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ABSTRACT

In biomedical applications, optical communication links guarantee high data rates, low
power consumptions and high electromagnetic compatibility. From these considerations, in
this Thesis novel circuits and systems for optical data links in biotelemepticatpns

have been developed. More in detail, a complete biotelemetry system has been designed
and implemented, both with discrete components and asuslom integrated circuit. It
includes digital architectures for the data coding/decoding, emplasmd@JWB-based
modulation technique, and analogue circuits to drive lasers and for the signal conditioning
of photodiodes. The system has been firstly implemented and tested by using commercial
devices so achieving data rates up to 300 Mbps with an eniéiggrey of 37 pJ/bit and a
maximumBER of 10 1.°Subsequently, the developed solution has been suitably designed,
at transistor l evel, for I'ts microelectron
technology and, after its fabrication, has been fallgracterized with data rates up2f&0

Mbps so obtaining an energy efficiency D80 pJ/bit with amaximum BER of 10 1.°
Moreover, possible applications of the system are also reported, such as a neural recording
system (work in collaboration with the Qem for BioInspired Technology, Imperial
College London, UK), a tactile sensory feedback system (work in collaboration with the
COSMIC Lab, DITEN, University of Genova, lItaly) and an evenven serial
communication on optical fiber for robotic applicats (work in collaboration with iCub
Facility, Istituto Italiano di Tecnologia IIT, Genova, lItaly). Furthermore, the acquired
skills have been employed to design optoelectronic circuits and systems to be applied to
optical transcutaneous oxygen sensialyitsons that result to be particularly important for

the fight against the COVI29 pandemic. More in detail, different fidustom integrated
photodiodes and analogue freemid circuits for their interfacing, as well as an optical
wireless power transfesystem, have been also developed (work in collaboration with the
Worcester Polytechnic Institute, Worcester, USA). Finally, further related works, always

concerning biomedical applications, are reported as appendices.



INTRODUCTION

The future electronic andptoelectronics systenfer industrial, medical and life sciences
applications will employ an increasing number of sensors to measure different physical and
chemical parameters like pH values, humidity, temperatuegothermicandendothermic
chemical processespatial parameters, object shapes and surface roughness. The data
generated by the sensors must be acquired and elaborated to performing autonomous
operations b parametersmonitoring For example, the improvements in bioncadi
engineering allow to extract and process information carried out by neural and biological
signals and to control external electrics and electronicsaiifeapparatus, like body
machine and/or brainomputerinterfaces, with the aim to recover a sattsbry life

quality of patients with physical and/or neurological dised&¢g2]. In these regards,
prosthetic limb, for example, must be equipped with arrays of tactile sensory systems
interacting with the external environmeotrestore as much as possible the sense of touch

of a human limbMoreover, thestimulationof neuronalkelsis usefulagainst uncontrolled
epilepsy|[3]. Also, for the neuronal clinical applications a large number of sensors are
necessary to record these signals that can doome or geto the brain cortical area by
means of the degm and implementation of implantable bidirectional biotelemetry links
that connect specific internal parts of the patient body to be monitored or activated by
externalequipment

The previous two applications are examples, similar to many others, ghéight the aim

of the research in neuronal medical fields that, for many aspects, are not so dissimilar from
those ones related to the developments of humanoid robots. All these applications have in
common the acquisition of a largenountof data from different kinsl of sensors, the
elaboration of these data to permit autonomous deemimking activities with the
subsequent elaboration of procedures for the activation of devices and/or the generation of
stimuli. Typically, these analog gnals must be transmitted from the sensors to aoaad
circuitry that uses them as its input data.

