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Dynamic and energy analysis of frictional contact instabilities on a
lumped system.

Jacopo Brunetti · Francesco Massi · Walter D’Ambrogio · Yves Berthier

Abstract When dealing with complex mechanical systems,
the frictional contact is at the origin of significant changes
in their dynamic behavior. The presence of frictional contact
can give rise to mode-coupling instabilities that produce har-
monic friction induced vibrations. Unstable vibrations can
reach large amplitude that could compromise the structural
and surface integrity of the system and are often associated
with annoying noise emission. The study of this kind of dy-
namic instability has been the subject of many studies rang-
ing from both theoretical and numerical analysis of simple
lumped models to numerical and experimental investigation
on real mechanical systems, such as automotive brakes, typ-
ically affected by such issue.

In this paper the numerical analysis of a lumped sys-
tem constituted by several degrees of freedom in frictional
contact with a slider is presented, where the introduction
of friction can give rise to an unstable dynamic behavior.
Two different approaches are used to investigate the effects
of friction forces. The first approach, the Complex Eigen-
values Analysis (CEA), allows for calculating the complex
eigenvalues of the linear system that can be characterized
by a positive real part (i.e. negative modal damping). The
complex eigenvalues and eigenvectors of the system are in-
vestigated with respect to friction. In the second approach
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a non linear model has been developed accounting for the
stick-slip-detachment behavior at the interface to solve the
time history solution and analyze the unstable vibration. The
effects of boundary conditions and of system parameters
are investigated. Results comparison between the two dif-
ferent approaches highlights how nonlinearities affect the
time-history solution. The lumped model allows for a de-
tailed analysis of the energy flows between the boundary and
the system during self-excited vibrations, which are at the
origin of the selection between the predicted unstable mode.

Keywords frictional contact · mode coupling instability ·
unstable induced vibration.

1 Introduction

Complex mechanical systems are always subjected to vi-
brations induced by the frictional contacts [Sheng, 2007;
Ibrahim, 1994a,b]. Such vibrations can be either of low am-
plitude, due to the system response at the broadband noise
excited by the irregularities at the contact surface, or char-
acterized by an unstable response of the dynamic system
(stick-slip, sprag-slip, mode lock-in) and the consequent large
vibration amplitude [Akay, 2002]. The presence of frictional
contact can give rise to mode-coupling instabilities that pro-
duce harmonic friction induced vibration. Unstable oscilla-
tions can reach large amplitude that are generally associated
with annoying noise emission [Kinkaid et al, 2003; Massi
et al, 2006].

The study of this kind of contact dynamic instability
has been the subject of many numerical [Coudeyras et al,
2009; Massi et al, 2007; Cantone and Massi, 2011; Chen
and Zhou, 2007; Baillet et al, 2005; Chevillot et al, 2010;
Bengisu and Akay, 1994; Ouyang et al, 2005; Dezi et al,
2014] and experimental studies on specific mechanical sys-
tems [Renouf et al, 2011; Brunetti et al, 2014], such as auto-
motive brakes [Massi and Giannini, 2008; Giannini and Ses-
tieri, 2006; Kinkaid et al, 2003] or hip endoprosthesis [Weiss
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et al, 2012; Fan et al, 2011], that are generally affected by
such issue. These works have shown howa Complex Modal
Analysis (CEA) can identify the stable and unstable behav-
ior of the system and that the frequency found to be unstable,
both experimentally and numerically, is close to one of the
unstable modes resulting form the CEA.

Theoretic and numerical analyses of simple lumped mod-
els [Hoffmann et al, 2002; Hoffmann and Gaul, 2003; Sinou
and Jézéquel, 2007] considered mainly systems with no more
than one unstable mode to observe the effect of some param-
eters on the complex eigenvalues of the system or on the size
of the limit cycle of the oscillations.

Often, contact nonlinearities have been replaced by non
linear stiffness in order to apply nonlinear resolution meth-
ods [Sinou et al, 2004] and find the steady state response of
the system and its limit cycle.

By the analysis of the contact behavior of complex me-
chanical systems it can be observed that the variation of
the contact status strongly affects the limit cycle; periodi-
cal variations of contact status can be found locally at the
contact [Tonazzi et al, 2013; Di Bartolomeo et al, 2012], af-
fecting the maximum amplitude of vibration reached by the
mechanical system (limit cycle).

In this paper, the numerical analysis is extended to a
lumped system constituted by several degrees of freedom
in frictional contact with a slider, where the introduction of
friction can give rise to an unstable dynamic behavior. The
nonlinear effects of the contact are in this case accounted
for by considering the possibility of switching between slid-
ing, sticking and detachment of the bodies in contact, while
the springs and dampers linking the different masses have a
linear behavior.

