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Abstract. Body weight control is gaining interest since its dysregulation even-

tually leads to obesity and metabolic disorders. An accurate mathematical de-
scription of the behavior of physiological variables in humans after food intake

may help in understanding regulation mechanisms and in finding treatments.

This work proposes a multi-compartment mathematical model of food intake
that accounts for glucose-insulin homeostasis and ghrelin dynamics. The model
involves both food volumes and glucose amounts in the two-compartment sys-

tem describing the gastro-intestinal tract. Food volumes control ghrelin dy-
namics, whilst glucose amounts clearly impact on the glucose-insulin system.

The qualitative behavior analysis shows that the model solutions are mathe-

matically coherent, since they stay positive and provide a unique asymptot-
ically stable equilibrium point. Ghrelin and insulin experimental data have
been exploited to fit the model on a daily horizon. The goodness of fit and

the physiologically meaningful time courses of all state variables validate the
efficacy of the model to capture the main features of the glucose-insulin-ghrelin

interplay.
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1. Introduction. The correct balance between food intake and energy consump-
tion in humans is known to be regulated by a wide set of hormones and, nowadays,
mathematical models of such a tangled network of molecular players are helping to
unravel the many mechanisms involved [2, 28].

In this note we propose a model that aims at connecting food intake, glucose-
insulin homeostasis and ghrelin dynamics. Motivation stems from the fact that
a correct understanding of the many hormones (besides insulin) and metabolites
contributing in plasma glucose regulation may lead to a deeper understanding of
dysregulation mechanisms, eventually leading to obesity and metabolic disorders,
and may help in designing a safe and efficient artificial pancreas, an issue recently
gaining an increasing interest in the control community.

Ghrelin is a peptide hormone produced in the stomach that, if present in a
sufficient concentration in humans, gives sensations of hunger and was initially
identified as a stimulus for the release of growth hormone [18]. After its discovery,
Nakazato et al. [17] were the first to conjecture a role for ghrelin in the regulation
of feeding. Several subsequent studies (e.g [3, 4]) suggested that the diurnal rhythm
of ghrelin is linked to meal initiation in humans. Indeed, the blood concentration
of ghrelin increases before each meal and rapidly decreases after eating. Studies
about plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery
by Cummings et al. [5, 6] advocate that ghrelin may have also a role in long-term
regulation of food intake. Other findings support the concept that the endogenous
ghrelin system may have a paramount role in starvation, as a survival hormone that
maintains blood glucose and helps preventing loss of body weight [14].

Despite the cited findings about the role of ghrelin in the food-intake process, only
few models can be found in the literature that incorporate the hormone. Toghaw
et al. [29] in 2012 considered ghrelin in a mathematical model aiming at shedding
light into the type-2 diabetes improvement after bariatric surgery. Pires et al.
[23] proposed in 2017 a model focused on the short-term dynamics of ghrelin that
is grounded in the established physiology and that replicates in vivo data (see
also [24]). Uluseker et al. [30] presented in 2018 a multi-level model of glucose
homeostasis in which they also included a differential equation describing plasma
ghrelin dynamics. In these models, however, the secretion of ghrelin is considered to
be inhibited by glucose in the stomach or in the small intestine, whereas important
studies suggest that the inhibitory signal arises only from the first part of the small
intestine in response to food volume [31, 19].

With the aim of continuing investigations in this direction, a new model is here
proposed, which describes the daily dynamics of ghrelin and, at the same time,
includes glucose-insulin regulation, taking a step forward towards a complete math-
ematical description of food intake and metabolic regulation. We consider a multi-
compartment model, in which both the food volume and the glucose concentration
in the stomach and in the small intestine are taken into account. The presented
model provides a basis for more complete mathematical description of the long-term
regulation of body weight, which could be achieved considering the action of some
other hormones such as leptin, GLP1 and GIP.

2. Model setting. The model here presented aims at explaining what happens in
the human body after meals, with particular regard to the glucose-insulin system
and to the time evolution of ghrelin.
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Food transit in the gastrointestinal tract is modeled using two compartments:
the first represents stomach and duodenum, the second models the jejunum and
the ileum. For simplicity, we will refer to the first compartment as stomach and
to the second as jejunum. Below we provide an accurate description of the desired
qualitative behavior of the model, in order to support the proposed model structure.

