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Abstract
MtDNA-based phylogeography has illuminated the impact of the Pleistocene Ice Age on species distribution dynamics and 
the build-up of genetic divergence. The well-known shortcomings of mtDNA in biogeographical inference can be compen-
sated by integrating multilocus data and species distribution modelling into phylogeography. We re-visit the phylogeography 
of the Italian crested newt (Triturus carnifex), a species distributed in two of Europe’s main glacial refugia, the Balkan and 
Italian Peninsulas. While a new 51 nuclear DNA marker dataset supports the existence of three lineages previously suggested 
by mtDNA (Balkan, northern Italy and southern Italy), the nuclear DNA dataset also provides improved resolution where 
these lineages have obtained secondary contact. We observe geographically restricted admixture at the contact between the 
Balkan and northern Italy gene pools and identify a potential mtDNA ghost lineage here. At the contact between the northern 
and southern Italy gene pools we find admixture over a broader area, as well as asymmetric mtDNA introgression. Our spe-
cies distribution model is in agreement with a distribution restricted to distinct refugia during Pleistocene glacial cycles and 
postglacial expansion with secondary contact. Our study supports: (1) the relevance of the north-western Balkan Peninsula 
as a discrete glacial refugium; (2) the importance of north-eastern Italy and the northern Apennine as suture zones; and (3) 
the applicability of a refugia-within-refugia scenario within the Italian Peninsula.
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Introduction

The glacial cycles of the Pleistocene Ice Age greatly influ-
enced species distributions and are recognized as a major 
driver of intraspecific divergence in temperate species 

(Hewitt 2000; Hofreiter and Stewart 2009; Stewart et al. 
2010). Geographical populations of a single species that 
were isolated in allopatric refugia during relatively long gla-
cial periods, could repeatedly expand their ranges and estab-
lish hybrid zones upon secondary contact during relatively 
short interglacial periods (Hewitt 1988; Barton and Hewitt 
1985). Yet, during the following glacial cycle, extinction in 
the interglacially colonized area would cause the ranges of 
the geographical populations to contract and become iso-
lated again (Hewitt 2011a). This raises the question what the 
influence of such a temporary bridge for gene flow was on 
the genetic divergence of geographical populations within 
their respective glacial refugia – would genetic differentia-
tion be negated or could it accumulate over multiple glacial 
cycles (Garrick et al. 2019)?

Phylogeographic surveys have mostly employed mtDNA 
(Riddle 2016; Beheregaray 2008; Avise 2000). Yet, mtDNA 
is generally more susceptible to geographical sub-structuring 
than the rest of the genome (Petit and Excoffier 2009), even 
in the face of uninterrupted gene flow (Irwin 2002), and 
the geographical structuring of mtDNA often deviates from 
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that of nuclear DNA due to differential introgression (Toews 
and Brelsford 2012). While it is widely acknowledged that 
multiple unlinked nuclear markers are required to obtain 
an accurate estimate of the evolutionary independence of 
geographical populations (Edwards 2009), it has only rel-
atively recently become feasible to consult many nuclear 
markers for a large number of individuals for non-model 
organisms (Ekblom and Galindo 2011; Garrick et al. 2015; 
McCormack et al. 2013). Additional insight into distribution 
dynamics can be obtained by the integration of species dis-
tribution modelling in phylogeography (Alvarado-Serrano 
and Knowles 2014; Svenning et al. 2011). This approach 
is regularly applied for the Last Glacial Maximum in par-
ticular, because climatic data layers are publicly available 
(Hijmans et al. 2005). By combining ‘next-generation phy-
logeography’ (Puritz et al. 2012) with species distribution 
modeling, mtDNA-based historical biogeographical hypoth-
eses can be tested, identifying areas that acted as glacial 
refugia, and dissecting patterns of secondary admixture 

between lineages that originated in distinct refugia (e.g. 
Spinks et al. 2014; Dufresnes et al. 2020).