The novelty of the presented lumped system is the pres-
ence of both “contact” masses directly involved into the con-
tact and “internal” masses, which aren’t directly involved
into the contact and are representative of the “internal” sys-
tem/bulk dynamics. By this way the system wants to be more
representative, with respect to models into the literature, of
complex mechanical systems where the contact interfaces
represent only a portion of the whole system. It allows for
consider both the dynamic behavior of the system and the
local dynamic behavior at the contact interface. These as-
pects are both fundamental to model and understand friction
induced vibrations.

Similar models adopted in literature generally consider
just a single mass in contact. This assumption brings to an
excessive simplification of the contact interface that is con-
sequently reduced to a single contact point; the distribution
of the contact quantities and the transitions among the dif-
ferent contact conditions along the interface are not consid-
ered. On the contrary, transient analysis performed on more
complex and realistic models, such as finite element models
with an extended contact interface, showed an asynchronous

transition among the different contact conditions for all the
interface nodes and a non-uniform distribution of the contact
quantities along the interface. Hence, different nodes of the
same contact interface can have different contact status at
the same time instant [Tonazzi et al, 2013]. The modularity
of the system developed in this work allows for increasing
the complexity of the system such as the number of unstable
modes; moreover, the increase of the number of contacting
masses allows to be more representative of the contact dis-
tribution of a continuous contact.

For these reasons the proposed model can be considered
as an useful tool for investigating friction induced vibrations
of real mechanical systems, such as brake systems or joints,
allowing for a finer reproduction of the contact and dynam-
ics response (with respect to classical lumped models).

Two approaches are used to investigate the effects of
friction forces. The CEA performed on the system in the
initial status allows for calculating the complex eigenvalues
of the system that can be characterized by positive real part
(i.e. negative apparent modal damping). In case of instabili-
ties (positive real part) the vibration amplitude increases and
the system response is unstable. The complex eigenvectors
are investigated to discuss the energy flows associated with
either stable or unstable modes. In the second approach, a
nonlinear model has been developed to account for the ac-
tual contact behavior at the interface during the transient
response. In this case the transient solution has been com-
puted by modal composition techniques, with the aim to an-
alyze the stable or unstable friction induced vibrations in the
modal space.

Thus, the transient response is directly correlated to the
results from the CEA performed in all the different statuses
reached by the system during the vibration and a detailed
energy analysis is performed to better understand the flows
of energy during the limit cycle of vibration.

2 Lumped model

The analyzed system is composed by 2 subsystems each one
composed by 2 masses. One mass of each subsystem is in
contact with a rigid slider with a constant friction coefficient
µ . This law, applied locally on each node of finite element
models, can reproduce the measured dynamic response of
complex systems [Brunetti et al, 2013]. Furthermore, macro-
scopic effects, such as the variation of the global friction co-
efficient, can be related more to a variation of the dynamic
response of the system than to a local variation of the friction
coefficient [Tonazzi et al, 2013].

The slider is inclined at the angle θ and moves with
speed v.

In the model formulation, the preload at the contact can
be applied either by external forces Fex, applied to the up-
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Fig. 1 Lumped system considerd for calculations.

per masses (m1 and m3 in Fig. 1), or by displacements δ

imposed on the upper constraint.
The contact between the sliders and the lower masses

(m2 and m4 in Fig. 1) acts as an unilateral constraint (x4 ≥
0 and x8 ≥ 0 in Fig. 1) and the reaction forces, in normal
(N) and tangential (T ) direction, in case of sliding can be
expressed as follow:N > 0, T ≤−µ

ẋt − v
‖ẋt − v‖

N if xn = 0

N = 0, T = 0 if xn > 0
(1)

where ẋt is the speed of the contacting masses in the direc-
tion tangential to the contact, xn is the position in the direc-
tion normal to the contact and the positive directions are as
in Fig. 1.

To analyze the nonlinear behavior of the system the fol-
lowing status of contact have been considered:

– Positive Sliding (ẋt − v < 0): sliding contact with posi-
tive relative speed and negative friction force;

– Negative Sliding (ẋt−v > 0): sliding contact with nega-
tive relative speed and positive friction force;

– Sticking (ẋt = v);
– Detachment (xn > 0): no contact interaction between the

mass and the slider.

These conditions can be reached independently on each
contact between mass and slider; thus the system can reach
4n possible combinations of the contact status, where n is
the number of subsystems.

The simulations here reported are performed with the
system composed by 2 subsystems (cf. Fig. 1) and the val-
ues of the system parameters, chosen in order to have two
unstable modes for acceptable values of the friction coeffi-
cient, are reported in Table 1.