The circuitry, in turn, provides the signal digital conversion by using an Areibigital
Converter (ADC) and then, passes the digitized data to @&$sing unit. In general, the
processing unit runs a statistical learning algorithm on the data to extract the meaningful
information about the physical variatigrisr exampldn life-aid apparatusyf the touched

object and, on this basis, drives a stiatal that provides to generate a series of electro
tactile stimuli understandable kijre patient[4]. In this case, darge number of tactile

sensors together with other types of senfepending on the specific applicatiardause



must be employed with fast response electronic circuitries for obtaining Hikeaouch
sensing capabilitiesSimilar considerations can be done for the transcutaneous implanted
systems that acquires neural signals and transfers them from fostlgside (and vice
versa) of the patient body suffering physical and/or neurological diseases. The neural
signals are analog electrical pulses detected by mamd nanesensor arrays directly
inserted into the patient brajB]. An implanted electronic circuitry is used to acquire the
signals from these sensors and to digitally decode them in a form to be transmitted to
external controlling and/or actuation devices. In this case, whatever be the transmission
methodology, themplemented transcutaneous telemetries must operate at high data rates
with exceptional energgfficiency in terms of very low overall power consumption. This

Is an important systemssuefor ensuring the health of the patient since the power spent to
aclvate the telemetry operations for the data acquisition and transmission is dissipated as
heat in the tissue and can cause severe damage if the dermal thermal limits are exceeded.
For this, the consequent specific requirement in transcutaneous implastethsys to
obtain their operation in the lewoltage and lowcurrent regimg6] [7].

From the above discussed applications, it would be clear that the type of sensors to be
employed is directly tated to the specific applications but the general requirements are
the design and fabrication of electronic analog/digital circuitries for the acquisition,
elaboration and transmission of a very large number of data with fast response times (i.e.,
very large frequency bandwidth) to compel the requirements of an immediate response to
stimuli and the activation of boedyachines, prosthetics devices and/or braimputer
interfaces.

In this Thesis are reporteid detail the implementation of optoelectronic systems together
with the electronic analogue and digital circuitries designed for the coding and decoding
processes of the sensgpenerated voltage signals for the applications above outlined:
activation, contrband transmission of stimuli for tactile sensory feedback in prosthetic
devices; implantable biotelemetry system for neural signal recordindpiatajical data
monitoring.For these applications the transmission of the coded data towards the decoding
circuitry is achieved by means of an optical link that is composed of a large bandwidth
semiconductor laser and Si Photodiode (P&¥).reported in the Literatureprf the coded

data transmission can be used different approaches(i)keimple wire connectius in
percutaneous systems that,dreweveruncomfortable and potentially cause of infections
and diseasée8] and (i), radiofrequency techniques employing antennas as the wide band
transmitters and receive[8]. The drawbacks of these approaches for the applications
which are interested in, are the resulting poor electromagnetic compatibility and signal
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integrity [10] and the increase of the electrical power as the operation frequency increases
that can generate dermal injuries. Moreover, these data transmission techniques cannot be
or are difficult to be integrated in small dimensions even if attempts have beeryrecent
reported in miniaturizing the radiofrequency deviel.

On the other hand, the optical data transmission links based on optoelectronic components
avoids all these drawbacks because they are ideally insensitive to rakghetic
disturbances (i.e., the optical carrier frequencies are many orders of magnitude higher than
those ones of the electromagnetic radiation achievable with electronic circuitries),
guarantee the best achievable signal integrity with minimum Bit Raéo (BER), can be
fabricated using the standard Si CMOS integrated technology in micrometer square
resulting area so allowing operations at very -Mmitage and lowpower. Moreover, as
happens in the optical long/medium/short haul telecommunication oretw the
achievable very large frequency bandwidth of the optoelectronic devices (i.e., laser and
PD) and of the optical fibsused for the optical links allows using the same transmission
channel to transmit the signals generated by different kindersos arrays. This is an
important advantage of the optical links respect to the other possible transmission
technologies and greatly simplify the hardware of the prosthetic and biomedical devices.
The latter is preferred to transmit data in prosthetidagsvand in robots while the free
space propagation is used in implantable system so avoiding the use of wired and
radiofrequencies techniqufi2].