The range of the Italian crested newt Triturus carnifex 
encompasses two of Europe’s canonical glacial refugia, 
the Italian and the Balkan Peninsula (Wielstra et al. 2014b; 
Fig. 1). A previous mtDNA-based phylogeographic study 
revealed a basal split between the Italian and the Balkan 
populations, dated to the onset of the Pleistocene, and a 
further north-south division within the Italian Peninsula, in 
line with a refugia-within-refugia scenario (Canestrelli et al. 
2012). Early studies consulting allozyme data suffered from 
incomplete sampling and yielded inconsistent results, pre-
venting a proper understanding of the fate of nuclear genetic 
differentiation over multiple glacial-interglacial cycles (Scil-
litani and Picariello 2000; Arntzen 2001). We here collect 
multilocus nuclear DNA sequence data from populations 
across the entire range of T. carnifex, to determine the num-
ber of distinct gene pools present and the degree of gene flow 
between them. Additionally, we conduct species distribution 
modeling to assess glaciation-driven range reduction and 

Fig. 1   Sampling scheme for Triturus carnifex and allocation of indi-
viduals to mtDNA clade and nuclear DNA gene pool. Numbered 
circles are populations, colored according to mtDNA clade (see 
Fig.  2), while the colored background approximates the distribu-
tion of nuclear DNA gene pools (“introgressed” refers to mtDNA 

derived from T. dobrogicus). Bar plots show allocation of individuals 
to mtDNA (mt) clade and nuclear DNA gene pool based on Struc-
ture under k =2 and k = 3 (details in Table S1). Populations 1–3 are 
excluded because they are affected by interspecific gene flow. Popula-
tion numbers correspond to Table S1



19Evolutionary Biology (2021) 48:17–26	

1 3

fragmentation. We compare these independent estimates of 
distribution dynamics with each other and with the mtDNA-
based hypothesis and discuss the impact of the Pleistocene 
climatic cycles on genetic divergence within T. carnifex.

Materials and Methods

Sampling and Sequencing

We sampled 85 individuals from 29 populations (Fig. 1; 
Table S1). Total genomic DNA was extracted using the 
DNeasy Tissue Kit (Qiagen). We obtained mtDNA data, an 
alignment comprising 635 bp of ND2 and 665 bp of ND4, 
from two phylogeographic studies (Canestrelli et al. 2012; 
Wielstra et al. 2013) and newly sequenced newts (13 for 
ND2 and 28 for ND4). We collected multilocus nuclear 
DNA sequence data, using an Ion Torrent next-generation 
sequencing protocol that is described in detail in Wielstra 
et al. (2014a). In brief, we sequenced 51 nuclear markers 
(a 52nd marker was removed as over 20% of individuals 
had less than 20 reads) of c. 140 bp in length (excluding 
primers), positioned in 3’ untranslated regions, in five mul-
tiplex PCRs. We pooled the multiplexes for each individual 
and ligated unique tags to be able to recognize the product 
belonging to each individual. We sequenced the amplicons 
on the Ion Torrent next-generation sequencing platform and 
processed the output with a bioinformatics pipeline that fil-
ters out poor quality reads, identifies alleles and converts 
data to a format directly usable for population genetic anal-
ysis. Mean coverage was 1157.6 reads (range 0–110648) 
per marker-individual combination and 98.0% of marker-
individual combinations were considered successful (mean-
ing they had at least 20 reads available). The range of the 
number of alleles per marker was 2–11 (Table S2). Data 
were phased and converted to a genotypic format that could 
directly be read in and converted with the software CREATE 
(Coombs et al. 2008).

