., they
satisfy a 6−→6−→6−→6−→6−→6−→ b and b 6−→6−→6−→6−→6−→6−→ a.

Our strategy is to use confluence properties of the relation −→ modulo
the equivalence ∼ on F (V ). In order to do so, we set ourselves within
the framework described by Huet in [7, Section 2.3] to make sure that
the possibility to apply any given elementary cancellation on w ∈ F (V )
only depends on its ∼-equivalence class; furthermore that such elementary
cancellations yield ∼-equivalent words.

Lemma 2. Let v, w ∈ F (V ), and assume that w
∗

−→ v. If w̃ ∼ w, then

there exists ṽ ∼ v such that w̃
∗

−→ ṽ.

Proof. It suffices to only treat the case where w̃ is obtained from w by
a single elementary commutation and v is obtained from w by a single
elementary cancellation.

Set w = w1auaw2 and v = w1auw2, where no letter in u has an arrow
to a. Let w̃ be obtained from w by means of an elementary commutation;
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if this occurs outside aua or within u, then the claim is clear. The only
possibly nontrivial case is when the elementary commutation involves
either the leading or the ending letter in subword aua. By assumption, u
does not contain the letter a, and without loss of generality we may also
assume that the elementary commutation involves a letter of u. We have
two cases:

(i) u = bu′ and the elementary commutation involves a and b. Then
w = w1abu

′aw2 and w̃ = w1bau
′aw2. Notice that as u′ is a subword

of u, no letter from u′ has an arrow to a. Thus we may perform a right
cancellation on the subword au′a giving ṽ = w1bau

′w2. However,
ṽ is obtained from v = w1abu

′w2 by elementary commutation of a
with b.

(ii) u = u′b and the elementary commutation involves b and a. Then
w = w1au

′baw2 and w̃ = w1au
′abw2. Once more we may perform a

right cancellation on the subword au′a giving ṽ = w1au
′bw2, which

coincides with v.

The proof for left cancellations is completely analogous.

Remark 4. • By Lemma 2, each element in the ∼-equivalence class
of a normal form is also a normal form.

• If u only contains letters that are not connected to the letter a, then
both a right and a left cancellation may be performed on w1auaw2.
However, the resulting words w1auw2 or w1uaw2 lie in the same
∼-equivalence class.

2. Normal Forms and confluence

Let us consider the framework of [7, Section 2.3], where, in our setting,

• E is the free monoid F (V ) on V ,

• −→ is the binary relation
r

−→ ∪
l

−→ on F (V ),

•
∗

−→ is the reflexive-transitive closure of the relation −→ on F (V ),

• ∼ is the equivalence relation on F (V ) generated by elementary
commutations of disconnected letters, and

• x ≡ y if and only if π(x) = π(y), where π : F (V ) → HKΓ is the
canonical projection. Indeed, by Remark 2, the equivalence relation
≡ generated by −→ ∪ ∼, as from [7, Lemma 2.6], coincides with the
quotient relation induced by the presentation of HKΓ.

We will need to verify if the relation −→ on F (V ) satisfies the following
properties, given in [7].
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Confluence modulo ∼. For all choices of x ∼ y, x′, y′ ∈ F (V ) such that

x
∗

−→ x′, y
∗

−→ y′, one may find x, y such that

x′
∗

−→ x, y′
∗

−→ y, x ∼ y.

Locally confluence modulo ∼. The following conditions are satisfied
α: for all x, y, z ∈ F (V ) such that y and z are obtained from x by

any elementary cancellation, then there exist u, v ∈ F (V ) such that

y
∗

−→ u, z
∗

−→ v and u ∼ v;
β: for all x, y, z ∈ F (V ) such that x ∼ y and z is obtained from x by

any elementary cancellation, then there exist u, v ∈ F (V ) such that

y
∗

−→ u, z
∗

−→ v and u ∼ v.

x

y z

u v

∗ ∗

Condition α

xy

z

u v

∗

∗

Condition β

Since each elementary cancellation decreases word length, the relation
−→ is noetherian [7, Section 2.1], i.e., there is no infinite sequence of
elementary cancellations. In the noetherian case, [7, Lemma 2.7] shows
that confluence modulo ∼ and local confluence modulo ∼ are equivalent.

The following theorem proves that each normal form of a word w ∈
π−1(γ) belongs to the same ∼-equivalence class and it follows that all the
normal forms of w have the same length. In particular we obtain that the
number of simplifying steps to achieve a normal form of π(w) starting
from w is independent of the chosen simplifying sequence.

Theorem 1. 1) Let x, y ∈ F (V ). If π(x) = π(y) and u, v ∈ N satisfy

x
∗

−→ u and y
∗

−→ v. Then u ∼ v.
2) Every simplifying sequence

x −→ x1 −→ x2 −→ · · · −→ xn

may be extended to a simplifying sequence ending on a normal form
of π(x).
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3) All simplifying sequences starting from x ∈ F (V ) and ending on
some normal form of π(x) have the same length.

