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Abstract

This paper aims to propose a novel approach to model the dynamics of objects that move within
the soil, e.g. plants roots. One can assume that external forces are significant only at the tip of the
roots, where the plant’s growth is actuated. We formulate an optimal control problem that
minimises the energy spent by a growing root subject to physical constraints imposed by the
surrounding soil at the tip. We study the motion strategy adopted by plant roots to facilitate
penetration into the soil, which we hypothesize to be a circumnutation movement. By solving the
proposed optimal control problem numerically, we validate the hypothesis that plant roots adopt a
circumnutation motion pattern to reduce soil penetration resistance during growth. The proposed
formalisation could be applied to replicate such a biological behaviour in robotic systems, to adopt
the most efficient strategy for autonomous devices in soil exploration.

1. Introduction

Plant roots grow into the soil driven by attractive tar-
gets (e.g. nutrients or water) and avoiding obstacles
[1]. Under non-stressful biological and chemical con-
ditions, the growth of the roots depends mainly on the
soil strength and the presence of obstacles at the root
tip [2].

Roots have developed morphological and
mechanical strategies to reduce the soil strength and
handily overcome the resistance of the surrounding
environment [3]. Most of these strategies have been
deeply investigated. For example, it is well known
that roots change the tip diameter [4], move by
growing at the tip level [5] and produce mucus at the
apex [6] to grow into the soil.

It has also been hypothesised that a characteris-
tic motion in the root’s tip, called circumnutation,
could be adopted to facilitate soil penetration and
improve the seedling of the plant [7]. Circumnu-
tation is an active rhythmical motion pattern (e.g.,
elliptical, circular, pendulum-like or zigzag-shaped)
[8] observed for the first time by Darwin [9]. Sev-
eral studies have investigated the origin and biological
processes that guide this pattern of motion [8, 10]. It
is well known that the circumnutation is induced by
different growth rates obtained by active swelling and

deswelling of cells at opposite sides of the organ [10]
and is believed to be driven by both gravitropism and
internal periodic signals [11-13].

Recently, the ability of roots to move into the soil
has inspired novel robotic technologies for soil explo-
ration, penetration and monitoring [14, 15]. Hence,
to accurately replicate the growth dynamics of a plant
in robotic devices, it is crucial to fully characterise the
motion strategy employed by a root’s apex and the
role of the circumnutation in order to overcome the
soil penetration resistance.

Nevertheless, circumnutation in roots is still a
poorly understood process, mainly due to the lack of
data. Experimental data collection is limited by two
main factors. Firstly, the response of soil to the forces
actuated by a growing root is not easy to characterise.
Soil is a mixture of organic matter, minerals, gases,
liquids and organisms, in which the arrangement of
these distinct components defines the soil type, its
texture and behaviour in response to external forces
[16]. The detailed description of the dynamics of an
object moving in soil remains an open problem to
date [17]. Secondly, plants have evolved differently
in response to the environment, resulting in a wide
diversity of genotypes across species and phenotypes
over the same species. Consequently, similar growth
conditions can produce very different root behaviours
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[18, 19]. Hence, given the complexity of soil compo-
sition and plant genotype and phenotype, the char-
acterisation of a specific motion pattern such as root
circumnutation remains challenging.

To understand root—soil interactions, previous
studies have conducted experiments on plants using
homogeneous media, such as agar or phytagel
[20-22]. However, the results from these studies
might not be sufficiently generalizable to natural
soil conditions and consequently not readily trans-
latable to plant-inspired robotic systems. In a more
recent study [23], it has been proposed an experi-
mental framework to analyse the circumnutation of
a robotic tip into topsoil. Here, the experimental set-
ting confirmed that circumnutation, when applied to
arobotic tip travelling into the soil, reduces the forces
to be exercised compared to straight penetration and,
consequently, the energy spent by the plant-inspired
robotic system.

Another way to study the root growth in real soil
is represented by mathematical modelling. Models
can help to investigate the root growth and motion
by describing the physical root—soil interactions. For
example, in [3], the existing mathematical models of
root growth in soils are combined with the macro-
scopic observations of root behaviours to estimate the
magnitude of the forces experienced by the root apex.
In the approaches reviewed in [3], the forces acting
on the root flank are usually omitted. In the same ref-
erence, the authors have also shown that the macro-
scopic root growth can be investigated by observing
the water potential flow inside the cells. However, a
quasi-static description of plant growth is not suit-
able for the study of dynamical interactions between
roots and soil, such as the ones described by oscilla-
tory motion patterns. Furthermore, models focussing
on cellular growth cannot be directly translated to
robotic applications because of the current mechan-
ical and macroscopic nature of engineering systems
for soil penetration. In view of the previous consider-
ations, the study of specific movements, such as cir-
cumnutation, is still an open question and a great
challenge for modelling. Investigations on the pat-
terns of motion during root growth not only can pro-
vide effective tools to reveal new insights from the
natural system but also it can lead to solutions funda-
mental in agriculture to improve the uptake, in civil
engineering and soil sciences to stabilise slopes and in
robotics to design efficient autonomous penetration
devices.

