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Abstract

We prove the existence of a L%-normalized solitary wave solution for the Maxwell-Dirac equations in (3+1)-Minkowski space.
In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we
prove the existence of the (positive) energy minimizer.
© 2021 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

The Lagrangian for a charged, spin—% relativistic particle (here i = ¢ = 1) interacting with its own electromagnetic
field is given by

_ 1
L=VY(iy"D, —m)¥V— — FH*Y,
iy" Dy —m) Tom v

where we use the four-vector notations, wu, v € {0, 1,2, 3} and repeated index summation convention, with metric
tensor g"¥ = diag{1, —1 — 1, —1} used to lower or raise the Lorentz indices. y* are the 4 x 4 Dirac matrices given

o_ (L, 0 r 0 ot . .
by y¥ = and y* = I3 ,k=1,2,3, and oy are the 2 x 2-Pauli matrices
0 -1, —o 0

G (01 (0 =i\ (1 0
“\1 o) 27\ o) PT\=1 o)

* Research partially supported by MIUR grant PRIN 2015 2015KB9WPT, “Variational methods, with applications to problems in mathematical
physics and geometry”.
E-mail address: nolasco@univag.it.

https://doi.org/10.1016/j.anihpc.2020.12.006
0294-1449/© 2021 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2020.12.006&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.anihpc.2020.12.006
http://www.elsevier.com/locate/anihpc
mailto:nolasco@univaq.it
https://doi.org/10.1016/j.anihpc.2020.12.006

M. Nolasco Annales de I’Institut Henri Poincaré — Analyse non linéaire 38 (2021) 1681-1702

W is the Dirac spinor taking values in C* and W = W¥y? is the Dirac adjoint, with W' the hermitian conjugate of
W; m > 0 is the particle’s mass, D, = 9,, +ieA is the gauge covariant derivative, with e the particle’s charge (e < 0
for the electron) and A* is the electromagnetic 4-vector potential. F,, = 9, A, — 9, A, is the electromagnetic tensor
field.

The Euler-Lagrange equations in the Lorenz gauge (9, A* = 0) are given by the Maxwell-Dirac equations

(iy"*oy —ey*A )Y —m¥ =0

. (MD)
9,0" Al = dgr jH

where j* = e Wy"W is the conserved Dirac current ( duj* =0). We look for solutions of (MD) stationary in time,
localized and L2-normalized in space, called solitary waves, and which can be seen as representations of the extended
particles. Numerical evidence of the existence of solitary wave solutions of (MD) was obtained in [13]. The first
proof of the existence of solitary waves is given by using variational methods (a linking argument) by M. Esteban
V. Georgiev and E. Séré€ in [8]. They proved the existence of stationary solutions W(z, x) = it Y(x), for any w €
(0, m), with ¢ smooth, and exponentially decreasing at infinity together with all its derivatives. This result was later
generalized to any w € (—m,m) in [1], using an axial symmetry ansatz on the class of solutions. Recently in [3]
the authors prove the existence of solitary waves using a perturbative approach. In fact they prove the existence of
a small amplitude stationary solution which bifurcates (via Implicit Function theorem) from the ground state of the
Choquard’s equation (see [11]). Let us remark that both the variational approach used in [8] (and also in [1]) and the
perturbative approach used in [3] do not provide solutions with prescribed L?-norm. Aim of this paper is to find one
such L?-normalized solution. We use a different variational characterization for critical points of the energy functional,
inspired by the one used to characterize the first eigenvalue of the Dirac operators with Coulomb-type potentials (see
e.g. [7], also [6] for an application in the nonlinear case) and we use of concentration-compactness-type arguments
(see [12]). Note that in [6] the presence of an attractive external Coulomb potential (the dominant focusing term)
allows one to recover compactness.

Let us also quote the article [2] where the authors study normalized solutions for a different problem which also
has a strongly indefinite structure. In that paper the authors use a penalization method in the spirit of [9].

Our main result is the following.

Theorem. There exists w € (0, m) and ¥ € H'/2(R3; C*), with ||w||i2 =1, such that

WO, x) = e Y (x)
A0, x) = A*(x) = e(y Y, YY) s *
is a solution of (MD).

(1.1)

As already mentioned we prove this result by using a variational characterization of critical level of the energy
functional introduced for the first eigenvalue of Dirac operators. Indeed let A = (AO, A), with A = (Al, A2, A3),
be the four-vector potential A*, clearly A% = A and A% = —A;, (k=1,2,3), and let denote B = yo and o =
(ol o?, 013), with of = yoyk (k=1,2,3). Then (¥, A) is a L?-normalized stationary solution of (MD) of the form
(1.1) if (¥, ) is a solution of the following (nonlinear) eigenvalue problem

(foe-V—mpB)y —eAgy +ea- Ay =0
Ao =elyP s A) =e W, ay)cs * oy (Ew)
lyll7, =1.

We look for solutions of (E£,,) as (constrained) critical points of the functional
e / Py X)py (¥) = Jy &) - Iy ()

2 lx =yl

L) = [ 0. DY) - xdy
R3 R3xR3
where D =ia -V —mp and py = | |? and Jy = (¥, ), on the manifold

T={y e H'P®R.CY : [yl =1}.
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Note also that in the units we choose (4 = ¢ = 1) the coupling constant e2 is, as a matter of fact, the dimensionless
2 . . . .
fine structure constant 7 ~ 13% The functional Z,,,, is strongly indefinite and presents a lack of compactness. Indeed,

the operator D = i - V — mp is a first order, self-adjoint operator on H'!(R3, C#) with purely absolutely continuous
spectrum given by

o (D) = (—00, —m] U [m, +00).
Let A1 (D) be the two infinite rank orthogonal projectors on the positive/negative energies subspaces, then
DAL (D)=A1(D)D =+v/—A+mAL(D)=+A(D)V—A+m,

hence for ¥ € H'/2(R3; C*) the operator form is given by

/ W, DY)cs = =2 +m) AL (DWW IE, — I(=A +m) A (D),
R3
and we denote X4 (D) = AL(D)H/2(R3; CH.

In fact we prove the existence of the L?-normalized solitary wave solution of (MD) by means of the following
variational characterization.

Theorem 1.2. Let define

E= inf sup Z,,,(®)

WCX1 (D) peweX (D)
dmW=1 " g 2=1

then E € (0, m) and it is attained, namely there exists ¥ € X such that L,,, () = E. Moreover, there exists w € (0, m)
(Lagrange multiplier) such that

dZ,,,(¥)[h]l=2wRe(Y|h)2,  Yhe H*(R3, CH
that is (Y, w) € H'/2(R3, C*) x (0, m) is a solution of (E,)) and
W0, x) = ey (x)
A0, x) = A*(x) = ey, Y * ) ce ¥ g
is a L?-normalized solitary wave solution of (MD).

In addition, E is the lowest positive critical value of the functional L, , on X.

