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Abstract: The hepatitis C virus (HCV) is a single-stranded enveloped RNA virus, belonging to the Hepacivirus genus
within the Flaviviridae family. HCV infection has become a major worldwide health problem because it causes a chronic
hepatitis leading to hepatocarcinoma (HCC) and to non-Hodgkin’s B-cell lymphoma (NHL). The absence of a reliable
experimental model, which mimics the physiological effect of HCV infection in human subjects, hampered the analysis of
the mechanisms by which HCV leads to cancer. Nevertheless, both in vitro expression systems and in vivo transgenic
mice studies suggest that HCV persistent infection in the host is able to induce neoplastic transformation. The oncogenic
properties of HCV are often related to the ability of HCV-encoded proteins to interfere with cell signaling through the
interaction with different molecules involved in the control of cell proliferation, apoptosis and interferon (IFN)-signaling
pathways. The present systematic review will mainly focus on the HCV proteins dependent pathogenetic effects on the
most important regulatory proteins of cell homeostasis. Since poor efficacy of the current therapy, studying the
mechanisms underlying HCV-induced cell transformation and immune evasion will help researchers to identify new
therapeutic targets, which may be useful in the near future to develop more effective and better-tolerated therapies,

capable of impairing or reversing the progression of HCV-related tumors.
Keywords: HCV, HCC, HCV-related NHL, IFN, treatment, gene therapy.

INTRODUCTION

Hepatitis C virus (HCV) is a major cause of post-
transfusion and community-acquired hepatitis. The majority
of HCV-infected individuals develop chronic hepatitis that
may progress to liver cirrhosis and hepatocellular carcinoma
(HCC). This neoplasia is a multistage disease whose
occurrence is linked to environmental, dietary and life-style
factors. HCC often has a fulminant course, poor response to
conservative treatment, low resectability rate when
symptomatic, high recurrence rate after resection and liver
transplantation and dismal prognosis. Although cirrhosis of
any cause increases the risk of developing HCC, cirrhosis
associated with chronic hepatitis B (HBV) or C (HCV) virus
infection or hemochromatosis carries the greatest risk.
Moreover, it is relevant to notice the co-pathogenetic effects
of HBV and HCV co-infection that seem to act
synergistically in the HCC induction.

Another feature of HCV infection is its relationship with
autoimmune manifestations, most notably essential mixed
cryoglobulinemia (EMC), which is characterized by
cutaneous vasculitis, nephritis, peripheral neuropathy and
clonal B-cell proliferations. HCV infection has also been
involved in a subset of non-Hodgkin’s lymphomas (NHLSs),
even in the absence of EMC. The oncogenic process of HCV
infection is typically slow and insidious. The hepatitis C
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virus is characterized by the capacity to transform a wide
spectrum of cells (hepatocytes, lymphocytes and
keratinocytes), through a process that probably requires
multiple steps of genetic alterations with complex
interactions between the virus and the host cell. Many of the
proposed functions of the HCV gene products appear to be
relevant to potential mechanisms of malignant
transformation. The present review will focus on the viral
oncogenic mechanisms based on the interaction of HCV
proteins with host cellular signaling transduction pathways
regulating cell growth and cell death, and on the possible
developing therapeutic strategies to counteract HCV viral
infection.

NATURAL HISTORY

HCV is an important health problem considering its
extremely high prevalence, around 350 millions of
chronically infected individuals worldwide; it is
characterized by a high rate of chronic infection and a
significant risk of severe chronic active hepatitis, cirrhosis
and HCC among chronically infected subjects. In fact, HCV
infection induces chronic infection in up to 60-80% of
infected adults. The pathogenic effects of chronic HCV
infections are very different from each other: for example,
some patients show only minimal liver lesions while others
develop, after 5-10 years follow-up, severe fibrosis and
cirrhosis. 30-50% of HCV infected patients with cirrhosis
develop HCC, after a 10 years follow-up [1]. Interestingly,
HCV does not only infect hepatocytes but B and T cells as
well. Long-term infection with HCV is associated with
immune-mediated monoclonal gammopathies (MGs), such

© 2006 Bentham Science Publishers Ltd.



42 Current Cancer Therapy Reviews, 2006, Vol. 2, No. 1

as type Il mixed cryoglobulinemia (EMC), production of
autoantibodies, the appearance of rheumatoid factors or
development of B cell non-Hodgkin’s lymphomas (B-NHL).
MGs constitute a group of benign and malignant
lymphoproliferative diseases (LPDs) characterized by the
proliferation of a single clone of plasmacells producing a
monoclonal protein. The prevalence of MGs in the normal
healthy population is approximately 1% [2]. Given the high
rate of re-infection of grafts after orthotopic liver
transplantation in the patients with end-stage HCV induced
liver disease, HCV replication in extrahepatic lymphocytes
has been at the root of controversial opinions. In HCV
infected patients, circulating immune complexes of HCV and
anti-HCV antibodies with cryoprecipitating properties cause
EMC, which is associated with polyclonal or monoclonal B
cell expansion. Approximately one-third of HCV-infected
patients have EMC that, although it is considered a non-
neoplastic disorder, might evolve into lymphoma in 10% of
patients [3-5].

VIROLOGY

HCV has been classified in the Hepacivirus genus within
the Flaviviridae family. HCV isolates have been classified
using the sequence divergence in genotypes and
quasispecies. The term quasispecies refer to the genetic
heterogeneity of the population of HCV genomes coexisting
in an infected individual.

HCV is an enveloped virus and its genome is composed
of a single-stranded RNA (9.6 kb) of positive polarity. Its
genome contains a N-terminal non-coding region (50NCR),
a long open reading frame (ORF), encoding a polyprotein
precursor of about 3000 aminoacids, and a C-terminal non-
coding region (30NCR) [6]. The polyprotein precursor is co
and post-translationally processed by a combination of host
and viral proteases into the mature structural and non-
structural proteins, which play a different roles in virus life
cycle [7, 8], (see Fig. 1 for details).

The structural proteins include the core protein (21 kDa)
and the two envelope glycoproteins, E1 (27 kDa) and E2 (61
kDa). These are released from the polyprotein precursor by
the endoplasmic reticulum (ER) signal peptidases. Host
signal peptidases are also responsible for the biogenesis of
p7, which is a membrane-associated protein, but its precise
role in viral cycle is still unclear. The non-structural proteins
include the NS2/3 autoproteases and the NS3 (68 kDa)
serine protease, the NS4A polypeptide (6 kDa), the NS4B
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(26 kDa) and NS5A (56-58 kDa) proteins, and the NS5B (65
kDa) RNA-dependent RNA polymerase.