In this paper, for the first time, we describe the
dynamics of a root penetrating the soil by proposing
a model based on optimal control methods. From a
control theoretical viewpoint, the root tip is the sys-
tem to be controlled, while the control is represented
by the root elongation. In such a framework, the root
moves under the action of a control signal, without
a priori prescribing any direction and rate of elon-
gation. As main model outcome, we obtain the con-
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Figure 1. Analysis of the root tip growth. (A) Zonation of a
generic root apex. In the elongation zone, there is fast
growth obtained by cell elongation. Into the meristem, the
growth is slower and obtained by cell division. Specialised
cells are formed into the differentiation zone. The root cap
protects the tip, by mucus and cell release. (B) A sequence
of root growth into a soil whose particles are smaller than
the tip size. The tip penetration affects the soil structure
rearranging the soil particles that behave like mobile
obstacles. The red arrows inside each particle suggest the
resistance of soil particles to be shifted by the tip. The red
thicker arrow into the tip describes the averaged action of
soil particles on the root growth. The soil resistance is
broken by the pushing force exercised by the root during
growth.

trol function which minimises the energy dissipated
by the elongating apex, taking into account the forces
acting at the tip in soils with different densities. Here
we propose a general and rigorous model that takes
inspiration by plant behaviours, without being based
on cellular processes. The model successfully agrees
with biological observations [24, 25], meets the effi-
ciency requirements introduced in [23] and demon-
strates that the optimal motion strategy adopted by
plant roots follows an oscillatory pattern similar to
circumnutation movements.

In the following, we first introduce the framework
in which the system is moving and the forces involved
in the motion. Then, we formalize the optimal con-
trol problem we aim to solve (section 2). We validate
the model (section 3) and study the effects of soil
compaction and tip shape on the energy consump-
tion (section 4.1). We investigate the optimal trajec-
tory emerging at different soil densities (section 4.2)
and we finally conclude with discussions and open
questions (section 5).

2. Methods

2.1. Model setting

In this section, we will describe the root movement
into the soil by using a system of ordinary differential
equations (ODEs) and set the analogy with a root-
like artificial device that is supposed to imitate the
natural root. To this aim, let us first observe that the
soil resistance is relevant just at the tip since the root
grows at the apical level by cell elongation and division
[26] (figure 1(A)). Also, we considered that penetra-
tion tasks, even in artificial systems, are better accom-
plished by conical or parabolic probe shapes [17, 27],
similar to root’s apexes.
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Figure 2. Scheme of the tip variables. (A) Close view of the
tip variables with global coordinate system. The
geometrical parameters of the tip: d, device diameter; r, the
radius; h, device height. And the motion parameters: x(t),
the position of the tip; v(#), the velocity; u(t), the
acceleration, our control variable; a(t), the axis of
symmetry, axis of the tip; a(t), the tip inclination with
respect to the vertical axis e;. g represents the gravity vector.
(B) Example of a regular helical motion (circumnutation)
with central axis equal to the vertical axis towards g. The
scheme shows the key parameters of the device (as in (A))
and of the circumnutation: p, circumnutation amplitude; ¢,
the lead angle; w, angular velocity; Py, pitch of the helix,
which is obtained by the component along e; of the velocity
(v3) multiplied by the period T of the circumnutation,
which is the time needed to accomplish one lap.

A device (natural or artificial) having a conical or
parabolic tip can be described by the relevant param-
eters, namely the diameter d, the height / and the axis
of symmetry a € R?. The shape of the tip is assumed
constant during all the time evolution, so that only
the axis a = a(t) will depend on time, according to
the position of the tip into the space.

Let x(¢), v(t) € R?® and u(t) € U C R?® be the
position, the velocity of the vertex and the accelera-
tion, or control which drives the root growth, respec-
tively (figure 2(A)).

Here, U := [—tt, tpr)? X [—th, tipr — g] is the set
of control values and u,,, uy; > 0 are the maximum
deceleration and acceleration values that the device
can produce, depending on its physical and mechani-
cal constraints. We use g to denote the vertical down-
ward gravitational acceleration.

Real soil is a complex mixture of particles (clay, silt
and sand) and pores. The plant’s root might move ina
soil whose particles, or clusters of particles, have a vol-
ume that is similar or bigger than the size of the tip.
In this case, each particle behaves like a possibly fixed
obstacle that the tip cannot move. The motion pattern
of the tip is mainly driven by the stochastic displace-
ment of the soil pores, in the case in which they are
sufficiently large for the tip to pass through. In this
case, buckling instabilities can also occur. Buckling
is an elastic instability, namely a passive mechanism
induced by a compression force (that the root cannot
oppose to) acting along the longitudinal axis of the tip
(3, 24].