As a byproduct of the proof of Theorem 1.2, we obtain also an interesting result for the Coulomb-Dirac model,
describing fermions with attractive Coulomb interactions and that can be viewed as a semiclassical approximation of
the (relativistically invariant) polaron model. We refer to [4] for a detailed discussion of this model and its solitary
waves and to [1] for a multiplicity results of (not normalized) stationary solutions.

Denoting H = —ia - V + mB = — D, note that this is the operator usually called the (free) Dirac operator, clearly
A4+ (H) = Ax(D) and X4 (H) = X+ (D), then we have the following result.

Theorem 1.3. There exists w € (0, m) and ¥ € H'/?(R3; C*) solution of

(—ia-V+mB)y +eAogy =0y

Ag(x) = —e |y * o (1.4)
IWI2, =1.
Moreover,
Lop(f)= inf sup I.p(@d)=Eec0,m),

WCX(H) peWeX_(H)
dimW=1"" gl 2=1
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where

2 2
2 / P~ ()] (y)dxdy.

lx — ¥

Lo, @) = [ 6. H)c: — ¢
R3 R3xR3
In addition, E is the lowest positive critical value of the energy functional I ,.
Let us mention a related result obtained in [10] where the authors prove the existence and orbital stability for the

L?-normalized, solitary wave solution, minimizer of the energy functional for the pseudo-relativistic model describing
bosons with attractive Coulomb interactions.

2. Notation and preliminary results

From now on we take m = 1. We denote by i or F () the Fourier transform of u, defined by extending the formula

—/e*ip'xu(x)dx, for u € S(R?).

We denote

(F18) e = / P12+ 1(F (). 8(p)) dp
R3

the scalar product in H 1/2(R3, C*) with (-, -) the hermitian scalar product in Cc*.
Let H = —ia - V + B be the (free) Dirac operator, in the (momentum) Fourier space we have the multiplication
operator H(p) = FHF ' =a - p + B which, for each p € R3, is an Hermitian 4 x 4-matrix with eigenvalues

rM(p) =r2(p) = =23(p) = —ha(p) =/ IpI* + 1 = M(p).

The unitary transformation U (p) which diagonalize H( p) is given explicitly by

U(p) =uy(p)ls+ u_(pw%”

U™ (p) = us(p)s — u—(p)ﬁ% — Ui (p)

withui(p) = ,/3(1 £ T‘p)). We have

U(pH(p)U™ (p)=r(p)B=/Ip+18.
Hence the two orthogonal projectors A+ (H) on L?(R3, C*) are given by
1
As(H) =2 F'U(P) " Ma £ HUPF. (2.1)
We denote X+ (H) = A (H)H'/?(R3; C*). Clearly we have A+ (H) = A+(D) and X4 (H) = X+(D).

It may be useful consider the Foldy-Wouthuysen (FW) transformation (see e.g. [14]), namely the unitary transfor-
mation Uy, = F ~1U(p)F. Note that under the FW transformation the projectors A (H) become simply

FW) 1
AH)y " = U Ax(H)U) = S £ B). 2.2)
Note that A(D)Y " = 1(I4  B).
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We consider the smooth functional Z: H'/2(R3, C*) — R given by

IO =¥ l30 — 1-11312 —

f / Py () oy (¥) — Ty (x) - Jy ()

2 lx — ¥l
R3xR3

where Y. = AL(D)¥, py = |¥|* and Jy, = (¥, at)).
The Frechét derivative dZ(¢) : H'/>(R3, C*) — R is given by
dZ(Y)[h] =2Re(Yr4|hy) 12 — 2Re(Y—|h—) g2

el f pw(x)Re(w,h)(y)| - le(x) -Re(y, ah)(y) Jxd
xX—y

R3xR3

forany h=h, +h_ e H/2(R3, C*), with hy € X1 (D).
Clearly (Y, w) € HY2R3,C* x R is a weak solution of (E,,) if and only if

dZ(Y)[h] =w2Re (Y|h);2, Vvhe H'/2(R3, C%).

Hence we look for (constrained) critical points of Z on the manifold
T={yeH'P®R,CY : lyl3, =1}.
Remark 2.3. Let us recall the following Hardy-type inequalities:

Hardy: |||x|"'y[3, <4|Vy |3, forall y € H'(RY);
l .
Kato: |||1x|72v(1%, < yk [I(—A) /4|12, forall y € H'/2(R3), with yx = %.

Let us remark that e?yg < 81_7'

dxdy

In view of Kato’s inequality for any p € L'(R?) and v € HY/?2(R3, C*) we have

/(p* Y3y < yrllpllp (=M 4|2,

Remark 2.5. Since ]-'[ﬁ] = \/g#, forany f € L' N L3/2 we have that

> 0.

f(X)f(y)d dy = 4 /Ifl (),

lx — yl
R3xR3

Hence in particular

/ T Iy 4y ay > 0.

lx — ¥l
R3xR3

Moreover since |Jy | < py for any € H'2(R3,C*), we have that

oy () oy (¥) — Jy(x) - Ty ()
lx — ¥l

dxdy > 0.
R3xR3

Moreover we have the following useful result (see the Appendix for the proof).
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Lemma 2.9. For any ¥ = Yy + ¥_ € %, let define w = wfiﬁ we have
L
/ Py (X) py () — Jy (x) - Jw(y)dxdy . f Puw (X) pu (y) — Ju(x) - Jw(y)dxdy
lx — ¥l lx =yl
R3xR3 R3xR3

=8y (1wl — lwll72) = 10yk (V-7 1wl + 1¥—11%,12)-

11l 2 FW

Moreover, if ve H'(R3, C?), with ||v||i2 =1, and Ve -l (2) we have

/ Py () py (¥) — Jy (x) - Jw(y)dxdy - / pv(x)pu(y)dxdy

lx — ¥l |x — I
R3xR3 R3xR3

=8y IVoll72 — 10y (1Y 172100502 + V- 117,12)-

Finally we recall the following convergence result. Let v € H'/2, f,, g,, h, bounded sequences in H'!/? such that
one of them converges weakly to zero in H'/2, then we have (see for example [5, Lemma 4.1])

/ [ fulCO1gnl ) W) |n] (¥)
[x — I

dxdy — 0, asn — —+00. (2.10)
R3xR3

3. Maximization problem

We introduce the family of functionals Z" : H'/2(R3,C*) — R, with m € (0, 1],

8 — Jy(x) T
L L el B

xdy,
R3xR3
where V4 = A4 (D)Y, py = |¥|* and Jy = (¥, a). Clearly Z =TV,
Our first step will be to maximize the family of functionals Z" on the space
Xy={yeT|yrewW}

where W C X (D) is a 1-dimensional vector space.
The tangent space of Xy at some point ¥ € Xy is the set

TyXw={heW®X_(D)|Re(y|h) ,=0}

L2
and Vy,, 7 (m) (4r), the projection of the gradient VZ™ (v/) on Ty Xw, is given by
Re(Va, I (W)Ih),,, =T () [h] — 20 (§) Re(y |h)

forallh € W @ X_(D) and w(yr) € R is such that Vx,, Z™ () € Ty, Xw.
Let us introduce

Ty ={weXuD) | wl}, =1},

then, from now on, we characterize the 1-dimensional vector space W C X1 (D) as W = span{w}, with w € ..
We begin giving a result on Palais-Smale sequences of Z("™ on Xy, in particular we prove that the Palais-Smale
condition holds on Xy for Z™ at the positive levels.

