
Noname manuscript No.
(will be inserted by the editor)

Understanding MDE Projects: Megamodels to the Rescue
for Architecture Recovery

Juri Di Rocco · Davide Di Ruscio · Johannes
Härtel · Ludovico Iovino · Ralf Lämmel ·
Alfonso Pierantonio

Received: date / Accepted: date

Abstract Conventional wisdom on Model-Driven Engineering (MDE) suggests that
this software discipline is key to achieve superior automation, whether it be refactor-
ing, simulation, or code generation. However, the diversity of employed languages
and technologies blurs the picture making it difficult to analyze existing MDE-based
projects in order to retrieve architectural information to foster a better understand-
ing about the rationale behind them. Thus, the ability of carefully analyzing projects
to identify their components and their interrelationships is key to obtain representa-
tions at a higher level of abstraction that can support reuse processes. In this paper,
a megamodel-based approach to the reverse engineering of model-driven projects is
proposed in order to leverage the representation of the involved technologies and
assets. An automated recovery technique implemented by the MDEPROFILER in-
frastructure is presented and illustrated by analyzing community projects in terms
of basic MDE artifacts (such as models and metamodels) and the usage of common
technologies such as model transformations and code generators.

Keywords Megamodeling, Reverse Engineering, Architecture Recovery, MDE,
Code Generator, Model Transformation

1 Introduction

The Model-Driven Engineering (MDE) [64] community has made significant progress
with enhanced productivity and quality software development. However, cost-efficient

J. Di Rocco, D. Di Ruscio and A.Pierantonio
University of L’Aquila (Italy)
E-mail: firstname.lastname@univaq.it

L. Iovino
Gran Sasso Science Institute (Italy)
E-mail: ludovico.iovino@gssi.it

R. Lämmel and J. Härtel
University of Koblenz-Landau (Germany)
E-mail: laemmel-or-johanneshaertel@uni-koblenz.de

2 Juri Di Rocco et al.

adoption of such software discipline is still a challenge [68]. An introspective analysis
of typical processes and usage of model-driven techniques and technologies, which
leverages the representation of tooling architectures and formalizes component inter-
relationships, is key to better understanding and increased reuse.

Research problem MDE projects make use of a wide range of technologies (e.g., for
model transformation, model comparison, or model/code generation) and thus, they
contain inherently different artifacts (such as models, metamodels, and model trans-
formations). The details of using MDE technologies and the relationships between
the artifacts are typically not accessible at a higher level of abstraction, which makes
it hard to analyze, build, and test the projects and thus, to reuse the contained arti-
facts. Arguably, this problem is of paramount relevance for model repositories [8,21]
which, as a result of lacking access to a higher level of abstraction regarding usage of
MDE technologies, end up focusing on just aggregation of artifacts without attached
‘architectural’ information.

In principle, one could use a megamodeling approach, up to the point of exe-
cutable megamodeling scripts [43], for managing MDE projects. The model elements
of a megamodel are artifacts such as models, metamodels and transformations. A
megamodel also contains (typed) relationships between artifacts, for example, con-
formance and transformation relationships. Thus, megamodeling offers the possibil-
ity to specify relationships between artifacts and to navigate between them. For a
megamodel to be practically useful though, it would need to address the technolog-
ical heterogeneity of MDE projects which rely on, for example, mainstream build
systems, scripting languages, and test frameworks.

Further, we must not limit ourselves to prescriptive megamodeling or forward
engineering; we also need to be able to ‘discover’ megamodels and ‘recover’ their
instances systematically, semi-automatically, and efficiently so that we can bene-
fit from them without much extra developer effort. Thus, we face a problem sim-
ilar to software architecture reverse engineering or architecture recovery [67,46]
in that software projects may lack higher-level architectural descriptions. Recovery
is to be leveraged when a suitable description has never existed or it is no longer
‘in sync’ with the actual code. In an MDE technological context, we may be in-
terested in architectural knowledge such as model artifacts in a project, more spe-
cific types of models (e.g., metamodels), model-to-metamodel conformance, appli-
cations of model-management operations (e.g., model transformation, model/code
generation, model merging, model weaving, model comparison, and model patching),
evolution-related relationships, and some types of technological traces, for example,
build scripts, launcher configurations, or tests.

Contributions of the paper In this paper, we present a megamodel-based reverse en-
gineering methodology and its supporting infrastructure MDEPROFILER. The ap-
proach is agnostic of the specific technologies and enables harvesting detailed infor-
mation about their employment in model-driven projects. The proposal is illustrated
by analyzing a corpus of ATL-based model transformations and Acceleo code gen-
erators taken from the ATL Zoo1, and by taking into account related tools, such as

1 https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 3

Ecore, KM3, Ant, and launcher configurations. The discovery process uses heuristics
for detecting and connecting megamodel elements. The discovery process is iterative
in so far that one starts from basic types of megamodel elements and then performs
iterations for classifying an increasing number of artifacts in projects and connecting
them in the megamodels. In other words, the original contribution of this paper is the
adoption and combination of a number of heuristics for the recovery of megamodels,
i.e., a synthesis of the areas of reverse engineering, megamodeling, and architecture
recovery.

This is an extended version of our original contribution in [20]. Specifically, in
this paper the discussion about the related work is substantially extended, additional
heuristics are introduced to improve the obtained results in terms of reduced number
of dangling nodes in the recovered models. Moreover, two research questions (RQs)
are defined and answered by means of the performed experiments: RQ1 is about the
accuracy of recovered models, whereas RQ2 is related to the effort, which is saved
by employing the proposed approach.

Road-map of the paper Section 2 discusses related work. Section 3 contextualizes
the proposed approach with an application scenario. Section 4 describes our method-
ology for recovering MDE-technology usage. Section 5 describes our infrastructure
for recovery. Section 6 evaluates our approach by means of a case study for the ATL
Zoo. Section 7 concludes the paper.

2 Related Work

This section discusses relevant works that are related to the recovery approach de-
scribed in the next section. The main novelties of the proposed recovery technique
with respect to approaches that are already available in other research fields and ap-
plication domains can be summarized as follows:

– megamodel-based: by adhering to the MDE principle that everything is a model,
the recovery approach produces megamodels consisting of typed relationships
between discovered artifacts;

– extensible: the recovery approach relies on the availability of heuristics each con-
tributing to the identification of specific artifact types. Additional heuristics can
be added to enable the recovery of new types of artifacts and relationships.

Previous work by (some of) the authors The software language repository YAS [49]
leverages megamodeling to manage many language processors that are diverse in
terms of implementation languages and involved technologies. However, YAS does
not cover MDE and model transformation technologies such as those covered by
this paper. More importantly, YAS does not involve any form of reverse engineering
for obtaining the megamodel; YAS depends on authoring and maintaining the meg-
amodel by the contributors of the repository while megamodels serve building and
testing. Megamodeling is discussed for MDE technologies (including EMF, ATL,
and Xtext) in [31], but reverse engineering is not leveraged, despite being stated as
a direction for future work. A rule-based approach to mining artifact relationships

4 Juri Di Rocco et al.

with an application to EMF is presented in [32], but no methodology for discovering
megamodels is provided. All of this previous work invokes the term ‘linguistic archi-
tecture’ [26] as a form of megamodeling and a form of software architecture; see yet
more related work on the axiomatization of a linguistic architecture [34], its interpre-
tation [52], the linking of documentation and source code [25], and tool support for
the renarration of linguistic architecture for educational purposes [53].

Heuristics for architecture recovery Bowman et al. [15] compare three recovered ar-
chitectures: a conceptual architecture based on the documentation, a concrete archi-
tecture that is derived from the actual system, and an ownership architecture extracted
from version control. By examining the overlap of edges, they check whether one ar-
chitecture correlates with another. Concrete, ownership and conceptual architecture
recovery can be considered as a kind of heuristic. In contrast, our work combines the
output of heuristics and refines the set of used heuristics through an iterative process.
While Bowman et al. considers fundamentally different sources, in [55] a very fine-
grained and specific set of heuristics on code-package structures is employed to guide
exploration of system architecture. Our work also facilitates fine-grained exploration,
by means of an extensible heuristics-based mechanism.

In [63], Sartipi et al. represent source code as a graph of, for instance, variables,
types, or import relations. Here, heuristics are used in the form of patterns that are
matched on this graph. These patterns contain placeholders for abstract components
and connectors. An approximate instantiation on the source graph produces the re-
sulting architecture. The methodology comes close to ours in that it facilitates domain
knowledge in an iterative and interactive process to define the patterns. Our approach
recovers megamodels of actual systems based on file-type recognition. This motivates
our need for flexible heuristics that we implement in plain Java.

In [57], the authors compare a set of alternatives to group the system using hierar-
chical clustering and conclude on their characteristics (e.g., one way of clustering is
good for detecting utility functions). Depending on which similarity definition is cho-
sen for clustering, this method can be seen as very general and domain-independent
heuristics for grouping and connecting nodes, representing software modules.

Architecture recovery of web applications facilitated by different extractors is
pursued in [33] with a form of extractors comparable to our heuristics. This work
describes a set of tools which parse and extract relations between the various compo-
nents of a web application. The extracted components and relations can be visualized
using a specialized viewer, very similarly to the visualizer we propose.