Parameter Value

m1, m2 0.3 kg
m3, m4 0.7 kg

k1 1.8e+6 N/m
k2 4.5e+5 N/m
k3 6.0e+4 N/m
k4 3.0e+5 N/m
k5 1.5e+6 N/m
k6 2.4e+5 N/m
k7 3.0e+4 N/m
k8 1.8e+5 N/m
k9 2.4e+6 N/m
β 1.0e-4 s
θ1 0.3
θ2 0.75

Table 1 Parameters adopted in the lumped model.

3 Complex eigenvalue analysis

To find the eigenmodes of the system the equilibrium posi-
tion is accounted for. It is supposed that all the contacts are
in sliding condition. In this case the motion is constrained
in the direction normal to the slider. The reaction force N
gives origin to a tangential force ‖T‖ = µN whose orienta-
tion agrees with that of the rigid slider speed.

In sliding condition each subsystem has 3 DoFs. The
Damping matrix is introduced as to be proportional to the
stiffness matrix. If the friction coefficient is nil the modes of
the system can be expressed solving the eigenvalue problem
for the mass and stiffness matrices.

λMψψψ = Kψψψ (2)

where λ = ω2 are the real eigenvalues of the system and
ψψψ are the real eigenvectors that represent the modal shapes
(cf. Fig. 2). These eigenvectors are orthogonal with respect
to the mass M, the stiffness K and the damping C matrix.
In this case the system can be diagonalized and the response
can be expressed as a modal superposition response.

When the friction coefficient is not zero, it produces an
asymmetry on the system matrices. In this case, the eigen-
modes of the system can be found by means of a complex
modal analysis, which takes into account the asymmetry of
the matrices. The system can be expressed in the state space
as follows:{

Mẍxx+Cẋxx+Kxxx = FFF
Mẋxx−Mẋxx = 000

−→ Aẏ+Byyy = QQQ (3)

where,

A =

[
C M
M 0

]
, B =

[
K 0
0 −M

]
, yyy =

{
xxx
ẋxx

}
and QQQ =

{
FFF
000

}
.

(4)

Being C and K asymmetric also A and B are asymmetric
and the following eigenvectors can be defined:

λυυυ
T A =−υυυ

T B (5)
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Mode 1 (91.56 Hz) Mode 2 (112.20 Hz) Mode 3 (151.72 Hz)

Mode 4 (263.44 Hz) Mode 5 (377.21 Hz) Mode 6 (585.19 Hz)

Fig. 2 Modal shapes in case of µ = 0.

λAξξξ =−Bξξξ (6)

where λ are in this case the complex eigenvalues and ξξξ and
υυυ are respectively the right and the left complex eigenvec-
tors of the system. The matrices of the right complex eigen-
vectors ΞΞΞ and of the left complex eigenvectors ϒϒϒ allow to
transform respectively the state variables and the forces, ex-
pressed in the state space, on the principal coordinates.

The eigenvalues can be expressed as a function of the
angular frequency ωi and the modal damping factor ζi of
the ith mode:

λi =−ωiζi + jωi

√
1−ζ 2

i . (7)

The real part is correlated to the modal damping fac-
tor: a positive real part corresponds to modes with apparent
negative modal damping factor (unstable modes). When the
effects of friction forces increase (increase of the friction
coefficient), eigenvalues having initially different frequency
coalesce together (lock-in) and their real parts start to di-
verge (Hopf bifurcation point).

Figure 3 reports the trend of real and imaginary parts
of each eigenvalue with respect to the friction coefficient
µ . Eigenvalues at lower frequency are the first to coalesce
for a critical friction coefficient µI = 0.7. The two modes at
higher frequency coalesce for a friction coefficient µII = 2.1.
It can be noticed that the positive real part of the lower eigen-
values overcome the real part of the higher eigenvalue for a
friction coefficient between 0.7 and 2.4, while the opposite
occurs for µ > 2.4. Finally, two modes of the system are
unstable if µ > 2.1.

The calculated complex eigenvectors give information
about both the relative amplitude of vibration and the ini-
tial phase of the vibration of each degree of freedom. Each

−120

−80

−40

0

40

R
e

a
l 
p

a
rt

 [
H

z
]

0 0.5 1 1.5 2 2.5 3 3.5
0

150

300

450

600

Im
a

g
in

a
ry

 p
a

rt
 [

H
z
]

Friction coefficient µ

Fig. 3 Real and Imaginary part of the eigenvalues versus the friction
coefficient

pair of complex conjugate modes gives the following (real)
contribution to the solution in the state space:

yyyi(t) = ξξξ i eλit +ξξξ
?
i eλ ?

i t . (8)

where the star symbol indicates the complex conjugate value.
The complex eigenvectors have a length 2n where n is the
number of DoF of the system. They are composed of two
parts: the first part is related to the displacement and the sec-
ond part is related to the speed ξξξ

T
i =

{
ψψψT

i , λiψψψ
T
i
}

. Hence,
the real contribution to the solution in the configuration space
can be expressed as:

xxxi(t) = ψψψ i eλit +ψψψ?
i eλ ?

i t

= 2eλRit [ψψψRi cos(λIit)−ψψψ Ii sin(λIit)]
(9)

where the R and I subscripts indicate respectively the real
and imaginary part.