HCV has been identified since 1989 by the use of
recombinant DNA technology [6], however, investigation of
the viral life cycle has been retarded by the difficulty of
creating an efficient cell culture system for HCV. As
described in Fig. (2), the presumed life cycle of HCV
includes: (1) binding to an as yet unidentified cell surface
receptor and internalization into the host cell, (2)
cytoplasmic release and uncoating of the viral RNA genome,
(3) IRES-mediated translation and polyprotein processing by
cellular and viral proteases, (4) RNA replication, (5)
packaging and assembly, and (6) virion maturation and
release from the host cell. Much work remains to be done
with respect to the virion structure, the early and late steps of
the HCV life cycle, the mechanism of RNA replication, and
the pathogenesis of HCV-induced diseases.

ONCOGENIC FUNCTIONS OF HCV-ENCODED
GENE PROTEINS

HCV proteins might contribute to HCV persistent
infection and cancer development. This section will discuss
how the single viral products may interfere with host cell
homeostasis and immune functions to induce malignant
transformation. A representation of the various types of
interference between HCV proteins and cell proteins is
reported in Fig. (3).

HCV Core Protein

The core protein is the first structural protein of the N-
terminus of HCV polyprotein. It constitutes the virion
nucleocapsid and most likely interacts with the viral RNA.
HCV core protein is mainly cytoplasmic and perinuclear [9].
Whether or not a fraction of HCV core may also act in the
nucleus during in vivo infection is still a matter for debate.
C-terminally truncated core translocates to the nucleus and
may exert distinct biological effects [10]. However, it has
not been shown if such sequences are actually present during
natural HCV infection.

In the previous years, an increasing number of reports
indicated HCV core as a pleiotropic modulator of cell
growth and viability. In fact, the core protein has been
extensively studied and, in addition to its role in the
packaging of viral RNA, it appears to play multiple roles in
various cellular signaling pathways, and potentially in
oncogenesis [11].
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Fig. (2). Differential steps of HCV life cycle.

The HCV core transactivates a number of cellular
promoters and activates transcription factors (as NF-kB, AP-
1, SRE elements) [12]. The interference exerted by HCV
core on Raf-MAPK (mitogen activated protein kinase)
pathways has been also established by several groups in
different cell types with different experimental models,
which could partially justify some discrepancies in the
obtained results [12-15]. According to this, HCV core can
induce the transformation of immortalized Ratl fibroblasts
and BALB/3T3 cells [16] and, possibly, primary rat
fibroblasts [17], in cooperation with v-Ha-ras. It has been
also shown that HCV core can bind to Retinoid-X-Receptor-
alpha (RXR-alpha) and modulate the expression of RXR-
alpha-controlled genes [18]. Moreover, HCV core can
modify cell cycle acting on different regulatory proteins such
as pRb and all cyclins [19] (Alisi et al. 2005%). Inhibition of
multiple pathways, which can lead to apoptosis (p53
superfamily, TNFR family, Fas/FasL and PKR), may play an
important role during the multi-step process of
hepatocarcinogenesis and lymphomagenesis. Interestingly,
HCV core protein expression influences all the above cited
apoptotic molecules either in vitro or in vivo. In studies using
cell cultures, the HCV core protein reduces sensitivity to Fas
and TNF (tumor necrosis factor), activating NF-kB, thus
inhibiting apoptosis either constitutively or in response to
cytokines [20]. In contrast, other in vitro studies have shown
an opposite effect of core expression on TNF- and Fas-
mediated apoptosis [21, 22]. HCV core protein modulates
the expression and the activity of a variety of molecules
involved in p53-related apoptosis (p53, p63 and p73). In fact,

! Abstract (n. 418) presented in the 40™ Annual Meeting of the EASL,
2005; published in J Hepatol Vol. 42, supplement 2.
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it has been reported that its direct modulation of different
p53 and p73 functions plays a role in HCV-related HCC
pathogenesis [23, 24].

In addition, lines of evidence indicate a relationship
between malignant lymphoma and p63 gene [25, 26];
interestingly, HCV core protein modulates the expression
and function of p63 and p73 different isoforms in HCV core
constitutively expressing polyclonal B lymphocytes and in
patiegts affected by HCV-related EMC and NHL (Alisi et al.
2005°).

Since HCV has the ability to interfere with the anti-viral
and apoptotic effects of the interferons (IFNs), it is not
surprising that HCV core protein is able to alter some
functions of PKR, one of the most important components of
IFN pathways, making such phenomena of particular
relevance to the development of IFN resistance and cancer
[27]. PKR is induced by IFN and activated by double-
stranded RNA. Its activation by viral infection causes elF2
phosphorylation and concomitant inhibition of protein
synthesis [28]. Perturbation of PKR functionality may
contribute to viral persistence and may affect many other
cellular processes including transcription, signal
transduction, apoptosis and cell growth. In fact, although
HCV core protein has been proposed to be involved in PKR-
induced apoptosis [29], recently, it has been demonstrated
that in HCC cells, viral core protein causes an
unconventional activation of PKR leading to a G2/M
accumulation in the absence of apoptosis [30]. Such in vitro
results have been substantiated by in vivo studies in

Z Abstract presented inthe AISF Annual Meeting, 2005; published in Dig
Liver Dis Vol. 37, pp. A34-A35.
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transgenic mice, which demonstrated the induction of HCC
by the expression of the full-length genome or of the core
sequence only [19, 31]. The development of HCC in these
animal models is preceded by steatosis in the absence of
liver inflammation. However, other reports on HCV core-
expressing transgenic mice, made using the same mice strain
and the same promoter sequence, did not demonstrate such
changes, and the reasons for these discrepancies remain
unknown (Table 1). Furthermore, the expression of the HCV
core protein in transgenic mice is able to induce the
development of malignant lymphoma with a high frequency
(80%) in elderly animals [40], suggesting its own important
role in inducing lymphocytes transformation. Oxidative
stress has been indicated as another of the possible
mechanisms of HCV induced hepatocarcinogenesis. In vivo
data obtained in HCV core expressing transgenic mice
provide evidence that elevated peroxide products potentially
contribute to the development of HCC in older animals,
where scavenger systems are less effective [41].

E1/E2 Proteins

Envelope proteins E1 and E2 are transmembrane proteins
consisting of a large N-terminal ectodomain and a C-
terminal hydrophobic anchor. E1 and E2 are post-
translationally modified by extensive N-linked glycosylation
[42]. They are believed to associate as a non-covalent
heterodimer and are exposed on the virion surface [43]. E1
and core proteins can interact with each other, suggesting
that the viral capsid is enveloped through this interaction. E2
mediates viral binding to the cells, as shown by a decrease of
infectivity by incubation of the virus with anti-E2 antibodies
[44], but the HCV receptor has not yet been identified. A
number of cell surface molecules have been proven to be
HCV receptors. For instance, human CD81, as well as low
density lipoprotein receptor (LDLR) are putative HCV
receptors binding specifically to E2 protein but do not
mediate viral entry [45, 46]. In addition, human scavenger
receptor class B type | and liver/lymph node-specific
intercellular adhesion molecule-3-grabbing integrin have
been recently characterized as novel receptors for HCV [47,
48]. Whether and how these cellular molecules transmit
stimulation of HCV E2 protein to intracellular signaling
pathways need to be further clarified. Since interaction of E2
protein with its receptors is a pivotal process taken by HCV
for entry, it is reasonable to speculate that transmembrane
signal transduction initiated by E2 may at least in part
account for HCV pathogenesis; in fact, it has been
documented that the E2 protein was capable to significantly
promote cell proliferation both in Huh-7 and human T
lymphocytes [49, 50].