The typical optical transmission link requires to accomplish the followingi@mentation

steps: (i) the ADC conversion of the sensor signals and the dapquessing; (i) the
coding process for the generation of a sequence of digital data by using a suitable coding
scheme for the transmission of also the Clock synchronizaigmal [13]; (i) the
generation of a sequence of current pulses replica of the digital ones; (iv) the generation of
a sequence of laser pulses replica of the current ones; (v) the conversion of the sequence of
laser pulses in a sequence voltage pulses generatéeé BD; (vi) the transmission Clock
recovery for the final decoding process and data-pastessing. In the following
paragraphs all these steps will be described in detail for tactile sensory feedback systems in
prosthetics devices and for implantabletblemetry system®ue to thepreseniCovid-19

global pandemic, rother importanapplicationof optoelectronicsystemsds the measuing

of respiration parameters suchths partial pressuref oxygen and carbon dioxide in the
blood, the respiration rag, and the peripheral blood oxygen saturatiom this sense,
several optoelectronic analog freemidbased on the fluorescent oxygeemsing technique

have been reportgd4]. Also in these cases, the systems reqailight source(typically

11



semiconductor laser®r Light Emitting Diode (LED)6 s emitting at
wavelength, PD and electronicsircuitriesnecessary for the signal conditioning, such as
transimpedance gpiifier, driver and digital elaboration unit.
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1. DATA LINK SYSTEMSTATE OF THE ART

In this chapter, a generic data lirdechitecture dér biomedical applications, such as
biotelemetry systes) is described.In particular, lotelemetry is aspecfic field of
telemetry that permits transmission of biological information frraubjectto a remote
monitoring siteas reported inFigure 1. The sensor signals are firgtonvertedto the
electrical signalsand afterarranged fortheir transmissionby employing Time Division
Multiplexing (TDM) or FrequencyDivision Multiplexing (FDM) techniques. Then, the
multiplexed signals are modulated according to the transmission line charast@mstic
transmitted tward thereceiversystem.Typically, the receiver is composed a suitable
detectors (e. for optical link a PD) and aimplifiers and filters able to regenerate the
current or voltagesignals coming from the detector. At this timlee tinformationcarried

out by thesignals arelecoded and usexsmonitoring ofbiological parameters or astive
feedbackio drive control equipment As shown inFigure 1, the biotelemetrgystens can
make use of Radio Frequency (RF}echniques olight free propagatiorior the wireless
applicatiors (e.g., for spacsatellite communication links) andoaxial cables or optical
fibersfor all those applications for which wirelesansmissions not possibl¢l15].

For example, if light is used to transmit information inside the body of a robot, in general,
straight propagation is natvailable and the transmission can be easily obtained by
employing an optical fiberlf now we restrict our attention on thenplantible medical
devices they are electronic devicesable to perform Ectromyography (EMG),

Electrocardiogram (ECGElectroretinogram (ERG) anBlectrooculography (EO&)f

BIOTELEMETRY SYSTEM

_TEMPERATURE, RADIOWAVE
MAGNETIC COUPLING
PRESSURE TIME OR LIGHT
| SIGNAL FREQUENCY SOUND WAVE
; CONDITIONING > MULTIPLEXER »| TRANSMITTER
ELECTROCHEMICAL AND ENCODER
SIGNALS >

TRANSMISSION MEDIUM (AIR, WATER, WIRE, OPTICAL FIBER, SKIN...)

TIME OR

NOISE _| . |DETECTOR AND 5| FREQUENCY > coN%ﬁ—Té\#me
RECEIVER DEMULTIPLEXER MONITORING

AND DECODER

Figure 1 - The block dagram of a generic biotelemetsystem
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the patientby sendng currentsignal probeso various parts athe patientbody. In general,

an implan@able device consists oftwo subsystems an internal subsystemlocated
underneath theatientbody skin and an externahe acting as theontrollerof the all the
operations to be performedhe externalsubsystemis also used for powering the
implantable devie andfor sendingthe achievediata toexternalequipment for example,

for the physician monitoring

Especially for implanted biotelemetry systems, several characteristics must be considered
[16]:

- Low PowerConsumptionLow power consumption is the main requirement for
medical implardble devices where the large dissipation in power increases the
possibility to damage the soft tissug#she human bodyThe dangingof batteries
or their rechargingis, generlly, inconvenient, difficult, costly and even risky for
the patient; all implantable medical devices needstasless as possible electrical
power.

