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Abstract: Nonlinear fractional differential equations are widely used to model real-life phenomena.
For this reason, there is a need for efficient numerical methods to solve such problems. In this
respect, collocation methods are particularly attractive for their ability to deal with the nonlocal
behavior of the fractional derivative. Among the variety of collocation methods, methods based on
spline approximations are preferable since the approximations can be represented by local bases,
thereby reducing the computational load. In this paper, we use a collocation method based on spline
quasi-interpolant operators to solve nonlinear time-fractional initial value problems. The numerical
tests we performed show that the method has good approximation properties.

Keywords: fractional differential equation; quasi-interpolant operator; collocation method; optimal spline

1. Introduction

Fractional differential equations are a well-established tool to model the nonlocal
behavior of real systems. In the last few decades, fractional differential models have been
widely used in many fields, such as continuum mechanics, biology, control theory [1–4].
At the same time, the quest for efficient numerical methods to solve fractional differential
equations has become more and more intriguing (see [4,5] and references therein). Whereas
in the beginning, the main effort was usually in adapting numerical methods used to solve
ordinary differential equations to the fractional case, the challenge now is to construct
numerical methods tailored for dealing with fractional derivatives. In this respect, col-
location methods have received considerable attention for their ability to deal with the
nonlocal behavior of the fractional derivative and are used to solve a variety of problems.
For instance, a spectral collocation method based on a new family of fractional bases called
Jacobi polyfractomials was used in [6] to solve steady-state and time-dependent fractional
differential problems. The method was extended in [7] where initial value problems were
considered. A collocation method based on Chebyshev polynomials was introduced in [8]
and used to solve nonlinear multiterm initial value problems. These latter equations were
also addressed in [9] in the context of collocation methods based on Laguerre polynomials.
All these methods use polynomial bases, that is, bases having support in all the discretiza-
tion interval. In order to maintain a low computational load, we look for an approximating
solution that can be represented by a local basis. This goal can be achieved by collocation
methods based on spline functions. These methods have a long history dating back to
the 1970s (see [10–12]). In [13], spline collocation methods were used to solve fractional
differential equations for the first time. Since then, they have been successfully used to
solve a variety of problems (see, for instance, [14–20] and references therein). In these
papers, the solution of the differential problem was approximated by an interpolating
spline function, which requires us to impose restrictive conditions both on the spline space
and on the interpolation points in order to guarantee convergence. These drawbacks can
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be overcome using quasi-interpolating splines since quasi-interpolation only requires us
to interpolate polynomials up to a given degree, leaving more freedom in the choice of
the spline space and of the collocation nodes [21,22]. In the literature, collocation methods
based on spline quasi-interpolant operators were used to solve both integral and differ-
ential equations (see, for instance, [23–25]). More recently, a collocation method based
on spline quasi-interpolant operators was proposed in [26] and then used to solve linear
fractional differential equations in [27]. The method was proved to be accurate and efficient.
Our aim is to generalize this method to the solution of nonlinear initial value problems
having fractional derivative in time. In [26,27], we used truncated spline bases to represent
the spline approximation. It is well known that truncated bases suffer from numerical
instability at the initial point, which could produce instability in the approximate solution.
To overcome this problem, in this paper we use optimal spline bases, i.e., bases that are
sufficiently smooth and satisfy the interpolation condition at the initial point. We show that
the proposed method has good approximation properties when used to solve nonlinear
differential problems.

The paper is organized as follows. In Section 2, we describe the differential problem
we are interested in and recall some basic results on spline functions and spline quasi-
interpolant operators. The numerical method is described in Section 3, while in Section 4
we show some numerical results. A discussion on the performance of the method is offered
in Section 5.

2. Materials and Methods

We list here some symbols that will be used in the following sections. N denotes the
set of natural numbers, Z denotes the set of integers and R denotes the set of real numbers
while R+ denotes the set of positive reals. The nonnegative real line will be denoted by
I+ = [0, ∞).