Analysis of mtDNA

We obtained a dated mtDNA phylogeny with BEAST 
2.6 (Bouckaert et al. 2019). As outgroup we used the sis-
ter species T. macedonicus (GenBank accession number 
NC015794). Introgressed mtDNA was excluded. The origin 
of the Adriatic Sea at 5.33 Ma, at the end of the Messin-
ian Salinity Crisis, was interpreted as the vicariant event 
causing the split between T. carnifex and T. macedonicus 
(Arntzen et al. 2007) and appointed a normally distributed 
prior with a small standard deviation (0.001). The most 
appropriate models of sequence evolution were identified 
with jModelTest 2.1.10 (Darriba et al. 2012), based on the 
Bayesian Information Criterion (ND2: TN+I, ND4: TN+G). 

We applied the relaxed lognormal clock model and a Yule 
speciation model, with large uninformative priors for the 
Yule Birth Rate (gamma distribution, α = 0.001, β = 1000) 
and substitution rates (ucld.mean priors: exponential distri-
bution, mean = 10). We conducted two independent runs 
of 150 million generation each, sampling parameters each 
15,000 generations. We confirmed in Tracer 1.7 (Rambaut 
et al. 2018) that runs converged and effective sample sizes 
were at least 200. Trees from a stationary distribution (burn-
in = 25%) were used to calculate an annotated Maximum 
Clade Credibility tree in TreeAnnotator 2.6. We calculated 
p-distances within and among the mtDNA clades identified 
(see Results) using MEGA X (Kumar et al. 2018).

Principal Component Analysis, Isolation by Distance 
and Allelic Richness of Nuclear DNA

We conducted a principal component analysis with the R 
package adegenet 2.1.3 (Jombart and Ahmed 2011), based 
on allele frequencies, and replacing missing data with the 
mean of the total dataset. We excluded those populations 
affected by interspecific gene flow (populations 1–3, see 
Results). We tested for isolation by distance using a Mantel 
test in the R package adegenet 2.1.3 (Jombart and Ahmed 
2011) for the three groups identified in our Structure and 
PCA analyses (see Results). We excluded populations 
affected by interspecific (populations 1–3) or intraspecific 
(populations 8–9 and 14–16, see Results) gene flow. Allelic 
richness was determined using the R package DiveRsity 
1.9.9 (Keenan et al. 2013). Again we excluded populations 
affected by interspecific (populations 1–3) or intraspecific 
(populations 8–9 and 14–16) gene flow, as well as popula-
tion 4, because only a single individual was available.

Bayesian Genetic Clustering of Nuclear DNA

We analyzed multilocus nuclear DNA sequence data with 
Structure 2.3.3 (Pritchard et al. 2000) to assign individuals 
to distinct gene pools probabilistically under the admixture 
model, in combination with the correlated allele frequency 
model, with 100,000 iterations after 50,000 iterations 
of burn-in and ten replicates per run. We took a two-step 
approach in analyzing our dataset. First, considering that 
crested newt species hybridize at their contact zones (Arn-
tzen et al. 2014), we aimed to exclude potentially confound-
ing effects of interspecific gene flow. As T. carnifex is in 
parapatry with T. cristatus and T. dobrogicus, we tested for 
signs of interspecific gene flow with these two species, using 
reference data (three individuals from four populations for 
each species) available from Wielstra et al. (2014a). In a 
preliminary Structure run, we fixed the number of distinct 
gene pools k at 3, as we are dealing with three species. Yet, 
because the program had trouble allocating the T. cristatus 
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and T. dobrogicus individuals to their respective species, 
presumably due to strong population structure within T. 
carnifex (see Results), we increased k to 4, under which T. 
cristatus and T. dobrogicus individuals were correctly allo-
cated to their respective species. We considered T. carnifex 
individuals admixed if they were assigned to T. carnifex with 
an ancestry coefficient < 0.95.

Second, after excluding those populations affected by 
interspecific gene flow (populations 1–3), we explored pop-
ulation structure within T. carnifex. We tested for k over 
a range of 1–26 (with the upper limit determined by the 
total number of T. carnifex populations not affected by inter-
specific gene flow). We used CLUMPAK (Kopelman et al. 
2015) to determine the optimum k value according to the Δ 
k criterion (Evanno et al. 2005). Individuals were assigned 
to a gene pool if the ancestry coefficient was ≥0.95 and oth-
erwise were considered genetically admixed.