In complex modes the displacements of different DoFs
of the system are in general neither in phase nor in phase
opposition, even along the different degrees of freedom of
the same mass.

The orbits of the masses of the system given by (9) al-
low for a physical interpretation of the different eigenvector
pairs both in terms of vibration amplitude and in terms of
the phase delay between the different DoFs of the system
(Fig. 4).
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Fig. 4 Complex modal shapes for a friction coefficient µ = 1.5. (◦:
initial point; •: equilibrium position.)

Figure 4 shows the orbits for a friction coefficient µ =

1.5. In this condition the system is characterized by one
coupled mode at a frequency of 119 Hz (Modes 1 and 2
in Fig. 4). Convergent spirals correspond to stable modes
while divergent spiral correspond to unstable modes. It can
be noticed that for uncoupled modes there isn’t any phase
lag between the two orthogonal displacements of the same
mass, and the orbit of each mass collapses on a segment.
On the contrary, convergent or divergent spirals characterize
the orbits of coupled modes. They indicate a phase lag be-
tween the two spatial DoFs of the same mass. Convergent
spirals mean release of energy at each cycle of vibration,
i.e. increase in the modal damping of the stable coalescing
mode (decrease of the real part in Fig. 3); divergent spirals
mean absorption of energy at each cycle of vibrations, i.e.
decrease of the modal damping for the coalescing mode up
to reach a negative value.

The displacement tangential and normal to the contact
can be correlated respectively to the velocity and to the con-
tact forces. The tangential speed is 90◦ ahead in phase with
respect to the tangential position. On the contrary, the vari-
ations of the tangential and normal contact forces T and N
are opposite in phase to the normal displacement of the up-
per mass. The power flow at the contact can be expressed
as:

P̃c =
1
2

Re [T v?]e2λRt (10)

where T is the tangential force phasor and v? is the complex
conjugate phasor of the tangential velocity. Therefore, the
phase lag between T and v?, needed to compute the power
flow, is directly related to the phase lag between the tangen-
tial displacement and the normal displacement of the upper
mass. In conclusion, the phase lag between the normal and

tangential displacement is related to the ability of each mode
pair to absorb or release energy.

4 Transient non-linear analysis

When dealing with linear systems, the solution can be ex-
pressed as a linear combination of all the modes of the sys-
tem. Basing on the real part of the eigenvalues, the system
behavior can be stable or unstable.

For linear systems, if there are several unstable modes,
the mode with greater real part of the eigenvalues grows ex-
ponentially faster than the others, and the contribution of the
other modes becomes quickly irrelevant.

Real systems don’t behave linearly because of the con-
tact nonlinearities such as the change of contact status (stick,
slip, detachment) or the nonlinear contact stiffness. When
the vibration amplitude increases, the variation of the con-
tact status (detachment or sticking) confines the exponential
growth of the vibration amplitude. This is why the linear
model is fully representative only of the initial part of this
dynamic instability phenomenon. To simulate in a reliable
way the whole transient analysis in the case of unstable fric-
tion induced vibrations, a non linear model is needed.

In this case the system can assume 4n different status
combinations. For each condition the complex eigenvalues
and eigenvector can be computed. The response of the non-
linear system can be expressed as a sequence of linear re-
sponses. The nonlinearity of the system is related to the
switching between the different contact status combinations.

The initial condition considered for simulation is the equi-
librium position with all the contact masses in positive slid-
ing and with a small perturbation on one DoF of the sys-
tem. Left and Right eigenvalue problem are solved for all the
masses of the system in the initial status and the response is
calculated as modal superposition of a self-excited system.

During the transient response different scenarios can oc-
cur for each mass in contact: i) if the normal contact force
reaches the nil value, the mass leaves the slider and passes
to the detachment condition; ii) if the relative speed of the
mass with respect to the slider reaches the nil value the sys-
tem can either pass to the sticking status or overcome the nil
value with the consequent inversion of relative motion (sign
of the friction force).

For each combination of contact status of the contact
masses a different set of differential equations can be writ-
ten. Each time a switch condition is reached, the position in
the state plane of the system becomes the initial condition of
the new set of differential equations.