We denote by S and J the food volume (ml) in the first and second compart-
ments, respectively. After the ingestion, the first part of the gastrointestinal tract
starts to fill up and to gradually empty out towards the jejunum and the ileum
without significant nutrient absorption, so corresponding to a decrease of S we
have an identical increase of J . Then the food leaves the second compartment and
reaches the large intestine (not modeled, since it does not play an active role in the
regulation of the other model variables). We assume that some gastric and pan-
creatic/intestinal secretion always occurs (as a first approximation, at a constant
rate), i.e. the two compartments never empty completely.

The differential equations describing the gastrointestinal variables S and J are
constructed with the aim of modeling the feedback mechanism that slows down the
gastric emptying. Indeed, some hormones (e.g. GLP-1, CCK, peptide Y, oxynto-
modulin) produced in the jejunum/ileum in response to food transit control the
gastrointestinal motility [15, 27, 13]. In particular, we propose a model in which
the emptying of the stomach compartment (1) is inhibited by the food volume in
the jejunum compartment (2), by means of and emptying rate (3) that depends on
J(t):

Ṡ(t) = −ηKJS(t)S(t) + kS + F (t) (1)

J̇(t) = η(KJS(t)S(t)− kXJJ(t)) + kJ (2)

KJS(t) = kmaxJS e−λJSJ(t) (3)

where F (t), [ml/min], is the food ingestion rate, kmaxJS , [min−1], is the maximum
rate transfer from stomach to jejunum, λJS , [ml−1], is the rate of decay of stomach-
jejunal transfer with jejunum filling, kXJ , [min−1], is the rate of jejunal emptying,
kS , kJ , [ml/min], are the gastric and jejunal secretions flow rates. η is a dimen-
sionless coefficient in (0, 1] included to take into account the fact that the food
transit time in the gastrointestinal tract is also influenced by the type of ingested
food [9, 16]. Thus, η should depend on the composition of the meal. In this work,
without loss of generality we assume η = 1.

Making the simplifying assumption that the food ingestion rate is constant and
the same during the three meals (breakfast, lunch, and dinner), F (t) takes the form

F (t) =

{
r, t ∈ [tb, tb + τb] ∪ [tl, tl + τl] ∪ [td, td + τd]

0, otherwise
(4)

in which tb, tl and td are the starting times and τb, τl and τd are the meal durations.
The aforementioned model for food volumes is inherited from [23]: besides a different
shape for the feedback on gastric emptying, the main difference is the presence of a
constant basal secretion that prevents the complete emptying of both compartments.

The glucose absorption after a meal is described using a two-compartment model
parallel to the the one used for the food transit. Let GS and GJ , both in (mmol),
denote the glucose amounts in the two compartments. The filling of first compart-
ment depends on the glucose content of the meal. Then glucose reaches the second
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compartment where it is either absorbed or moved to the large intestine. We as-
sume that the glucose transit rates between the two compartments are the same as
for the food volumes.

The process that brings ingested glucose to be available in blood consists of sev-
eral phases and it is still under investigation. It starts in the gastrointestinal tract
with carbohydrates digestion by salivary and pancreatic amylases, then glucose is
absorbed by the intestinal enterocytes through secondary active transport, thanks
to the action of the sodium-glucose cotransporter (SGLT1) and it exits across the
basolateral membrane of the enterocytes using the facilitated glucose transporter
GLUT2 [32, 33]. Other mechanisms have also been taken into account to explain
the intestinal absorption of glucose [33]; in particular some studies [11, 12] claim
that a facilitated diffusive component exists and is mediated by the glucose-induced
recruitment of GLUT2 to the brush-border membrane, but this hypothesis is con-
tradicted by some other findings [25]. We consider glucose to be absorbed into
blood from the second compartment, depending on the sugar in its lumen, and that
such transfer is driven by luminal glucose concentration rather than mass [8].