A different framework takes place when the root
grows in a possibly heterogeneous soil, but with the
assumption that soil particles have a volume that is
smaller than the size of the tip and are separated by
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pores that are not sufficiently large for the root to
pass through (figure 1(B)). In this case, each particle
behaves like a mobile obstacle that offers a mechanical
resistance which can be displaced. The penetration in
this environment works only by displacing the parti-
cles (or analogously relocating the voids) and by com-
pacting the soil around the tip [3]. We assume the lat-
ter to be the framework where our device is moving.
Since the root is not able to perceive the fluctuations of
the forces from individual particles [28], the action of
the forces on the tip can be averaged. This assumption
holds for many common soils in agriculture, such as
flooded, potting, sand and sandy loam soils. Since
the soil density is defined as the mass of soil parti-
cles divided by the volume occupied, we can assume
the averaged resistance of particles is proportional
to the soil density, which we will later denote with
k [g cm™3]. The averaged resistance of soil particles
will affect the root tip motion by reducing the push-
ing acceleration u(t). In particular, named A(t)[—]
the percentage reduction of u(t) experienced by the
vertex at x(¢) due to the mechanical resistance of the
soil particles, the tip can move and penetrate the soil
only if:
u(t)(1 = A(1) > 0.

The soil density k and the function A(t) are not intrin-
sic properties of the soil. They depend on how the soil
is handled, namely on the displacement of voids and
soil particles. Let k™ [g cm—>] be the maximum soil
density that can be obtained by compacting the soil.
From now on, by compacted soil, we mean a soil han-
dled to offer the maximum density k™. For a com-
pacted soil, it corresponds to a maximum percentage
reduction A™*[—] of u(t). Therefore, one can write:

ko)

Jemax '

Ar) = Am

Since we are studying the case of mobile soil particles,
we will assume A™ < 1 and no buckling can occur.

Being the soil a complex mixture of solid and fluid
structures [29], in addition to the mechanical resis-
tance, our device experiences a dissipative and non-
conservative force, called drag force [30, 31]. When
an object immersed in a fluid has a speed |v]| rela-
tively high with respect to the fluid velocity, the drag
force is proportional to [v|? [17]. On the other hand,
at relatively slow speed, the drag force is linear with
respect to v [32]. We will assume a linear dependence
of the drag force on the velocity since the root moves
relatively slow with respect to the water and air flows
into the soil. Furthermore, the experiment proposed
in [23], and here used to estimate model parameters,
studies a robotic tip that moves with a circumnutating
helical pitch comparable to real roots, thus the lin-
earity assumption of the drag force with respect to
v is still valid. Therefore, the drag acceleration aq4(¢)
opposing to the tip motion depends on the velocity
of the tip v and on the tapering and the lateral sur-
face i of the device exposed to the interaction with
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the medium [17]. These properties are expressed in
the equation:

_— a4 S
ag = Ap(k, K™ )I’l—F—dS_fv’

where ), is a parameter estimated in appendix A.
The ratio d/(d+ h) measures the tapering of the
tip that results in a smaller experienced drag force
[17]. In addition, for a conical tip of height h and
radius r (figure 2(A)), Sy = 7rv/(h? + r?), whereas for
a parabolic tip, S| = (7r)((r* + 4h*)3/2 — 1) /(6h?).
S¢ = 2mrh + 7r? is the surface of a cylinder of height
h and radius r that interacts with the soil. The ratio
S1/Sf estimates the surface of the device exposed to
the interaction with the medium [23]. Also, if the
device can direct its tip towards any direction with
respect to the vertical axis, the lateral surface inter-
acting with the soil is at its minimum when the tip
axis is vertically directed, while it reaches the max-
imum when the tip axis is horizontal (at 90° from
the vertical axis, p = h in figure 2(B)). In the work
[23], the authors analysed the effects on the energy
dissipated by the system at different inclinations of an
artificial device’s tip, which penetrates a sandy loam
soil at different densities. From the authors’ consid-
erations, it emerges that the rotations of the tip might
rearrange particles and act as a cavity expansion strat-
egy to lighten the soil resistance around the tip [33].
Due to the random rearrangement of soil particles, it
is not possible to accurately provide a complete ana-
lytical description of this phenomenon, especially if
the tip can perform any possible motion pattern into
the soil. To approximate the effects of the particle rear-
rangement on the soil resistance, we introduce the
function R(v(#)) (neglecting the dependences on the
parameters to not burden the notation):

)\1 ni(ax(l_ nicax
2 2 5 5
R = <1 _ VU1+UZ>

[v| + p

)| cos a

» (1)

where v = (vy,v3,v3) is the velocity and A, are
parameters whose values are reported in appendix A.
The parameter ;¢ < 1 is used only to ensure the well-
posedness of the evolution equation (4) for velocities
such that |v| < 1. The angle:

a(t) )
o =arccos [ —es - ——— | € [0,7/2]
( la(t)]
(figure 2), that the vector a(t) forms with the ver-
tical direction —e; = (0,0, —1), takes into account
the interaction of the tip surface with the soil, when
the device is not directed along the vertical direction.