Beside its structural role, E2 has been shown to modulate
the IFN-alpha response. In fact, it contains a region that
shares a high degree of sequence homology with the
autophosphorylation sites of PKR and the phosphorylation
site of elF2 [51-53].

The precise role of HCV E2 protein in the development
of cancer is currently unknown, but the interaction with PKR
might be important in HCC development; on the other hand,
the hypothesis that some HCV-associated lymphomas
originate from B cells might explain the association between
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HCV infection and some B-cell lymphoproliferative
disorders [54].

NS2, NS3 and NS4 Proteins

NS2 and NS3 are the two viral proteases responsible for
the cleavage of all the NS proteins. Furthermore, NS3 has a
helicase and a NTPase activity, suggesting that it plays a role
in RNA replication [55]. HCV NS3 protein probably also has
many kinds of potential biological effects, for example
mediating cellular immune response, and modulating p53,
protein kinase A (PKA) function, signal transducers and
activators of transcription (STAT) and telomerase activities
[56-61]. Although NS3 has been implicated in interaction
with various cell constituents, resulting in phenotypic
changes including malignant transformation, the precise
pathogenic mechanism of HCV NS3 protein remains
unclear. It has been reported that HCV NS3 protein is able to
transform mouse fibroblast cell lines and induce tumors in
nude mice [62, 63]. In addition, Kwun et al. [64] have
demonstrated that the NS3 protein can specifically repress
p21lwafl/cipl promoter activity. Recent experiments suggest
that the transformation and tumorigenesis induced by HCV
NS3 serine protease could be dependent on its ability to
activate MAPK pathways. The precise mechanism by which
NS3 activates these pathways is still unclear.

NS4A is a cofactor of NS3, with which it forms the
NS3/4A heterodimer [66]. NS3/4A heterodimer permits
HCV evasion from immune response by Toll-like receptor 3-
mediated inhibition of IFN regulatory factor 3 (IRF-3) [67].

NS4B is an integral ER membrane protein. Its function is
not yet known, but it may play a role in the anchorage of the
replication complex to membrane, as observed for the
replication of other RNA viruses [68]. As occurs for other
HCV proteins, also HCV NS4B plays an important role in
the malignant transformation; in fact, it transforms NIH3T3
cells in cooperation with the Ha-ras oncogene [69].

NS5A/NS5B Protein

NS5A is a phosphoprotein, which exists in differentially
phosphorylated forms of 56 and 58 kDa with modifications
of serine residues [70]. Probably, it plays a role in the
replication cycle; in fact, interesting studies on HCV RNA
replicon system have shown many adaptive mutations in
NS5A, able to enhance viral replication [71, 72]. Although
the physiological role of NS5A protein is still largely
unknown, the direct role of this protein in liver cancer is
supported by the observation that it is able to modulate gene
transcription and modify the susceptibility of cultured cells to
apoptotic signals [73-75].

NS5A interacts with a number of cellular proteins in
mammalian cells, some of which have been identified and
partially characterized. It was shown to associate with
cellular serine/threonine kinase and adaptor proteins [76],
including growth factor receptor bound protein 2 (Grb2),
thereby interfering with cell signaling [77]. It also interferes
directly with DNA binding of p53, repressing its
transcriptional activity on promoters such as p2lwafl/cipl
[78, 79]. NS5A also interacts with a newly identified cellular
transcription factor, SRCAP (Snf-2-related CBP activator
protein) [80] as well as other transcription factors (NF-kB
and PCNA) that are related to the promotion of cell
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Fig. (3). Schematic representation of potential interplays between HCV proteins and cellular pathways.

proliferation [81]. In addition, NS5A mediates growth delay
by blocking the G2/M transition [82, 83]. Several reports
indicate that HCV NS5A could repress PKR functions, by
which HCV could escape the anti-viral and antiproliferative
effects of IFN [84, 85]. The interaction of HCV NS5A
protein with this kinase, through its ISDR region prevents
dimerization of PKR, which is critical for protein kinase
functions [85, 86]. When HCV NS5A induces PKR
dysfunction, sustained expression of elF-2a in cells
destabilizes cell growth and differentiation, and induces
malignant transformation and development of tumors in
nude mice.

Finally, it has been predicted that the NS5B protein
encodes an RNA-dependent RNA polymerase (RdRp), which
is the central catalytic enzyme of the HCV replicase [87]. It
has a hydrophobic domain at its C-terminus, allowing its
insertion into membrane [88]. NS5B has been reported to

interact with NS proteins and some host proteins [89]. Such
interaction(s) may modulate the activity of NS5B RdRp in
many different ways. In fact, NS5B interacts with NS3 and
NS4B as positive and negative regulator during HCV
replication [90]. In this context, the amphipathic helix of the
HCV NS5A is necessary for its membrane localization and
for HCV RNA replication [91]. Although this protein also
interacts with cellular proteins such as nucleolin [92] and
eukaryotic initiation factor 4All [93], a direct role for NS5B
in cell transformation is lacking.

Summary

This part of the manuscript provides an overview of some
of the common functions of HCV gene products, which
contribute to viral persistence and HCV cancer pathogenesis.
Literature has clearly shown a direct role of some of the
HCV viral proteins (core, NS5A etc.) in the pathogenesis of
HCV-related transformation. HCV proteins stimulate

Table 1.  Some Models of Transgenic Mice
Strain HCV protein Promoter Pathology

C57BL/6 P4 Core HBV elements None
C57BL/6 B3 Core HBV elements Insulin resistance
C57BL/6 *419% Core HBV elements Steatosis, adenomas, HCC
cp1t E1, E2 HBV elements None
CcD1B1 E1, E2 HBV elements Exocrinopathy
BALB/c ¥ Core, E1, E2, NS2 CMV-actin promoter None
BALB/c Core, E1, E2, NS2 CMV-actin promoter Hepatitis
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Table 2.  Pro-Oncogenic Functions of HCV Gene Products
HCV protein Functions and Cellular Interferences
Core Viral capside, Signal transduction, Apoptosis, Cell cycle, IFN actions, Immune suppression, Transcription.
E1, E2 Viral entry, Signal transduction, Cell proliferation, IFN actions.
NS3/4A Serine protease and helicase, Signal transduction, Cell cycle, Immune evasion.
NS4B Viral replication, Signal transduction.
NS5A/5B Viral replication, Signal transduction, Apoptosis, Cell cycle, IFN actions, Transcription.

immune response and inflammation; they too interact with
several cellular signal transduction pathways, regulating cell
proliferation and apoptosis (in Table 2 all the HCV protein
functions and cellular interferences are summarized).