2.1. Initial Value Fractional Differential Problems

We are interested in solving the nonlinear initial value problem
Dγ

t y(t) = f (t, y(t)), t > 0, γ ∈ R+,

y(ρ)(0) = y0,ρ, 0 ≤ ρ ≤ bγc,
(1)

where Dγ
t y denotes the fractional derivative operator of order γ and y0,ρ ∈ R, ρ ∈ N, are

the initial conditions. Here, we consider the Caputo fractional derivative:

Dγ
t y(t) :=

1
Γ(m− γ)

∫ t

0

y(m)(τ)

(t− τ)γ−m+1 dτ, m− 1 < γ < m, t > 0, (2)

where m = dγe and Γ(t) is the Euler gamma function.
The Caputo derivative is more suitable to model real-world phenomena because it

retains many properties of the ordinary derivative. In particular, the Caputo derivative of a
constant function is zero, which is not true for other types of fractional derivatives. More-
over, the initial conditions of differential problem (1) involve only ordinary derivatives.

Wellposedness of the solution to the fractional differential problem (1) was analyzed
in [28] §6. In particular, if f (t, y) : I+ → R is continuous and fulfills a Lipschitz condition
with respect to y, then there exists a unique solution y ∈ C(I+) that depends in a continuous
way from the given data.

2.2. Optimal Spline Bases

We approximate the solution to Equation (1) by a spline linear operator, i.e., by a
spline function constructed in order to satisfy special properties. We recall that a spline is a
piecewise polynomial with prescribed smoothness. Spline functions can be represented as
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a linear combination of suitable spline bases. Here, we will use the optimal B-spline basis
for its good approximation properties.

Let Sn be the space of splines of degree n. The starting point to construct an optimal
basis for Sn is the cardinal B-spline Bn(t), which is a piecewise polynomial of degree n
having knots on the integers. For our purposes, it is convenient to express Bn by the
truncated power function tn

+ := max(0, t)n:

Bn(t) = (n + 1)[0, 1, . . . , n + 1](· − t)n
+,

where [0, 1, . . . , n + 1] f denotes the divided difference operator on the integers. Bn is
compactly supported on In := [0, n + 1], positive in (0, n + 1) and belongs to Cn−1(R). For
further details on spline functions and cardinal B-splines see [29,30].

The integer translates {Bn(t − k), k ∈ Z} form a basis for Sn on the real line. In
the semi-infinite interval I+ the optimal spline basis is formed by the integer translates
{Bn(t− k), k ∈ N}, i.e., the cardinal B-splines having support all contained in I+, plus n
left edge functions {Bnk(t), 0 ≤ k ≤ n− 1}, which are cardinal B-splines with a knot of
multiplicity n + 1 at the initial point:

Bn = {Bnk(t), 0 ≤ k ≤ n− 1} ∪ {Bn(t− k), k ∈ N}, t ∈ I+.

For details on the construction of optimal spline bases see [30,31].
The function system Bn can be adapted to any sequence of equidistant knots by

dilation. Let h denote the distance between the knots. The optimal basis on the knots
{hi, i ∈ N} is:

Bnh = {Bnk
( t

h
)
, 0 ≤ k ≤ n− 1} ∪ {Bn

( t
h
− k
)
, k ∈ N}, t ∈ I+. (3)

For easy reading, in the following we will use the notation

Bnhk(t) = Bnk
( t

h
)
, 0 ≤ k ≤ n− 1, Bnhk(t) = Bn

( t
h
− k + n

)
, k ≥ n,

so that Bnh = {Bnhk(t), k ∈ N}.
We recall that optimality refers to the shape preserving properties of the basis Bnh [32].

In particular, the basis Bnh enjoys the variation diminishing property [33], i.e., for any
sequence of data c = {ck, k ∈ N} with ‖c‖∞ = maxk∈N |ck| < ∞ it holds

S−
(

∑
k∈N

ck Bnhk(·)
)
≤ S−(c) , (4)

where S−(·) denotes the number of sign changes of its argument. Moreover, the functions
Bnhk, k ∈ N, satisfy the initial conditions Bnhk(0+) = δk0, k ∈ N. As a consequence, spline
approximations preserve the shape of the data, as sign, monotonicity and convexity, and
satisfy the left-edge interpolation condition, i.e., ∑k∈N ck Bnhk(0+) = c0.