[ 22 402 . .
The term |1 — ‘;1_:2 generalises the possible pat-

terns obtained by the rotation of the tip, to include
either helical and not helical motions. An example
of helical motion (i.e., circumntuation) is shown in
figure 2(B) (also see section 3). The power exponent
of equation (1) reduces the action of R when either
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the tip lateral surface which interacts with the soil is
maximum (namely if « — 7/2 or |cos(a)| — 1), or
when the soil is at its highest density (k — k™ and
no interstitial pores can be resized) or when the soil is
extremely light (very low density, namely k — 0) such
that the pore resizing does not provide evident ben-
efits. In all these cases, as well as when v; = v, =0
(namely straight penetration), one has R ~ 1. On the
other hand, when the motion of the tip is on an hor-
izontal plane (v; — 0), one has R & 0. This feature
reflects the fact that a tip continuously moving on an
horizontal plane encounters only a negligible resis-
tance. The action of R will affect both A(#) and aq(t)
as follows:

A(t) = Ru(1)A(1), (2)
aa(t) = R(v(r))aqa(r). (3)

Therefore, the resulting system for the dynamics of
the tip in the time interval [#, T¢] is:

x(t) - U(t)) re [tO) Tf]

o(t) = u(t)(1 — A1) — aa(?)

(x(to), v(t)) = (x0,v0) € R®, 19 >0, Tt > 1o

(4)

In the previous equations, the choice of a control u :
[to, Tr] — U will determine a specific trajectory x(t)
with velocity v(#). Notice that the second equation in
the system is a consequence of the Newton’s second
law:

x:’Uzi’

M+ x(ty) = v(to) = vo,

x(ty) = Xo,
where the force per unit mass F/M*[N kg™'] depends
on the control u(t).

Following the usual definition of work force x dis-
placement, here we can compute the work performed
by the control strategy u(¢) as:

T¢
W:/ M| (u,v) |ds.
fo

Since [u] = [cm s ?], a scaling factor [M*] = [kg]
is required to make the definition of the work W
computed by the control u(¢) dimensionally consis-
tent (see appendix A for the units of measurement).
Furthermore, the absolute value is necessary to take
into account the non-conservative nature of the forces
acting on the root tip, thus avoiding negative work
values.

2.2. Optimal control

The main contributions of this paper are achieved by
estimating the optimal trajectory for the tip that min-
imises the dissipated energy W. To be more precise,
consider the control u: [ty, Tf] — U, the angle «:
(%0, Tt] — [0, 7/2] and the solution y(¢) = (x, v)(t) of
(4) for a given initial position and velocity y(0) =
(x,v)(0) = (x0, v9). One can use y(t) = y(u, a)(¢) for
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t € [ty, Tr] to emphasise the dependence of y(f) on
the choices of the functions u(t), a(t). Furthermore,
one can regard W as a function whose value depends
on the choice of the control u(t), the angle a(#) and
the related trajectory y(¢) = y(u, a)(t). Accordingly,
we write W = W(y, u, o, T¢). Let us also introduce the
closed set 7 C R3, which represents the target that
the device should reach during the soil penetration.
For example, T could be a desired depth or, for roots,
an underground pool of nutrients. The aim is to find
both the optimal control #(t) and the optimal slope
a(t) such that the trajectory solution y = y(¢, #, &) of
(4) reaches the target 7 minimising the cost function
W in the time interval [fg, T¢].

It is equivalent to solve the optimal control
problem (P), defined as:

(P) min{W(Q,u,a,T¢) | Tf > t,

u: [to, Tt] — U measurable, «: [ty, Tt] — [0, g]

y = (x,v) : [to, Tf] — R® solution of (4),
x(Ty) € T} .

(2, v)(to) = (x0, Vo),

In the next sections, we will focus on the numer-
ical solution of problem (P) by looking for the opti-
mal couple (i, @)(t) that minimises W (in reaching a
given depth in the time [f, Tf]) only in the case of a
parabolic tip.

To numerically solve the optimal control problem
(P), we will use the direct method, being more stable
with respect to other methods [34]. More precisely,
the time interval [fy, T¢] is divided in # subintervals.
In any subinterval, the control is assumed to be a con-
stant function. Starting from an initial guess of the
control for any subinterval, the constrained optimisa-
tion method frmincon of Matlab is used to fix values of
the control in each subinterval [35]. Both the dynam-
ics and the cost function are converted in algebraic
equations so that the resulting nonlinear programing
problem can be solved by well established methods
[36]. The optimisation variables are both the con-
trol u and the angle . To speed up the convergence
of the method, the initial guess can be chosen simi-
lar to a circumnutating control with a constant slope
o (since by evidence in section 4, the straight pen-
etration is not expected to be the optimal solution).
Namely, uy € R>", oy € R are such that:

g = (g, cos(1:n), ugp sin(1 : n), —upz) € U”;
e n
o = Uy ones(1l,n) € {0, 5} ;

where ug; € R, i=1...4 are coefficients arbitrar-
ily chosen. We have fixed [ty, Tf] = [0, 1], n = 10,
xo = (0,0,0), vg = (0,0, —vg3). The integration of
the ODE system in each subinterval is performed
using the ODEL15 solver of Matlab.
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3. Parameter estimation

To validate the model, we verify if the dynamics
described by equation (4) is able to capture motion
behaviours of root-like intruders already observed
and described in the literature.