Proof. The second claim is a rephrasing of the concept of normal form,
whereas the third claim follows immediately from the first one, once we
notice that words in the same ∼-equivalence class have the same length
and each elementary cancellation decreases word length by exactly one.

As for the first claim, this is just [7, Lemma 2.6], which is equivalent
to −→ being confluent modulo ∼. As we are in a noetherian setting, it is
enough to prove that local confluence holds, i.e., that conditions α and β

are satisfied.
Condition α follows from [9, Lemma 8], where Kudryavtseva and

Mazorchuk, more generally, prove that for all x, y, z ∈ F (V ) such that
y and z are obtained from x by any elementary cancellation, then there
exists u ∈ F (V ) such that y

∗

−→ u and z
∗

−→ u.

x

y z

u

∗ ∗

Condition β follows from the fact that, by Lemma 2, for all x, y, z ∈
F (V ) such that x ∼ y and z is obtained from x by any elementary
cancellation, there exists u ∈ F (V ) such that z ∼ u and u is obtained
from y by an elementary cancellation.

xy

zu

Corollary 1 ([9, Theorem 6]). Normal forms in HKΓn
are unique.

Proof. If u and v are normal forms of the same element in HKΓ, then
u ∼ v. However, ∼ is the trivial equivalence relation when Γ = Γn.
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The next corollary is a special case of [5, Proposition 15]. Here we
only give an alternative proof.

Corollary 2. Let Γ be a (possibly infinite) simple oriented graph, Γ′ ⊂ Γ
a full subgraph. Then the induced monoid homomorphism HKΓ′ → HKΓ

is injective.

Proof. Normal forms of words whose letter content lies in Γ′ are the same
in both monoids.

Remark 5. We stress the fact that Theorem 1 uses neither finiteness of
the graph Γ nor that of the monoid HKΓ. For instance, when Γ has an
oriented cycle, one may prove that HKΓ is infinite [1] by noticing that
each power of the ordered product of all letters in the cycle is a normal
form, hence they describe infinitely many distinct elements, as they have
distinct length.

3. Choosing a preferred normal form

In actual contexts one would like to locate a favorite normal form to
work with. One way to do this is by choosing a total ordering < on the
set V of the vertices of Γ and employ the induced lexicographic ordering
on F (V ) so as to choose the minimal normal form.

If [w] is the ∼-equivalence class of a normal form for some γ ∈ HKΓ,
we will henceforth denote by wmin its lexicographically minimal element.
In principle, one may not be able to obtain wmin from w by a sequence of
lexicographically decreasing elementary commutations.

Example 1. Consider the total ordering a < b < c on the graph

a b c

If w = cab, then [w] = {bca, cab, cba} so that wmin = bca. Elementary
commutations all involve b, so that the only way to commute w into wmin

is cab ∼ cba ∼ bca; however cab is lexicographically lower than cba.

We thus need to find a general strategy to recover wmin from w.

Definition 4. Let ai ∈ V , i = 1, . . . , n, so that w = a1a2 . . . an ∈ F (V ).
Then aj is an initial letter of w, if aj commutes with ai for each i < j.
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Denote now by ι(w) the least initial letter of w. We are going to
describe a procedure to select a lexicographically minimal normal form
for any element in HKΓ.

Proposition 1. Let w ∈ F (V ) be a normal form. If wmin = a1a2 . . . an,
ai ∈ V , then for all k > 0, ak+1 is the least initial letter of the word
wk obtained from w by removing the leftmost occurrences of the letters
a1, a2, . . . , ak. Equivalently, wmin = ι(w)w1

min.

Proof. First of all, by the very definition, initial letters of w all commute
with which other. Also, if w′ is obtained from w by an elementary com-
mutation then the sets of initial letters of w and w′ coincide; therefore,
the set of initial letters of a word only depends on its ∼-equivalence class.
Every initial letter of w may be commuted to the leftmost position; vice
versa the leading letter of each word in the ∼-equivalence class of w is
an initial letter for w. Thus ι(w) is the leftmost letter of wmin. Now,
wmin = ι(w)w1

min can be easily proved by induction on the length n of
w.

Corollary 3. Define inductively a word w ∈ F (V ) to be tidy as follows:
• the empty word is tidy;
• w is tidy if w = ι(w)w1 and w1 is tidy.

Then there exists a bijection between HKΓ and the set of tidy normal forms,
which associates with every element γ ∈ HKΓ its unique lexicographically
minimal normal form.

The above claims shows that wmin can be recursively computed from
w. Notice, however, that the actual computation of wmin will strongly
depend on the topology of Γ. For instance, when Γ = Γn, no elementary
commutations will be needed at all, so that w and wmin will always coincide.
The opposite extreme is when Γ is a totally disconneted graph; in this case
a word is normal form if and only if each of its letters only occurs once.
One then obtains wmin from w by sorting w with respect to the chosen
total order. Intermediate cases will require some “partial sorting” of the
letter content of w. How to do this efficiently seems to be an interesting
problem, which will be addressed in a future paper.
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