In [1], the recovery of components from object-oriented source code is described
as a step facilitating the migration of code. Mapping the diversity of technology ap-
plication that appears in MDE projects to a megamodel is related to this recovery
but our approach has to handle several languages and formats – as opposed to just
working with object-oriented source code as input.

In [17], the recovery of a system’s internal architecture is refined by a semi-
automatic process that considers documentation and expert recommendations. In our
approach, documentation artifacts can be seen as potential targets for heuristics.

In [56], an architecture recovery tool is proposed that can process versions of the
system. Like our approach, the authors focus on a recovery process driven by explo-

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 5

ration and visualization; however, currently we do not consider different versions of
MDE projects. We see the analysis of versions as a promising way for finding ad-
ditional traces of artifacts and for performing additional measurements, for instance,
the erosion of MDE technologies in projects.

In [18], a method for noise detection is proposed as a pre-processing step for
program comprehension. Noise in software systems is produced by classes that are
intensively utilized either system-wise, for instance omnipresent classes. The idea of
noise detection is transferable to the domain of MDE. In our future work, we plan to
identify MDE artifacts that are widely used in a system but do not relate to the real
application scenario (e.g., usage of the Ecore metamodel). Wille at al. in [69] present
guidelines and a generic implementation that both ease adaptation of a previously
presented variability mining algorithm for new languages. This work also integrates
a clustering approach as a pre-processing step to the mining. Babur et al. in [4] apply
generic model analytics to compare the feature models in a case study repository. The
final goal is testing the genericity and extensibility of the approach for new model
types and datasets.

In [47], an approach is presented that uses hierarchical clustering for the reverse
engineering of a complex system. The resulting clusters are visualized. Following up
work in [48] adds semantic links between clusters; both focus on depicting ‘semantic
hot-spots’ of the system, for instance, a connector between a system’s core and script-
ing library. Such semantic hot-spots are related to the occurrence of MDE technology
as its application is essential in understanding of a system.

Heuristics for traceability recovery Traceability recovery concentrates on mining
edges between artifacts. Here, the usage of language-agnostic heuristics is very com-
mon, since trace links often reside between artifacts in different languages including
natural language. For instance, in [2], links are recovered by computing the cosine
similarity between the artifact term vectors. The recovered trace links connect Java
and functional requirements as well as C++ and manual pages. Alternatively, in [38],
sequential pattern mining is applied on commits to connect any type of artifact in a
repository co-occurring in a change. In [3], the evolution of traceability links is sub-
ject to a topic model, that is the artifact outcome of a process combining traceability
with machine learning techniques; finally used to visualize and describe the system
in different ways – as done in our work. We see such types of generic heuristics as a
promising extension to our approach, especially to uncover unknown domain-specific
heuristics. In this paper we concentrate on a running example based on Acceleo and
ATL-specific recovery.

In [42], a tool provides an experimental environment for solving traceability tasks.
This is done by instantiating, configuring and connecting components in a workspace.
Predefined and user-defined components are collected in a library that facilitates
shared and reusable knowledge. Our library of heuristics is also intended for shar-
ing and reuse within the MDE scope. As of writing, we do not yet provide a flexible
way of combining and configuring heuristics.

The motivation of [65] reflects ours in that the correspondence between models
should be visible when transformations are applied. The approach uses formal rules

6 Juri Di Rocco et al.

to maintain relations between models; the technique can be applied in batch and
incremental mode.

Heuristics for software, technology, and language usage In [44], the usage of Eclipse-
based MDE technologies in projects hosted on GitHub is analyzed by counting the
files that are strongly related to technology usage. Another language-usage analysis
of repositories, without being focused on MDE, is described in [41]. The authors also
use file extensions as a heuristic to detect languages. We use file extensions only as
the simplest heuristic. API usage in projects, as a very specific kind of software us-
age, is analyzed extensively in related work (e.g., [51,50,60]). Different features or
metrics are used for characterizing API usage, for example, whether or not a compo-
nent uses a given API or whether or not the component extends or simply reuses the
API.

In [35], the extraction of metric is described using open source parsers targeting
projects where several languages occur. Clearly, this is the case for MDE in that our
implementation of heuristics benefits for already available infrastructure (e.g., JDT).

Megamodeling and executable model management Megamodels, as introduced in [13],
are concerned with models as first-class entities. Megamodels are often used in ex-
ecutable model management systems to organize tasks on models, for instance, the
application of transformations, querying, merging, and constraint checking. For in-
stance, in [12], an explorative framework for working with models is described that
follows the megamodeling principles. Alternatively, in [43], a layer on top of hetero-
geneous repositories is presented to get uniform model-based access to the system
by writing model operations in a DSL. In [62], graphical and interactive support is
described; this work is close to our model visualizer. There is no related work on
megamodels where heuristics are used for identification of model elements and re-
covery of relationships. In some of our previous work on megamodeling [52,31,32],
we considered heuristics, but without a methodology for their discovery along an
iterative process.

In [45], consistency checking is discussed focusing on complex systems of multi-
models. The approach reduces the cost of checking by the localization of models.
Our description of model interrelations in terms of a graph can be seen as some sort
of localization.

In [61], relational data migration is examined with respect to applicable MDE
techniques. If reverse engineering is needed as a first step towards a relational data
migration, our approach may also provide the underlying infrastructure for such re-
covery.

In [11], the author proposes RAS++, a common representation language to be
used in the core of a Knowledge Base for Model Driven Engineering. This common
representation language is derived based on similarities and differences in MDE lit-
erature. Megamodel-based techniques are highlighted as important related work.

In [62], a model management tool (MMINT) providing a graphical and interac-
tive environment for model management is discussed. Key features of MMINT are
an interactive and automated user interface intended to reduce the complexity when

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 7

managing models. The tool supports the user interactively, whereas our tool automat-
ically derives relationships.

In [66], the relations between build systems and megamodels are discussed. The
build system can be used in combination with a megamodel to restore desired con-
sistency relationships between models (in case of modification). The work focuses
on optimal restoration of consistency, for instance, a transformation does not have to
be reapplied if the related models did not change. Our approach detects transforma-
tions but does not provide a build system due to several issues arising with arbitrary
repositories.

Repository Mining In [14,40,39], the promises and perils of mining Github are dis-
cussed. For instance, a proper interpretation of the results is only possible when the
specific characteristics of a repository are considered. In that manner, our research is
affected by the fact the MDE projects on Github are often of academic nature. Other
perils or challenges are discussed below.

When analyzing repositories, very scalable techniques are needed. In [22,23,24],
a highly scalable computation infrastructure for analyzing repositories is described
that compiles to a distributed map-reduce framework. Our approach is not easy to
distribute as MDE technologies are often bound to a file system. We see promising
future work in virtualization of the file system enabling the scaling and evolution
aware MDE analysis. In [30], a technique for attaching file ownership to developers is
discussed. Such ownership can clearly be transferred on MDE artifacts. Ownership of
artifacts remains future work. In [16], the inner source code collaboration is measured
in terms of patches (code contributions) flowing across boundaries of organizational
units. MDE technology also crosses such boundaries, for instance, transformations
may be developed and used by different teams. Our proposed recovery approach can
be employed to better understand inner MDE technology collaboration.

Repository history provides detailed chronological data when working with sev-
eral repository versions. In [70], version histories are analyzed to provide developers
with some sort of guidance when changing code. Our aim is to continue by focusing
on the developer as a part of the MDE process; evaluating the very complex usage of
MDE technology.

In [29], the misalignment between MDE in academia and industry motivates a
method to evaluate the quality of modeling languages that are used in combination.
Our work can be used to measure MDE in the wild (on Github) and thereby pro-
vides some ground truth on its acceptance. For analyzing MDE technology used in
combination, our approach needs to improve in terms of technologies covered. The
list of MDE technologies examined in [44] can provide a useful guideline for such
diversification.

3 Application Scenario

Existing repositories for modelling artifacts are very diverse: they typically expose
functionalities that range from persistent storage to complex modelling environments
where teams can collaboratively develop models and execute transformations. The

8 Juri Di Rocco et al.

Repository for Model Driven Development [28] (ReMoDD) project is one of the first
attempts of developing a community-driven repository. A system that permits devel-
opers, students, instructors, and researchers to make their artifacts publicly available
to be inspected, studied, and potentially reused. While such repositories represents a
useful route to the sharing of knowledge in communities and organizations, they are
limited in terms of providing reuse opportunities because they are relatively unstruc-
tured or manually classified.

In order to leverage the profitability and scope of repositories containing knowl-
edge objects, more advanced techniques, such as similarity- (e.g., [6]) and quality-
based analysis and filtering (e.g., [7]), should be employed. For instance, the MDE-
Forge [5] platform offers an unmanned classification mechanism based on clustering
techniques [6] and a discovery mechanism for identifying chains by composing the
transformations existing in the repository [9].

Unstructured repositories do not provide advanced classification techniques and
non-basic searching functionality. Because artifacts are stored in a file-system-based
storage and classification is based on merely syntactical methods (like manual tag-
ging) the accuracy is limited and modelers need to browse, download, and inspect
models in order to gain insight.