Motivated by the results obtained in [20], we aim
to investigate the role of the root circumnutation in
reducing soil penetration resistance. In [23], the dissi-
pated work of a parabolic robotic tip (with height h =
3.3 cm and diameter d = 2 cm) is measured. The tip
is reaching a depth of x); = 30 cm in a real soil (top-
soil of sandy loam type) under three different den-
sities: k = 0.38, 0.4, 0.42 g cm 3, obtained, respec-
tively, without pressing the soil, with a gentle press
and with a stronger press on top of the soil volume
(see appendix A for the values of all variables). In the
experiments produced in [23], the tip is forced to per-
form either a straight penetration or a circular motion
(circumnutation) with a fixed slope (i.e. o introduced
in section 2) with respect to the vertical direction. We
refer to [23] for details about the experimental setup,
the protocols and the acquisition of data.

Here, we will use the experiment and the known
density coefficients in [23], to calibrate the free
parameters of the dynamic equation (4), while in
section 4.1 we will investigate the effects of both soil
compaction and shape of the tip (section 4.1). Finally,
we will derive the optimal control arising at different
soil density values (section 4.2).

Simulations in this section and section 4.1 are
obtained by integrating the ODE system (4) with the
Euler method (step of Ax = 10"%) and computing
the dissipated work W with the trapezoidal rule. It
remains to evaluate the control u(t) to perform the
wished trajectory. At each step of the Euler method,
the control u(t) is computed by solving a nonlinear
equation, as follows. For the straight penetration, the
control u = u(t) solves:

%v(u,a =0) = (0,0,0),

while for the circumnutation:

Ev(u, a) = —pw(cos(wt), sin(wt), 0).

Here, the notation v(u, «) indicates the dependence
of the velocity v () on the choice of the pair (u, a)(#).
p and w = 27/ T are the radius and the frequency of
the helix, respectively, where T'is the circumnutating
period. Since the height h of the tip and the angle «
(section 2) are fixed, it follows p = h sin(«). Further-
more, initial conditions are set coherently with the
desired trajectory. For the straight penetration, the tip
starts from the origin with a straight down velocity,
namely x(y) = (0,0, 0) and v(t) = (0,0, —v3). For
the circumnutation, the tip belongs to a helix with axis




10P Publishing

Bioinspir. Biomim. 15 (2020) 056006

F Tedone et al

Period (s)

Figure 3. Circumnutation vs straight penetration. (A) The work
period of circumnutation and soil density (figure taken from [23]
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Figure4. Optimal values of the lead angle €. (A) Results in [23], where p = k is the soil density. (Figure taken from [23]).
combinations of circumnutating periods and tip slopes (in the range (T, ) € [0.5,2] x [20°,90°]) have been simulated. Each

value of the function R. Notice that the energy is less affected by the different choices of the circumnutating periods and tip slopes
(with (T, ) in the previous range) when the lead angle is high (namely the tip dynamics is close to a straight penetration).
Indeed, the distinct combinations of circumnutating periods and tip slopes that both are in the previous range and provide the
same high lead angle are close to each other. As a consequence, there are no evident benefits in the energy consumptions of the
resulting tip trajectories. On the other hand, many different combinations of (T, «) in the previous range provide lower lead
angles with different energy consumptions for the resulting tip trajectories.

fferent soil densities. For each lead angle, different

ng with the soil, a different rotating velocity and a different

e3. Therefore:

x(to) = (p cos(wto), p sin(wtp),0)

v(ty) = (—pw sin(wty), pw cos(wty), —vo3).
<Lt0), —e3> = cos()
[u(to)|

The authors in [23] conclude that the circumnuta-
tion could save up to the 33% of energy with respect
to the straight penetration. Figure 3 shows the sim-
ilar behaviour obtained by the two approaches (left
from [23], right from our simulations) for the case
of straight penetration (with o = 0°) and for the case
of different kinds of circumnutations (o € {10°,20°}
and T € {305,60s,1205,240s}).

Moreover, it is possible to characterise the helix
resulting from the circular circumnutation by the lead
angle € which is defined as:

e =arctan{ — |,
2pm

where Py = v;5T is the pitch of the helix and v3 is the
downward velocity of the tip. In [23], it is shown that
the circumnutation is more efficient than the straight
penetration if, regardless of the soil density, the lead
angle is in the range € € [45°,63°] (figure 4(A)). To
verify this condition, we simulated W at different
lead angles ¢ in the range [20°, 90°] within the three
different soil densities as in [23]. The simulations
(figures 4(B)—(D)) are in agreement with the exper-
imental results in [23] and confirmed the presence
of an optimal value for the lead angle such that the
energy is minimised. In section 2, we have estimated
the strength of the rotation by the term \/v} + v3/|v]
(using the relation 4 < 1). In [23], the authors have
shown that the reduction of forces due to the rotation
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Figure 5. Instantaneous energy. Comparison between straight penetration and circumnutation in the case of (A) uniformly
dense soil along with depth and (B) a stratified medium with layers of increasing soil strength.