- High Reliability: A failure of the implantable medical device cgroducepain,
damage or evethe deathof the patientSince device maintenandg also costly
and risky for the patient, any effort must be done to guarantee the maximum
possiblereliability of the implanted devices

- Low Voltage SignalsVost of the natural signatgereratednside the human bodies
(e.g., the neural signalsggs well as thecorrespondingoutput signals of the
electronictransducers are in thlange from few tens qfV to 1V. This means that
special care must be dome sensing andmplifying the signals assuring, at the
same time, to design and implement very low noise electronic conditioning
circuitries

- Low FrequenciesThe frequencyf biological signalssaries from dractionof Hz
to severalkHz, Moreover most of the implantable devices are poweredoly
frequency (<1 MHz) magnetically coupled cdiimt areoftenfrequencymodulated
to include thedata telemetry. Nowadays, the desiginthe implanable devices
mustcomplythe standardf the MedicallmplantCommunicationsService (MICS)
with a frequencyandranging from401 MHzto 406 MHz[17].

- Small Sizeimplantable devices need to be as small as possildze in order to
be as small as possiblavasivefor the patientbody. Taking into consideration the
CMOS technology, His does not alwaymeanthat the silicon area should be as
small as possibldecausanincrea® the silicon area@an be fruitful forincluding
also external componentand this carreducethe overall device complexity In
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addition,the use of some methods suchttasautozeroing techniqueshe FPGA
paradigmand the artificial intelligence methodolgy can helpto minimize the
overalldevicesize.
In recent years, numerous methods for the realization of low power and high data rate
implantble RF biotelemetry transmitters have been presented i iteeatureto perform
wireless communications’he common implementation ftihesewireless transmitters
the useof the 433MHz Wireless Medical Telemetry Service (WMTS) frequency band. A
transmitterwith the 433MHz WMTS bandpresentsaadvantages ithe transmitter power
consumptionin minimizing the free-space path lossand operation frequencylowever,
poor antenna efficiency due teduced size of the implantable devisean unavoidable
drawbadk. In order to reduce the size of the antenna in the transnitiieuse of the 2.4
GHz Industrial, Scientific and MedicdlSM) frequency bandhas been proposed bufor
this frequency banahe power level othe transmitted signal is more attenuated by the
human The skin penetration depthi of an electromagnetic fields estimated by the

following relation

1 - — P — (1)

wherex i s t he f r ealuathereayparodfthettissee parmitgvig/the tissue
permeability andl the tissue conductivitylt is worth noting that, assuming for simplicity
constant the material parameters, the skin penetration depth is inversely proportional to the
frequency. Thus, RF devices usintpet 2.4 GHz ISM frequency bandand those ones
operating atigherfrequenciesare attenuated more thame device working inthe 433

MHz WMTS frequency bandhis stronglylimits the available penetration depth for the
transmitterd18]. Another limit for aFR-basedcommunication is th&pecific Absorption

Rate GAR), defined as:

Yo 'Y - ——20i ?)

wherel is the sample €&Itdet rRIMSalelceccntducct ifviiely
density anaV the volume of the sample. The SAR is a measure of the rate at thieich
electromagnetienergy is absorbed per unit mass by a human body when exposed to
electricfields with a frequency rangingetween 10&Hz and 10GHz For example,n the
Europearinion, for mobile phones and otheimilar handheld devices, the SAR limit is 2

W/kg averaged over the 10 g of tissue absorbing ofdsie electromagnetsignal
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On theother handusinglight for the data transmissiothe following advantages over the
conventionaRF telemetryare expectefll9]:

- It is possible toachieve wideband signal transmission relatively easily. This
corresponds to the possibility of information transmission with a good frequency
characteristic or a highpeed temporal response. In another view, it indicates the
possibility of highspeed lege-capacity transmission of information.

- It is possible tacontrolmuch easiethe electromagnetic interferencespect to the
RF telemetry. The lighsignalin optical telemetry does ngiroduceinterference
effects with electromagnetic signals dafther instruments.Moreover, also he
shieldingand securing safety can be domarelativelyeay way.