In Figure 1, a scenario is reported to better illustrate and discuss the limitations
of unstructured repositories and to motivate the contributions made by the proposed
megamodel-based architecture recovery approach. When dealing with an unstruc-
tured repository, the user’s ability of looking for artifacts is, on the whole, limited to
full-text search, browsing and, when possible, to the possibility of (internally or ex-
ternally) exploring (inspecting) the artifacts. Arguably, this is tedious and error-prone
especially if the repository contains a large number of items. In fact, search often
relies on simplistic solutions that make use of metadata limited to basic information
such as artifact name, textual descriptions, and customized label-based tagging. The
outcome is typically a flat collection of seemingly unrelated elements, that fails to
convey to the user the structural information about the interrelationships within the
repository as, for example, models that are interconnected because of a consistency
relationships maintained by a transformation.

Architecture recovery and megamodels to the rescue Megamodeling [13] represents
a useful technique to formally characterize the underlying structure of a repository in
terms of artifacts categories and their interrelationships. In essence, a megamodel can
be viewed as analogous to a schema in a database system, i.e., a representation of the
repository structure in terms of the categories of artifacts alongside with their interre-
lationships. Searching for a specific artifact by specifying its neighbourhood, i.e., the
network of connections the searched artifact must conform to, allows the modeler to
restrict the search space according to her needs and purpose [8]. For example, the user
could apply a direct search considering artifacts-specific attributes (or references) and
inspect the artifacts that satisfy the search criteria. In a structured repository, a clus-
tering function can offer another view of the stored artifacts by grouping together
artifacts that are considered similar according to a distance measure that is based
on structural and lexical similarities. This view can be further refined with a proper
visualization in which the typing, nature, and relationship between the artifacts are

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 9

Fig. 1: Application scenario: understanding MDE repositories to prepare reuse.

exposed and the user can decide to proceed in the selection or refining the view by
applying a direct search.

The approach proposed in this paper brings suitable megamodels to the table and
it also provides an architecture recovery methodology so that structuring repositories
does not rely on manual classification and otherwise manual efforts, but the structure
is discovered by an extensible set of discovery heuristics inspired by related work in
reverse engineering.

In the remainder of this section, we briefly describe some functionality, as pointed
out in the figure and as enabled by the approach proposed in this paper:

– search for an artifact,
– clustering of the available model-based artifacts, and
– detailed megamodel-aware visualization.

Searching Modeling Artifacts The availability of efficient and accurate ways to re-
trieve artifacts in large model repositories is crucial. Thus, relying on sound and well-
formed models for discovering and reusing existing artifacts is key to preserving pro-
ductivity benefits related to model-based processes [59]. The heterogeneity and the
multitude of the modeling artifacts stored in a repository require query mechanisms
based on a fine-grained level of understanding the repository. For instance, in order
to locate an artifact, it might be useful to be able to predicate over artifact types,
metamodels, domain types, maturity levels, and metamodel elements, such as classes
and structural features, as well as repository-wide attributes [10]. One of the needed
prerequisites to enable an efficient way of searching through repositories is having a
wide range of supported modeling artifacts. Moreover megamodel-awareness [20] in

10 Juri Di Rocco et al.

the repositories contributes to the efficiency of this functionality. Considering the re-
lations among different kinds of artifacts, where relations enable joins for traversing
the repository is key to success. For instance, consider an illustrative search problem:
given a metamodel mm, find all metamodels supported by existing editors that are
source metamodels of a transformation that generates models conforming to mm.
Using the result of the search, one would be able to create models (instances) of mm
rather than relying on existing artifacts in the repository. This kind of search clearly
relies on artifact typing (classification) and structure in terms artifact relationships,
as they can be represented by a megamodel.

Clustering Modeling Artifacts Most of the potential benefits of having model repos-
itories remain unexploited especially when hundreds or even thousands of modeling
artifacts have to be managed. In particular, organizing and browsing models in the
available repository are crucial functionalities enabled by an efficient way of typ-
ing the stored artifacts. If automatic categorization of the stored artifacts is not sup-
ported, this can make the interaction with the repository complex. An efficient way
to cluster modeling artifacts permits to automatically organize unstructured reposito-
ries and provide the users with overviews of the available artifacts. Clustering is an
unsupervised procedure, which automatically organizes artifacts into clusters, where
mutually similar artifacts are grouped together depending on a proximity measure
the definition of which can be given according to specific search and browsing re-
quirements. These requirements are strongly based on artifact typing and they may
also relate to artifacts’ relationships (e.g., their existence or their frequency). Thus,
megamodel-based architecture recovery for MDE projects also helps clustering.

Visualizing Modeling Artifacts When a subset of artifacts is identified, the user can
proceed with a detailed view of the artifacts, in which all the details are reported. By
looking at such a representation, users can get a clear understanding about how the
different elements are connected and how different artifacts are related. This func-
tionality is explored in detail in Section 5.3.

Explore the Modeling Artifact The individual artifact can be downloaded or inspected
directly in the repository.

4 Recovery Methodology

Figure 2 summarizes key aspects of our methodology. Any number of MDE projects
(possibly also adding new ones over time) are analyzed semi-automatically to recover
megamodels representing MDE-usage information. Heuristics are used to locate ar-
tifacts of interests (e.g., models) and artifacts that encode relationships (e.g., build
scripts with model transformation applications).

The recovered megamodels are essentially graphs with artifacts of interest as
nodes and relationships as edges. Simple measures are computed for the megamodels.
In particular, ‘dangling’ nodes are determined, as they are considered indicators of

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 11

Project
sources

Project
sources

Recovery

Project
megamodel

Project
megamodel

Recovery
heuristics

Recovery
measures

Analysis

Refinement

Application

Fig. 2: Megamodel-based reverse engineering.

missing relationships. Domain knowledge and technology documentation are lever-
aged to manually refine the applied heuristics and to conceive new ones until all the
artifacts of the analyzed MDE projects are modeled together with the correspond-
ing relationships. This recovery process is intrinsically incremental. In the sequel,
we discuss artifacts in MDE projects, relationships between them, and heuristics for
relationship inference in more detail.

4.1 Artifacts in a MDE Project

As shown in Fig. 3 and described below, several kinds of artifacts are considered
when applying MDE. Available artifacts make up the system in terms of its source
code and other resources that are available typically through version control or down-
load. All artifacts includes artifacts that may be not at all or not directly available.
For instance, an artifact may only be obtainable by system building or testing. In par-
ticular, an artifact may only be transient, for instance, a run-time object during the
execution of a test case or otherwise the result of computational step (e.g., due the
application of a transformation or a code generator). An artifact may also be unavail-
able, but its existence, at least, in the past, is known simply because there are traces
of it (i.e., references to it) in the available artifacts. For instance, an ANT script might
contain a path to not-existing files that would be created, if the script is executed,
in the sense of the output model of a transformation. Artifacts of interest are those
(available or not) that are obviously of interest for recovering technology usage.

In the case of ATL-based model transformation, artifacts of interest are clearly the
ATL transformations themselves, but also source and target models for transforma-

12 Juri Di Rocco et al.

Fig. 3: Artifacts in a MDE project.

tions as well as metamodels for conformance. Artifacts with traces are those (avail-
able) artifacts (of interest or not) in which we may locate traces to artifacts (mainly
references). Subject to a classification of the artifacts with traces, these artifacts may
be interpreted as (encoding) relationships between artifacts.

Finally, the recovery approach may also involve virtual artifacts; by this we mean
that these artifacts are not really thought to be part of the repository (available or
not), but they are computed, much in the sense of transient artifacts, but only for the
purpose of discovering artifact types and relationships.

The overall assumption is that we may identify artifacts of interest by examin-
ing algorithmically the available artifacts and we may identify relationships between
artifacts by examining, again, algorithmically available artifacts on the grounds of
technology-specific patterns for traces; we may introduce (in rare cases) virtual arti-
facts along the way.

4.2 Relationships to be Recovered

Figure 4 identifies ‘abstract’ artifacts of interest with relationships for the running
example of ATL and Acceleo. In particular, in Figure 4a there are source and target
models, the corresponding metamodels (MMs), the actual ATL model transforma-
tion (MT), and the application thereof. In Figure 4b, the source model is the input,
conforming to the source metamodel, and the Acceleo module (M2T) is executed to
get the output, which can be any textual format file or code, depending on the tar-
get platform. An Acceleo module is usually called by a corresponding main Java file
containing references to the module specification.

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 13

Source
model

Target
model

Source
MM

Target
MM

conformsTo conformsTo

MT
application

ATL
MT

applies

input output

(a) ATL

Source
model

Source
MM

conformsTo

M2T
application

Acceleo
MTL

applies

input
output

defined On

Java
Main

Called by

(b) Acceleo

Fig. 4: ‘Abstract’ artifacts and relationships for ATL vs Acceleo usage

We also show relationships between these artifacts that need to be recovered.
Relationships between artifacts, e.g., conformance and transformation application in
the example, can be identified in different ways:

Trace-based identification Based on the type of referring artifact (e.g., an ANT file),
based also on the details of reference (e.g., the argument position of an ATL trans-
formation execution), one may identify a relationship (e.g., a model to serve as the
‘source’ of a model transformation).

Computational identification By considering a more or less standardized, technology-
specific functionality (e.g., the operation for Ecore-based conformance checking) on
given candidate artifacts (e.g., a model artifact and a metamodel artifact), one may
identify a relationship (e.g., conformance). Also converting an artifact into a different
format or technological space can give rise to discovered relationship among artifacts,
e.g., injecting from a concrete syntax to a model.