Figure 6. The shape of the tip. Total work of the tip in a low dense soil when the ratio h/d increases.
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is directly affected by the term cos(e). The formula-
tion here proposed is more general, since we are com-
paring any possible motion in the soil and, thus, the
lead angle € is not always easy to characterise. Never-
theless, for the circular circumnutation (as in [23]),
the velocity is v = (—pw sin(wt), pw cos(wt), —vs3)
and the two terms coincide:

1 1
V1+tan 2 \/1+(%)2

wp Vvl + vl

\ (Wp)? 403 T

In particular, in [23], the authors couple the cos(e)
with two varying parameters to take into account the
effects of different soils and different inclinations of
the tip with respect to the vertical direction. Here, we
estimate this effect for any inclination of the tip by
introducing the exponent in the formulation of R.

cos(e) =

4. Results

4.1. Circumnutation vs straight penetration

4.1.1. Effects of soil compaction

It has been conjectured that the circumnutation
movement could rearrange the soil particles and
reduce the soil penetration resistance [23]. Indeed, as

it has already been noted in [24], the inclination of the
root apex plays a fundamental role in facilitating soil
penetration.

When the density increases up to a maximal
threshold value, the energy to rearrange soil par-
ticles increases and the circumnutation may be no
longer efficient. To investigate this condition, we com-
pared the instantaneous energy between the straight
penetration and the penetration performed by the
root with circumnutation, in the case of a high soil
density (k = 0.42) and a compacted soil (with den-
sity arbitrarily assumed in the model as k™™ = 0.6)
(see figure 5(A)). Results confirmed the expected
behaviour, showing the presence of an advantage of
implementing circumnutations with a soil density of
k = 0.42, which does no longer exist in the compacted
soil. We additionally wanted to verify the behaviour
of the energy in the presence of a medium having
progressively increasing strength. Figure 5(B) shows
the instantaneous energy of both the straight penetra-
tion and the circumnutation with the medium com-
posed of different soil layers: a topsoil (up to —1.5 cm)
with density progressively increasing from k = 0.38 to
k = 0.4, a second layer (up to —3.5 cm) with density
increasing from k = 0.4 to k = 0.42 along with depth,
a third layer (up to —4.5 cm) with density going from
k = 0.56 to k = 0.6 and the latter layer having a uni-
form k = 0.6. It is interesting to notice that, when the
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soil density increases, the resizing of pores becomes
more difficult (if not impossible) to achieve, making
the circumnutation alone a less efficient strategy in
highly dense soils. These results are in agreement with
biological investigations demonstrating a decrease in
penetration capability of roots with the increasing of
medium density [21] which requires the activitation
of complementary strategies, like the promotion of
radial growth [37].

4.1.2. Effects of tip shape

The shape and the dimension of a robotic tip can
affect the efficiency of a penetrometer [17, 27, 38].
According to [17], a conical body that is moving into
a granular medium feels a smaller drag force in the
cases in which it is more tapered. In figure 6, the
total work in a low dense soil (k= 0.38) is plotted
when the tip becomes more and more tapered (i.e.,
the height-diameter ratio h/d increases). For each h/d
ratio, both the straight penetration (lead angle ¢ =
90°) and the circumnutation at different periods and
amplitudes are performed. The simulations show a
behaviour in agreement with results in [17], where
it has been observed that the drag acceleration and,
consequently, the energy dissipated to perform the
motion, decrease with an increment of the h/d ratio,
but with less evident benefits at high ratios.

4.2. Optimal control
In this section, we will investigate the best strategy
for an intruder to penetrate in a medium such that
W is minimised. Following the work in [23], in the
previous section 4.1 we have imposed and compared
two different strategies: a straight penetration and
a penetration performed with circumnutations. In
this section, we extend previous results by evaluat-
ing which strategy emerges from the simulation with-
out fixing a priori any path for the trajectory x(¢) or
any value for the inclination angle « of the tip with
respect to the vertical axis —es;. We use here the direct
method (see section 2.2) to compute the best strategy
that minimises the dissipated work W in three soils
having densities k = 0.38, 0.4, 0.42, respectively.
Figure 7(A) shows that the optimal penetration
strategy obtained is an oscillatory trajectory for each
soil. In particular, in section 3, in the case of soil
density k = 0.42, the most efficient motion has been

observed to be a circumnutation with v = 10° and
T =60s. The optimal control performed by the
direct method allows to save the 21.3% of W with
respect to the previous circumnutation when the
depth to reach is fixed to 5 cm, even if better results
could be obtained by improving the accuracy of the
direct method.