Moreover, we recall that optimal spline bases are numerically stable, i.e.,

1
κ
‖c‖∞ ≤

∥∥∥∥∥∑
k∈N

ck Bnhk

∥∥∥∥∥
L∞ [0,L]

≤ ‖c‖∞ , (5)

where

κ :=

 min
‖c‖∞=1

∥∥∥∥∥∑
k∈N

ck Bnhk

∥∥∥∥∥
L∞ [0,L]

−1

(6)

is the condition number of the basis Bnh. This means that numerical errors are not amplified
when evaluating spline approximations.
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Finally, the optimal basis Bnh reproduces polynomials up to degree n:

tr−1 = ∑
k∈N

ξ
(r)
hk Bnhk(t), t ∈ I+, 1 ≤ r ≤ n + 1, (7)

where ξ
(r)
hk are real numbers that can be evaluated explicitly (see [30,34]). In particular, for

r = 1, ξ
(1)
hk = 1 for all k ∈ N, so that the function system Bnh forms a partition of unity:

1 = ∑
k∈N

Bnhk(t), t ∈ I+, n ∈ N. (8)

For r = 2, we obtain

t = ∑
k∈N

ξ
(2)
hk Bnhk(t), t ∈ I+, n ∈ N\{0},

where {ξ(2)hk , k ∈ N} are the Greville points defined as

ξ
(2)
h0 = 0, ξ

(2)
hk =

h
n

k

∑
i=1

i, 1 ≤ k ≤ n− 1, ξ
(2)
hk =

h
n

k

∑
i=k−n+1

i, k ≥ n.

2.3. Discrete Spline Quasi-Interpolant Operators

To approximate the solution to the differential Problem (1) we need a suitable ap-
proximating operator. To this end, we choose quasi-interpolant operators that are more
flexible than interpolating operators and can be designed to satisfy special properties of
the function to be approximated. In particular, in this paper we consider the discrete
spline quasi-interpolant operator introduced in [34] (see also [30,35]). Using the optimal
basis Bnh we can construct a sequence of refinable quasi-interpolant operators with good
approximation properties.

Let [τhk1, . . . , τhki] f be the divided difference operator of order k− 1 on k distinct points
{τhk1, . . . , τhki} ∈ I+ ∩ supp(Bnhk). The discrete quasi-interpolant operator is:

dQnh f (t) = ∑
k∈N

r

∑
i=1

αhki
(
[τhk1, . . . , τhki] f

)
Bnhk(t), 1 ≤ r ≤ n + 1, (9)

where the coefficients {αhki} are the solution to the linear system

r

∑
i=1

αhki
(
[τhk1, . . . , τhki]t`−1) = ξ

(`)
hk , 1 ≤ ` ≤ r. (10)

In particular, αhk1 = 1 and αhk2 = ξ
(2)
hk − τhk1 so that for r = 1 we obtain

dQnh f (t) = ∑
k∈N

f (τhk1) Bnhk(t), (11)

which is the quasi-interpolant operator reproducing constant functions, while for r = 2
we obtain

dQnh f (t) = ∑
k∈N

f (τhk2)(ξ
(2)
hk − τhk1)− f (τhk1)(ξ

(2)
hk − τhk2)

τhk2 − τhk1
Bnhk(t), (12)

which reproduces linear functions. We notice that if we choose τhk1 = ξ
(`)
hk , the quasi-

interpolant operator (12) reduces to the Schoenberg operator [34]

dQnh f (t) = ∑
k∈N

f (ξ(2)hk ) Bnhk(t). (13)
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3. The Numerical Method

We approximate the solution to the fractional differential Problem (1) by the discrete
quasi-interpolant operator (9):

ynh(t) = dQnhy(t) = ∑
k∈N

r

∑
i=1

αhki yhki Bnhk(t), (14)

where
yhki = [τhk1 . . . τhki]y, 1 ≤ i ≤ r,

are the unknown coefficients whose expression depends on r (see (11) and (12)). We notice
that, since Bnhk(t) has compact support, for any value t ∈ I+ the sum on k has a finite
number of terms. Thus, considering a finite discretization interval I = [0, T], there is a
finite number of unknown coefficients that can be evaluated by collocation as described
below.