Mining-based identification Based on a more ‘ad-hoc’ application of technology-
specific functionality (e.g., a comparison of vocabulary extracted from various arti-
facts) on given candidate artifacts, one may identify a relationship (e.g., similarity).

14 Juri Di Rocco et al.

4.3 Heuristics for Recovery

We will discuss now heuristics for identifying artifacts of interest and finding traces
for relationships. These heuristics adopt techniques that have been applied elsewhere
in a more classic reverse engineering context or in the validation of prescriptive meg-
amodels or yet other contexts of software engineering; we provide related work point-
ers on the way. Our original contribution is the adoption and combination of a number
heuristics for the recovery of megamodels, i.e., a synthesis of the areas of reverse en-
gineering, megamodeling, and architecture recovery.

Filename heuristics Many types of artifacts may be precisely detected on the grounds
of filenames or extensions thereof [25]. For instance, the ‘.atl’ extension identifies an
ATL model transformation — especially within an MDE project, and the ‘.mtl’ exten-
sion stands for Acceleo module — from Acceleo transformation language. Clearly,
filenames may not always be sufficient, for instance mtl is also used for files used
by 3D object editing applications; one may also need to consult the content of files
for the purpose of artifact classification. For instance, EMF models may be stored in
‘.xmi’ files, but other extensions are also used.

Watermark heuristics Some types of artifacts may be precisely detected by looking
for specific content patterns (‘watermarks’) in files [25,44] or by means of techniques
resembling the magic number-based detection in the UNIX file command2. For in-
stance, a syntax definition for the EMFText technology would be a ‘.cs’ file that
contains the string ‘syntaxdef’ [44]. (The extension ‘.cs’ alone would be imprecise,
if we assume that C# files could also be in the same project.)

Parser heuristics Some types of artifacts may be precisely detected by just trying
to parse the artifact by a standard component for the type of interest. For instance,
an XML file could be precisely detected, by just invoking any XML parser, e.g., a
DOM-based one, on the file in a non-lax mode. A filename or watermark heuristic
can be used as a precondition, if costs of parsing are a concern [52].

Component heuristics Some types of artifacts may be precisely detected and some
types of suspected relationships may be precisely verified by reusing the technology
of interest, or rather a component thereof [52,31]. For instance, a suspected con-
formance relationship may be verified by the available component (operation) for
Ecore-based conformance checking, as discussed in Section 4.2.

Extractor heuristics Customized fact extractors [52,58,27] may be used to identify
traces in given artifacts, thereby helping with recovery of relationships. For instance,
a heuristic for ANT files may extract instances of common patterns of using ANT
for applying model transformations. Such extraction may involve virtual artifacts at
times.

2 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.
html

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 15

XMI model

Ecore
Metamodel

ATL ANT

ANT
with ATL

Launcher
with ATL

Launcher

ATL
with Path

Legend …

…Abstract base type of all artifacts

Types of artifacts of interest

Types of artifacts with traces

Any

Any

KM3
metamodel Acceleo

ATL
with TOTEM

Java
with Acceleo

Java

KM32Ecore
Injection

Fig. 5: Artifacts involved in the recovery of the considered artifacts.

Analyzer heuristics Ultimately, more advanced software analyses may be used to de-
tect or verify relationships. For instance, one may infer source and target metamodels
(or approximations thereof) from model transformations [19], thereby preparing the
detection of potential source or target models on the grounds of attempted confor-
mance checking. Such analyses may involve virtual artifacts at times.

For purposes of illustration, Figure 5 arranges some of the heuristics that were
developed in the case study of Section 6, also used to create the visualization for the
running example in section 5.3. The root node is ‘abstract’; it does not correspond to
any actual heuristic. The rounded (green) shapes correspond to heuristics for detect-
ing available artifacts of interests. The angular (purple) shapes correspond to heuris-
tics for artifacts with potential traces. The heuristics are arranged in a specialization
hierarchy to express that a sub-heuristic should only be tried once the super-heuristic
was confirmed. For instance, we first try to find all models and then we filter out all
metamodels among them.

The key principle of the methodology is that heuristics like those in Fig. 5 are
introduced in an iterative process on the grounds of measuring connectivity of the
recovered graph and leveraging domain knowledge (regarding MDE technologies)
for identifying opportunities for relationship recovery by additional heuristics.

5 The Recovery Infrastructure

The ability of analyzing projects (and systems in general) to identify their compo-
nents and their interrelationships is key to obtaining representations at a higher level
of abstraction that can support recovery processes. Then, applying automated prac-
tices to the maintenance and enhancement of existing projects lies in the capability

16 Juri Di Rocco et al.

Fig. 6: Components of the recovery architecture.

of employing reverse-engineering approaches as described in the previous section. In
this section, the recovery infrastructure supporting the methodology presented in the
previous section is presented. As shown in Fig. 6, the recovery procedure consists of
three main components, i.e.:

– RepositoryConnector,
– HeuristicsManager, and
– MegamodelVisualizer.

The RepositoryConnector component associates data sources that export
reusable MDE projects, which can then be locally downloaded for subsequent anal-
ysis. Currently, the recovery infrastructure can import data from the ATL Zoo and
GitHub repositories (see Section 5.1). RepositoryConnector is extensible and
provides developers with interfaces that can be implemented for adding new con-
nectors. The HeuristicsManager component is responsible for applying the
available heuristics on all the projects that have been locally downloaded by the
RepositoryConnector. The outcome of the recovery process consists of models
conforming to a specifically conceived metamodel as presented in Section 5.2. The
outcome of HeuristicsManager can be consumed in different ways — including
the possibility of graphically presenting it in order to give a more intuitive overview of
the analyzed projects and to support the analysis and understanding of the contained
artifacts. The MegamodelVisualizer component presented in Section 5.3 takes
recovery models as input and generates a graphical representation of them.

5.1 Repository Connector

This component retrieves projects from online repositories. Currently, it can import
projects from the ATL Zoo and GitHub repositories.Extraction from ATL Zoo re-
quired coverage of ATL transformations, XMI models, metamodels and other sup-
plementary files. Extration from GitHub repositories made us additionally cover, for
instance, Acceleo projects. The ATL Zoo is a well-known repository of model trans-
formations, which have been the subject of several empirical works over the last few

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 17

Fig. 7: Recovery metamodel

years. Unfortunately, ATL Zoo does not provide a dedicated API to easily export the
available projects. Thus, HTML scraping is the only viable way to programmatically
download the data available in the repository. The GitHub connector exploits the
Git API3 for locally cloning a project of interest identified by its owner and name
attributes. Additional repositories can be considered by extending the connector by
means of its extension API.

5.2 Heuristics Manager

Once data have been retrieved by means of the existing connectors, the actual recov-
ery process starts. The outcome of the process is a model conforming to a specifically
devised recovery metamodel. The heuristics currently available are presented later in
this section.

The recovery metamodel As mentioned earlier, the model generated by the recov-
ery process is a graph consisting of nodes and edges. The corresponding metamodel
is presented in Fig. 7. For each artifact that can be identified by the heuristics, the
recovery approach generates a corresponding target node.

The generated node can be a concrete Node, if the artifact corresponds to a phys-
ical file in the project; it can be a TransientNode if it is derived from an existing
artifact, but it is not part of the project before the recovery process. The instantiation
of this type of nodes is normally deferred to later stages when the information be-
comes available, e.g., an output model of a transformation that is declared in an ANT
script, but it will be produced only if the transformation is executed. Finally, a node
can be typed AuxiliaryNode if it is temporally created during the recovery process in
the sense of virtual nodes of Section 4.1. Thus, auxiliary nodes are not actually part
of the analyzed project and consequently are not relevant for the megamodel structure
being created. A clarifying example is shown later.

3 https://developer.github.com/v3/

https://developer.github.com/v3/

18 Juri Di Rocco et al.

Fig. 8: Class diagram showing an overview of the Heuristic Manager.

An important aspect of the recovery process is the ability of detecting and rep-
resenting relationships among artifacts. The detected relationships are represented
as edges among previously recovered nodes. For instance, a model transformation
consuming models conforming to a source metamodel and generating models con-
forming to a target metamodel give rise to a sub-graph consisting of nodes and edges
as follows: one node would represent the analyzed transformation, and two edges
would link the transformation with two further nodes representing the source and
target metamodels.

Recovery heuristics Figure 8 shows a class diagram representing the hierarchical or-
ganization of the heuristics currently available in the HeuristicsManager com-
ponent shown in Fig. 6. Each heuristic implements the Heuristic interface or ex-
tends an available implementation. In Fig. 8, the elements ATLHeuristic, Ecore-
Heuristic, KM3Heuristic, AcceleoHeuristic, and JavaHeuristic
are shown in green color in order to be consistent with the organization of Fig. 5.