Nuclear DNA Phylogeny

We used Geneious Prime 2020.2.2 (https​://www.genei​ous.
com) to create a concatenated alignment with indels removed 
from the fasta files for the 51 nuclear loci (containing two 
alleles for each marker for each individual) produced by our 
bioinformatics pipeline (Wielstra et al. 2014a). A consensus 
sequence with polymorphic sites encoded by IUPAC codes 
was created for each individual using the SeqinR 3.6.1 pack-
age (Charif and Lobry 2007) in R (R-Development-Core-
Team 2020). This resulted in a 7007 bp alignment. We 
excluded populations that showed signs of admixture with 
other crested newt species (populations 1–3) or among the 
three geographical groups delineated by the Structure and 
principal component analyses (populations 8–9 and 14–16). 
We calculated p-distances within and among the nuDNA 
clusters (see Results) using MEGA X (Kumar et al. 2018). 
We obtained a phylogeny with BEAST 2.6 (Bouckaert et al. 
2019), using T. macedonicus as outgroup (ID 3248 taken 
from Wielstra et al. 2017). We considered heterozygote 
positions (useAmbiguities =”true”). We applied the strict 
clock model and a Yule speciation model. We conducted two 
independent runs of 30 million generations each, sampling 
parameters each 3,000 generations. Results were checked 
and summarized using the same procedure as described for 
the mtDNA phylogenetic analysis.

Species Distribution Modelling

We created a species distribution model with Maxent 3.3.3k 
(Phillips et al. 2006) as this program is developed for pres-
ence-only data, outperforms other algorithms and can be 
used to reliably hindcast to past environments (Elith et al. 
2006; Hijmans and Graham 2006). We restricted the feature 
type to hinge features as this produces a smoother model fit 

that emphasizes trends rather than idiosyncrasies of the data 
(Elith et al. 2010). We used a database of 127 T. carnifex 
localities presented in Wielstra et al. (2014b). For climate 
layers we used bioclimatic variables at 2.5 arcminute resolu-
tion (c. 5 x 5 km) available from the WorldClim database 1.4 
(Hijmans et al. 2005). This resolution is appropriate to detect 
range-wide patterns, while still being biologically meaning-
ful for Triturus newts, which have an estimated dispersal 
rate of 2 km per generation (Arntzen and Wallis 1991). Fol-
lowing Guisan and Thuiller (2005) and Peterson (2011) we 
selected a subset considered to reflect physiological limita-
tions of the study species (in this case seasonality in tem-
perature and precipitation) while showing little multicol-
linearity (a Pearson’s correlation of r < 0.7): bio10 = mean 
temperature of warmest quarter, bio11 = mean temperature 
of coldest quarter, bio15 = precipitation seasonality, bio16 = 
precipitation of wettest quarter, and bio17 = precipitation of 
driest quarter. Because the environmental range covered by 
pseudo-absence data, used by Maxent to discriminate pres-
ence data from the environmental background, should nei-
ther be too narrow nor too broad (Elith et al. 2011), we drew 
a 200 km radius buffer (following VanDerWal et al. 2009) 
around known Triturus localities (Wielstra et al. 2013). To 
determine whether our species distribution model performs 
better than random expectation, we tested its AUC value 
against a null model based on 99 models for random locali-
ties (Raes and ter Steege 2007). Random point data were 
created with ENMTools 1.3 (Warren et al. 2010). For hind-
casting we used bioclimatic variables, available from the 
WorldClim database 1.4, for the Last Glacial Maximum (~ 
21Ka), based on downscaled climate data from simulations 
of two global climate models: CCSM4 (Brady et al. 2013) 
and MIROC-ESM (Sueyoshi et al. 2013).