With regards to plasma insulin and glucose, we know that the increase of insulin
concentration follows the increase of glycaemia, with some delay [20]. In essence,
the plasma glucose prompts the secretion of the granular insulin ready for release
at the β-cell membrane rather than causing a direct increase of plasma insulin.
Granular insulin R (pmol) is released with a rate that depends on the glucose
concentration in plasma, inducing an increase of the concentration of plasma insulin
I (pM). Plasma glucose G (mM) is reduced due to the insulin-mediated absorption
by tissues, depending on insulin sensitivity, whereas it increases due to hepatic
glucose production, which we assume constant, and to the glucose GJ absorbed
from the intestine. The above qualitative description is mathematically represented
by the following equations:

ĠS(t) = −ηKJS(t)GS(t) + ρGMF (t) (5)

ĠJ(t) = η(KJS(t)GS(t)− kXJGJ(t))− kGJ
GJ(t)

J(t)
(6)

Ġ(t) =
kG
VG
− kXGII(t)G(t) + kGJ

GJ(t)

J(t)VG
(7)

İ(t) = −kXII(t) + kIRG

(
G(t)

Gb

)γIRG R(t)

VI
(8)

Ṙ(t) = kRGG(t)− kIRG
(
G(t)

Gb

)γIRG
R(t) (9)

where ρGM , [mmol/ml], is the glucose density of food, kGJ , [ml/min], is the glucose
clearance rate from jejunum to bloodstream, kG, [mmol/min], is the hepatic glucose
output, VG, [l], is the glucose distribution volume, kXGI , [pM−1min−1], is the
insulin sensitivity, kIRG, [min−1], is the rate of insulin release from granules with
increasing glycaemia, Gb, [mM ], is the basal glycemia, γIRG, [−], is the exponent of
the supralinear increase of insulin release from granules with increasing glycaemia,
VI , [l], is the insulin distribution volume, kXI , [min−1], is the insulin elimination
rate, kRG, [pmol/(min·mM)], is the rate of increase of the granular insulin available
for secretion with increasing glycaemia.

Ghrelin, denoted as H (pg/ml) in the model, is secreted in the stomach but the
signals that inhibit its production arise in response to food in the portion of the small
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Figure 1. Graphical scheme of the model. Continuous lines rep-
resent transfer of mass, dashed lines represent signals.

intestine between the duodenum and the jejunum [31, 19]. This negative feedback
is modelled by a decreasing exponential function depending on the content of the
second gastrointestinal compartment, J(t). Furthermore, a first order elimination
rate of the hormone is also taken into account:

Ḣ(t) = −kXHH(t) + kH(t)
e−λHJJ(t)

VH
(10)

where kH(t), [pg/min], is the maximum rate of ghrelin secretion achieved when the
jejunum is empty (J(t) = 0), λHJ , [ml−1], is the rate of decay of ghrelin secretion
with jejunal filling, VH , [ml], is the ghrelin distribution volume, kXH , [min−1],
is the first order elimination rate for ghrelin. kH(t) is supposed to be vary with
a 24h period, thus accounting for circadian variability. This fact is suggested by
experimental evidence according to which ghrelin unexpectedly decreases in the
hours before dawn without any meal assumption [3]. In the following we adopt a
simple switching model for kH(t), from a maximum value kmaxH to a minimum value
kminH , with the switch occurring at time tH . Fig. 1 reports a block-diagram of the
complete model.
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3. Qualitative analysis of the model. In order to show the mathematical co-
herence of the model, main features of the qualitative analysis of the solutions are
reported.

3.1. Positivity of solutions. In order to have physiological relevant results it is
important that the model ensures non-negative solutions for the ODEs system, since
the state variables describe the evolution of masses and concentrations. To prove
it, we assume that the initial conditions are non-negative and that F (t) ≥ 0, both
physiologically meaningful assumptions.

Lemma 3.1. The ODEs system (1)-(10) has non-negative solutions for any non-
negative initial conditions and input.

Proof. Consider the S dynamics and assume that ∃ t̄ such that S(t̄) = 0 and

Ṡ(t̄) < 0. This is a contradiction, since

Ṡ(t̄) = −ηKJS(t̄)S(t̄) + kS + F (t̄) = kS + F (t̄) > 0

therefore S(t) ≥ 0 ∀ t ≥ 0. Analogously, it can be proven that also GS(t), H(t) ≥ 0.
Then consider the J dynamics and assume that ∃ t̄ such that J(t̄) = 0 and

J̇(t̄) < 0. This is a contradiction, since

J̇(t̄) = η(KJS(t̄)S(t̄)− kXJJ(t̄)) + kJ = ηKJS(t̄)S(t̄) + kJ

with KJS(t̄) > 0 because of its exponential fashion and S(t̄) ≥ 0 as previously
proven. Then, also J(t) ≥ 0. Analogously, it can be proven that also GJ(t) ≥ 0.
The positivity of J and GJ straightforwardly proves that G(t) ≥ 0; this last finding
proves that R(t) ≥ 0 and, finally, that I(t) ≥ 0.