Let {tp, 0 ≤ p ≤ M} be a set of collocation points belonging to I. We require the ap-
proximating function ynh, n ≥ dγe, to solve the differential problem on the collocation points:

Dγ
t ynh(tp) = f (tp, ynh(tp)) , 1 ≤ p ≤ M ,

y(ρ)nh (0) = y0,ρ, 0 ≤ ρ ≤ bγc.
(15)

Substituting (14) in the previous equations, we obtain the nonlinear system:

Nh

∑
k=0

Dγ
t Bnhk(tp)

r

∑
i=1

αhkiyhki − f
(

tp,
Nh

∑
k=0

Bnhk(tp)
r

∑
i=1

αhkiyhki

)
= 0 , 1 ≤ p ≤ M ,

Nh

∑
k=0

B(ρ)
nhk(0)

r

∑
i=1

αhkiyhki − y0,ρ = 0, 0 ≤ ρ ≤ bγc,

(16)

where Nh + 1 is the number of functions belonging to Bnh such that supp(Bnhk) ∩ I 6= {0}.
The nonlinear system (16) has M + bγc+ 1 equations and (Nh + 1)r unknowns with

M + bγc + 1 ≥ (Nh + 1)r. The existence of a unique solution to (16) depends on the
existence of a unique solution to (1). In particular, if f is sufficiently smooth in some neigh-
borhood I of the exact solution to (1), the approximate solution ynh exists and is unique in
I for sufficiently small h (see [12,15,36]). When M + bγc+ 1 > (Nh + 1)r, Equations (16)
form an overdetermined nonlinear system that can be solved by the nonlinear least squares
method.

We recall that from (7), it follows that the approximation ynh is exact on polynomials
up to degree n.

4. Numerical Results

In this section, we show the results we obtained when solving some fractional nonlin-
ear differential equations by the collocation method (16). In the numerical tests we used
cubic and quartic optimal bases. The explicit expression of the basis functions and of their
fractional derivative can be found in [31]. In Figure 1, we show the cubic optimal basis
B3h and the quartic optimal basis B4h in the interval [0, 1] when h = 1

8 . Their fractional
derivative for different values of γ is shown in Figures 2 and 3.
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Figure 1. Panel (a): The cubic optimal basis B3h for h = 1
8 . Panel (b): The quartic optimal basis B4h

for h = 1
8 . The left edge functions are plotted as dashed lines.
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Figure 2. The fractional derivative of the cubic optimal basis. The left edge functions are plotted as
dashed lines. Panel (a): γ = 0.25. Panel (b): γ = 0.5. Panel (c): γ = 0.75. Panel (d): γ = 0.9.
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Figure 3. The fractional derivative of the quartic optimal basis. The left edge functions are plotted as
dashed lines. Panel (a): γ = 0.25. Panel (b): γ = 0.5. Panel (c): γ = 0.75. Panel (d): γ = 0.9.

For the sake of simplicity, in the tests, we set h = 1
2j and choose equidistant nodes

as collocation nodes, {tp = 2hp, 0 ≤ p ≤ M} with M = 2j+1T − 1. We obtain an
overdetermined nonlinear system that we solved with the nonlinear least squares method.
The accuracy of the numerical solution is evaluated by computing the infinity norm of the
error evaluated on a refined grid:

enh = ‖y− ynh‖∞ = max
tp∈Th

|y(tp)− ynh(tp)|, Th = {tp =
h
8

p, 0 ≤ p ≤ 2j+3T − 1}.