Results

We identified 43 T. carnifex mtDNA haplotypes (Table S1); 
mtDNA derived from T. dobrogicus was present in the 
two Austrian populations (populations 1–2 in Fig. 1). The 
mtDNA phylogeny strongly supports the presence of a dis-
tinct Balkan, northern Italian and southern Italian clade 
(Fig. 2; Table S3). A new, relatively distinct (Table S3) 
haplotype was identified from a geographically intermedi-
ate region (h09 in population 8; Fig. 1) that clusters with the 
Balkan clade (Fig. 2). The basal split in T. carnifex, dated 
to the late Pliocene (c. 3.2 Ma), is between the Balkan and 
the two Italian lineages. The subsequent split between the 
northern and southern Italian lineages is dated to the early 
Pleistocene (c. 2.3 Ma).

The principal component analysis separated the Balkan 
and Italian populations (populations 4–7 versus 10–29, 
with 8–9 taking an intermediary position) along principal 

https://www.geneious.com
https://www.geneious.com
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component 1 (explaining 26.5 % of the total variation) and 
the northern and southern Italian populations (populations 
10–13 versus 17–29, with 14–16 taking an intermediary 
position) along principal component 2 (12.0%; Fig. 3). We 
found significant support for isolation by distance for the 
southern Italian cluster and not for the northern Italian of 
Balkan clusters. Allelic richness varied from 1.26–1.38, 
1.15–1.39 and 1.11–1.31 for the Balkan, northern Italy and 
southern Italy clusters (Table S4).

Structure identified nuclear admixture with T. cristatus 
in the two Austrian populations (populations 1–2 in Fig. 1; 
Table S1) and with T. dobrogicus in one of the Croatian pop-
ulations (population 3). These populations, closely related 
to the other Balkan T. carnifex populations, were excluded 
from further analyses. The test for intraspecific structur-
ing for T. carnifex in Structure suggested k = 2, separating 
the Balkan and Italian populations (populations 4–7 versus 

10–29, with 8–9 showing admixture), as the optimal parti-
tioning scheme, with k = 3, additionally separating northern 
and southern Italian populations, a close second (dividing 
Italian populations into 10–13 versus 17–29, with admixture 
in 14–16). The allocation of individuals to clusters under 
both k values, and the distribution of gene pools under k 
= 3, is shown in Fig. 1. Details are in Table S1 and results 
for additional k values are available from Dryad (see sec-
tion ‘Data availability’). The BEAST phylogeny supports 
a basal bifurcation between a significantly supported Bal-
kan and Italian clade. Within the latter clade, the northern 
and southern Italian populations do not form reciprocally 
monophyletic groups (Fig. S1). See Table S3 for p-distances 
within and among the nuDNA clusters.

The species distribution model (AUC value = 0.96) sug-
gests that suitable conditions occur throughout the range of 
T. carnifex today (Fig. 4). Hence, the predicted ranges of 
the gene pools as delineated by nuclear and mitochondrial 
DNA are not geographically isolated at present, although 
the band of suitable habitat just west of the zone of admix-
ture between the Balkan and Italian populations is narrow, 
squeezed between the Alps and the Po Delta. When pro-
jected on climate reconstructions for the Last Glacial Maxi-
mum, regardless of the global circulation models used, the 
species distribution model suggests suitable conditions were 
much reduced at the time (Fig. 4). Suitable area was pre-
dicted at the Last Glacial Maximum in the north-western 
Balkan Peninsula and in the Italian Peninsula. Within the 
Italian peninsula the range is predicted to have been highly 
fragmented, with patches of suitable habitat just south of the 
Alps and in the center and south of the Italian Peninsula. A 
pocket of suitable habitat remained in the area of current 
admixture between the Balkan and Italian groups.