3.2. Equilibrium point and stability analysis. To discuss existence and stabil-
ity of the equilibrium points, a constant input F (t) ≡ F̄ is considered. It is possible
to choice either F̄ = 0 (fasting situation) or a constant positive input, which could
be the case of an experiment with gastric constant infusion of nutrients. Analo-
gously, in this analysis, we consider a constant value for the switching parameter
kH (namely kH), which may be thought of as the maximum/minimum value.

Lemma 3.2. The ODEs system (1)-(10) has a unique equilibrium point for F (t) ≡
F̄ .

Proof. Denote with the suffix e all stationary variables, as well asKJSe = kmaxJS e−λJe .
Then, the steady state equations are:

− ηKJSeSe + kS + F̄ = 0 (11)

η(KJSeSe − kXJJe) + kJ = 0 (12)

− ηKJSeGSe + ρGM F̄ = 0 (13)

η(KJSeGSe − kXJGJe)− kGJ
GJe
Je

= 0 (14)

kG
VG
− kXGIIeGe + kGJ

GJe
JeVG

= 0 (15)

− kXIIe + kIRG

(
Ge
Gb

)γIRG Re
VI

= 0 (16)

kRGGe − kIRG
(
Ge
Gb

)γIRG
Re = 0 (17)
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− kXHHe + kH
e−λHJJe

VH
= 0 (18)

From these equations the following unique positive solution is achieved:

Je =
kS + kJ + F̄

ηkXJ
⇒ KJSe (19)

Se =
F̄ + kS
ηKJSe

GSe =
ρGM F̄

ηKJSe
(20)

GJe =
ρGM F̄

kXJ + kGJ
Je

Ge =
kXIVIIe
kRG

(21)

Ie =

√(
KG

VG
+
kGJGJe
JeVG

)
kRG

kXGIkXIVI
(22)

Re =
kXIVIIe
kIRG

(
Gb
Ge

)γIRG
He =

kH
kXH

e−λHJJe

VH
(23)

In the case F (t) ≡ 0, i.e. fasting condition, the equilibrium values for the vari-
ables are their basal values in fasting conditions (with the trivial values GSe = 0,
GJe = 0). In the following we analyze the stability of the equilibrium point: com-
putations are carried out for the fasting condition, but results can be readily gen-
eralized for any value of F̄ . Dealing with basal conditions, the equilibrium suffix is
changed from e into b. Looking for stability conditions, we study the eigenvalues of
the Jacobian matrix, associated with the ODEs system (1)–(10), evaluated at the
basal equilibrium point. From computations, non trivial entries of Jacobian matrix
J are the following:

J11 = −ηKJSb J12 = ηλJSKJSbSb J21 = −J11
J22 = −J12 − kXJ J33 = J11 J43 = −J11
J44 = −ηkXJ − kGJ

Jb
J54 = kGJ

JbVG
J55 = −kXGIIb

J56 = −kXGIGb J65 = kIRGγIRGRb
GbVI

J66 = −kXI
J67 = kIRG

VI
J75 = kRG − J65VI J77 = −kIRG

J82 = −kHλHJe
−λHJJb

VH
J88 = −kXH

Three of the eight eigenvalues can be easily deduced from the block-structure of the
Jacobian matrix:

λ3 = J33 < 0 λ4 = J44 < 0 λ8 = J88 < 0 (24)

λ1 and λ2 are the eigenvalues of the following matrix:

A =

[
−ηKJSb ηλJSKJSbSb
ηKJSb −ηλJSKJSbSb − kXJ

]
(25)

so that

det (A) = λ1λ2 = ηKJSbkXJ > 0 (26)

whilst

tr (A) = λ1 + λ2 = −ηKJSb − ηλJSKJSbSb − kXJ < 0 (27)

That means: λ1, λ2 < 0.
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λ5, λ6 and λ7 are the eigenvalues of the following matrix:

B =

 −kXGIIb −kXGIGb 0
kIRGγIRGRb

GbVI
−kXI kIRG

VI

kRG − kIRGγIRGRb
Gb

0 −kIRG

 (28)

We rewrite it as:

B =

 −a −b 0
c

VI
−d e

VI
kRG − c 0 −e

 (29)

for appropriate choices of a, b, c, d, e > 0. Then, the characteristic polynomial of
matrix (29) is:

λ3 + (a+ d+ e)λ2 +

(
bc

VI
+ ad+ ae+ de

)
λ+

bekRG
VI

+ ade (30)

For the sake of simplicity, we rewrite (30) as:

λ3 + h1λ
2 + h2λ+ h3, h1, h2, h3 > 0 (31)

It is possible to study the sign of the real part of the roots of the characteristic
polynomial by means of the Routh-Hurwitz criterion. We use it in Lemma 3.3 in
order to find a sufficient condition for the eigenvalues of matrix (29) to have negative
real part.