Listing 1: Fragment of ATLHeuristic
1 package it.univaq.MDEProfiler.heuristic;
2 ...
3 public class ATLHeuristic implements IHeuristic {
4 private String extension = ".atl";
5 private String nodeKind = "NodeType.ATL";
6 @Override
7 public Graph getGraph(String repoFolder, Graph g){
8 File repoFolderF = new File(repoFolder);
9 List<File> fList = FileUtils.getFilesByEndingValue(repoFolderF,extension);

10 for (File file : fList) {
11 boolean guard = g.getNodes().stream()
12 .anyMatch(s -> s.getUri().equals(file.getAbsolutePath()));
13 if(!guard) {
14 Node n = GraphFactory.eINSTANCE.createNode();
15 n.setDerivedOrNotExists(false);
16 n.getType().add(nodeKind);
17 n.setUri(file.getAbsolutePath());
18 n.setName(file.getName());
19 g.getNodes().add(n);
20 }
21 }
22 return g;
23 }
24 }

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 19

These heuristics identify artifacts of interest, i.e., ATL transformations and meta-
models specified either in KM3 or Ecore, or Acceleo modules with the corresponding
source metamodel. Heuristics that are shown in Fig. 8 with the violet color represents
heuristics that have been implemented in order to recover relationships among trans-
formations, Acceleo artifacts, models, and metamodels.

Listing 1 shows a fragment of the Java implementation of ATLHeuristic. Essen-
tially, in each project the heuristic searches for files with extension .atl (see line 5),
and for each of them a new node typed NodeType.ATL is generated in the target
recovery model (see lines 13-20). The heuristic can be easily adapted to cover other
kinds of artifacts by properly specifying the file extension to be considered (e.g.,
.km3, .mtl, .ecore) and the corresponding node kind.

The recovery of relationships among generated nodes requires more elaborated
analyses that should consider additional artifacts like ANT scripts and launcher files.
For instance, Listing 2 shows a fragment of the ANT file launcher contained in the
ATL project UMLStateMachine2NuSMV4 and named Exe UMLStateMachine2-
NuSMV.xml. Lines 16-19 contain precious information about the input and target
elements of the ATL UMLStateMachine2NuSMV transformation, which if considered
alone, does not contain such details. In particular, in this case a transient node will
be generated for the output model SMac4AC41.nusmvmodel (see lines 4 and 22),
since it is a node that will be instantiated only once the transformation gets executed.
The analysis of ATL launch configuration files, as the one shown in Listing 2, is
implemented by the AntWithATLHeuristic given in Fig. 8.

Listing 2: Fragment of the ANT file launching the UMLStateMachine2NuSMV trans-
formation

1

2 <project name="ATL2Metrics" default="extract" basedir=".">
3 <!-- Set paths -->
4 <property name="inputname" value="SMac4AC41"></property>
5 ...
6 <target name="extract">
7 <atl.loadModel modelHandler="EMF" name="UML" metamodel="%EMF"
8 nsURI="http://www.eclipse.org/uml2/4.0.0/UML">
9 </atl.loadModel>

10 <!-- Define metamodels/models-->
11 <atl.loadModel modelHandler="EMF" name="UMLModel"
12 metamodel="UML" path="${inputfile}">
13 </atl.loadModel>
14 <atl.loadModel metamodel="%EMF" name="NuSMV" path="${mmdir}/NuSMV.ecore">
15 </atl.loadModel>
16 <!-- Execute transformation -->
17 <atl.launch path="UMLStateMachine2NuSMV.asm" refining="false">
18 <inModel name="IN" model="UMLModel"></inModel>
19 <outModel name="OUT" model="out" metamodel="NuSMV"></outModel>
20 </atl.launch>
21 <!-- Generate output model -->
22 <atl.saveModel model="out" path="${outputdir}/${inputname}.nusmvmodel">
23 </atl.saveModel>
24 </target>
25 </project>

To improve the coverage of ATL projects, the additional heuristic named ATLWith-
TOTEMHeuristic has been developed by relying on the techniques presented

4 Project imported from https://github.com/kiyo07/UMLStateMachine2NuSMV

https://github.com/kiyo07/UMLStateMachine2NuSMV

20 Juri Di Rocco et al.

Listing 3: Fragment of ATLWithTOTEMHeuristic for discovering metamodels related
to a given transformation

1 public Graph getGraph(String repoFolder, Graph g) {
2 for (Node atlNode : g.getNodes().stream().filter(z -> z.getType()
3 .contains(FileUtils.ATL)).collect(Collectors.toList())) {
4 ReduceRequirementMetamodels rrmm = new ReduceRequirementMetamodels();
5 AuxiliaryNode drmIN = GraphFactory.eINSTANCE.createNode();
6 drmIN.setDerivedOrNotExists(false);
7 drmIN.getType().add(FileUtils.DRM);
8 drmIN.setUri(rrmm.generateRMM(atlNode.getUri()));
9 g.getNodes().add(drmIN);

10

11 ...
12 for (Node n1 : g.getNodes().stream().
13 filter(z -> z.getType().contains(FileUtils.ecoreKind)).
14 collect(Collectors.toList()))
15 if (rrmm.checkDRMConformance(drmIN.getUri(), n1.getUri())) {
16 Edge edge = GraphFactory.eINSTANCE.createEdge();
17 edge.setSource(atlNode);
18 edge.setTarget(n1);
19 edge.setName(FileUtils.sourceDRM);
20 g.getEdges().add(edge);
21 ...
22 }
23 g.getNodes().remove(drmIN);
24 ...
25 }
26 return g;
27 }

in [20] and on the TOTEM tool [54], which is built on a method able to extract a typ-
ing requirements model (TRM) from an ATL transformation. A TRM describes the
requirements that the transformation needs from the source and target meta-models
in order to obtain a transformation with a syntactically correct typing. A TRM is ex-
tracted from the transformation and it generates domain typing requirements models
(DRMs), describing the requirements for the source and target meta-models. A TRM
is a good example of a virtual artifact, as of Section 4.1; it is computed merely to
facilitate relationship recovery between transformations, metamodels, and models.
Additional relationships can be derived by checking the conformance between exist-
ing metamodel nodes in the graph and the auxiliary nodes related to the generated
DRMs. If the conformance checking succeeds then an additional relationship among
the transformation input of the TRM and the metamodel subject of the conformance
check can be created.

Listing 3 shows an excerpt of ATLWithTOTEMHeuristic: for each transfor-
mation (line 3) in the project, the heuristic generates the source and target DRMs,
added as AuxiliaryNodes to the graph (lines 4-9). For each metamodel (line 14) in
the graph the heuristic checks the conformance with the generated DRMs (line 15).
If the conformance check is positive, the heuristic adds a link between the analyzed
transformation and the metamodel (lines 16-20).

Figure 9 reports an explanatory application of ATLWithTOTEMHeuristic. In par-
ticular, Figure 9a shows the T.atl node and two unrelated metamodels, highlight-
ing that the two metamodel nodes are dangling. By applying the heuristic described

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 21

(a) Before ATLWithTOTEM Heuristic

(b) Applying ATLWithTOTEM Heuristic

Fig. 9: Explanatory application of ATLWithTOTEMHeuristic

above, two AuxiliaryNodes are produced, namely DRM s and DRM t from the
transformation T.atl (see Fig. 9b). If the conformance check is positive (as in this
example) the two dangling nodes MM 1 and MM 2 can be linked to the trans-
formation (as highlighted in red in Figure 9.b). Thus, the auxiliary nodes and their
incoming relations are subsequently removed.

To refine further the precision of the proposed infrastructure another heuristic
has been implemented, called KM32EcoreHeuristic. This heuristic is based on
an injection from a KM3 metamodel to Ecore with the intent of further reducing
the number of dangling nodes. KM3 (Kernel MetaMetaModel) [36] is a DSL for
describing metamodels with a specific textual notation that should enhance the agility
and precision in defining metamodels. Many projects still use KM3 as metamodeling
language, with the result of making the ATL transformations runnable only if these
models are converted to Ecore. Thus, for such projects dangling nodes would be
generated because of the alternative KM3 versions of Ecore metamodels. By using

22 Juri Di Rocco et al.

KM32EcoreHeuristic, it is possible to link a KM3 dangling node to the Ecore
metamodel resulting from the injection, and then if the resulting injected metamodel
overlaps with one of the existing metamodels then a new relation can be created and
labelled as inject. The implementation of KM32EcoreHeuristic is based on the
KM32Ecore injector tool5 and on EMFCompare6. The result of the application of this
heuristic on an explanatory example is shown in Fig. 10.

The initial scenario is represented in Fig. 10a), where two km3 nodes are dangling
and a transformation has two relations to in and out metamodels. Applying the injec-
tion from km3 to Ecore in Fig. 10b resulted that the node injMM 1 (auxiliary) and
MM 1 are overlapping, as result of the comparison (same for the other two nodes).
For this reason, the result reported in Fig. 10c leveraged a new type of relationship,
inject, thereby representing that MM 1 and injMM 1 represent the same metamodel
in different formats.

The support for Acceleo modules has been introduced by implementing two dedi-
cated heuristics i.e., MTLWithJavaHeuristic and MTLWithEcoreHeuristic.
The former creates relationships among Acceleo templates and the corresponding
Java files responsible of their execution. The latter creates relationships among Ac-
celeo templates and the Ecore metamodels typing them. A fragment of MTLWithJava-
Heuristic is shown in Listing 4. MTLWithEcoreHeuristic is not shown due
to the sake of brevity. However, it essentially checks if the Ecore metamodel referred
by the considered Acceleo template exists in the analyzed project; if yes a dedicated
relationship is created in the megamodel being produced.

For brevity, this paper does not give more details about the implementation of
all the currently available heuristics. Readers are referred to the Github7 repository
to download and play with the tool supporting the proposed approach. To give some
numbers related to MDEPROFILER, Table 1 shows the number of heuristics and the
lines of code of the tool as proposed in [20] and as developed for this paper.