Discussion

Genome-enabled approaches to phylogeography allow us 
to test and extend biogeographical hypotheses proposed in 
studies employing mtDNA only (e.g. Spinks et al. 2014; 
Dufresnes et al. 2020). We here take a closer look at the Ital-
ian crested newt T. carnifex, a species whose range spans two 
canonical glacial refugia and for which an mtDNA-based 
phylogeographic study found deep geographical genetic 
structuring between and within these refugia (Canestrelli 
et al. 2012). We obtain a better understanding of the degree 
and extent of genetic admixture between populations derived 
from multiple glacial refugia.

Bayesian clustering analysis and principal component 
analysis confirm that, at the highest level of hierarchy, T. car-
nifex comprises two discrete gene pools. These gene pools 
occupy the Italian and the Balkan parts of the range (Figs. 1 
and 3). Similarly, T. carnifex shows a basal split between 
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Fig. 2   Time-calibrated mtDNA phylogeny for Triturus carnifex. The 
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an Italian and Balkan clade in both the mtDNA and nuclear 
DNA phylogeny (Figs. 2 and S1). The lack of isolation by 
distance in the Balkan and northern Italian (but not southern 
Italian) nuclear gene pools could reflect postglacial popula-
tion expansion. Allelic richness for nuclear DNA shows no 
clear spatial signal. The species distribution model suggests 
that the Italian and Balkan groups were isolated in distinct 
refugia at the Last Glacial Maximum and are currently con-
nected by a narrow band of suitable habitat (Fig. 4). These 
two groups presently meet in north-eastern Italy, in a region 

sandwiched between the Alps in the north and the Adri-
atic Sea in the south (Fig. 1). Here they show geographi-
cally restricted admixture. A comparison of intraspecific 
divergence in the genus Triturus (Table S2 in Wielstra et al. 
2019) reveals that the degree of nuclear genetic divergence 
between the Balkan and Italian groups is unprecedented 
within crested newt species. The two lineages show appar-
ently limited gene flow, despite hybridization upon second-
ary contact, suggesting the existence of two cryptic species 
in T. carnifex. A detailed hybrid zone analysis is required to 
test this hypothesis.

Within the Italian Peninsula, Bayesian clustering and 
principal component analysis suggests further sub-struc-
turing into a northern and southern Italian group (Fig. 1), 
roughly in line with a northern and southern mtDNA clade 
(Fig. 2), whereas populations from northern and southern 
Italy are not reciprocally monophyletic in the nuclear DNA 
phylogeny (Fig. S1). The two Italian nuclear gene pools 
show admixture over a comparatively wide area along the 
northern Apennines. The species distribution model sug-
gests that suitable conditions were much reduced at the 
Last Glacial Maximum, but remained just south of the Alps 
and, much further to the south, in central and southern Italy 
(Fig. 4).

While the phylogeographic signal from mtDNA in T. 
carnifex is generally concordant with nuclear DNA and 
supports the same three main lineages, it breaks down in 
areas of admixture (Figs. 1 and 2). First, we find mtDNA 
of a different crested newt species, T. dobrogicus, in T. car-
nifex populations north of the Alps (Fig.1). As T. dobrogicus 
is an obligatory lowland species (Arntzen et al. 1997), its 
mtDNA is unlikely to be native in this area. Yet, given that 
the same mtDNA haplotype still occurs throughout the range 
of T. dobrogicus (Wielstra et al. 2013), introgression must 
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Fig. 3   Principal component analysis of nuclear DNA data for Triturus 
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Fig. 4   Species distribution model for Triturus carnifex. The species distribution model is projected on climate layers for the present (a) and for 
the Last Glacial Maximum based on the MIROC (b) and CCSM (C) climate models. Warmer colors refer to a higher predicted suitability
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have occurred recently, upon postglacial secondary con-
tact between the two species. Introgression into T. carnifex 
probably took place in the lowlands near the present day T. 
dobrogicus–T. carnifex hybrid zone and subsequently surfed 
(Klopfstein et al. 2006) beyond the T. dobrogicus range, in 
an expanding T. carnifex population (Mačát et al. 2019). 
Postglacial northwards expansion of T. carnifex around the 
Alps (from the Balkan population) is in line with our species 
distribution model (Fig. 4).