Proposition 3.1. For any w € % and for any m € (0, 1], let {{,} C Xw be a Palais-Smale sequence of I on Xy,
that is

M () — ¢ and ||V, Z™ W)l s — 0, as  n— +oo.
Then,
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() {Yn) C Xw is bounded in H'/?;
(i) @(Yn) is bounded and liminf,_, | w(¢n)(||(1ﬂn)+”iz - ||(¢n)7||iz) > 0;
(iii) If ¢ > 0 than liminf,_, 4 oo @ (¥,) > 0 and {Y,} is pre-compact in H/2,

Proof. (i) Since {(¥,,)+} C W and ||(1/fn)+||i2 <1, we have (V) 4+l g2 < llwl g1/2. In view of (2.8) we have

I () < W) 41312 = 1 @) —115;12
hence we get [|(¥n)— 17,12 < w310 = I (W) < i3, — ¢+ o(D).
(ii) Since
1
0 (W) +0(1) =5dZ" W) [Yn]

:I(m)(wn)_mi / p'//n(x)plﬁn(yﬁ_']lﬁ'n(x)'Jl//n(y)d
X =Y

> xdy

R3xR3
by (2.4) and (2.8) we have
e? 2
M W) = m vk [¥nllzp e < @Wn) < W),
Then since {1} is a bounded sequence in H'/?> we conclude that w (1) is a bounded sequence. Moreover, we have

o(1) =dT"™ W) [(¥w)+ — Wn)-1 = 20 W) W)+ 172 — 1) =117 2)
and since Re(Y4 + ¥—, ¥y — ¥_) = |4 |? — |¥_|? again by (2.4) and (2.8) we get
oW (W) 4172 = 1 W)= 122) +0(1) = (W) 13,15 + 1) 113,12

2 _ 2
SRy GG (AR ARG
|x =yl

R3xR3
bt [ ) Rl al)s) - Re)- )0,

. lx — yl

2
= 1)+ + 1)y~ 2 [ ‘””(xf)'c(f”y)r' O dxay

R3xR3
> (1= 2>y W)+ 1312 + 1 W)= [112 > 1 — 2%y

(i) If ¢ > O clearly [|(¥n)+ 113,12 = (¥n)- 13,1, for n sufficiently large, and by (2.4) we have

1
Wl W) 172 +o(D) = ZdZ W) [(Yn)+]

oy, (X)) Re(Wry, () 1) () dxdy
lx — ¥l

=) 113,12 — me?
R3xR3
) Ty ) - Re(Yn, ) DO) ;o

+ me
lx — vl

R3xR3
> W)+ 13512 — 262 vk W | g2 1| () -l 2
> (W) 1702 — 4k (W) 411712 = (1= 42yl W)+ 1312

Hence we get w () > (1 — 4e?yk) +o(1).
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Since {(¥,)+} C W clearly (¥,,)4 — 4 in H'/? (up to subsequence), moreover (y/,)— — y_ weakly in H'!/?
(up to subsequence) and since liminf,,_, oo @ (¥,) > 0, we have

1
o(1) = =2dI™ W) (Yn) - = V-1 + o W) | W)~ = ¥ I

Py — Ty DO W)= — Y- [2(y)
lx — yl

> (Yn)— = Y—ll312 + me? dxdy + o(1)
R3xR3
> (W)= — Y- lI312 +o(D),

and we may conclude that also (y,,)_ — _ strongly in H'/2. O

It turns out that all the critical points of Z™) on Xy at positive levels are strict local maxima. More precisely we
have the following result.

Proposition 3.2. For any m € (0, 1] let "™ e H'/>(R3; C*) be a critical point of I™ on Xy at a positive level,
that is dZ™ (") [h] — 20 (Y ™) Re(y ™ |h) , =0 forany h € W @ X_(D) and T (™) > 0. Then there exists
8 > 0 such that

12
d*T (Y "y h) = 20 () )13, < =8lhl3 0. YhE Tym X,

Hence in particular ™ is a strict local maximum of ™ on Xy .

Proof. Since ZU (™) > 0 then by Proposition 3.1-(iii) we have that w(y ) > 0. By the U (1)-invariance, a
critical point ¢ € Xy (up to a phase factor) has the following form ¥ = aw + n with a =a(n) = ,/1 — ||77||i2
and n = _. Now, any h € Ty, Xy takes the following form: h =da(n)[§]w + & with & € X_(D), and da(n)[§] =

—a~'Re(n|€) 2. We have
> W) [h; ) = a~ da()[€1d* T () [y (da(m)[E]w — a~ da(m)[E]n)]
+2d*T" (Y)[da(m)[E1w; €1+ a2 [dam)E1Pd>T™ () [n; n) + d*T™ () [E; &1.

Since d?Z" (y) : H'/2(R3,C*) x H'/>(R3?, C*) — R is given by
d*T (Y)[h; k] = 2Re(k |hy) iz — 2Re(k_|h_) 12

pw(X)Re(h,k)(y)f Jw|(X)-Re(h,0tk)(y)dxdy
X =Yy

—2me?

R3xR3
Amel Re(yr, h)(x) Re(¥, k) (y) — Re(yr, ah)(x) - Re(yr, ak) (y)
— 4me = dx

dy,
R3xR3

we have in particular
d* T (Y)Y h] =2dZ" (Y)[h] = 2Re(Yry |hy) iz + 2Re(y_|h_) iy

py () Re(r, h)(y) — Jy (x) 'RC(I//,ah)(y)dxdy
Ix — yl '

— 2me?

R3xR3
Then, since |da(n)[£]]> = —a~'da(n)[E]Re(n|€) ;2 and h = da(n)[£]w + &, we have
a~'da(m[E1d* " (W)[¥r; (da(m)[Elw —a~ da()[£]n)]

=40 W) da([Elw|7, — 4o ()lla™ da(mElnl,
=2l da)ETwll3, . — 2lla” dam)Elnl?,
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Py () puw (y) — Ty (x) - Juw(y) P
lx — ¥l

—omelda(mE]P f xdy
R3xR3
oy () py (y) — Jy (x) - Jn(y)d

+2me?a?|da(n)[£])?
lx — |

R3xR3
<o W)|1h)13, = 2ldaElw3, . — 2lla” dam)Eln]3,
Py () pw(y) — Jy (x) - Juw(y)
lx — yl

xdy

—2me*|da(n)[£]]?
R3xR3

dxdy

Py on(y) = Iy () - [y (¥) |

+2me*a=?|da(n)[£])?
|x — y]

R3xR3

xdy.