Lemma 3.3. The eigenvalues of matrix (29) have negative real part.

Proof. Consider the Routh-Hurwitz table for the characteristic polynomial in (31):

3
2
1
0

∣∣∣∣∣∣∣∣
1 h2
h1 h3

h1h2−h3

h1
0

h3 0

∣∣∣∣∣∣∣∣ (32)

The characteristic polynomial has all the roots with negative real part if and only
if there are no sign variations in the first line of the table. Since h1, h2 > 0, to have
no sign variations h1h2 > h3 must hold; thus:

abc+ bcd+ bce+ VIad
2 + VIa

2d+ VIae
2 + VIa

2e+

+ VIde
2 + VId

2e+ 2VIade > bekRG
(33)

It is worth to notice that

VIade = bekRG = kXGIkXIkIRGIbVI , (34)

so that (33) is always verified.
Since all the eigenvalues of the Jacobian matrix have negative real part, we can

conclude that the fasting equilibrium point is asymptotically stable.

4. Model identification and numerical simulations. The identification task
has been carried out according to a set of experimental data coming from [3], re-
ferring to a 23-hour (6am-5am) experiment in which 10 healthy subjects were
administered 3 meals approximating the average American diet. Ghrelin and in-
sulin measurements were acquired at a sampling rate of 30min during daytime and
60min during nighttime. At each sampling instant the measurements taken on the
10 subjects are averaged. Thus, the only available data from [3] that can be used for
model identification are average values and standard deviations. As a consequence,
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the identified model is a sort of an average model of the system under investigation,
not calibrated on a single subject. Unfortunately, no further experimental data are
available for model validation.

Before to get into the details of the identification procedure, we briefly discuss
the constraints on the values of some parameters that can be gathered from the
available literature. Parameter ρGM in (5) is assumed to vary for the three kinds
of meals according to the following expression

ρGMi =
α · Ca ·M

0.18
· 1

VMi
, i = b, l, d, (35)

where VMi = r · τi is the meal volume (τi is the meal duration), different for the
three meals (see (4)), α = 0.9 is the glucose percentage in carbohydrates, Ca is the
percentage of carbohydrates in the meal mass M = 241.18g (each meal shares the
same mass but different volumes) and 0.18 is a conversion factor providing mmol of
glucose from g. Volumes VG and VI are expressed in liters. In order to exploit data
from [22] where [l/kgBW] had been adopted, we exploited the mean body weight
BW , obtained from the BMI of the subjects in [3] and the average height of an
American person [7]. With respect to the food intake, according to the experimental
setting [3] (see also [23]) we set τb = 39min, τl = 24min, τd = 24.6min, with
tb = 8am, tl = 12am, td = 17 : 30pm.

Other parameters/initial conditions derived from the literature or constrained by
the steady state conditions (hence not straightforwardly involved in the identifica-
tion procedure) are reported in Table 1.

The identification procedure, exploiting the experimental data reported in [3],
has been divided into three steps.

In the first step the parameters kmaxJS , kS , kJ , λJS , kXJ , kminH , kmaxH , tH , λHJ ,
H0 in Eqs. (1), (2), (10) have been estimated by minimizing the weighted mean
squared error (MSE) between simulated and experimental ghrelin data:

MH =
∑
tk∈SH

(Hm(tk)−H(tk))2

Hm(tk)2
(36)

where SH is the set of sampling-times for ghrelin measurements Hm(tk). The so-
lution is achieved using the ga (genetic algorithm) and fmincon (constrained mini-
mization) Matlab functions.