Second, admixture between the two Italian gene pools is 
relatively wider for the nuclear genome than for mtDNA. 
Also, mtDNA of the northern Italian clade is found to have 
introgressed into the southern Italian gene pool, well over 
a hundred kilometre southwards of the present day zone of 
admixture between the two gene pools (Fig. 1). We propose 
this mtDNA introgression could reflect expansion of the 
southern gene pool, at the expense of the northern one (Cur-
rat et al. 2008; Wielstra 2019) but it could also be explained 
by positive selection dragging the northern mtDNA into the 
southern gene pool (Bonnet et al. 2017).

Third, we identified a relatively distinct mtDNA haplo-
type (h09) of early Pleistocene origin (c. 1.6 Ma; Fig. 2) in 
the present day hybrid zone between the Italian and Balkan 
groups (Fig. 1). Given the geographically restricted distri-
bution of the new mtDNA clade identified in T. carnifex it 
may have evolved in situ. The species distribution modelling 
agrees that suitable conditions remained here at the Last 
Glacial Maximum and presumably during previous glacia-
tions as well (Hewitt 2011b). Under these circumstances, a 
population of T. carnifex could have survived the glaciations 
here, despite recurring secondary contact and admixture of 
the Italian and Balkan groups in north-eastern Italy. The 
origin of a mtDNA ‘ghost lineage’ that does not have prec-
edent in nuclear DNA, could be explained by secondary con-
tact of, and subsequent fusion of, populations that initially 
diverged in allopatry (Hogner et al. 2012; Dufresnes et al. 
2020) or mtDNA capture from a population that has subse-
quently gone extinct (Mao et al. 2013; Zhang et al. 2019; 
Ottenburghs 2020). MtDNA ghost lineages are known from 
several Balkan newt taxa (Pabijan et al. 2015; Recuero et al. 
2014; Wielstra and Arntzen 2020). Denser sampling east 
of the hybrid zone between the Balkan and northern Italian 
gene pool is required to test these hypotheses.

Conclusions

Triturus carnifex survived the Pleistocene Ice Age in three 
discrete glacial refugia, one in the north-western Balkan 
Peninsula (roughly the Istria region), one in the north of the 
Italian Peninsula, and one in the central/south of the Italian 
Peninsula—in line with a previous historical biogeographi-
cal scenario derived from mtDNA. Our study supports: (1) 

the relevance of the north-western Balkan Peninsula as a 
discrete glacial refugium (while traditionally the southern 
Balkans are considered most important; Poulakakis et al. 
2015); (2) the importance of north-eastern Italy and the 
northern Apennine as suture zones (see also e.g. Dufresnes 
et al. 2014; Verardi et al. 2009; Schultze et al. 2020; Can-
estrelli et al. 2006; Canestrelli and Nascetti 2008); and (3) 
the applicability of a refugia-within-refugia scenario within 
the Italian Peninsula (Canestrelli et al. 2014; Canestrelli 
et al. 2010; Salvi et al. 2013; Maura et al. 2014).

While mtDNA overall is informative on the historical bio-
geography of T. carnifex, it does occasionally fall short. The 
deviation between mtDNA and our nuclear DNA dataset can 
be explained by well-understood gene flow upon secondary 
contact, resulting in asymmetric introgression, and ancient 
gene flow followed by genetic swamping might also account 
for the origin of a mtDNA ghost lineage. Here, next-gen-
eration phylogeography and species distribution modelling 
provide a more accurate and intricate picture. The Italian 
crested newt exemplifies how population fragmentation into 
multiple refugia, within the wider network of European gla-
cial refugia, drove intraspecific divergence, despite repeated 
opportunities for merging during interglacial periods.
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