#Heuristic Implementations Loc
MDEPROFILER as proposed [20] 11 880
MDEPROFILER proposed in this paper 20 1446

Table 1: Heuristic implementations

5.3 Megamodel Visualizer

The recovered model generated for the input projects can be processed by other ser-
vices, for example, to graphically represent projects imported by https://github.

5 Km3 to Ecore injector project: https://github.com/atlanmod/EMFTVM-D/tree/
master/deprecated/org.atl.eclipse.km3/src/org/atl/eclipse/km3

6 EMFCompare:https://www.eclipse.org/emf/compare/
7 Our project developed to support the methodology: https://github.com/MDEGroup/

MDEProfiler

https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/atlanmod/EMFTVM-D/tree/master/deprecated/org.atl.eclipse.km3/src/org/atl/eclipse/km3
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/atlanmod/EMFTVM-D/tree/master/deprecated/org.atl.eclipse.km3/src/org/atl/eclipse/km3
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://www.eclipse.org/emf/compare/
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/MDEGroup/MDEProfiler
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/MDEGroup/MDEProfiler

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 23

(a) Before the application of KM32EcoreHeuristic

(b) Application of KM32EcoreHeuristic

(c) After the application of KM32EcoreHeuristic

Fig. 10: Application of KM32EcoreHeuristic

https://github.com/kiyo07/UMLStateMachine2NuSMV

24 Juri Di Rocco et al.

Listing 4: Fragment of MTLWithJavaHeuristic for discovering Java links to Acceleo
template

1 package it.univaq.MDEProfiler.heuristic;
2 public class MTLWithJavaHeuristic implements IHeuristic {
3 @Override
4 public Graph getGraph(String repoFolder, Graph g) {
5 this.g = g;
6 for (Node n : g.getNodes().stream().
7 filter(z -> z.getType().contains(FileUtils.MTLKind)).
8 collect(Collectors.toList()))
9 for (Node n1 : g.getNodes().stream().

10 filter(z -> z.getType().contains(FileUtils.JavaKind)).
11 collect(Collectors.toList()))
12 if(getMTL(n1.getUri()).equals(n.getName()))
13 g.getEdges().add(createEdge(n, n1););
14 return g;
15 }
16 /** Get MTL name from file Java **/
17 private String getMTL(String path) throws FileNotFoundException {
18 InputStream inputStream = new FileInputStream(path);
19 CompilationUnit cu = JavaParser.parse(inputStream);
20 List<com.github.javaparser.ast.Node> node_list = cu.getChildNodes();
21 String result = "";
22 int i = 0;
23 while(true){
24 com.github.javaparser.ast.Node node = node_list.get(i);
25 String main_string = node.toString();
26 if(main_string.indexOf("MODULE_FILE_NAME") !=-1 &&
27 main_string.indexOf("TEMPLATE_NAMES") !=-1){
28 ...
29 result = new String(main_string));
30 }
31 i = i + 1;
32 }
33 return result;
34 }
35 }

com/kiyo07/UMLStateMachine2NuSMV and automatically recovered as shown
in Fig. 11b. The same visualization has been used to show the examples in section 4.3.
By looking at such a model, users can get a clear understanding about how the dif-
ferent elements are connected. By contrast, Fig. 11a shows the folders contained in
the package of the considered projects, as users could explore the projects by means
of a file explorer and view the content of files to understand how different artifacts
are related. We contend that the visualized megamodel helps much better with un-
derstanding. In this case the first project contains an Acceleo template, and the last
one an ATL transformation. Additional artifacts are stored in the other folders, e.g.,
ANT scripts, models and metamodels. The MegamodelVisualizer component shown
in Fig. 6 is in charge of generating diagrams like the one shown in Fig. 11b by means
of an Acceleo8-based generator; it takes a recovery model as input and generates
HTML5+Javascript code. The generated code uses the Visjs9 Javascript library and
it can handle large amounts of dynamic data while enabling manipulation, represen-
tation, and interaction. For instance, in the diagram shown in Fig. 11b, the artifact

8 https://www.eclipse.org/acceleo/
9 http://visjs.org

https://github.com/kiyo07/UMLStateMachine2NuSMV
https://github.com/kiyo07/UMLStateMachine2NuSMV
https://www.eclipse.org/acceleo/
http://visjs.org

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 25

NuSMV.ecore is visually associated with the Ecore type (see Legend) and the link
with the artifact SMac4AC41.smv highlights that the latter is a model conforming
to the former.

Moreover, the ATL transformation UMLStateMachine2NuSMV.atl takes as
input the SMac4AC41.uml node as model and the UML.ecore TransientNode
element as metamodel. This last element is part of the artifacts, since it can be dis-
covered by the Exe UMLStateMachine2NuSMV.xml ANT file, but there is no
concrete file to be discovered in the projects (since in this case it is referred by the
nsURI of the metamodel). The output consists of the SMac4AC41.nusmvmodel
model conforming to the NuSMV.ecoremetamodel. The node generate.xml as
in the previously discussed example, contributes to the discovery of the represented
relationship between Generate.java and the NuSMV.ecore metamodel as shown by
the hovering label discovered by. The generate.mtl Acceleo template has been
discovered by the Acceleo-specific heuristics previously presented. In particular, the
node related to generate.mtl is pointed by Generate.java, which specifies
in the variable MODULE FILE NAME (see Listing 5) the Acceleo template to be in-
voked, as detailed in the description of Listing 4.

Listing 5: Fragment of the file Generate.java
1 ...
2 public static final String MODULE_FILE_NAME = "/NuSMVCodeGenerator/main/generate";
3 ...

Finally, as shown in Fig. 11b, the considered project contains also two ANT
scripts, i.e, generateTarget.xml importing generate.xml, to automate the
execution of the ATL tranformation, which takes file.xmi as input model, con-
forming to NuSMV.ecore. The node related to file.xmi is a transient node,
since it is not physically stored in the project, but it is specified in the ANT script,
and it will be generated by the tool chain. Very likely this node is corresponding to
the SMac4AC41.smv model, but it is still not discoverable by the current imple-
mented heuristics, leading to the future plan to implement a new heuristic able to find
correspondences among transient and concrete nodes, like in the case of these two
models. Using model to code transformations for generating a visualization is a fast
way to provide modelers with a simple though effective visualization of the produced
models. However, such a generative step can be replaced by the implementation of a
more sophisticated diagrammatic editor, which would allow the user to interact with
the recovered models. We intent to pursue this as a future work.

6 Experimental evaluation

This section discusses the evaluation of the proposed approach by considering two
datasets that have been defined by starting from an initial set of ≈100 ATL projects
retrieved from the ATL Zoo. In particular, such set has been pruned by discarding
those projects containing transformations that were not syntactically correct. The re-
sulting dataset, named ATLL hereafter, consists of 85 transformation projects and it
has been used to evaluate the approach in terms of dangling nodes that the available

26 Juri Di Rocco et al.

(a) Imported projects shown with Project Explorer

(b) Recovered graph shown with the Visualizer

Fig. 11: Project Explorer vs Visualizer

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 27

Table 2: Evaluation results

Iteration Applied Heuristics #Nodes #Edges #Dangling Nodes
1 EH 324 0 324
2 EH, AH 546 0 546
3 EH, AH, KH 735 0 735
4 EH, AH, KH, LH 817 0 817
5 EH, AH, KH, LH, ANH 916 0 916
6 EH, AH, KH, LH, ANH, APH 916 37 880
7 EH, AH, KH, LH, ANH, APH, LTH 948 212 844
8 EH, AH, KH, LH, ANH, APH, LTH,

ANATLH
1105 831 709

9 EH, AH, KH, LH, ANH, APH, LTH,
ANATLH, JH

1210 831 709

10 EH, AH, KH, LH, ANH, APH, LTH,
ANATLH, JH, TOTEMH

1210 1039 626

11 EH, AH, KH, LH, ANH, APH, LTH,
ANATLH, JH, TOTEMH, KM3ECOREH

1210 1112 456

Legend: EH: EcoreHeuristic, AH: ATLHeuristic, KH: KM3Heuristic,
LH: LauncherHeuristic, ANH: ANTHeuristic, APH: ATLWithPathHeuristic,
LTH: LauncherATLHeuristic, ANATLH: ANTWithATLHeuristic,
JH: JavaHeuristic, TOTEMH: ATLWithTOTEMHeuristic,
KM3ECOREH: KM32ECOREHeuristic

heuristics are able to remove. In particular, the evaluation was performed in an iter-
ative process in order to gradually add heuristics for new types of nodes and edges.
Initially, we implemented some heuristics to identify ‘obvious’ artifact types of in-
terest. Subsequently, we went through some iterations to add heuristics to recover
relationships among previously discovered nodes. To evaluate the accuracy of the
approach, we randomly extracted a smaller dataset consisting of 40 transformation
projects (named ATLS hereafter) out of ATLL with the aim of measuring precision
and recall. Overall, the performed evaluation addresses the following research ques-
tions:

– RQ1: What is the accuracy of recovered models?
– RQ2: How much effort is saved by automated recovery?