Finally we get

d* T () [h: h] =200 117> < =2ldalE1wliF —2la” damI§1nl
— el / oy () pn (¥) — Jy (x) - Jp(y)
|x =yl

dxdy
R3xR3
2 2 2 2 2
+8eyk (ldaETw 3,2 + 1E11%1,2) — 2(1 = 262y 1€ 13,12
—2(1 = 2¢%yk) lla™ ' da(m)EIlI3; 2
< —2(1 —4e’yg)lda(Elw3,, — 2(1 — 62y & 113,12
—4(1 = eyg)lla~ damElnlZ 2 < =200 — 62 yg) [Al13,12. O

For any w € X4 and m € (0, 1] we consider the following maximization problem
Aw(m)= sup I (). 3.3)
YeXy

We have the following estimates on Ay (m).

Lemma 3.4. For any w € ¥4 and m € (0, 1], we have

2 2
€ €
(1= v) = (A =m—yOllwlize < Awm) < 1wl (3.5)

Proof. Clearly Ay (m) = supycx,, Z" () = Z" (w) and by (2.7), (2.4) we have

e? f Pw(X) pw (y)

I (w) > [wlf31, — m= Ix —yl

5 dxdy

R3xR3
2 2
€ €
> (1=m—yOlwlifpe = (4= S vk) >0,

Moreover, by (2.8) we have Z () < ¥4 1I3,12 < |3, for any ¥ € X, thatis Aw (m) < [lwl|3,,,. O

In view of all the above results we completely solve the maximization problem (3.3), more precisely we have the
following.

Proposition 3.6. For any w € ¥ and m € (0, 1] there exists, unique (up to a phase factor), "™ (w) € Xy, the strict
global maximum of T on Xy, namely

Z0 (™ (w)) = sup ™ (Y) = Ay (m).
veXy
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Moreover, we have

dZ™ (y ™ (w))[h] — 20 ("™ (w)) Re(y ™ (w)|h) 2 =0  Vhe W X_(D)

and

@) 0 <w@™ W) < iw(m) and ||w(m><w> 12, > 1y )2,
i) 9 )12, — ||x/f<’“>(w>||,,./2 >
i) 19" I <mS yrlwly a0
(iv) the map v € X1(D) \ {0} — %™ (P (), with P(v) = [v]| ;v € =4, is smooth.

Proof. Existence: Since, by Lemma 3.4, Ay (m) > 0, by Ekeland’s variational principle, there exists a Palais-Smale,
maximizing sequence {l/fnm)} of T on Xy, at a positive level. Then, by Proposition 3.1, w,(,m) — ™ in H1/2 (up
to subsequence), o (¥,"™) — (¥ ™) > 0 and ||1/f('") 112 7> [l ™) ”22' Therefore we conclude that

M@ ™) = sup T (W) =hw(m)
veXy

and

dZ™ (™) [h] = 20 (Y ") Re(¥ ™ |h),;2 =0  Yhe Wd X_(D).
(i) Note that
0<wy™)= %dﬂm)(t/f(m))w(’”)] <T@ ) =hw (m).

(i1) Since by the U (1)-invariance, we can assume that

1
v =y = (= ) 2w

(up to a phase factor), with w = H*/Kﬁ € X, then, since we have
L
2
- J, -J,
I(m)(w(m)) 2 ”,w”%_ll/2 _me_ / Pw(x)Pw()’) w(x) w()’) dxdy,
2 |x — ¥l
R3xR3
by Lemma 2.9 we get
11200 = 1™ 12,0 = 1= wli . — wl?
2 _
PO (X) Py, my (V) — Jypom (X) - Ty ()
+me— / i oty v ym?y dxdy
2 lx — ¥l
R3xR3
e? Pw(X) pu () = Juy (x) - Jyy ()
—m— dxdy
2 |x — ¥l
R3xR3

2 2 2 2 2
> w22 — lwl?s — 4meyk (w2 — lwl22)
—sme?yk (10 12 1wl + 1w 12,0).

>(1 = 9me?y) (w312 — wl3,)

+5meyk W 1202 = 1120 = D

since (1 — Sme?yk) > (1 —9meyg) > 0 we may conclude that
1 120 = 112, — 1 > 0.
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(iii) Since
e’ 2 (m) (1, (m) (m) 12 (m) 12
(1_m?VK)||w||H1/2 =T W) = Iy ||H1/2_||¢7 ||H1/2

2 (m) 2
<lwli3 — 113,
(m) 2 2 2
we getalso [y 12, <mSykwl?,,.

Uniqueness: Suppose we have two different maximizers wfm), 1//2('”) € Xw. We use the Mountain Pass Theorem to
reach a contradiction. Indeed, we consider the set

I —{y:[0,1] = Xw |y O = ¢, y() =y}

and the min-max level

™ = sup min Z" (y (1))
yer(m)te[o,l]

We have ¢™ > 0, indeed, by the U (1)-invariance, let 1//1('”) =a(n)w + n and wz(m) =a(m)w + na, with ny, 3 €
L.

X_(D)anda(n;)=(1— ||77i||iz)7 (i =1,2),define n(t) =tn2+ (1 —1)n1 € X_(D), then g(t) = a(m@))w +n(r) €

rom,

Since a(n;)? > % and by (iii) we have ||n; ||§1,1/z < m%yK ||w||§_11/2 (i =1, 2), then for any 7 € [0, 1] we have

2
IO (g(1)) = atn)wl2s — 00130 — m f Ps0 P50

2 lx =yl
R3xR3
e? e?
2 2 2
>(1 —miyk)a(n(t)) lwllg. — A +mEVK)||TI(f)||H|/2
2 2
e 22 e 2
= —m > y)tam)“ lwly, — A +m > YEOtIn21l512

2 2
(&) €
+ (1 =m =yl = Ham)* w3, — A +m =y =Dl 13,172
2 e2 2

€ €
> =m—yO)lwlge = (L +m—yOm—yelwii

1 2 2
Zi(l =2 yr)llwlly2 >0,

hence in particular we get ¢ > miny (o, 1] ZM (g(1)) > 0.

By Propositions 3.2 and 3.1-(iii), we may conclude that ¢ is a Mountain pass critical level, and that there is
¢ e Xy, a Mountain pass critical point for Z" on Xy, with 0™ (¢") = ¢ > 0, namely a contradiction with
Proposition 3.2, since a Mountain pass critical point cannot be a strict local maximum.