CURRENT TREATMENT FOR HCV-RELATED
CANCERS

Current Therapy for HCC

The therapeutic strategy for HCC patients has to take into
account that in the vast majority of individuals, the tumor
develops in a diseased liver with a variable degree of
functional derangement. Thereby, it would be desirable for
effective treatment to have a limited impact on liver
function. In fact, if the degree of liver dysfunction is
advanced, it will determine an unpredictable disease
evolution with a dismal prognosis; at this point, response to
the therapy will become absolutely irrelevant. There are no
definitive molecular tools to characterize the biology of
HCC. Actually, most treatment decisions are taken looking
especially at size and tumor number, overall, because there is
no clear and definitive molecular biology characterization of
HCC. For this reason, it is necessary to follow accurately
each advanced cirrhotic patient; in fact, patients diagnosed at
an early stage of HCC may undergo effective treatments
such as surgical resection, percutaneous ablation or
transplantation. In any case, it is important to notice that the
majority of HCC patients are treated with palliative
treatments because the diagnosis is typically made at a late
stage [94]. Inclusion of such patients with advanced liver
disease in clinical trials of new anti-HCC agents will
confound survival results, because of deaths from
progressive liver disease that may be unrelated to the HCC
or its therapy.

Here will be briefly described surgical and non-surgical
aspects of currently strategies used as HCC treatments.

Liver Transplantation

At present, liver transplantation is considered the only
curative treatment option for HCC, since the major challenge
in liver transplantation for HCC is the decrease of the rates
of tumor recurrence. It is also the treatment of choice for
patients with early HCC in de-compensated cirrhosis.
Patients with solitary tumors less than 5 cm or with up to 3
nodules of less than 3 cm achieve outcomes identical to
patients who are transplanted, because of end stage cirrhosis
without malignancy (70% at 5 years), with the recurrence
rate less than with surgery [95]. Thus, transplantation might
be used as the first therapeutic choice, but transplant has

several drawbacks. Firstly, the lack of donors prompts a
waiting time between enlistment and transplantation. During
this time, the tumor may progress. Live donation may
partially ameliorate the situation of waiting, but HCC
patients waiting for a liver will still exist. To achieve the
current criteria for transplantation and to prevent
recurrences, sometimes it is important to restrict tumors
before transplant can be performed [96]. Several pilot
randomized studies have shown that subjects with advanced
but locoregional HCC (i.e. disease in the absence of portal
vein thrombosis) who are treated with adjuvant chemo-
therapy achieve prolonged survival.

Predictors of tumor progression are not available, thus
development of molecular profiling strategies using
microarray analysis should provide a major help [97, 98].
Identification of prognostic markers [99-101] should also
allow a more accurate choice in patient selection for
transplantation as well as resection.

Graft rejection and viral re-infection remain major
unsolved issues after transplant. HCV re-infection of the
graft is frequent, if not always present, and almost 50% of
patients will display a cirrhotic liver within 5 years [102].
Development of better anti-viral therapies and tools to
prevent collagen deposition is needed.

Surgical Resection

Complete removal of HCC nodules can be achieved by
surgical resection or by medical ablation. Surgical resection
is the most common first option in patients with solitary
tumors who have well-preserved liver function and normal
portal pressure. Patients with these characteristics normally
tolerate the resection of a hepatic segment well, and their
liver will not be damaged by the immunological response
and ischemia reperfusion injury related to surgery. On the
other hand, it is important to underline that patients with
cirrhosis generally are not considered good candidates for
surgical resection because of high morbidity and mortality
rates associated with cirrhosis and its complications.
Moreover, it is well known that in those cirrhotic patients,
who do undergo resection, recurrence rates are among the
highest of any solid tumor, and approach 75% to 100% at 5
years [103].

Hence, the major problem related to the HCC total
population treated with surgical resection is the high rate of
recurrence (15-30% per year); although some studies
demonstrate a favorable effect of interferon alpha in the
prevention of HCC recurrence, future therapeutic approaches
should be directed to ameliorate this shortcoming. If patients
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with HCV-related HCC are treated with interferon after the
complete ablation, the rates of second or third recurrence are
different between the treated and untreated patients. The
interferon-treated patients had a survival rate of 68% at 5
years and 53% at 7 years, whereas untreated patients had a
survival rate of 48% at 5 years and 23% at 7 years [104]. The
combination treatment with interferon plus ribavirin (RBV)
seems to determine a better favorable prognosis if combined
with curative ablation therapy or surgery.

The presence of vascular invasion or additional nodules
is an important predictor of recurrence related to
dissemination. Some type of molecular analysis is needed to
give a more precise prognosis than conventional pathology.
Higher recurrence rate has been related to p53 protein
dysfunction, reduced expression of p27 or nm23-H1 and/or
increased expression of AFP, Ki-67 or VEGF, among others,
but further investigation is needed to identify genes that
correlate with predictive risk of recurrence. Actually,
antiangiogenetic agents, acyclic retinoids, interferon,
immunotherapy, and internal radiation may have some
preventive effect, however, their efficacy requires extensive
studies (see references below). The high recurrence rates for
stages Il and Il HCC post-resection have led to attempt by
investigators to decrease these rates with agents that have
known activity against HCC recurrence. Approaches to
prevent recurrence have included chemoembolization before
and neoadjuvant chemotherapy after surgery to deal with the
microscopic disease that may be present in the non-resected
portions of the liver; unfortunately, neither of these
therapeutic approaches has proven to be beneficial.
Transarterial embolization/chemoembolization (TACE) and
B1_lipiodol seem to be reasonable approaches [105, 106].
Although many other agents have been studied, they have
often been used at sub-therapeutic doses. Less toxic or non-
toxic agents would be particularly attractive in this setting.

Ablative Localized Treatments

Percutaneous ablation is the third treatment option that
may permit to observe a long-term relapse free period. It
includes some techniques to ablate tumors by physical means
such as Percutaneous Ethanol Injection (PEI),
Radiofrequency Interstitial Thermal Ablation (RITA),
cryotherapy and new kind of radio-wave therapies.

All are performed under image guidance, and their
maximal activity is achieved in nodules < 3 cm, when
complete response rates account for 80% of cases [107, 108].
Local ablative therapies are generally useful for patients with
1 or 2 tumor lesions with a maximum diameter of 3 cm.
These local ablative therapies seem to be similar in
applicability, and results are highly dependent on clinician
skills and choice of patients.