Results Table 2 shows representative results related to each iteration of the performed
evaluation on the dataset ATLL. In the first five iterations, we gradually added heuris-
tics to discover Ecore, ATL, KM3, and ANT files. All the artifacts of interest were
dangling; see the #Edges and #DanglingNodes columns. This means that we
were able to increasingly discover new types of elements even though they were
added in the recovery model as nodes without edges. The addition of heuristics for
analyzing ATL launcher file configurations and ANT scripts for ATL automation led
to a turning point. That is, even though new nodes were discovered, the number of
dangling ones was decreased. After the first 8 iterations we were able to reduce the
number of dangling nodes to 709. Introducing additional heuristics corresponding to
the last three iterations considerably decreased that number from 709 to 456, i.e.,
from 58.59% to 37.68% of the total number of discovered nodes.

28 Juri Di Rocco et al.

Fig. 12: Nodes recovered during the evaluation

Figure 12 graphically represents the effect of applying the heuristics by focusing
on the discovered and dangling nodes. The chart shows how considering specific files
and properties leads to the discovery of new relationships. Starting at iteration 6, new
nodes were discovered with a consequent reduction of dangling ones.

Evaluation measures We use precision and recall measures as follows:

precision =
Corra
Alla

(1) recall =
Corra
Allm

(2)

where Corra is the correct number of elements recovered by the approach, Alla is
the total number of elements automatically produced by the approach, and Allm is
the expected total number of elements as produced by a manual harvesting phase.

To evaluate the accuracy of the approach and thus, to answer RQ1, we manually
analysed the dataset ATLS . In particular, a senior modeler manually inspected such
projects (without knowing in advance the results of the tools) and recovered the nodes
and relations in Allm of the corresponding megamodels10.
where Corra is the correct number of elements recovered by the approach, Alla is
the total number of elements automatically produced by the approach, and Allm is
the expected total number of elements as produced by a manual harvesting phase.

The overall accuracy can be increased by means of adding heuristics. For in-
stance, the analysed projects contain TCS specifications [37], which are currently not

10 A replication package consisting of the MDEPROFILER tool, the analysed projects, and of the ob-
tained results is available for download at https://github.com/MDEGroup/MDEProfiler

https://github.com/MDEGroup/MDEProfiler

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 29

Nodes Relations
Precision 0.925 0.908
Recall 0.942 0.726

Table 3: Precision and recall of recovery.

covered by MDEPROFILER and this is reflected by the precision and recall measures.
To answer RQ2, the dataset ATLS has been analysed by means of MDEPROFILER
executed on an Intel Core i5 machine with 8GB of RAM. The analysis took about 15
seconds, whereas the senior modeler needed 1.5 full-time working days to perform
the analysis on the same data set. The resulting precision and recall are shown in
Table 3. It is important to remark that even though effort reduction has been mea-
sured in terms of precision and recall, additional aspects could be also considered.
For instance, the cognitive efforts that are needed to understand the produced model-
ing artifact network could be also taken into account in the evaluation. However, we
consider this aspect out of the scope of this paper.

7 Conclusion and Future Work

MDE projects are typically shared without any higher-level descriptions serving un-
derstanding of classification, data flow, conformance, and other properties and rela-
tionships of the involved artifacts. Much of such classification information and rela-
tionships are encoded in some idiosyncratic manner or lost in persisting projects in
a repository or otherwise subject to analysis or inference. That is, projects are given
as packages consisting of files, possibly organized in folders that modelers have to
manually explore in order to figure out how the different project artifacts are related.
Thus, understanding the artifacts contained in MDE projects and their relationships
can be a strenuous and error-prone activity, thereby severely limiting reuse of MDE
projects.

In this paper, we presented an approach based on megamodels and inspired by
the notion of architecture recovery which enables the model-based recovery of the
structure of MDE projects represented as typed nodes and relationships among them.
The approach is implemented as the recovery infrastructure MDEPROFILER. The
approach has been applied on the widely used ATL Zoo consisting of about 100
model transformation projects.

In future work, we plan to apply the approach to other corpora of projects, for in-
stance, a corpus with Acceleo projects. We also plan to implement additional heuris-
tics, as needed in order to minimize further the number of dangling nodes in meg-
amodels and to improve the overall accuracy of the approach. We are also work-
ing on extending the portfolio of MDE technologies beyond the current coverage of
ATL and Acceleo by, for example, including textual concrete syntax definitions and
related models. Furthermore, we expect to make the discovery methodology more
systematic, for example, in terms of tracking not just all known nodes and the dan-
gling nodes, but also paying full attention to our ability of explaining the relevance,
if any, of any artifact in a given (MDE) project, perhaps even before assigning a

30 Juri Di Rocco et al.

node type. In this direction, it would be interesting to explore, inspired by the KM3-
based heuristic, if other similarity-based heuristics might help the modeler to identify
versioning in metamodeling, and then enable coupled-evolution management in the
discovered megamodels. It is important to notice that the design of the proposed re-
covery approach caters for the introduction and execution of additional heuristics
without disrupting the overall eco-system. In particular, we would not want to refac-
tor MDE projects or enforce new best practices for the benefit of megamodel-based
recovery of artifact typing and relationships. In this manner, we hope to increase the
probability of community projects for the development of additional heuristics to be
integrated eventually into a reusable infrastructure.

References

1. Z. Alshara, A. Seriai, C. Tibermacine, H. Bouziane, C. Dony, and A. Shatnawi. Materializing Ar-
chitecture Recovered from Object-Oriented Source Code in Component-Based Languages. In Proc.
ECSA, volume 9839 of LNCS, pages 309–325. Springer, 2016.

2. G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. Information Retrieval Models for Recovering
Traceability Links between Code and Documentation. In ICSM, pages 40–49. IEEE, 2000.

3. H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic modeling. In
ICSE (1), pages 95–104. ACM, 2010.

4. Ö. Babur, L. Cleophas, and M. van den Brand. Model analytics for feature models: case studies
for S.P.L.O.T. repository. In Proceedings of MODELS 2018 Workshops: ModComp, MRT, OCL,
FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME,
MULTI, HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE 21st International Conference on
Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen, Denmark, Octo-
ber, 14, 2018., pages 787–792, 2018.

5. F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio. Mdeforge: an
extensible web-based modeling platform. In CloudMDE@MoDELS, pages 66–75, 2014.

6. F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Automated Clustering of
Metamodel Repositories, pages 342–358. Springer International Publishing, 2016.

7. F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. A customizable approach for the
automated quality assessment of modelling artifacts. In Quality of Information and Communications
Technology (QUATIC), 2016 10th International Conference on the, pages 88–93. IEEE, 2016.

8. F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Model Repositories: Will They
Become Reality? In Proc. CloudMDE@MoDELS 2015, volume 1563 of CEUR Workshop Procs,
pages 37–42, 2016.

9. F. Basciani, D. Di Ruscio, L. Iovino, and A. Pierantonio. Automated chaining of model transforma-
tions with incompatible metamodels. In MODELS, pages 602–618, 2014.

10. F. Basciani, J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Exploring model reposito-
ries by means of megamodel-aware search operators. In Proceedings of MODELS 2018 Workshops:
ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE, MDE4IoT,
MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE 21st Inter-
national Conference on Model Driven Engineering Languages and Systems (MODELS 2018), Copen-
hagen, Denmark, October, 14, 2018., pages 793–798, 2018.

11. F. P. Basso. A proposal for a common representation language for mde artifacts and settings. In STAF
Doctoral Symposium, 2015.

12. J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and Modeling in the
Small. In European MDA Workshops MDAFA 2003 and MDAFA 2004, Revised Selected Papers,
volume 3599 of LNCS, pages 33–46. Springer, 2005.

13. J. Bézivin, F. Jouault, and P. Valduriez. On the need for Megamodels. In Proc. of the OOPSLA/GPCE:
Best Practices for Model-Driven Software Development workshop, 2004.

14. C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and P. T. Devanbu. The promises and
perils of mining git. In MSR, pages 1–10. IEEE Computer Society, 2009.

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 31

15. I. T. Bowman and R. C. Holt. Software architecture recovery using Conway’s law. In Proc. CASCON,
page 6. IBM, 1998.

16. M. Capraro, M. Dorner, and D. Riehle. The patch-flow method for measuring inner source collabora-
tion. In MSR, pages 515–525. ACM, 2018.

17. S. Chardigny and A. Seriai. Software Architecture Recovery Process Based on Object-Oriented
Source Code and Documentation. In Proc. ECSA, volume 6285 of LNCS, pages 409–416. Springer,
2010.

18. E. Constantinou, G. Kakarontzas, and I. Stamelos. An automated approach for noise identification to
assist software architecture recovery techniques. JSS Journal, 107:142–157, 2015.

19. J. de Lara, J. Di Rocco, D. Di Ruscio, E. Guerra, L. Iovino, A. Pierantonio, and J. S. Cuadrado.
Reusing Model Transformations Through Typing Requirements Models. In Proc. FASE, volume
10202 of LNCS, pages 264–282. Springer, 2017.

20. J. Di Rocco, D. Di Ruscio, J. Härtel, L. Iovino, R. Lämmel, and A. Pierantonio. Systematic recovery
of mde technology usage. In A. Rensink and J. Sánchez Cuadrado, editors, Theory and Practice of
Model Transformation, pages 110–126, Cham, 2018. Springer International Publishing.

21. J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Collaborative Repositories in Model-Driven
Engineering. IEEE Software, 32(3):28–34, 2015.