In the second step the procedure is repeated to estimate the parameters of the
glucose-insulin subsystem (kGJ , γIRG, G0, R0) by minimizing the weighted MSE

MI =
∑
tj∈SI

(Im(tj)− I(tj))
2

Im(tj)2
, (37)

where SI is the set of sampling-times for insulin measurements Im(tj). In this phase
the parameters computed in step 1 are kept constant. Again, the ga and fmincon
Matlab functions have been used.

In the final step, the parameters estimated in steps 1-2 are used as a starting
point for the Matlab fmincon function minimizing the overall MSE cost MH +MI ,
thus considering the whole system and all the available measurements (ghrelin and
insulin) simultaneously.

The trick of resorting to steps 1 and 2 for finding a convenient initial guess to
initialize the algorithm that finds the minimum of the MSE MH +MI has avoided
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Table 1. Model parameters and initial conditions.
Parameter Units Value Reference

r ml/min 35 [23]
kmaxJS min−1 0.0201 Identification
λJS min−1 9.1871 · 10−4 Identification
kS , kJ mml/min 6.2568 Identification
kXJ min−1 0.0737 Identification
Ca − 0.5558 [3]
kGJ ml/min 50.1503 Identification
kG mmol/min 0.2066 Steady State
VG l 10.483 [22]
BW kg 68.97 [3, 7]
kxGI min−1 5.3 · 10−5 [22]
kIRG min−1 0.0049 Steady state
γIRG − 3.0763 Identification

VI = VH l 17.2425 [22]
kxI min−1 0.059 [21]
kRG min−1 17.6948 Steady state
kminH pmol/ml 650407.4627 Identification
kmaxH pmol/ml 899990.4238 Identification
tH pmol/ml 1195.2917 Identification
λHJ min−1 0.007 Identification
kXH l 0.239 [1]
S0 ml 363.3046 Steady state
J0 ml 169.8402 Steady state
GS0 mmol 0 Steady state
GJ0 mmol 0 Steady state

G0 = Gb mM 4.6239 Identification
I0 pM 80.4264 [3]
R0 pmol 16581.6656 Identification
H0 pg/ml 524.5618 Identification

the convergence of the algorithm to local minima. Fig. 2 shows the quality of the
fit: the simulated curves reproduce with good accuracy the experimental data.

Unfortunately, the set of experimental data coming from [3] does not include
any further useful information (e.g. glucose behavior, or data from another inde-
pendent experiment). For this reason, the model can be validated only from a
qualitative behavior perspective, i.e. the ability to reproduce physiologically mean-
ingful behaviors. To this end, we report the plots of the gastrointestinal emptying
and the glucose dynamics in Figs. 3-4. It is worthwhile to notice that the first
gastrointestinal compartment empties almost completely in 4 hours, in agreement
with experimental evidence for stomach emptying [26] (less than 5% of total in-
gested food at breakfast is still in the stomach at noon). Furthermore, the glucose
behavior is physiologically consistent, oscillating above its basal value during the
day due to meal ingestions counteracted by fast insulin action.

In order to further underline the role of ghrelin in meal initiation, we simulated
the ghrelin dynamics in a day during which breakfast and dinner are as in [3], but
no lunch has been served. As shown in Fig. 5, ghrelin reaches a higher peak than
in the previous case, which may explain the sense of hunger following a prolonged
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Figure 2. Plasma insulin and ghrelin evolutions
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Figure 3. Food volume in the gastrointestinal tract dynamics

fasting. High ghrelin levels may activate processes that lead to meal initiation, and
this explains the role of ghrelin as a survival hormone [3, 14].

5. Conclusions. This note presents a multi-compartment mathematical model of
food intake that accounts for glucose-insulin homeostasis and ghrelin dynamics. The
model is grounded in the established physiology and the qualitative behavior anal-
ysis shows that its solutions are mathematically consistent. The fitting to clinical
experimental data is good and provide physiologically meaningful time evolutions
for the all state variables.

The model paves the way to further long-term descriptions of metabolic regula-
tion and body weight dynamics, extending to human models the work [10] focusing
on rats.

A further improvement could be to consider the effect of insulin on ghrelin se-
cretion. There are conflicting experimental results on this topic in the literature;
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Figure 5. Ghrelin dynamics in a day with 3 and with 2 meals

some findings, indeed, suggest that insulin inhibits ghrelin production whilst others
come to the opposite conclusion, conjecturing that ghrelin is stimulated by insulin
[34]. By using mathematical modeling, both the hypotheses might be investigated,
shedding light on the problem.
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