The main problem is again the high rate of disease
recurrence. Unfortunately, it often occurs near to the treated
area, reflecting failure to provide adequate local control. This
lack of local control is not an issue with surgical resection,
which eliminates the tumor and the surrounding tissue,
containing the local tumor spread. Thus, percutaneous
ablation is an effective option, but is usually indicated if
surgery is unfeasible.
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Chemotherapy

The results of systemic treatments for hepatocellular
carcinoma are currently disappointing. Almost 70-90% of
newly diagnosed HCCs are non-resectable and non-
transplantable as judged by the extent of the tumor. The
management of such tumors is currently non-surgical and
only chemotherapeutic or hormonal treatment is indicated. In
any case, in patients with advanced disease, none of the
tested treatments demonstrates an unequivocal benefit in
terms of survival. Moreover, the trials including the largest
numbers of patients have been consistently negative. The
ideal chemotherapeutic agent for HCC, as noted above,
would be effective against the tumor and non-toxic to the
cirrhotic liver. Unfortunately, few agents exist that have such
criteria. A notable number of randomized and
nonrandomized clinical trials to evaluate the usefulness of
single agents or combinations of agents of cytotoxic cancer
chemotherapy have been published [109]. In particular, the
two most widely used chemotherapeutic drugs for HCC are
doxorubicin and cisplatin. Overall, cisplatin seems to be
better tolerated in patients with cirrhosis and has less
myelosuppressive activity. Some more recent combinations
such as cisplatin, interferon alpha, adriamycin, and 5-
fluorouracil are extremely toxic and yield response rates of
only 20%, showing no survival advantage compared with
supportive care alone [110]. Actually the better way to
follow seems to be the hepatic arterial chemoembolization
(TACE) that permits to deliver directly to the HCC higher
concentrations of cancer chemotherapeutic agents. Despite
enormous efforts in this area from multiple groups, the effect
on survival is difficult to prove. A glimmer of light has been
done by the recent publication of two trials [111, 112],
showing a survival advantage for TACE using either
doxorubicin or cisplatin, compared with supportive care
only. Because both have shown a survival advantage for
unresectable HCC, this approach could be considered a new
standard with which other agents or combinations of
treatments should be compared. Nonetheless, survival at 2
years still does not exceed 40%. In these patients, the lack of
effect on survival might be caused by loss of control of
tumor growth, although it appears to be more commonly
caused by liver failure.

Randomized, controlled trials are clearly needed to
establish confidence in the use of TACE for the treatment of
unresectable HCC, because at present, there is no general
agreement on an ideal agent or regimen for
chemoembolization.

Hormonal Therapy

A majority of patients diagnosed with HCC have
advanced disease at presentation and, based on the number,
size, location of lesions and the severity of underlying
cirrhosis, are not candidates for transplantation, surgical
resection, or liver-directed therapies. The gender differences
noted in HCC incidence rates have encouraged many
investigators to examine tumor profiles for hormonal or
growth factor receptors. Some clinical trials have been
performed to study the influence of various hormonal
therapies on HCC progression, including agents to inhibit
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estrogen actions, such as tamoxifen, and anti-androgens,
such as leuprolide acetate and flutamide. Unfortunately, a
meta-analysis of studies investigating the use of tamoxifen
did not provide support for its therapeutic use in advanced
HCC. In fact, this analysis of 10 randomized trials with a
total of 1709 patients highlighted the fact that tamoxifen has
no effect on median survival or tumor response rate [113].

Despite many trials, the overall results have been
disappointing and survival has remained poor [114-118].
Nevertheless, variations of such approaches continue to be
somewhat attractive, because the agents are in general non-
toxic, inexpensive, and easy to administer.

Prospective, randomized controlled trials using current
therapies alone or in combination, are needed to better define
the optimal management of HCC. Actually, however, we
especially need new and effective therapeutic agents against
HCC, which have to be non-cytotoxic and well tolerated by
the typical patient with underlying cirrhosis.

Current Therapy for HCV-Related Lymphomas

As already mentioned, there are many important
extrahepatic manifestations of HCV infection. Most of them
are associated with autoimmune or lymphoproliferative
disorders (LPDs) and may be related to the possibility that
HCV is able to replicate in lymphocytes [119-120].

There are several studies that indicate HCV as
responsible for the development of benign (EMC) and
malignant LPDs associated with chronic HCV infection
[121]. The association between EMC and chronic HCV
infection is extremely strong with more than 95% of patients
affected by EMC having serological evidence of a current or
prior HCV infection. Between 10 and 54% of individuals
with HCV infection can be affected by EMC, and
cryoprecipitates from HCV infected patients usually contain
large amounts of HCV antigens and antibodies [122].

Type Il mixed cryoglobulinemia is often observed in
conjunction with bone marrow findings consistent with
indolent B-cell lymphoma [123] and evolves to frank B-cell
malignancy in about 10% of cases [124]. In this respect, it
has been reported that EMC may lead to lymphoma,
especially low-grade B-NHL, after a long latent period
[125]. Hence, HCV may be responsible for triggering a
clonal B-cell proliferation that in some cases can progress to
a malignant lymphoma [125, 126].

The following sections will summarize the current
therapy used for benign (EMC) and malignant HCV-related
lymphoproliferative diseases.

Anti-viral Therapy in HCV-Related Mixed Cryoglob-
ulinemia

Anti-viral therapy with IFN has been reported to be
efficacious for the treatment of HCV-associated
cryoglobulinemia, although most studies lack a control
group; therefore, controlled studies are necessary to establish
whether the improvement in clinical features is related to
anti-viral effect or to other effects of IFN [127-129].

The therapeutic efficacy of IFN in HCV associated
cryoglobulinemia seems to be closely related to its anti-viral
activity, thus supporting the idea that this disease is due to
HCV viral infection. Therefore, it has been suggested that
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IFN treatment should be administered as soon as possible
when HCV related cryoglobulinemia is diagnosed [130].
According to this, it has been suggested that the induction of
the regression of mixed cryoglobulinemia-associated B-cell
monoclonal proliferation with IFN therapy could reduce the
prevalence of hematological malignancies [131] and induce
remission of low-grade types of NHL (lymphoplasmocytic
or lymphoplasmoid immunocytomas).

The mechanisms of action of IFN in mixed
cryoglobulinemia are unclear at present. First, it is known
that IFN has an antiproliferative effect, as indicated by the
use of this drug in several myeloproliferative and
lymphoproliferative disorders. However, the anti-viral
property of IFN, and not only its antiproliferative effect, is
arguably responsible for the beneficial effects in mixed
cryoglobulinemia. In particular, the regression of the clonal
B-cell disorder is obtained only in patients who achieve
clearance of the virus [131]; the symptoms associated with
cryoglobulin deposition disappear only in those who respond
to the treatment with IFN-alpha and are negative for HCV-
RNA [120]. Notably, virological relapse after treatment
withdrawal is characterized by a recurrence of cryoglobulin-
associated symptoms [127, 128, 132, 133].

A recent study has focused on the t(14,18) translocation,
evaluating the effects of IFN-alpha plus RBV on viremia, B-
lymphocyte HCV RNA and t(14,18) in peripheral blood
mononuclear cells in HCV-infected patients without either
mixed cryoglobulinemia syndrome or other
lymphoproliferative disorders [134]. At the end of treatment,
t(14;18) was no longer detected in 50% of patients with
complete or partial virological response, whereas it was
persistently detected in non-responders.