(iv) To prove that the map v — ¥ ™) (P (v)) is smooth we use the Implicit Function Theorem. Fix wo € £ and let
Y™ (wo) = a(no)wo + 1o be the unique maximizer (up to a phase factor) of Z("™) on Xy . Let V. C X (D) \ {0} and
U C X_(D) be, respectively, the small neighborhoods of wg and 79, such that for any (v,n) € V x U and, setting
¥ =a(n) Pw)+n, witha(n) = (1—n)2,)"/?, wehave 0], < 3, I (%) > 0and [n]%,,, <meyx [P35

We consider the smooth maps FM .V xU— L(X_(D)) given by

F (v, )[]1=dZ" (a(n) P(v) + mda(m)IE]P ) + &]
for any & € X_ (D). Clearly, we have P(wg) = wo and F™ (wq, ng) = 0.
The operator an(’")(wo, no) : X—(D) - L(X_(D)) is given by
(dy F™ (wo, no)[EDIK] =d*Z (¢ ™ (wo))[da(no) [ Two + &; da(no)[k]wo + k]
+dI" (" (wo))[d*a(no)[&: klwo] V& k€ X_(D)
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To prove that d,F ) (wg, no) is invertible we apply the Lax-Milgram theorem to the quadratic form Q™ :
X_(D) x X_(D) — R defined by
QIE; k] = —(dy F"™ (wo, no) EDIK].

Note that, since

dZ™ (™ (wo))[d*a(no)[€; £ 1wol = 20 (¥ ™ (wo))a(no)d*a(no)[£; €]
= 20" (wo)) (|da(o)[E11* + [£]13,).
setting h = da(no)[E]wo + & € Tw(m(wo)XW’ we have

QUM[&; &1 = —(dy F™ (wo. no)[E])[£]
= — (@I (" (wo)[h; h] — 20 (Y™ (wo)) [ 2]17).

In view of Proposition 3.2, there exists § > 0 such that Q" [£; £] > §||& ||§{1/2 for any £ € X_ (D). Hence, by the Lax-

Milgram theorem we may conclude that for any f € L(X_(D)) there exists unique k € X_ (D) such that 0Mk; &=
fl&] for any & € X_ (D), namely such that d, F (m) (wo, no)[k] = — f . Finally, by the Implicit Function theorem, there
exist Vo € V and Uy C U, neighborhoods, respectively, of wg and no and a smooth map n(m) : Vo = Up such that
F (v, ™ (v)) =0 forall v € Vo, that is, ™ (P (v)) = a(n™ (v)) P(v) + 1™ (v) is a critical point of Z™ on Xy,
with W = span{P (v)}, at a positive level. Then, by Proposition 3.2, "™ (P (v)) is a strict local maximum of Z"™ on
Xw.

Again by a contradiction argument, applying the Mountain Pass theorem as above, we may conclude that for any
v e Vg, ¥ (P (v)) is the unique maximizer (up to a phase factor) of Z™ on Xy, with W = span{P (v)}.

Moreover, we have that for w € ¥, dy ™ (w) : X1 (D) — X (D) is given by

Ay (w)[h] =a(y— (w))d P(w)[h]
+da(—(w)ldy—(w)ld P(w)[h]l]w + dy—(w)[d P(w)[A]],

where dy_ (P (v))[d P (v)[A]] = dn"™ (v)[h] and
dn™ )k = =(dy F (0, 0" @) [dy F™ (0, 0™ @D, Vhe X4 (D). D
4. Proof of Theorem 1.2
In view of the results of Proposition 3.6 we consider the smooth functionals £ m . X (D) \ {0} - R, for any
m € (0, 1], given by

EM () =T (™ (P(v))) = sup M (y),
YeXy

where W = span{w}, with w = P(v) € ;. We set £ =ED and ¥ (w) = v (w).
For any w € X we have
d&(w)h] = dZ( (w)[dy (w)ld P(w)[A]]],
and, setting k =d P(w)[h],

dyr(w)[k] = a(Y—(w)k +da(Y—(w))[dy— (w)[k]]w + dy—(w)[k].

Since da(Y—_(w)[dy—(w)[kllw + dy_(w)lk] € Ty@w)Xw, in view of Proposition 3.6 we get d&(w)[h] =

dL(y(w))la(¥—(w))d P(w)[h]].
Therefore, since d P(w)[h] = h — wRe(w|h) 2, we get

dE(W)[h] =dZ(Y (w))la(f—(w)h] — dZ(Y (w))a(Y—(w))w]Re(wl|h) ;2
=dZ(y (w))[a (Y- (w)h] — 20 (w))aW—(w))* Re(w|h) 2
=a(y—(w))(dZ(Y (w)[h] — 20 (w)) Re(yy (w)|h)2)
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for all 1 € X (D). Since the tangent space of X at w € X is the space
TwX4={he X (D)|Re(wlh)2=0},

and d€(w)[w] =0, clearly X is a natural constraint for £. Therefore we may conclude that if w € ¥ is a critical
point for £ then ¥ (w) = a(¥_(w))w + ¥_(w) (as given in Proposition 3.6) is a critical point for Z on X, namely

dZ(W (w)[h] — 20 (w) Re(y(w)lh) 2 =0,  VYhe HV*(R? C*).

For any m € (0, 1], we define the minimization problem

em)= inf sup I ()= inf £ (w), (4.1)
WCX+ 1/fEXW wEE+
dim W=1

and E(m) =me(m), clearly E = E(1) = e(1).
We have the following estimates on e(m).

Lemma 4.2. For any m € (0, 1] we have 0 < e(m) < 1.

Proof. By Lemma 3.4 we have Aw (m) = supy ¢, M () > (1 — %yK), hence in particular we get e(m) > (1 —
%VK) > 0, for any m € (0, 1].

Now, since A4 (D) = %UFTNI (I4 — B)U,y, , we consider w = UF_W1 <S) € X, ,withve H'(R3,C?) and ||v||%2 =1.

In view of Lemma 2.9, since w3, = [v]13,12 and 0 < [[w]|3,,,, — [w]7, < %nvpn’iz, for any ¥ € Xy we have
2
e Py (X) oy (¥) — Ty (x) - Ty (¥)
I ) =1 1200 = 1V 130 — m— LA VY dxdy
" " 2 lx =yl
R3xR3

2 2 2 2 2
S”U)”Hl/z - ||w||Lz - ||1/f—||Lz||w||H1/2 - ||W—||H1/2 +1

e? / v (X) Py (¥)

—m— dxdy
lx =yl

2
R3xR3

+4me?yg Vo2, + Smeyk (V-3 w3 + 1¥—1312)

e? / PO

1
<+ =(1+8me’yg)|Vv|7, —m— xdy
2 lx =yl

2
R3xR3

— (1= 5me?yR) (Y-l 101302 + 1V=113,1,0)-

Now, for any € > 0 we consider v (x) = 63/2v(e|x|) and w, = U;WI (1? ) € X4, setting W, = span w,, then
€

e(m)—1< sup I (Y)—1<e(|Vo[|7, —€ | m

d
YeXw, 2 e

)

e’ / PO ()

lx — ¥l
R3xR3

hence, taking € > 0 sufficiently small, we may conclude that e(m) — 1 < 0. O

In view of the above Lemma 4.2 and thanks to the estimate in (ii)-Proposition 3.6 we have the following result,
essential to the discussion of the minimization problem (4.1) when using a concentration-compactness argument.