- The legal restrictiosiin udng light for datacommunicatiorare not as strict asor
the RFbased systems

To design an optical biotelemetry systdtris necessaryo choosehe wavelength othe

optical source featuring as the transmitter (i.e., the laser wavelength) on the btwas of
absorption spectra of the major constituents of a huskam shown inFigure 2. Any
wavelength of light, or ultravioletisible-infrared range, can be used for optical telemetry

in principle. However, with ultraviolet lighthe adverse effect on our health becomes a
problem in a prolonged use. As for visible light, there may be a psychological effect on the
subject. Further, in this wavelength, there are many sources of optical noise such as indoor
lighting. With infrared ight particularly of 7001200 nm wavelength, such problems are
few. Moreover, in this wavelength, the optical absorption of body tissue is relatively low,
and we can expect high optical transmission through our Bamtywavelengthsess than

700 nm andgreaterthan 1200 nm the absorption tie haemoglobinand waterare
predominant, respectively. Furthermofar, thesewavelengthvaluesused in opticafiber
communicationthere area large availabilityof semiconductor laseend detectors.

On the other hand, possible spatial misalignments between the optical source and the
sensitive area of the photodetector representsméi@ disadvantage in optical wireless
biotelemetry. Finally, for what concerns biotelemetry based on ultrasonic sources, these
kinds of device can accomplish a good level iocbmpatibility at the expenses of a low
data rate and largeansducersize. For these reasons, they are not suitable for implanted
biotelemetry Another important aspeat implanted biotelemetry systenssthe choice of

the nodulationtechniquethat impacts orthe overallpowerconsumption bandwidth and
system efficieng. Figure 3 showsthe most common modulatidechniques employeith

biomedical deviceElL6].
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Figure 31 Modulation techniquesommonlyused in biomedical devices.

Where Amplitude Shift Keying (ASK) Phase Shift Keying (PSKand Frequency Shift
Keying (FSK)are classic Amplitude, Phase and Frequency modulations, respeclively.
transmission of multiple bit for each Symbol can be easily implemented in PSK
modulations (i.e Biphase Phase Shift Keying (BPSKQuadrature Phase Shift Keying
(QPSK)or 8PSK).

The ASK or On/Off Keying (OOK) is the simplest digital modulation usedimplement
wireless telemetryin bio-devices and biomedical implanted devices. In these types of
modulation no carrier is used during the transmisaioeh this help taninimize the powe
consumption of the modulatorhe principle of ASK transmission is explained as shown in

Figure4 and Equation 3:
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where ASK is the modulated signal defined as the produdb(®f(the binary [xta

message) and(t) (the carrier signal)TheEy is the bit energy andy the bit durationTwo

are themethodsused tooperatethe ASK demodulationthe coherent and nenoherent

detection
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The coherent methaemploysthecarrier phase information fohe detectionby means o&
product detector and a phdseked beat frequency oscillator. lthe noncoherent
methods no carrer phase is used fdhe detectionthat is based on filteringhe signal
energywithin allocated spectra and envelope detectemsm the characteristics of the two
types of detection, the naioherent method is that one more widely choose for its
simplicity and low power consumptioin particular, he performance degradation of the
noncoherent method isqual toabout 13 dB if compared tahat one of thecoherent
detectionsince itdepend ontheenergy per bit to noise power spectral densitip i&,/No.
On the other hanadhe operationprinciple of the FSK modulationtechniqueis to sendhe
binary dataat two different frequenciesIn the noncoherent FSK modulatigrthe two
frequenciesre associated to the transmission of thegdnd{ 0} asit is shownin Figure5.
The bit association can be simply represented by the followingelations

YO OQEECQ % h QYO 0 pTY ©QOp

(@)

YO OQECQ % h QYO Q pTY WO'QOT
wheret 1 andt ;> aretheinitial phases at=0 of the two sinusoidal waves that, in genedal,
not havethe samevalue T is the bit period othe binary data. This typ&f modulationcan
be generated byuitablyswitching the modulator output lineetweertwo oscillators.
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Figure 5 - Principle of FSK modulation

In the coherent type of FSK modulation, the two sigiédl® and™Y 0 musthavethe
same initial phase att=0.