In summary, although it should be emphasized that not
all patients with HCV infection and cryoglobulinemia
respond to anti-viral treatment, it seems logical to
recommend interferon-alpha (preferably pegylated
interferon-alpha plus RBV) to achieve a sustained
virological response in patients with chronic hepatitis C and
cryoglobulinemia.

Anti-Viral Therapy in HCV-Related B-NHL

As previously reported, there is an epidemiological
association of HCV infection with LPDs, particularly with
B-cell NHL. Rarely, HCV-associated lymphoproliferative
disorders have been observed in the absence of
cryoglobulinemia, and in these patients, the response to IFN-
alpha is largely unknown. Some observations have shown
that anti-viral treatment appears to be effective in eliminating
the clonal proliferation of B cells in patients with chronic
HCV infection. Patients with HCV are more likely than
healthy individuals to have the t(14,18) translocation with
overexpression of the antiapoptotic bcl-2 proto-oncogene
[135, 4] and bcl-2 rearrangements [136], suggesting its
involvement in HCV-related B-NHL development.

Complete remission of LPD was often achieved.
Encouraging results emerge from a recent report in which
most patients with HCV and splenic lymphoma with villous
lymphocytes (SLVL), characterized by a clonal expansion of
B cells with villous projections and splenomegaly, entered
complete remission after anti-viral treatment with IFN-alpha
[137]. These results suggest that systematic screening for
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HCV infection should be performed in patients who have
been given a diagnosis of splenic lymphoma, as in some
HCV-positive cases, anti-viral therapy may be an alternative
to splenectomy, chemotherapy or both. Other studies have
also reported regression of different types of lymphomas
after IFN-alpha treatment, such as splenic and nodal
marginal zone lymphomas [138] or HCV-associated
immunocytoma [139]. Furthermore, treatment with IFN-
alpha can achieve a concurrent disappearance of HCV-RNA
and of lymphoma bone marrow infiltration [139]. Moreover,
the regression of HCV-related gastric mucosa-associated
lymphoid tissue (MALT) lymphoma after treatment with
alpha interferon (IFN) plus RBV has been reported. Other
authors have confirmed the beneficial effect of IFN
treatment in patients infected by HCV and MALT (mucosa-
associated lymphoid tissue lymphoma) of the salivary
glands, the oral cavity, or the spleen [140, 141].

The inclusion of a control group integrated by patients
with lymphoproliferative disease but without HCV infection
[137] demonstrated that, in contrast with infected patients,
HCV-negative subjects did not respond to IFN therapy. This
observation indicates that the response observed in the HCV-
infected patients is not merely due to the antiproliferative
effect of IFN, but to the regression of clonal proliferation in
response to anti-viral treatment with IFN, which is clearly
associated with a virological response [142].

The management of extrahepatic manifestations is
sometimes challenging due to their refractory nature, drug
contraindications, toxicity, and adverse effects. In this case,
the response of patient to the standard therapy with IFN-
alpha plus RBV is poor and unsustained, often requiring
additional immunosuppressants. Corticosteroids,
cyclophosphamide, rituximab, and fludarabine have been
introduced to refractory cases [143-146]. Rituximab is a
chimeric monoclonal antibody against CD20 and has
recently been used for HCV-associated EMC with favorable
results [143, 144]. Rituximab is well tolerated with minimal
toxicity usually limited to infusion periods. However,
possible hepatitis reactivation and fatal infection are
concerned. In fact, pure red cell aplasia due to parvovirus B
[147] cytomegalovirus [148] and fatal varicella zoster
infection [149] have been reported following rituximab. In
this case, concurrent administration of anti-HCV agents
including interferon-alpha plus ribavirin might be reasonable
to suppress viral replication and to obtain possibly
synergistic therapeutic effects against HCV-associated
extrahepatic manifestations. Further studies on the safety and
efficacy of rituximab are awaited. However, normally
although rituximab temporarily eliminates normal B-
lymphocytes, it is not generally associated with increased
incidence of opportunistic infections [147]. Normal B
lymphocytes re-emerge within weeks to months after
administration of rituximab, and antibody production
continues during B-lymphocytopenia because CD20-
negative plasma cells are not eliminated. These data indicate
that rituximab can be safely used in LPDs of HCV-positive
patients.

Although, it is evident that larger therapeutical trials of
anti-viral therapies are needed to determine their potential
utility in HCV-infected patients with lymphoproliferative
disorders, encouraging data have emerged from some of the
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above mentioned recent studies [4, 140, 141]. Multicentre
controlled studies with pegylated interferon-alpha plus RBV
are eagerly awaited.

FUTURE TREATMENT FOR HCV-RELATED
CANCERS

Although HCC patients undergo medical and surgical
treatment for primary tumor lesions, intrahepatic and
extrahepatic recurrence frequently occurs, limiting patient
survival. As previously described, the current treatments for
HCC include surgical and non-surgical strategies.
Unfortunately, at present, the five-year survival of
individuals with HCC is low, mainly due to the late
presentation of the disease as well as limited therapeutic
options that are effective. In clinical practice, many patients
do not qualify for, do not tolerate or do not respond to IFN-
based therapy [150]. As a consequence, the number of
patients presenting long-term sequelae of chronic hepatitis C,
including HCC, is expected to further increase for the next
20-30 years.

Anyway, the considerable progress made using
heterologous expression systems, functional cDNA clones,
the replicon system, and, most recently, functional HCV
pseudoparticles (Table 3), has strongly contributed to
development of novel anti-viral strategies. The development
of effective combined treatments, including new medical
agents, immunomodulators and gene therapy has been
launched for treating HCV-related tumors and the results
seem to be promising [151-153].

Table 3.  In Vitro and In Vivo Systems to Study HCV

In Vitro

Transient cellular expression systems in cell lines and/or primary
hepatocytes

Constitutive/inducible expression in stably transfected cell lines

Subgenomic/full-length replicon systems

Retroviral pseudoparticles

Chimeric viruses such as poliovirus-HCV

In Vivo

Transgenic mice

Immunodeficient mice/hepatocellular reconstitution models

Chimpanzee

Anticancer New Medical Agents

Antiangiogenic agents. The important vascularization
that characterized HCC makes it an excellent candidate for
the action of anti-angiogenic agents. This anti-cancer therapy
has recently attracted an intense interest for its broad-
spectrum of action, low toxicity, and the absence of drug
resistance [154]. The most studied anti-angiogenic drugs are:
thalidomide (phase Il clinical trial), vascular endothelial
growth factor (VEGF) antibody (phase | clinical trial),
angiostatin (phase I clinical trial), endostatin (phase I clinical
trial) and thrombospondin analogs (phase | clinical trial).
Actually, however, adverse effects limit the use of these
agents. In fact, in view of the significant neurological
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toxicity observed using high dose thalidomide, encountered
between the commonly cirrhotic HCC patients, this drug
should be considered only in combination with other
chemotherapy agents [155]. On the other hand, the transient
expression of recombinant adenovirus-mediated human
endostatin is a key problem for any therapeutic use.
Conversely, the necessary multiple injection of this
immunogenic transgene vector gives an immune response to
the vector, causing a systemic toxicity. Indeed, in liver and
kidney were observed hepatocytes and renal tubule
degeneration and some degree of inflammatory reaction
[156]. Furthermore, anti-angiogenic agents in combination
with genetic immunotherapy (i.e. endostatin and IL
(interleukin)-12) have been recently reported to exert a
potent anti-tumor effect on hepatoma [157].