In sliding and detachment status the right member of (3)
is composed by a constant term, that depends to the preloads
(forces or displacements) applied to the system. Conversely
in sticking status it is composed by a constant term and a
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linear term, related to the increase of the elastic force with
time. It can be generalized as:

QQQ = QQQ000 +QQQ111t. (11)

The complex modal analysis introduced in section 3 can
be useful to diagonalize the system. Considering the matri-
ces ϒϒϒ and ΞΞΞ respectively of left and right eigenvectors de-
fined in (5) and (6) is possible to transform the forces and
displacements in the generalized coordinates zzz:

yyy = ΞΞΞzzz (12)

ppp =ϒϒϒ
T QQQ (13)

These two matrices result to be bi-orthogonal and the system
can be diagonalized as follows:

ϒϒϒ
T AΞΞΞ żzz+ϒϒϒ

T BΞΞΞ zzz =ϒϒϒ
T QQQ (14)[

`ar`

]
żzz+
[
`br`

]
zzz = ppp000 + ppp111t. (15)

The time response in generalized coordinate is solution
of (15). Finally, the response on the state space can be ex-
pressed for each contact configuration as follows:

yyy(t) = ΞΞΞ

[
`eλrt

`

]
ΞΞΞ
−1yyy0 +ΞΞΞ

[
`br`

]−1 [
`1− eλrt

`

]
ppp0+

+ΞΞΞ

[
`br`

]−1
[
`

1− eλrt

λr
+ t`

]
ppp1

(16)

4.1 Transient response analysis

Figure 5 shows a typical behavior of the system when at least
one of the modes is unstable. The system starts from its equi-
librium position and the vibration amplitude increases expo-
nentially until it reaches a stationary value. The stationary
state is characterized by a limit cycle and is related to the oc-
currence of nonlinear transitions at the contact. Results here
reported are referred to a friction coefficient µ = 1.5: in this
case, (cf. plot of the real part in Fig. 3) only one system mode
is unstable. The initial perturbation is ẋ1(0) = 1e− 3m/s.
The boundary conditions considered for this simulation are
v1,2 = 2.5e−2m/s and δ1,2 = 1e−3m.

In the initial part of the simulation, when the system be-
haves linearly, the excited frequencies are the same calcu-
lated by the linear complex modal analysis (cf Fig. 3), due
to the system instability and the initial perturbation. The per-
turbation affects the initial part of the response by exciting
the system modes as a function of the perturbation “shape”.

The mode with a shape that is more similar to the initial
perturbation gives to the system response an initial larger
contribution. On the contrary the steady state reached by the
system is not at all affected by the initial perturbation, con-
firming that the harmonic content and the behavior of the
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Fig. 5 Displacement response for a friction coefficient µ = 1.5. (� x2;
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system during the limit cycle is directly correlated to the
system parameters. In Fig. 6 the state diagrams of the x2 and
x6 coordinate highlight the limit cycle of the system.
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Fig. 6 State diagram of the system and the limit cycle. (� DoF2;
N DoF6)

In this analysis the nonlinear response is expressed as a
sequence of linear responses. For each combination of con-
tact statuses it is possible to find the eigenvalues of the sys-
tem and express the response as a modal superposition until
the system switches in a new status. In this case the first
subsystem alternate between sliding (Sl) and sticking (St)
while the second subsystem alternates among sliding (Sl),
detachment (Dt) and sticking (St) (cf. Fig. 7). During the
limit cycle the whole system alternates among a sequence
of 4 different combinations of contact statuses.

Table 2 shows the frequencies of the system for each
configuration involved in the transient response. Results re-
ported in Tab. 2 highlight that the system alternates in this
case among two unstable contact status and two stable con-
tact status.

The Fourier transforms of the response signal in Fig. 8
highlight the main frequencies that characterize the unsta-
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Contact Status
Sl - Sl St - Sl St - St Sl - Dt

Fr
eq

.[
H

z]

118.44 113.38 113.14 31.59
119.35 125.40 258.47 116.15
177.55 258.47 326.10 116.60
233.13 306.51 582.02 173.77
442.04 581.45 - 233.66
589.90 - - 418.60

- - - 588.18

Table 2 Modal frequencies for the different configurations reached by
the system during the simulation for a friction coefficient µ = 1.5. Bold
values indicate the unstable modes.

ble vibration. During the initial part of simulation, when the
system is in sliding condition on both the contact masses,
the vibration recovered is at a frequency that is the same of
the unstable mode reported in the first column of Table 2. In
this condition the system absorbs energy by the contact, in-
creasing the energy content and consequently the vibration
amplitude.