In the end, the simplest versiontbke PSK can be considereanh ASK modulationwhere
eachNonReturntoZero( NRZ) data bit of wvalwue 0 1is
mapped into a + 1As shown n Figure 6, the resultingmodulatedsignal can assume a
value equal to the signaf(t) or S(t) with a phase variation of 180coherent with the

data that must be transmitted.

YO O0wéEECQh QYO Q prY 0 QO p
®)
Y 6 OWECQh QYO Q prY W'QO T

The data dmodulationprocedure for thé>SK techniqueis more complicated thatmose

ones for theASK and FSKtechniquespecauset requires a carrier recovery system that
must guarantee the best S/Brsus BER valueSome examples of a complete data link

system, representing the statiethe-art for biotelemetry applications, are described in the

following. In Ref.[20] it is proposedan implantable 64hannel closedbop NearField
Communication (NFCpystem for reatime monitoring of gastric electrical activityAs

shown inFigure 7, the system is composed by an implantable unit and an external unit.

Polar NRZ source a(t) Aa(t)cos2nft Data: 1 g 1 1 0

(-1,+1)
Acos2naft

Osc.

(a)fo=2/T

Figure 6 - Principle of PSK modulation.
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The internal unit is able to acquire, encode and tranarbitstreanthrough two coupled

coils. The same coils are used atsoprovidepowerto the implantable unitThe external

unit demodulateghe incoming data usingn envelope detector embedded in Realio
Frequency Identificatio(RFID) reader (TRF7970Texas Instrments-Tl-), decodes them

by the microcontrollerand perform a redlme monitoring through an ISNMand RF
transceiver or stores the data locally on a microSD memory card. Moreover, the external
unit manages the wireless power transfer towards the implantableStarting from the
bitstream to be tramitted, panel (a) ifrigure 8, a Manchester encodinglustrated in
panel (b) gener@ltéesi fa a rlamgiid i ® ha &dbvae qu a l
t ransia0o6onf odrl 6t h eThé digdal sequentesd dé andildsare encoded

by differential pulseposition algorithm(seepanel (c) ofFigure 8) atthe implantable unit,

and the encoded data modulateeer a 13.56 MHz carrier signal, can be seen by the
envelope detector at the external unit (see panel (dfigdre 8). In vitro studies
demonstrated that the system can successfully recthrel signals akin togastric
bioelectrical activity from 64 independent channels with a sampling rate of 16 samples per
second perchannel through the inductive NFCat a data rate of 125 kb/ghat
simultaneously rechargehe implantable unitlocal battery.In Ref. [21] is repored an

optical telemetric link capable gfroviding a high data rate at a lowwer consumption

for the transcutaneous transmission of neural signats well asthe previous casehé
telemetriclink is designed for operation as the interface betweemmgtanted cortical

array and an external receiyas reported ifrigure9.

USB to UART
Interface
2.4 GHz RF .
I_ Transceiver :> Micioca DY Recording
(((.’)) Electrodes
A :
o
’)f ------------------------------------------------ _E :" s ‘: ¥
s ] il L
! 3.3V voltage [ 7] D|g_|tal DC-DC i g é <‘,:| o I‘
| Regulator .| Potentiometer Converter 2 ; =
o— A== Sh T '
) - 1 38
| he— & 8
|l (::I Microcontroller <:| - _“E“ 3
2.4 GHz RF 13.56 MHz 2 ws =
Transceiver | : » RFID Reader voltage 235735
i Regulator E é E
> usD Card
H‘\“‘--.
4-——----------—--- Wearable Unit > 4 Implantable Unit -—-----=----=---—-

Figure 71 The detailed block diagram afNFC communicationystem
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Figure 81 Data coding algorithnof a pulsedvianchester encoding