4.1. Example 1

The aim of this example is to check the accuracy of the proposed method. To this end,
we solve the nonlinear differential problem

Dγ
t y(t)− y(t)2

2
=

Γ(µ + 1)
Γ(µ + 1− γ)

tµ−γ − 1
2
(tµ − 1)2, t ∈ [0, 1], 0 < γ < 1,

y(0) = −1,
(17)

whose exact solution is y(t) = tµ − 1.
In the first test, we set µ = 2 so that the exact solution is a polynomial of degree 2.

Due to the polynomial reproduction property (7), the approximation error y− ynh vanishes
when n ≥ 2. In this test, we choose h = 1

8 , 1
16 , 1

32 so that the final overdetermined nonlinear
system has Nh = 1

h + n unknowns and M = 2
h + 1 equations. In Tables 1 and 2, we list

the infinity norm of the error for decreasing values of h when using the quasi-interpolant
operator (13) with n = 3 and n = 4. Since both approximations y3h e y4h reproduce
quadratic polynomials, the error is very small; in particular, when h = 1

8 , the error is in the
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order of the machine precision. We notice that the error increases slightly when h increases.
This is due to the numerical instabilities arising when the dimensions of the nonlinear
system increase. To give an idea of the stability of the nonlinear system, in Tables 1 and 2,
we also list the condition number of the Jacobian matrix.

Table 1. The infinity norm of the error enh and the condition number κnh of the Jacobian of the nonlinear system for n = 3.

h γ = 0.25 γ = 0.5 γ = 0.75 γ = 0.9

enh κnh enh κnh enh κnh enh κnh

1
8

1.67× 10−14 28.05 1.36× 10−14 14.04 1.01× 10−14 16.76 1.92× 10−14 21.97

1
16

2.57× 10−13 32.93 1.60× 10−13 24.01 9.88× 10−14 35.13 1.46× 10−13 52.18

1
32

2.68× 10−12 40.31 1.22× 10−12 45.87 1.37× 10−12 77.78 1.43× 10−12 129.49

Table 2. The infinity norm of the error enh and the condition number κnh of the Jacobian of the nonlinear system for n = 4.

h γ = 0.25 γ = 0.5 γ = 0.75 γ = 0.9

enh κnh enh κnh enh κnh enh κnh

1
8

1.84× 10−13 230.54 4.06× 10−14 86.61 3.79× 10−14 35.31 1.07× 10−13 26.18

1
16

2.72× 10−12 273.82 1.60× 10−12 89.58 9.38× 10−13 37.48 1.11× 10−12 52.56

1
32

5.95× 10−11 324.17 2.64× 10−11 93.06 1.12× 10−11 75.67 2.26× 10−11 125.60

In the second test, we check the theoretical convergence order. To this end, we solve
the differential problem (17) when µ = 1.9.

Since ynh is an approximating operator in the spline space, the convergence of the
collocation method applied to the differential problem (17) is guarantee with convergence
order at least µ if y is sufficiently smooth [29]. As a consequence,

lim
h→0
‖y(·)− ynh(·)‖∞ = O(h−µ).

In Figure 4, we show the semi-log plot of the infinity norm of the error for decreasing
values of h = 2−j when using as approximating function the quasi-interpolant operator (13)
with n = 3 (red line) and n = 4 (blue line). The plots show that, as expected, the error
decreases when h decreases. Moreover, the slope of the red and blue lines in the semi-
log plots are the same as the theoretical slope −µ. We observe that the accuracy of the
approximation obtained with the optimal basis of degree n = 4 is higher than the accuracy
obtained for n = 3. This is due to the higher smoothness of the approximating function.
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Figure 4. The semi-log plots of the infinity norm of the error enh for n = 3 (red line) and n = 4 (blue
line) when µ = 1.9, h = 2−j and M = 2

h + 1. The black dashed line is an arbitrary line with slope −µ.
Panel (a): γ = 0.25. Panel (b): γ = 0.5. Panel (c): γ = 0.75. Panel (d): γ = 0.9.