Proposition 4.3. E (m) satisfies the strict subadditivity condition
E(m) < E(m1) + E(m2),

for any m € (0, 1] and my, mp € (0, 1) such that my + mo = m.
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Proof. For any 6 > 1 and m € (0, 1) such that 6m € (0, 1], by Proposition 3.6-(ii), for any w € ¥, we have
0T (" w)) — 1) =0T YO w)) — 1) <> T (" W) — 1)

hence we get 8 (e(@m) — 1) < 6%(e(m) — 1).

Since by Lemma 4.2 we have e(m) — 1 < 0, we get 0%(e(m) — 1) < O(e(m) — 1), namely fe(6m) < Oe(m).
Therefore we may conclude that E(Om) < 0 E (m).

Then, for any m1,m, € (0, 1) such that m; +my =m € (0, 1], setting 6; = mﬂ,»’ then 6; > 1 and 6;m; =m € (0, 1],

since eiiE(Oim,') < E(m;), fori =1, 2, we may conclude that
Em)="LEm) + 22 E(m) < E(my) + E(my). O
m m

Now, by Ekeland’s variational principle, there exists a Palais-Smale, minimizing sequence {w,} C ¥, namely
E(wy) =Z(WY(wy)) — E and ||dE€(wy)] — 0, then by Proposition 3.6, the sequence v, = ¥ (w,) satisfies

“hHSUP 1 ldZ(Yn)[h] — 20 (Yn) Re(Yu|h) 2| — 0.
Hl\/2=

Since (1 — 4e®yg) + o(1) < w(Y,) < E + o(1) we have that w(¥,,) — » € (0, 1) (up to subsequence) and since
2
19— (wa)lI3,12 < S ¥k lwall3;,/, by Lemma 3.4 we have

H
e? 1+£)/K
L=1¥nllge < 1Wnllfpe < A+ ZvOlwlg, < lfiw +o(1)).
— 3VYK

Therefore {y,} is a Palais Smale sequence for the functional

L,(¥) =Z() — ol ¥ 7.,

satisfying
: 2 2
0< H’}f”lﬁn 12 = supl[¥nllyn < +oo.
n

By the classical concentration-compactness principle (see [12]) we have a precise characterization of the lack of
compactness of bounded Palais Smale sequences of Z,,, as given in Proposition 3.6 in [8], namely there exists a finite
integer p > 1, and ¢y, ..., ¢, € HI/Z(R3, (C4) non trivial critical points of Z,,, with ||¢; ”iz = m;, and p-sequences

{x,ﬁ} cR3 (@G =1,..., p)such that |x,"1 - x,{l — +oo (for i # j), and, up to subsequence,

p
lm =Y i =xDllgir—>0  as n— +oo, (4.4)

i=1

hence, in particular, 1 = ||y, ||iz =37 m;.
Moreover, by (4.4) we have

p
(Y — Y i = xDIWn) s — W) g2 = o(1)

i=1
Pup,,(x)(Wn(y)7 Yn(y) — ,P:l ¢i(y_x£l))
lx — ¥l

dxdy =o(l)
R3xR3
Ty (X) - @Y (), Y () — 0 i (v — x1))
[x =yl

dxdy =o(1),
R3xR3

then, since (¥,)+(- —i—x,’;) — (¢i)+ weakly in H'2 we get
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p
1)+ 32 = 1) N30 = (W = Y di (- — x| W) 4 — (Pn) ) g2

i=1

p P
Z Gl (W) + (- +x3)) 2 — Z ¢l (W) - +x3)) 12

P
=3 (1600+ 130 = @)= 132) +o(D),

i=1

and, by (2.10),

/ Py (X),Ow,l 6)) dxdy _ f Py, (x)(I//n(Y)a wn(Y) - 1¢l (y ))d d
Ix — yl lx =yl
R3xR3 R3xR3
P i iy b
n Z Py (X + X)) (Yn (y + x3), S (y))dxdy
" Ix =yl
"TIR3IXR3
_Z / Pg; (x)p¢,|(y)d dy +o(l),
]R}
analogously,
/ JI/’”(X)'Jw”(y)dxdy
|x =yl
R3xR3

_/ Ty, (X) - (@Y (0), YY) — 20 iy — ))dd
B lx — yl

p . .
Jy, x +x3) - (Y (¥ + x7,), @i ()
+Z =l dxdy

_Z / J¢,(x) Jtpl()’)d dy +o(1),
x =yl
=lp3y

which implies Z(y,) = > ;_ Z(¢i) + 0(1) and hence E = Zf:] Z(di).

Foranyi:1,...,p,wedeﬁnew,_ ”¢ ” > =%62thenwehave
IL 1

I(¢i) = T(mivpi) = mZ") ()
and
0=dZ,(¢)[h] = /m;(@I") (Y;)[h] — 2wRe(yi|h) ),  Vhe H'P(R?,CY),
namely, forany i =1, ..., p, ¥; € X is a critical point of Zi) on ¥, with the Lagrange multiplier w € (0, 1).
Now, we have the following result, interesting in itself.
Lemma 4.5. Let € X be such that
dZ™ (y)[h] — 2wRe(Y|h) ;2 =0, Yh e H2(R3, CY),
for m € (0,1] and w € (0, 1). Setting w = ”1//1//” S € Y4, then ¢ = Iﬂ(’")(w) is the unique (up to a phase factor)

maximizer of I™ on Xy, with W = span{w}, namely

I @) =T (™ W) = sup I (@) =™ (w).
peXy
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Proof. Clearly i € Xy and it is a critical point for Z(™ on X, moreover
(m) L)
W) z SdT™ W)Yl =w > 0.