During the limit cycle the frequency recovered is 112Hz.
This frequency is not directly imputable to one of the modal
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Fig. 8 Frequency content of the transient response during the initial
part the response and during the limit cycle. (�: x2 response in the
limit cycle; N: x6 response in the limit cycle;  : x2 response in the
initial part (0 < t < 0.11)).

analysis reported in Table 2. The response is a sequence of
different status combinations, each one characterized by a
set of natural frequencies. This brings to a spectrum of the
response characterized by a main harmonic, that is close to
the frequency of the unstable mode, and its superharmon-
ics, which appear with the appearing of the contact nonlin-
earities. Furthermore, during the limit cycle, the alternation
between different contact conditions brings the system to
switch between configuration of energy absorption and en-
ergy release, that are balanced during the period of the limit
cycle. Thus, there is no variation of the energy content of
the system and the vibration amplitude stabilizes at the limit
cycle.

5 Effect of boundary conditions on the transient
response

5.1 Effects of friction coefficient

With respect to the different behaviors of the system, high-
lighted by the parametric complex eigenvalue analysis, tran-
sient nonlinear simulations have been developed as a func-
tion of the friction coefficient (cf. Fig. 3). According to the
critical friction coefficients introduced in section 3 the fol-
lowing ranges can be defined:

– µ < 0.70: the system is stable;
– 0.70 < µ < 2.1: the system is unstable because one of

the eigenvalue at lower frequency has a positive real part;
– 2.1 < µ < 2.4: the system is unstable and there are two

eigenvalues at both lower and higher frequency with pos-
itive real part. The real part of the eigenvalue with lower
frequency is larger;

– µ > 2.4: the system is unstable because there are two
eigenvalues at both lower and higher frequency with pos-
itive real part. The real part of the eigenvalue with higher
frequency is larger.

In case of stable behavior of the system, the amplitude of
vibration decreases with exponential decay. If the initial am-
plitude of vibration is less than the amplitude that brings to
the contact status variation, the system behaves linearly and
tends exponentially to reach its static equilibrium position.

In case of unstable behavior of the system, the amplitude
of vibration, initially induced by a small perturbation, in-
creases exponentially until the first mass in contact reaches
one of the possible status variations. Then the exponential
increase of the vibration amplitude stops and the system vi-
bration reaches its limit cycle.

Figure 9 shows the Fourier transform of the position re-
sponse signal for three different analyses, performed on the
same model introduced in section 4.1, with three different
values of the friction coefficient (µ1 = 1.5, µ2 = 2.2 and
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Fig. 9 Fast Fourier Transform of the response during the limit cycle for
different friction coefficient. (�: µ1 = 1.5; N: µ2 = 2.2;  : µ3 = 3.0).

µ3 = 3.0). The friction coefficients chosen for this compar-
ison are set to cover the three possible unstable conditions
highlighted by the parametric complex eigenvalue analysis
(cf. Fig. 3). The Fourier transforms show that the global re-
sponse of the system is not affected by the variation of the
real part of the eigenvalues. The harmonic content remains
about the same for the two friction coefficients µ1 and µ2,
even if in the second case two unstable modes are predicted
by the CEA. For a friction coefficient µ3 there are still the
two unstable modes, but in this case the response is charac-
terized by the subharmonics of the main frequency.

It is important to notice that the main frequency of the
response remains the same (at about 112Hz) in the three
cases, even for the friction coefficient µ3. This means that
the unstable mode recovered during the transient response
is not directly related to the value of the real part of the
eigenvalues calculated by CEA. The selection mechanism of
the unstable mode, when several modes result to have posi-
tive real part, cannot be predicted by the system eigenvalues
and is rather related to the energy transfer associated with
each mode. Moreover, results of complex modal analysis
doesn’t allow to express in a deterministic way the transient
response, which is highly influenced by the contact nonlin-
earities and depends on other physical aspects such as the
energy equilibrium during the periodic non linear response.

Figure 10 shows the trace on the state plane during the
limit cycle. The different curves are referred to the same de-
gree of freedom (x2 in Fig. 1) for the different friction coef-
ficients. This figure compared with Fig. 9 highlights that the
limit cycle for the friction coefficient µ1 and µ2 are about
the same, with a small variation of the vibration amplitude.
For a friction coefficient µ3 the subharmonic that appears in
the Fourier transform (cf. Fig. 9) is associated to a double
tour on the state plane in Fig. 10 that produce a doubling of
the time period.
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Fig. 10 Limit cycle of the DoF x2 for different friction coefficient.
(�: µ1 = 1.5; N: µ2 = 2.2;  : µ3 = 3.0).

5.2 Effect of the slider velocity

Four different values of the slider speed (v1 = 2.5e−2m/s;
v2 = 5.0e− 2m/s; v3 = 3.0e− 1m/s and v4 = 9e− 1m/s)
have been selected with the aim to obtain different sequence
of contact status (cf. Table 3) and to observe how these vari-
ation can be related to different behaviors of the system. In-
creasing the speed of the sliders, the system reaches the de-
tachment condition and other modes are involved into the
response of the system. Table 3 shows all the contact status
combinations obtained for the different velocities.

speed configurations

v1
Sl St St
Sl Sl St

v2
Sl Sl St St St Dt
Sl St Sl St Dt Sl

v3
Sl Sl Sl St St St Dt
Sl St Dt Sl St Dt Dt

Table 3 Status configurations involved in the response for different
value of the sliders speed.