4.2. Example 2

In this section, we use the proposed method to solve two nonlinear differential prob-
lems arising in real-world phenomena. First of all, we consider the fractional order logistic
equation 

Dγy(t) = µγ y(t)
(
1− y(t)

)
, t ∈ [0, 2], 0 < γ < 1,

y(0) = y0,
(18)

which is a nonlinear equation used to model population growth in biology and social
studies. The existence and uniqueness of the solution to the logistic Equation (18) were
proved in [37]. Its analytical solution is:

y(t) =
∞

∑
k=0

(
y0 − 1

y0

)k
Eγ(−k µγ tγ), (19)

where Eγ(z) is the Mittag–Leffler function:

Eγ(z) =
∞

∑
k=0

zk

Γ(k γ + 1)
, (20)

(cf. [38]). In Figure 5, we show the numerical solutions y3h(t) and y4h(t) and the errors
y(t)− y3h(t) and y(t)− y4h(t) for different values of γ when µ = 0.7, y0 = 0.8 and h = 1

32 .
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Figure 5. Panel (a): The numerical solution y3h(t) (colored lines) and the exact solution (dashed black
lines) for different values of γ. Panel (b): The error y(t)− y3h(t) for different values of γ. Panel (c):
The numerical solution y4h(t) (colored lines) and the exact solution (dashed black lines) for different
values of γ. Panel (d): The error y(t)− y4h(t) for different values of γ.

In the second example, we solve a nonlinear multiterm fractional differential equation,
i.e., a differential equation characterized by the presence of both ordinary and fractional
derivatives. This kind of equations is used to model viscoelastic materials. In particular,
we consider the differential equation


y′(t) + Dγ

t y(t)− y(t)2

2
=

Γ(2.9)
Γ(2.9− γ)

t1.9−γ − 1
2
(t1.9 − 1)2 − 1.9(t0.9), t ∈ [0, 1], 0 < γ < 1,

y(0) = −1,

whose exact solution is y(t) = t1.9 − 1. In Figure 6, we show the numerical solutions y3h(t)
and y4h(t) and the errors y(t) − y3h(t) and y(t) − y4h(t) for different values of γ when
h = 1

32 .
The plots in Figures 5 and 6 show that the approximate solution has a good accuracy

even in case of low values of γ. The accuracy increases as the order of the fractional
derivative increases because the smoothness of the known term of the differential equation
increases. Finally, we notice that, due to the interpolation property of the optimal basis, the
error in the initial point is very small.
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Figure 6. Panel (a): The numerical solution y3h(t) (colored lines) and the exact solution (dashed black
lines) for different values of γ. Panel (b): The error y(t)− y3h(t) for different values of γ. Panel (c):
The numerical solution y4h(t) (colored lines) and the exact solution (dashed black lines) for different
values of γ. Panel (d): The error y(t)− y4h(t) for different values of γ.

5. Conclusions

We presented a collocation method based on spline quasi-interpolant operators suit-
able to solve nonlinear differential problems having fractional derivative in time. The
numerical results in Section 4 show that the method is convergent and accurate. We notice
that the polynomial reproduction property (7) is a key ingredient to obtain high accuracy.
Moreover, the approximations obtained by the quasi-interpolant operator (13) have shape-
preserving properties. This means that the approximating function ynh preserves the shape
of the function to be approximated. This can be useful in applications where we need to
preserve the sign or the monotonicity of the approximation.

Some issues are worth analyzing in detail. First, in this paper, we used equidistant
collocation nodes. It is well known that different distributions of nodes could improve
the accuracy of spline collocation methods [11,14]. The behavior of the present method
when using other kinds of nodes, such as Gaussian points or graded meshes, should be
analyzed. Secondly, the stability and convergence of the method and the behavior of the
conditioning of the nonlinear system should be studied in detail. Some preliminary results
in the case when 0 < γ < 1 can be found in [36]. A thorough analysis of the general case is
under study. Finally, we observe that the method can be easily extended to other kinds of
fractional differential equations, such as boundary value problems (see [39]). This will be
the subject of a forthcoming paper.
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