Therefore by Proposition 3.2 we have that v is a strict local maximum for Z ) on Xy . Moreover, by (2.4) and (2.8)
we have

1
1312 20Ul = 19-1172) = SdZ™ W = Y1 = 1Vl + 1V -1
2 _ 2
e / Py W12 = W=

lx — ¥l
R3xR3
4 me? / Jy(x) - Re(¥y, avry) —Re(w—,aw—)(y)dxdy
RR> |x — y

oy () [P 12() J

=Yl + 101172 — 2me? / Ix =yl

R3xR3
>(1 = 2me YV 312 + 1V 15072

thatis [y |17, < 2me?yi ¥4 113,1-

Now, suppose that v is not the (unique up to a phase factor) maximizer of Z("™) on Xy, then, again by a contra-
diction argument, applying the Mountain Pass theorem, as in the proof of Proposition 3.6, we find a contradiction,
namely v = ¥ (w) and we may conclude that

xdy

IM @) =Z@W ™ (w)) = sup Z™ (). O
veXy

Now in view of Lemma 4.5, setting w; = % and W; = span{w;}, forany i =1, ..., p, we have that ; =
t L
W) (w;) (as in Proposition 3.6) and

M) ()= sup T (Y) =E™ (w;) > inf £ (w) = e(m;).
‘pEXW,- weXy

Therefore we may conclude that

P P P p
E=Y "T(¢) =Y mI™ (i)=Y mie(m)) =Y E(m)
i=1 i=1 i=1 i=1
a contradiction with the strict subadditivity condition in Proposition 4.3, unless we have p = 1, that is i, — ¥

strongly in H'/2, hence ||/ ||i2 =m;=1and

IW1)=E= inf sup Z(p).

WCX1 (D) pewaX_ (D)
dimW=1 " i) o =1

Moreover
dZ(Y)[h] —2wRe(y1|h) ;2 =0  Vhe H/2(R? C*),
namely (¥, w) € H'/>(R3, C*) x (0, 1) is a weak solution of (E,).

Finally, to prove that E is the lowest positive critical value of the functional Z on X, suppose by contrary that there
exists 0 < A < E and ¢ € X such that Z(¢) = A and
dZ($)[h] — 2uRe(plh)2 =0,  Vhe H'*(R? CY
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with u € R the Lagrange multiplier. Since A > 0 we have that i > 0 (see (iii)-Proposition 3.1) and clearly u < X < 1.

Then p € (0, 1) and, setting w = m € X4, we apply Lemma 4.5 to conclude that ¢ is the unique (up to a phase
L

factor) maximizer of Z on Xy, with W = span{w}, thatis A =Z(¢) = SUPy e Xy Z(y) > E, acontradiction. O
As a byproduct of all the previous results, with some minor changes, we obtain Theorem 1.3. Let us briefly list the
differences.

Sketch of the proof of Theorem 1.3. In the Coulomb-Dirac model the self-interaction is attractive, so that we for-
mulate the (nonlinear) eigenvalue problem using the operator H = —D. Clearly

As(H)=A+(D) and  Xi(H)=X(D),

then one follows the proof of Theorem 1.2 simply by exchanging the role of v+ with v+, indeed all the variational
arguments and all the lemmata proved can be carried out, with no other changes, to deal with the functional Z.,,. Note
that the term

/ Jy (x) - Jw(y)dxdy

lx — ¥l
R3xR3

is not present in the functional Z.,, this in particular implies that some of the estimates provided are in fact simpli-
fied. O
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Appendix A. Proof of Lemma 2.9

Lemma 2.9. For any ¥ =y + ¢¥_ € %, let define w = Wﬁﬁ we have
L
/ py () py (y) — Jy (x) - Jw(y)dxdy > / Pw(X) pw (y) = Juw(x) - Jw(y)dxdy
lx — yl lx —z]
R3xR3 R3xR3

=8y (1wl — lwll32) = 10y (V-7 1wl + 1V=11%,12)-

Vel 2 FW

Moreover, if ve H'(R3, C?), with ||v||i2 =1, and Yyl (2) we have

/ Py () py (¥) — Jy (x) - Jw(y)dxdy - / pv(X)pv(y)dxdy

lx — ¥l |x — ¥l
R3xR3 R3xR3

— 8y IVol122 = 10yk (11172 1015072 + Y= 11712)-

Proof. Forany v =y +¢¥_ € T with ¢y = (1 — ||1/f,||iz)1/2w, we have

/ py (X) py (¥) — Jy (x) - Jw(y)dxdy
lx — yl
R3xR3
w w - Jw : Jw

R3xR3
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Py (X)Re(@ry, ¥) () — Jm(X)-Re(WJr,O“/f—)(y)dxdy

+4
lx —yl
R3xR3
Py / Py (X)) py_(¥) — Jy (x) - Jy_ (y)dxdy
lx —yl
R3xR3
Py (X)py_(y) — Jy_(x) - Jy_ (y)dxdy
lx — ¥l
R3xR3
44 / Re(¥4, ¥-)(x) Re(¥4, I/L)(y)dxdy
|x — vl
R3xR3
4 Re(¢+70€K/f—)(X)Re(@/f+,Otlﬁ—)(y)dxdy
lx =yl '
R3xR3

hence by (2.4), (2.6), (2.7) and (2.8) we get

/ Py (D) py () = Jy () - Ty () / Pw () pw (¥) = Jw®) - Ju(y)

X — X —
. lx =yl RS lx =yl

— 27k V=32 lwli3 e — v N2 W= 13,2 — 4y V-l g2 W=l 2wl g2
4| / pw(x)Re(wA/L)(y)|_4| / Jw(x)~Re(w,ou/f7)(y)|

|x — yl |x — vl
R3xR3 R3xR3

~ 2YEwW FW 0

Since Ax(D) = LUy F B)Uyy,, we set w = U (S) and y_ = U] (”) with v, 7 € H/2(R3,C?) and

||v||%2 =1, in view of Remark 2.5 we have

| / pw(x)Re(wA/L)(y)dxdﬂ=(2n)g 2 = dp

lx =yl T

2 L/ Puw(p)FIRe(w, y)1(p)

R3xR3

2 FIR 7/

< Zlpulyy [ RSN,
g i

R3

2 (1 1 .
g/jf—z —3/|(w(p—q>,w_<q>)|dq dp.

) IplI* | @n):

R3 R3
Since U~ (p) = u+(p)la — u—(p)BTE with us(p) = /(1 + ﬁ,)) we have

(ﬁ)(p—q),lff—(q))=<U_1(p—q)(NPO_q)),U_l(q)(n(g)))

P—q
lp—ql

Fup(p— q)u_(q)lz—| (B(p — ). o1(9))

=—ur(Qu_(p—¢q) ~(a0(p —q),1(q))

=u_(p—us(p— )L~ —ur @)=Ly @i(p — ). 1(q))
lg] lp—q|

Fur(p—q)u—(q) —u_(p— q»IZ—| (B(p— ). 5H(q)).
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_lgl

> 2y Ve have

and, since u_(q) >

g~ e—9) - @)
u—(qg)+u—(p—q) ~ lqlrlp—q)+1p—qlr(q)
B llg> —1p —q|
~ (gqIx(p) +1p — qIM@) ((q) + A(p — q))
- |p|
T Mp—q@)+D2((g) + D/

lu_(q) —u_(p—q)=

Then we get

- i)l
AMp—q)+ 12 (M(g) + 1)2

G (p — ), V(@) <2u—(p — B (p — DIIA(@)] + | pl

and we obtain

w(x)Re(w, ¥_ 2 2 _ R
N (x)Re(w, ¥ )(y)dxdy|§\/i/—2]-' (7w pIsnF-1iin] 4
lx —y| 7 J |pl
R3xR3 RS
B Tl
Ipl (M(p) + 1)2 A (p)+1)2