Since with the direct method also the slope «v is a
variable to optimise, we evaluated the behaviour for
this parameter in each soil density (figure 7(B)). It is
worth noting that:

e In each soil, the optimal angle «v tends to contin-
uously oscillate around an average value, with-
out reaching a constant.

o This average value decreases in more dense
soils (with the increase of soil penetration resis-
tance). This behaviour is in agreement with the
experimental results in [20].

e Oscillations are wider (smaller) in the low
(high) dense soil and this observation is in line
with results of other investigations [24] demon-
strating a strong relationship between pene-
tration success, soil strength and the angle of
inclination of roots. Indeed, the study in [24]
assessed the tendency of roots to more likely
penetrate in denser soils when oriented almost
perpendicularly with respect to the interface
from lower to higher dense soils, thus suggesting
the inefficacy of performing wide oscillations in
denser media.

Furthermore, in [3], it has been reviewed that cir-
cumnutation is sometimes viewed as a way to reorient
the tip and explore the environment. Therefore, since
a common agricultural soil can be viewed as a suc-
cession of horizontal planar interfaces whose densities
increase with the depth, the root tip has to manage
with two conflicting demands: the need to increase
its slope (to explore the soil and reorient itself) and
the need to grow vertically (to improve the probabil-
ity of penetrating the soil while growing downward).
Figure 7(B) shows that the optimal management of
the two conflicting demands can be satisfied just by
looking at the minimisation of the energy dissipation.

To summarise, two main results are here obtained:
(I) an oscillatory trajectory (circumnutation-like
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motion) as the optimal, without imposing a pre-
scribed behaviour to the control, and (II) a dynam-
ics of cv in agreement with the experimental observa-
tions available in the literature. These results strongly
validate the model and its accuracy in describing the
root tip—soil interaction; while at the same time, they
strengthen the hypothesis that circumnutation might
be adopted by plant roots to reduce soil penetration
resistance [20, 23]. From these results, one can deduce
that circumnutation can emerge from the mechani-
cal interaction between the root tip and the impeding
medium, as the outcome of an adapting strategy of
roots to reduce the dissipated work.

5. Discussions

In this paper, we investigated the role of circum-
nutation in plant roots. Following the idea in [23],
we hypothesised that circumnutation can reduce the
resistance experienced by a system during penetration
of a medium. We proposed a mathematical model
to describe the movement of a root tip-like intruder,
taking into account the soil resistance experienced
during the penetration.

Previous experiments [23] showed that circumnu-
tation could reduce the energy in vertical soil penetra-
tion. However, the complexity of the soil, the genetic
diversity in plants and the lack of biological data make
difficult to generalise these results to plants in real
soils.

Here, we described the dynamics of a root tip-like
object moving into a real soil whose particles have a
diameter that is smaller than the tip size at different
densities, modelling the physical phenomenon and
considering only the resistance experienced at the tip.
This assumption was made possible by the ability of
plant roots to move in soil by growing at their apical
level [26].

Firstly, we estimated model parameters using data
in [23], and obtained results in agreement with the
existing literature (see section 4.1). By fixing different
circumnutation amplitudes, we demonstrated that
below a maximal soil compaction level, the circum-
nutation can reduce the mechanical resistance offered
by the soil with respect to a straight penetration.

Borrowing tools from the optimal control theory,
we then evaluated the optimal penetration strategy
for an intruder in soils which reduces the mechanical
work. The resulting optimal trajectory confirmed the
presence of oscillatory patterns matching circumnu-
tation movements performed by the tip (section 4.2).
Moreover, looking at the optimal slope « of the tip
(the amplitude of the circumnutation motion), we
observed greater amplitude for less dense soils and
smaller amplitude in more dense soils, a behaviour
already verified by experimental results [24].

The work showed that the circumnutation might
be a behaviour modulated by the root—soil interac-
tion, and developed by plants to save energy during

F Tedone et al

growth. This suggestion is also in agreement with sev-
eral biological investigations showing the influence
of mechanical stimulation in the oscillatory growth
patterns performed by plant root’s tip [39, 40]. In par-
ticular, the optimal control-based approach has suc-
cessfully demonstrated that the circumnutation is the
most efficient penetration strategy among an infinite
combination of possible motions. Since the dimen-
sion of the system penetrating the soil can be easily
changed, the model can also provide the most effi-
cient strategy for soil exploration in autonomous sys-
tems forecasting the optimal control that minimise
the mechanical work.

As far as we know, this is the first attempt to
model the root dynamics by adopting an optimal
control theory approach. We believe this mathemat-
ical tool could be successfully applied to investigate
many other plant growth processes as well as the
interactions among roots. For example, the dynam-
ics (equation (4)) can be generalised to more than
one root tip to investigate the complex plant root
system development in real soil. Furthermore, if the
cost function W is modified to take into account the
metabolic needs of a plant, then the optimal control-
based approach could help to unveil growth mecha-
nisms and resource allocation patterns in plants. This
approach would also facilitate the analysis of a combi-
nation of strategies adopted by plants to adapt to the
environment and negotiate with physical constraints.
For instance, our analysis could combine circumnu-
tation movements with the radial expansion of roots
[37].