Analyses here reported are referred to the same model
with a friction coefficient µ = 2.2. For this value of the fric-
tion coefficient, in sliding condition, the system is character-
ized by two unstable modes at the frequencies f1 = 124.1Hz
and f2 = 206.4Hz. Table 4 shows the effects of contact sta-
tus combinations on the eigenvalues of the system.

Figure 11 shows the Fourier transform of the response
for different values of the slider speed. The main frequency
recovered for these simulations is about the same and it is
close to that of the first unstable mode.

The numbers of different statuses involved in the re-
sponse increases with the plane speed. The sequence of dif-
ferent contact status combinations can produce small varia-
tions of the main frequency recovered during the limit cy-
cle. The appearance and the relative amplitude of the sub-
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Contact status of second mass
Sl St Dt

C
on

ta
ct

st
at

us
of

fir
st

m
as

s

Sl

122,93 130,46 31,64
124,18 178,72 118,22
204,11 212,87 118,71
206,45 328,13 201,20
468,96 584,23 202,86
593,28 - 418,71

- - 588,25
- - -

St

113,43 113,14 31,48
132,05 258,47 113,55
258,47 326,10 118,12
467,78 582,02 258,48
591,50 - 417,52

- - 586,23
- - -
- - -

Dt

68,78 68,71 30,58
119,67 143,64 69,52
143,61 149,87 109,80
162,24 303,73 143,77
303,73 327,84 157,82
468,61 583,51 303,73
592,69 - 418,38

- - 587,59

Table 4 Modal frequencies for the different configurations reached by
the system during the simulation for a friction coefficient µ = 2.2. Bold
values indicate the unstable modes.

harmonics is related to the different combinations of contact
statuses during the limit cycle.
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Fig. 11 Fast Fourier transform of the system response during the limit
cycle. (�: v1 = 2.5e−2m/s;N: v2 = 5.0e−2m/s; : v3 = 3.0e−1m/s
and �: v4 = 9e−1m/s).

The variation of the slider speed produces evident results
observing the state diagram. The amplitude of vibration in-
creases with the increase of the speed. This is related to the
excitation during sticking phases that are present for all the
simulations. For the speed v1 and v2 the traces on the state
plane are of the same shape with only a difference in am-
plitude. For higher speeds the shape of the trace on the state
plane is different and characterized by a higher contribution
of the subharmonics and superharmonics.
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Fig. 12 Comparison of limit cycles for different speed of the con-
tacting sliders. (�: v1 = 2.5e− 2m/s; N: v2 = 5.0e− 2m/s;  : v3 =
3.0e−1m/s and �: v4 = 9e−1m/s).

6 Energy analysis

At the contact, the system exchanges power Pc with the slider
by means of the contact forces. Furthermore, the system ex-
changes power PFex with the external environment by means
of the external forces FEx. The viscous damping dissipates
the power Pm during the vibration. The derivative of the total
mechanical energy can be expressed in this case as:

dEt

dt
= Pc(t)+PFex(t)−Pd(t). (17)

The total energy can be decomposed into kinetic and po-
tential terms and represents the energy stored by the system
(cf. upper plot in Fig. 13).

0

0.01

0.02

0.03

T
o
ta

l 
E

n
e
rg

y
 [
J
]

0,3 0,305 0,31 0,315 0,32 0,325 0,33 0,335 0,34 0,345 0,35
−10

−5

0

5

Time [s]

T
o
ta

l 
E

n
e
rg

y
 d

e
ri
v
a
tt
iv

e
 [
W

]

Fig. 13 Decomposition, during the limit cycle, of the Et into Kinetic
(light gray) and Elastic (dark gray) energy (up) and derivative of the
total energy over the time dEt/dt (down).

The fluctuation of the total energy is related to the energy
balance expressed in (17).

Results presented in Fig. 13 refer to the same simulation
analyzed in 4.1; comparing the contact status in Fig. 7 with
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the total energy and its derivative in Fig. 13 the same period
of oscillations can be observed.

Figure 14 shows the decomposition of the total energy
derivative into the different power terms in (17). The com-
parison between this results and the transition among differ-
ent configurations of contact (cf. Fig. 13), highlights that the
system globally absorbs energy during the sticking condi-
tion of the first mass and releases energy during the sliding
condition of the first mass. In the limit cycle the duration of
these different phases is such that the energy absorbed and
released by the system are balanced and they don’t produce
any variation of the total energy of the system during the cy-
cle. This leads to have an amplitude of vibration constant in
time (limit cycle).
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Fig. 14 Decomposition, during the limit cycle, of the dEt into power
exchanged throw the contact interface and dissipated by the damping.