Now by Kato’s inequality we have

2
o= / ol i U1 R ] dp=/—f”[u_<p>|ﬁ|]f*‘[|ﬁ|]dx
Pl g

Fu_(p)Io)]

1
|x|2

“an
1

|x]2

1,
<V2yk [(W(p) — D20 20l 112
L2

<2

L2

1 2 2 2
= vk Wiz = Iwlip2) + ve V=l

2 2 2
since [|(A(p) — 1)29)] o=l = 1007, = lwll,, — lwl,

Moreover, by Hardy s inequality we have

Gl Lo oo )

nR3 Ipl A(p)+ 12 A (p)+ 12

S it il
nR3 x| A (p)+1)2 A (p)+1)2

H2

L2 L;—l[ o] } L;—l[ il }
x| Ap)+ Dz ]2 | ¥ )+ 17 |12
8| Iplldl |plli]
<— - ol vk Alwli = lwlie) + ve -1,
AP+ D2 |2 | (p) + D2 | 2
~ 2 1
2Ll = (v (p) = D912, and yx = 5.

since

G413 |12

1699



M. Nolasco Annales de I’Institut Henri Poincaré — Analyse non linéaire 38 (2021) 1681-1702

Analogously we have

| / Re(w,ay)) - Ju®) ;1
lx — yl
R3xR3
:(zn)%\/z /f[Re(w,w/f_)](p) -2f[Re(w,aw)](p) i
T Ipl
3
2 FIRe(w,
S\/j”(w’(,“p_)ny FReCw@l(p)]
T 2 Pl

2 1 1 N N
S\/;”w”LZHw—”LZ/W —Q/I(w(p—q),aw(q))ldq dp,
& 7P ent),

and since

[(W(p —q), e (g)| < (uy(p—qu—_(q) +ur(@u_(p—g)V(g)v(p —q)l
<w_(q)+u_(p—g)o@llv(p —q)l,

then by Kato’s inequality we have
| Re(w, a—)(x) - Jw(y)d
x

dy’
lx =yl
R3xR3

<2ﬁnw-u z/if EaROI v (0] 2
SV P

R3

—1 A —1riA
SPYPARTN s CSOICIN] 1Ll

|x|2 L2 lx|2 L2

L.
<V2pkllAM(p) = D20) 2 Y-l 2 vl 12

1 2 2 2 2
= 5 vk Uwliye = lwiip2) + v =l 1wl .-

Therefore we may conclude that
/ Py () py (y) = Jy (x) - Jw(y)dxdy B / Pu@)Pw(Y) = Ju(¥) - Tu () ,

lx — ¥l [x — ¥l
R3xR3 R3xR3

> —8yx ([wll3,12 — [wl72) — 10y 1V—113,12 — 0¥k [Y— 22 1wl 2

xdy

Moreover, by [8, Lemma 2.1] we have that

/ P (X) pw (¥) — Sy (x) - Jw(y)dxdy . (w,ﬂw)(X)(w,ﬂw)(y)dx
|x — yl lx — yl
R3xR3 R3xR3

dy.

Fw
A (F Mu—(p)Er o0l (FHu—(p)h; -0 0]
(w’ﬁw)(x)_« F s (p)i) )( —F s (p)o] ))m

=|f—1[u_<p>% 0112 (x) — |F us (p)017(x) = 1P (x) — | 12 (x)

Now for w =U_! (S) with v € H'(R?, C?) and [[v]|7, = 1, we have
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where f =F '[uy(p)0] and & =]:_1[u,(p)ﬁ -0 0], then we have

(w, W) (w, pw)(¥) | / If|2(x)|f|2(y)dxdy

lx — yl lx — yl
R3xR3 R3xR3
2 2 2 2
n / €17 (x) €] (y)dxdy_2 / Lf17 ()& (y)dxdy
lx — yl lx — yl
R3xR3 R3xR3
2 2 2 2
> / L7l f] (y)dxdy_2 / Lf17(x)€] (y)dm,y
lx =yl lx =yl
R3xR3 R3IxR3
2 2
> / dedy—2yK||f||iz||é||§,1/z.

R3xR3

Moreover, setting x = F A = uy(p))dl, since f=v — x, by (2.6) we have
2 2 2 2
/’ IfI(XNfW(y)dxdy:: /’ IvI(XNvl(y)dxdy

lx =yl [x — ¥l
R3xR3 R3xR3
2(x)Re(v, 2 2
_4 /“ [v]=(x) EO’X)Odedy_%Z ]“ IfI(XNXI(y)dxdy
lx — ¥l lx =y
R3xR3 R3xR3
2 2
Re(v, Re(v,
/' IXI(X)IXI(y)dxdy_l_4 l/ e(v, x)(x) eﬁ)X)Odedy
lx — yl lx — yl
R3xR3 R3xR3
2 2 2 2
. /‘ IUI(XNvl(y)dxdy__ /' IXI(XNXI(y)dxdy
lx — yl lx —
R3xR3 R3xR3

2
4 ]" Ivl(x)Reﬁux)Odedy

lx — ¥l
3xR3

Since by Hardy’s inequality we have

| / [v]?(x) Re(v, x)(»)
lx — yl

dXdY| < 2||v||iz||X||L2||Vv||L2,
R3xR3
then, since yx = 7, by (2.4) we get

2 2 2 2
/‘ Ifl(fc)lfl(y)dxdyZ /‘ IvI(XNvI(y)dxdy
|x — y lx — yl

R3xR3 R3xR3
= v lxl2lx 52 — ;VKHX 21 Voll 2.

Moreover we have

p n A
1€ 13,12 =||x<p)”2u_<p)|“7| o 0[[13, = 1A(p) Pu—(p)113,

1 1
=5 Ul = 1v1Z2) < 7 IVoIlZ
and ”f”%z =< ||v||i2 =1. Since
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1 Ipl? 1
<u_(p)*<-———<—-|p|

“2x(p)+17-2

L—ui(p) _ u(p)?
l+ui(p)  1+ui(p)

we have [|x||2, < ;llv]?, = 1, but also

luy(p) =1l =

. 1
X172 =@+ (p) = DIz < FIVVIZ
and
113,12 =12(P) g (p) = DDIIZ, < 1) Pu_(p)112,
1

ZIVulZe.

1
=5 Ul = I3 <
Therefore, we may conclude that

/ (w, )W, f)) o / IfP@L )

dxdy — 2y |11,

= |x — |
R3xR3 ROxR?
o2 () v (y)
. / dedy — vk X 12211x113,2
R3xR3

16
= —vlxle Vol - 2yk €132

. / |20 v (y)

dxdy —4yk|Vvl3,. O
lx =yl

R3xR3
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