Besides the biological implications, such an
approach can suggest optimal strategies to design
efficient robotic devices for soil exploration. Indeed,
the model can help to estimate soil resistance, fore-
cast the requirements for the robots and identify the
most convenient trajectory to follow. In particular, the
framework presented in [41] can be used to generalise
the results here proposed. Indeed, if the soil particles
are still mobile but have a diameter that is bigger or
similar to the tip size, then the differences among the
resistance of each particle cannot be neglected and
the soil resistance should be weighted all around the
tip surface, obtaining an integrodifferential equation
whose well-posedness is investigated in [41]. Further-
more, if the robotic tip moves so fast that the drag
acceleration a4 may not depend anymore linearly on
the speed, the formulation proposed in this paper
for the drag acceleration could be modified with the
following:

max d Sl v
aa = RAy(k,k )h+dslcf(lvl)|v|,

where f(|v]) is a nonlinear function to be defined. It
is worthy to note that this framework is not anymore
Lipschitz and the existence of a minimum solution is
studied in [41].
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Table Al. List of model variables.

Variable Dimensional value ~ Dimensionless value Significance

Xm 30 cm 3 Maximum depth in [23]

0,3 —0.06 cm s~ ! —0.36 Axial downward velocity in [23]

h 3.3 cm 0.33 Height of the tip in [23]

d 2 cm 0.2 Diameter of the tip in [23]

ke 0.6 gcm™? 0.6 Maximum soil density due to compaction (arbitrarily assumed)
k 0.38 g cm™? 0.38 Low soil density in [23]

k 0.4 gcm™? 0.4 Medium soil density in [23]

k 0.42 gcm™? 0.42 High soil density in [23]

AT 0.6 0.6 Maximum percentage reduction of tip acceleration due to the soil resistance
w 10°cms! 6x 107 Regularising parameter

A 3 3 Proportional parameter for function R

As a future step, we mean to increase the complex-
ity of the proposed model by adding more variables to
be optimised. For example, the optimal shape could
be investigated as well as the interaction among mul-
tiple tropisms (directional growth responses to envi-
ronmental stimuli [39]). Moreover, as a further step,
we aim to insert into the dynamics a stochastic term
to simulate the random search of root tips and unveil-
ing how the root’s need to explore and exploit the soil
affects the motion pattern.
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Appendix A. Variables and dimensions

In the table Al the parameters of the model are
reported. To convert dimensional values in dimen-
sionless numbers, we have used the following refer-
ence values: T* = 60s,L* = 10 cm, M* = 1 kg. The
parameter \;(k, k™) (used in the equation for the
drag acceleration aq) is measured in [s7!]. It is the
inverse of the characteristic time T° [s]. To describe
the meaning of the characteristic time, let us assume
a cylinder (of height h and diameter d), with verti-
cal initial velocity vy = (0,0, —vp3), immersed into
a given soil without any control u. The dynamics
for the third component of the velocity will be 3 =
—ag = =\ (k k™) v; = —v3/TC and, thus, v;(f) =
o3 exp(—t/T¢). Therefore, T is the time necessary
(according to the soil density) to have v(T¢) = vyse !
(equivalent to a reduction of 63.22% of the initial
velocity). By fitting data in [23], we obtained

A2 (k, k™) = max {0, 39.75 % _ 23.85} 10° [s7'].

kmax

The dimensionless value will be \,(k, k™) =
max {0, 238.5(k/k™>) — 143.1} 10°. For example,
when k = 0.38, it results A\, = 13.25 x 10* s~! and
TC¢ =7.55 ps.

As a remark, since we built our formulation on
the experimental data and the analysis of the physical
model obtained from [23], instead of using a coeffi-
cient of porosity (¢) we used a coefficient of density
(k in our notation). Anyway, the two coefficients are
connected by the relation ¢ = 1 — Z—E with p,, the bulk
density (in our case p, = k = 0.38,0.4,0.42) and Pp
the particle density, since in [23] the soil was dried and
voids between particles were filled with air.

Finally, let us note that if A™ =1 and the soil
is maximally compacted (namely, k = k™), then the
soil cannot be penetrated, since, regardless of the
dynamics, one has (1 — A(¢#)) = 0 and the speed of
the device will tend to 0. The condition A™™ =1 is
reasonable in the case in which one is studying the
plant root evolution in those soil conditions in which
the root growth strength cannot overcome the soil
strength [3]. On the other hand, the case of A™* = 1
is not interesting to study the effects of circumnu-
tation in compacted soils (section 4.1). Therefore, as
reported in the table Al, we have chosen to restrict
our study to the case in which A™ < 1. This kind
of condition is more interesting for our study since
we are interested in the root growth evolution when
growth can occur.
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