Anti-inflammatory agents, such as cyclo-oxygenase-2
(Cox-2) inhibitors (celecoxib, rofecoxib), interfere with the
carcinogenic process. Several studies demonstrate that Cox-2
specific inhibitors have a significant anti-proliferative and
pro-apoptotic effect on HCC cells, suggesting that selective
block of Cox-2 may have preventive and therapeutic
potential for human HCCs [158, 159]. Recently, Malka D et
al. have reported a case of HCC, which has dramatically
responded to celecoxib [160], giving new insights for its use
in HCC treatment.

Novel means of delivering localized radiation, are 90-
Yttrium (90Y) microspheres, Theraspheres, and Sirspheres
for HCC treatment and **I-tositumomab and 90Y-
ibritumomab tiuxetan for lymphomas. In a cohort of 65
patients, treatment with hepatic arterial 90Yttrium
microspheres (Therasphere) appears to be a relatively safe
and effective therapy for advanced-stage unresectable HCC
[161].

Inhibitors of growth-factor-signaling and cell cycle
enzymes. The mainly studied growth inhibitor agents are:
Epidermal Growth Factor Receptor (EGFR) antagonists,
inhibitors of MAPKSs, Cdks (cyclin-dependent kinases),
tyrosine Kkinases, PI3-kinase, phosphatase and tensin
(PTEN), suramin and Raf kinase pathways.

BAY-43-9006 (Sorafenib, Onyx Pharmaceutical), an oral
cytostatic Raf kinase inhibitor [162] is recommended for
ongoing and future studies, because a recent phase | clinical
study demonstrates that it provides some clinical benefits in
patients with advanced refractory solid tumors [163].

EGFR-targeted agents (HER-1, O-13928 DD, Gefitinib
etc.), which improve tyrosine kinase activity of EGFR, have
shown promising anti-tumor activity in animal model of
HCC [164, 165]. Finally, a class of drugs blocks the growth
of tumor with minimal toxicity, inhibiting PI3K and Akt
dependent growth factors, such as ABT-100 [166].

Anti-proliferative agents, include octreotide and arsenic
trioxide. Regarding octreotide, although it is able to block
proliferation and to induce apoptosis in HCC cells, a recent
pilot study indicated that the beneficial response in terms of
time to tumor progression and survival is limited [167].
Arsenic trioxide (Trisenox, Cell Therapeutics Europe)
induces cell cycle arrest and apoptosis in hepatoma cells and
inhibits the proliferation of tumor cells in vitro [168]. In a
clinical trial this agent has presented some side effects
(leukocytosis, nausea, abdominal pain, rash, fatigue,
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headache etc.), that do not appear to be permanent or
irreversible.

Vitamins and derivatives. It has been indicated that
vitamins (vitamin K2, vitamin E, vitamin A, vitamin D and
their analogs) often act as specific antagonists of HCC tumor
markers involved in control of cell growth (i.e. cdc25) [169],
suggesting a role in preventing development of HCC. In
addition, several studies demonstrate that combination of
vitamin treatment with other surgical and non-surgical
therapies ameliorates the clinical outcome in patients with
inoperable HCC as well reduce recurrence in already
operated patients [170-172].

Molecular Targets for Gene Therapy

The fundamental role of oncogenes and anti-oncogenes
as important control elements of cell growth, differentiation,
and apoptosis aroused an ever-increasing interest for these
proteins as potential pharmaceutical targets for therapeutic
intervention in cancer. Cancer gene therapy includes many
options: silencing oncogenes, functional tumor suppressor
genes, suicide gene/prodrug system, inhibitors of tumoral
vascularization etc. One can consider gene therapeutic
strategies aimed at inhibiting or inducing gene expression
using various experimental systems, including, among
others, antisense oligodeoxynucleotides, ribozymes, small
interfering RNAs (siRNA) and oncolytic adenoviral vectors.
Two latter molecular approaches have gained particular
attention.

siRNA can specifically silence particular genes and may
provide a powerful tool in genetic therapy for carcinoma
[173, 174]. Unfortunately, resistance development is a
potential obstacle also for siRNA-based therapy. HCV can
develop resistance to prolonged treatment with SiRNA
through the accumulation of nucleotide point mutations
within the siRNA target sequence [175, 176]. As expected,
HCV replicons resistant to a given siRNA remain susceptible
to siRNAs targeting different HCV RNA sequences, and the
emergence of resistant replicons is diminished by the
combination of two or more siRNAs. Thus, the use of two or
more siRNAs targeting different sequences of the viral
genome may provide a way to control the development of
resistance. Moreover, interestingly, siRNAs that can
specifically block cyclin E and survivin gene expression
appear to inhibit growth in HCC cells [177, 178].

The effect of gene therapy strategies depends on a highly
efficient neoplastic cell transduction resulting in intratumoral
levels of the therapeutic protein able to induce tumor
regression. This issue could be better reached with currently
available oncolytic adenoviral vectors [179]. Apoptosis
inductors (i.e. Smac and TRAIL), delivered by way of the
oncolytic adenoviral vector, would provide a useful strategy
for HCC eradication [180]. Effectively, NK4 (an hepatocyte
growth factor (HGF)-antagonist and a broad angiogenic
inhibitor), used in HCC gene therapy via a replication-
deficient recombinant adenoviral vector, seems to be a
promising strategy to treat HCC [181]. Furthermore, a strong
anti-tumoral effect was observed in different HCC in vitro
and in vivo models using oncolytic adenovirus based on the
human telomerase reverse transcriptase and the E2F
promoters [182, 183].
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As already mentioned, adverse effects upon non-tumoral
cirrhotic tissues often limit the use of anti-proliferative
drugs. This problem could be overcome by having tumour
cells transfected with any gene that renders them sensitive to
prodrugs that are innocuous to non-transduced cells. Such
genes should code for enzymes that convert a prodrug into a
toxic metabolite. The best-characterized prodrug is
thymidine kinase, that transforms ganciclovir into a toxic
phosphorylated compound that inhibits both nuclear and
mitochondrial DNA synthesis [184]. Thymidine kinase
system for HCC treatment has shown efficacy in several
studies [185-187]. To restrict prodrug gene expression to
tumor tissue and avoid the damage of non-tumoral tissue,
tissue-specific promoters can be used for intratumoral
injection of the vector [188], such as that from alpha-
fetoprotein (AFP) [189].