The basic principle of theeommunicationsystem is verysimilar to a fiber optics
communicationink, but the transmission medium is fundamentally different. Human skin
Is a multilayered materiatomposed of epidermis, dermis asdldermisand, wena
light beampasgsthrough this layer stack, photons experienefection, absorption and
scattering Thus,in order to collect the largest numbers of photons, the authors hava used
Si photodiode witha large sizeof the sensitive arealThe major drawback of this
architecture is the reduced response time of the sy&terauselarge sensitive area
photodiods have great junction capacitandesiting their operation bandwidth

In Figure 10, the authors of Ref. 10 have realizedintegratedow powercurrent mirror
circuitry for driving a Vertical Cavity Surface Emitting Las€WCSEL) emitting at the
wavelengthof 850 nm (see peel A) and (see panel B) a transimpedance amplifier for the

conditioning of sSi p-i-n photodiode

Implantable infrared
transmitter

VCSEL
By Driver
( Skin )

TIA

£y

. External CDR
External DSP Receiver

Figure 9 - Block diagram ofan optical transcutaneous link
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Voltage
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Figure 10 - Electronic interfaces of (A) the internal device and (B) the external defiéseoptical transcutaneous link

The overall system is able tmansmi data using a simplenonreturnto-zero (NRZ)
modulationthough a 2.5 mm thick perfused tissueaatata rate of 100 Mbpsith a BER
<2x10 ‘(evaluatedby using an FPG/Aoard and an overall electrical power consumption
of 2.1 mW.

The same authors present[22] a ldirectional optical transcutaneotedemetric link for
brain machine interfacdJsingthe bidirectional linkreportedin Figure 11, it is possible to
obsenre neural activity and applyeural stimuli accordinglyHowever,it is important to
avoid any form ofoptical crosdalk between the two communication channels thatreh
the sametransmission mediumasillustrated in Figure 12. The authors use ¥CSEL
emitting at680 nmfor the downlink transmit data from the external base unit to the
implantable one A secondVCSEL emitting at850 nm is utilised in the uplink for data
transmission from the implaable unit to the external deviceln order to avoid
unintentionaldetectionof the 680 nm downlink signal, an optical bandpass filter with a
transmissiorefficiency of 95% isusedto block this unwanted signahd allow most of the
850 nm signal to pass thrglu the skin. In this waynithe optical downlinkthe data are
transmittedat the data rateof 1 Mbps througha 2 mm of porcine skin #h a power
consunptionof2 90 & W i n ablefreeeivar.mp | an't

| downlink laser | photodiode | |
: - ol receiver
L > P circuit
. signal neural stimulation
. conditionin w +neural recording
5 T~ g =, circuits
& ry 3

| uplink receiver U i_ |
| - —H— -|D|_ driver
I circuit :
| photodiode I laser Il |
- _— .

Figure 11 - Block diagram of bidirectional optical transcutaneous link
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Figure 12 - Scattering, absorption and reflectionanfi optical signal in human skin

This corresponds to a transmission efficiency of 290 pJ/bitiplimk, the datarateis of

100 Mbpswith an electrical poweconsunption of 3.2 mW inthe implanted transmitter.
This corresponds to a transmission efficiency of 32 pJ/bit.

In Ref. [23] the authors propose law-power, high datarate impulseUltra-WideBand
(UWB) RF transmitter Thesystemis shown inFigure 13. Startingfrom a clock signal and

the datastream tdoe transmitted, the system generates a train of voltage pulses where the
position of the pulsegleterminesthe transmitted bit implementing a Pulse Position
Modulation (PPM). The generated pulses controLaw-Dropout Regulator [DO) that
supplies the odtator. The transmitteoccupies).055 mm? in 0.13um CMOS technology

and is capable of transmitting pulses a frequency ofl35MHz The electrical power
consumption is equal tbOpJbit. In Tabe 1, the comparison ofichieved performances of
the stateof-the-art of wireless biotelemetrngolutionsthat can be foundn Literatureis
presented The results show that the optical data link is a good choice in biotelemetry

applications, even ibthersolutions are commonly used.

Figure 131 Block diagram ofan IR-UWB transmitter architecturéon the leftiand somerelated experimental resultéon
the right)
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