22. R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a language and infrastructure for analyzing
ultra-large-scale software repositories. In ICSE, pages 422–431. IEEE Computer Society, 2013.

23. R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: Ultra-Large-Scale Software Repository
and Source-Code Mining. ACM Trans. Softw. Eng. Methodol., 25(1):7:1–7:34, 2015.

24. R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions of AST nodes to study actual
and potential usage of Java language features. In ICSE, pages 779–790. ACM, 2014.

25. J. Favre, R. Lämmel, M. Leinberger, T. Schmorleiz, and A. Varanovich. Linking Documentation and
Source Code in a Software Chrestomathy. In Proc. WCRE, pages 335–344. IEEE, 2012.

26. J. Favre, R. Lämmel, and A. Varanovich. Modeling the Linguistic Architecture of Software Products.
In Proc. MODELS, volume 7590 of LNCS, pages 151–167. Springer, 2012.

27. R. Ferenc, I. Siket, and T. Gyimóthy. Extracting Facts from Open Source Software. In Proc. ICSM,
pages 60–69. IEEE, 2004.

28. R. France, J. Bieman, and B. H. C. Cheng. Repository for model driven development (remodd). In
T. Kühne, editor, Models in Software Engineering, pages 311–317, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

29. F. D. Giraldo, S. España, W. J. Giraldo, and O. Pastor. Evaluating the quality of a set of modelling
languages used in combination: A method and a tool. Inf. Syst., 77:48–70, 2018.

30. T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive software evolution. In
IWPSE, pages 113–122. IEEE Computer Society, 2005.

31. J. Härtel, L. Härtel, M. Heinz, R. Lämmel, and A. Varanovich. Interconnected Linguistic Architecture.
The Art, Science, and Engineering of Programming Journal, 1, 2017. 27 pages.

32. J. Härtel, M. Heinz, and R. Lämmel. Emf patterns of usage on GitHub. In Proc. ECMFA, LNCS.
Springer, 2018. To appear.

33. A. E. Hassan and R. C. Holt. Architecture recovery of web applications. In Proc. ICSE, pages 349–
359. ACM, 2002.

34. M. Heinz, R. Lämmel, and A. Varanovich. Axioms of linguistic architecture. In Proc. MODEL-
SWARD, pages 478–486. SCITEPRESS, 2017.

35. A. Janes, D. Piatov, A. Sillitti, and G. Succi. How to calculate software metrics for multiple languages
using open source parsers. In OSS, volume 404 of IFIP Advances in Information and Communication
Technology, pages 264–270. Springer, 2013.

36. F. Jouault and J. Bézivin. Km3: A dsl for metamodel specification. In R. Gorrieri and H. Wehrheim,
editors, Formal Methods for Open Object-Based Distributed Systems, pages 171–185, Berlin, Heidel-
berg, 2006. Springer Berlin Heidelberg.

37. F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Specification of Textual Concrete Syntaxes
in Model Engineering. In Proc. GPCE, pages 249–254. ACM, 2006.

38. H. H. Kagdi, J. I. Maletic, and B. Sharif. Mining Software Repositories for Traceability Links. In
ICPC, pages 145–154. IEEE, 2007.

39. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and D. E. Damian. The promises
and perils of mining github. In MSR, pages 92–101. ACM, 2014.

40. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and D. E. Damian. An in-depth
study of the promises and perils of mining github. Empirical Software Engineering, 21(5):2035–2071,
2016.

32 Juri Di Rocco et al.

41. S. Karus and H. C. Gall. A study of language usage evolution in open source software. In Proc. MSR,
pages 13–22. ACM, 2011.

42. E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E. Moritz, M. Gethers, D. Poshy-
vanyk, J. I. Maletic, J. H. Hayes, A. Dekhtyar, D. Manukian, S. Hossein, and D. Hearn. TraceLab: An
experimental workbench for equipping researchers to innovate, synthesize, and comparatively evalu-
ate traceability solutions. In Proc. ICSE, pages 1375–1378. IEEE, 2012.

43. W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot. MoScript: A DSL for Querying
and Manipulating Model Repositories. In Proc. SLE 2011, volume 6940 of LNCS, pages 180–200.
Springer, 2012.

44. D. S. Kolovos, N. D. Matragkas, I. Korkontzelos, S. Ananiadou, and R. F. Paige. Assessing the Use of
Eclipse MDE Technologies in Open-Source Software Projects. In Proc. OSS4MDEMODELS, volume
1541 of CEUR Workshop Procs, pages 20–29, 2015.

45. H. König and Z. Diskin. Efficient consistency checking of interrelated models. In ECMFA, pages
161–178, 2017.

46. R. L. Krikhaar. Reverse Architecting Approach for Complex Systems. In Proc. ICSM, pages 4–11.
IEEE, 1997.

47. A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse engineering with semantic clustering. In WCRE,
pages 133–142. IEEE Computer Society, 2005.

48. A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic clustering: Identifying topics in source code. Informa-
tion & Software Technology, 49(3):230–243, 2007.

49. R. Lämmel. Relationship maintenance in software language repositories. The Art, Science, and
Engineering of Programming Journal, 1, 2017. 27 pages.

50. R. Lämmel, R. Linke, E. Pek, and A. Varanovich. A framework profile of .NET. In Proc. WCRE,
pages 141–150. IEEE, 2011.

51. R. Lämmel, E. Pek, and J. Starek. Large-scale, AST-based API-usage analysis of open-source Java
projects. In SAC, pages 1317–1324. ACM, 2011.

52. R. Lämmel and A. Varanovich. Interpretation of Linguistic Architecture. In Proc. ECMFA, volume
8569 of LNCS, pages 67–82. Springer, 2014.

53. R. Lämmel and V. Zaytsev. Language support for megamodel renarration. In XM@MoDELS, volume
1089 of CEUR Workshop Proceedings, pages 36–45. CEUR-WS.org, 2013.

54. J. Lara, J. Di Rocco, D. Di Ruscio, E. Guerra, L. Iovino, A. Pierantonio, and J. S. Cuadrado. Reusing
model transformations through typing requirements models. In Proceedings of the 20th International
Conference on Fundamental Approaches to Software Engineering - Volume 10202, pages 264–282,
New York, NY, USA, 2017. Springer-Verlag New York, Inc.

55. M. Lungu, M. Lanza, and T. Gı̂rba. Package Patterns for Visual Architecture Recovery. In Proc.
CSMR, pages 185–196. IEEE, 2006.

56. M. Lungu, M. Lanza, and O. Nierstrasz. Evolutionary and collaborative software architecture recovery
with Softwarenaut. Sci. Comput. Program., 79:204–223, 2014.

57. O. Maqbool and H. A. Babri. Hierarchical Clustering for Software Architecture Recovery. IEEE
Trans. Software Eng., 33(11):759–780, 2007.

58. G. C. Murphy and D. Notkin. Lightweight Lexical Source Model Extraction. ACM Trans. Softw. Eng.
Methodol., 5(3):262–292, 1996.

59. J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Collaborative repositories in model-driven
engineering [software technology]. IEEE Software, 32(3):28–34, May 2015.

60. C. D. Roover, R. Lämmel, and E. Pek. Multi-dimensional exploration of API usage. In Proc. ICPC,
pages 152–161. IEEE, 2013.

61. F. J. B. Ruiz, J. G. Molina, and O. D. Garcı́a. On the application of model-driven engineering in data
reengineering. Inf. Syst., 72:136–160, 2017.

62. A. D. Sandro, R. Salay, M. Famelis, S. Kokaly, and M. Chechik. MMINT: A Graphical Tool for
Interactive Model Management. In Proc. MoDELS 2015 Demo and Poster Session, volume 1554 of
CEUR Workshop Procs, pages 16–19, 2016.

63. K. Sartipi and K. Kontogiannis. On Modeling Software Architecture Recovery as Graph Matching.
In Proc. ICSM, pages 224–234. IEEE, 2003.

64. D. C. Schmidt. Model-Driven Engineering. 39(2), 2006.
65. A. Seibel, R. Hebig, and H. Giese. Traceability in Model-Driven Engineering: Efficient and Scalable

Traceability Maintenance. In Software and Systems Traceability., pages 215–240. Springer, 2012.
66. P. Stevens. Towards sound, optimal, and flexible building from megamodels. In Proceedings of the

21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems,
MODELS 2018, Copenhagen, Denmark, October 14-19, 2018, pages 301–311, 2018.

Understanding MDE Projects: Megamodels to the Rescue for Architecture Recovery 33

67. C. Stringfellow, C. D. Amory, D. Potnuri, A. A. Andrews, and M. Georg. Comparison of software
architecture reverse engineering methods. Information & Software Technology, 48(7):484–497, 2006.

68. F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G. Reggio. Maturity of software modelling and
model driven engineering: A survey in the italian industry. In Proc. EASE, pages 91–100, may 2012.

69. D. Wille, Ö. Babur, L. Cleophas, C. Seidl, M. van den Brand, and I. Schaefer. Improving custom-
tailored variability mining using outlier and cluster detection. Science of Computer Programming,
163:62 – 84, 2018.

70. T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version histories to guide software
changes. In ICSE, pages 563–572. IEEE Computer Society, 2004.

	Introduction
	Related Work
	Application Scenario
	Recovery Methodology
	The Recovery Infrastructure
	Experimental evaluation
	Conclusion and Future Work