HCV Anti-Viral New Medical Agents

To prevent the onset of HCC, the best solution would be
to eradicate the viral infection. Investigators have taken some
different approaches to address this pressing medical need.
Major research efforts have focused on the identification of
agents that inhibit specific steps in the life cycle of the virus
and drugs able to interfere with the host immune system. On
the other hand, several efforts have been done in trying to
develop an anti-HCV vaccine.

The ‘HCV-specific drugs’ have the capacity to block
particular steps in HCV virus life cycle. They include
molecules that inhibit HCV enzymes as well as agents, such
as nucleic acid, that attack the viral RNA. The clinical
success of HCV-specific drugs depends on their ability to
suppress all viral variants as well as prevent the emergence
of resistant viruses.

Drug design of molecules against HCV viral proteins.
Each of the viral encoded replication enzymes, as well as
viral receptors and the host immune system, has been studied
in depth, because it might represent a target for anti-viral
intervention. Specific inhibitors of the NS3 serine protease,
as well as the NTPase/RNA helicase and the NS5B, are
actually being developed by drug design as anti-viral agents;
some of those are already in early phase clinical trials (Table
4). It is likely that the combination of multiple drugs,
possibly directed against viral as well against the host
targets, will be necessary to bypass the HCV-related drug-
resistance and efficaciously treat chronic HCV infected
patients.

BILN 2061 (Ciluprevir) was the first HCV protease
inhibitor to enter clinical trials [190]. To patients infected by
genotype-1 HCV, BILN 2061 administered twice a day for
two days, induced a dose-dependent decline of the viral load
[190, 191]. Treatment with BILN 2061 was somewhat less
effective on genotype-2 and -3 of HCV [192]. Unfortunately,
the effect of BILN 2061 was transient, but the hope is that
longer treatments with HCV protease inhibitors could lead to
high rates of sustained viral response. Moreover, the clinical
development of BILN 2061 was stopped because of the
observation of cardiac toxicity in monkeys [192].
Additionally, against a future use of this drug, development
of resistance to BILN 2061 was observed in the HCV
replicon system [193, 194].
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VX-950 is another inhibitor of NS3 serine protease that
interacts covalently with the protease, but it develops viral
resistance too [194]. Treatment with VX-950 induced a rapid
decline of the viral load in patients infected by genotype-1
HCV at the end of two week therapy. However, this
treatment was not sufficient to eradicate the virus, and viral
RNA returned to baseline after stopping therapy.

Nucleoside analogs are transformed by the host cell to
the corresponding nucleotides, which in turn inhibit
synthesis of viral RNA as “chain terminators”. In fact, they
get incorporated by the viral polymerase in the nascent RNA
molecule, inducing premature termination of the RNA
synthesis. In particular, NM283 (Valopicitabine, Indenix
Pharmaceutical/Novartis), a nucleoside analog of NS5B
(Table 4), when administered to genotype-1 HCV patients
for, at least 2 weeks, induces a dose-dependent down-
regulation of the viral load to less than 10% of the initial
levels®. In all patients, viremia returned to pre-treatment
levels after stopping therapy. This nucleotide analog was
also given in combination with pegylated IFN-alpha. It
caused a reduction in viral load of more than 10° fold, and
HCV RNA was undetectable in most of the patients®.

Non-nucleoside inhibitors (NNIs) of NS5B (Table 4)
seem to block the viral enzyme, hampering the
conformational transition needed for initiation of RNA
synthesis. Resistance to this class of inhibitor arises through
a single mutation within the inhibitor-binding site [195].

Although, several studies are focusing their efforts on
optimizing anti-viral therapy with anti-HCV nucleoside
analogs and NNIs, actually, this class of drugs is
characterized by diverse patterns of resistance. Hence, till
now, there does not exist an exhaustive demonstration of
their anti-viral activity.

Host Immunomodulators. A crucial question that future
clinical studies need to address is whether combination
therapy with solely HCV targeted drugs will be sufficient to
cure patients or whether the stimulation of the host immune
system by immunomodulators will be necessary to obtain a
complete eradication of the virus.

HCV infection could be eradicated by agents that
stimulate the host innate and adaptive immunity. With this
purpose, synthetic agonists of Toll-like receptors (TLRs) 7
and 9 have recently demonstrated their potential in
controlling HCV infection. TLRs are expressed by immune
cells, which include macrophages, monocytes, dendritic and
B cells [196]. They recognize the presence of exogenous
microorganisms through the recognition of molecular
patterns characteristic of pathogens such as bacteria, viruses
and parasites [197]. The stimulation of TLRs initiates acute
inflammatory responses by induction of anti-microbial genes
and pro-inflammatory cytokines and chemokines.
Preliminary data showed a statistically significant reduction
in viral load, stimulating either TRL 9 or 7, during HCV
infection, leaving a hope for future combined therapies.

® Abstract (n. 626) presented in the 40™ Annual Meeting of the EASL,
2005; published in J Hepatol Vol. 42, supplement 2.

* Abstract (n. 93) presented in the 40th Annual Meeting of the EASL, 2005 ;
published in J Hepatol Vol. 42, supplement 2.
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Table 4. HCV-Specific Drugs
Compound Target Mechanism Clinical trial phase Company
BILN 2061 (Ciluprevir) NS3-4A Serine protease inhibitor Phase 11 Boehringer-Ingelheim
VX-950 NS3-4A Serine protease covalent inhibitor Phase Ib Vertex/Mitsubishi
NM283 (Valopicitabine) NS5B Nucleoside analogue Phase 11 Idenix/Novartis
R803 Rigel
HCV-086 HCV-796 NS5B Non-nucleoside allosteric inhibitor Phase II ViroPharma/Wyeth
JTK-109, JTK-003 Japan Tobacco

Vaccines. The generation of an effective HCV
therapeutic vaccine is challenging, due to viral heterogeneity
and the absence of adequate animal models or reliable tissue-
culture systems for analysis and propagation of this
pathogen.

Therapeutic vaccination with envelope protein E1
(InnoVac-C; Innogenetics NV) is the most advanced strategy
and has reached phase Il clinical trials [198]. Immunization
with this vaccine candidate was well tolerated, elicited a
significant de novo E1-specific T-cell response and increased
the anti-E1 antibody levels in HCV chronically infected
individuals. Improvement in liver histology was also
detected in these individuals, although no significant
reduction in viral load was observed [198].

It is now well established that cellular immunity is
particularly relevant in the resolution of HCV infection
[199]. DNA immunization can induce both humoral and
cellular immune responses; therefore, it is an attractive
approach for the development of an effective vaccine against
HCV. DNA vaccines in the treatment of various diseases
have progressed over the last few years from discovery to
clinical trials [200-203]. Since the viral load is only partially
down-regulated, using this kind of vaccines, combined use of
accurate cytokines, chemokines or co-stimulatory molecules
may be important to achieve a protective immune response.

Finally, considering the limitations imposed by the
severity of the side effects associated with the anti-
proliferative agents currently used or under investigation, a
shift away from a single treatment to HCC to grant a
privilege to combination therapy to cure HCC patients will
be necessary to better therapeutically address liver cancer.
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