Figure 15 shows the decomposition of the total energy
derivative during the initial part of the same simulation, when
the exponential increase of the unstable vibration amplitude
brings the system to reach the first switches of the contact
status. The total power oscillates and the power globally in-
troduced into the system during a pseudo-period of vibration
is positive. It is because the positive contribution prevails
over the negative one before the beginning of cyclic varia-
tion of the contact configuration. In the last plot in Fig. 15
the variations of contact status occur when the total power

flow is positive. This produces a limitation of the absorbed
energy, that becomes equal to the released energy, and this
equilibrium brings the system to the stationary state with the
periodization of all the contact status switching.
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Fig. 15 Decomposition, during the initial part of the response, of the
dEt into power exchanged throw the contact interface and dissipated
by the damping.

7 Conclusions

In this paper, the development and analysis on a lumped pa-
rameters nonlinear model, composed by several degrees of
freedom, is presented. The presence of frictional contact al-
lows for the system to be unstable. By a parametric com-
plex modal analysis on the linearized model, the effects of
the variation of the friction coefficient on the system stabil-
ity have been highlighted. System configurations with either
one or several unstable modes are recovered. The instabil-
ity of the coalescing mode has been related to the relative
phase between normal forces and tangential displacements
at the contact, which governs the energy flow between the
system and the contact. Divergent spirals on the orbits of
the complex mode shapes characterize unstable modes, i.e.
absorption of energy.

The nonlinear transient analysis has been expressed as
a sequence of linear responses, considering all the possi-
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ble contact status combinations between the masses and the
sliders (switching between local sliding, sticking or detach-
ment). By this way the limit cycle of the system has been
found accounting for the contact nonlinearities. The effects
of boundary conditions on the limit cycle of the system re-
sponse have been analyzed. Results reported in this paper
show that when the friction coefficient is in the instability
range, the variation of its value produces a variation of the
amplitude of the response. Nevertheless, the harmonic con-
tent of the response doesn’t change substantially, even if the
ranking of the real parts of the eigenvalues calculated by the
complex modal analysis changes.

On the contrary, the variation of the slider velocity mod-
ifies the contact status during the limit cycle and relevant
variations of the harmonic contents can be noticed by the
appearance of the subharmonics.

The complex eigenvalue analysis performed for all the
different combinations of the contact statuses allows for high-
lighting how the appearance of superharmonics and subhar-
monics of the unstable frequency is related to the periodical
switch between the different configurations.

The analysis of the energy balance during the limit cycle
of vibrations gives an energy interpretation of the bounding
of the unstable vibration through the contact nonlinearities:
the periodical switching between different contact configu-
rations allows for an energy balance that brings to the con-
stant amplitude of vibration at the limit cycle.
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A System matrices in sliding condition

With reference to the system in Fig. 1 the system matrices used in
(3) to solve the complex eigenvalue problem can be defined writing
the Lagrangian equation of the system to find the equation of motion
considering the normal and tangential forces at the contact.

Applying the sliding condition on both the contacting points:{
x4 = ẋ4 = ẍ4 = 0 and T1 = µN1
x8 = ẋ8 = ẍ8 = 0 and T2 = µN2

(18)

the number of DoFs of the system can be reduced up to 6.
The coordinate vector of the system is in this case:

xxx =
[

x1 x2 x3 x5 x6 x7
]T (19)

and the mass and stiffness matrices are:

M = diag
([

m1 m1 m2 m3 m3 m4
])

(20)

K =


k1 + k3 + k8 0 −k8a1

0 k2 + k5 + k6 −k2b1
−k8(a1 +µb1) k2(µa1−b1) k8a2

1 + k2b2
1 +µ(k8− k2)a1b1

−k3 0 0
0 −k6 0
0 0 0

−k3 0 0
0 −k6 0
0 0 0

k3 + k9 0 −k9a2
0 k4 + k6 + k7 −k4b2

−k9(a2 +µb2) k4(µa2−b2) k9a2
2 + k4b2

2 +µ(k9− k4)a2b2


(21)

where:

ai = cosθi and bi = sinθi (22)

The damping matrix is defined as proportional to the stiffness ma-
trix by means of the proportional coefficient β defined in Table 1:

C = βK (23)

Finally, the forces vector at the second member of (3) assumes the
following value:

FFF =
[

0 −k5δ1−FEx,1 0 0 −k7δ2−FEx,2 0
]T (24)

The same approach can be applied for each contact condition.


