
Ensuring Trustworthy and Ethical Behaviour
in Intelligent Logical Agents?

Stefania Costantini

Università degli Studi di L’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione, e Matematica

Via Vetoio snc, Loc. Coppito, I-67010 L’Aquila - Italy
stefania.costantini@univaq.it

Abstract. Autonomous Intelligent Agents are employed in many applications
upon which the life and welfare of living beings and vital social functions may
depend. Therefore, agents should be trustworthy. A priori certification techniques
(i.e., techniques applied prior to system’s deployment) can be useful, but are not
sufficient for agents that evolve, and thus modify their epistemic and belief state,
and for open Multi-Agent Systems, where heterogeneous agents can join or leave
the system at any stage of its operation. In this paper, we propose/refine/extend
dynamic (runtime) logic-based self-checking techniques, devised in order to be
able to ensure agents’ trustworthy and ethical behaviour.

1 Introduction

The development, refinement, implementation and integration of methods for imple-
menting Intelligent Agents so as to ensure transparent, explainable, reliable and ethical
behaviour is strongly needed. This is due to the fact that agent systems are being widely
adopted for many important autonomous applications upon which the life and wel-
fare of living beings and vital social functions may depend. Therefore, agents should
be trustworthy in the sense that they could be relied upon to do what is expected of
them, while not exhibiting unwanted behaviour. So, agents should not behave in im-
proper/forbidden/unethical ways given the present context, and they should not devise
new behaviours that might be in contrast with their specification or however with the
user’s expectations. They should be transparent, in the sense of being able to explain
their actions and choices when required: in fact, it should always be possible to find
out how and why an agent (or, more generally, an autonomous system) made a partic-
ular decision. This property is not guaranteed by default, rather it descends from care-
ful design methodologies. Transparency (“explainability”) is vital since, in case of any
kind of accident or misfunctioning involving an autonomous system, it must always be
possible that the faults or inadequacies that caused the problem be identified and fixed,
and accountability established. Moreover, understandably, users would (rationally) trust
more those autonomous systems that could provide an intelligible explanation of their
behaviours and choices. Numerous studies have linked users’ trust to the degree of con-
fidence to be interacting with a system that is verifiable and can provide explanations
which are intelligible, to each specific category of users.
? Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

Agents should report to their users in case the interaction with the environment
results in the identification of new objectives to pursue. In fact, as cleverly observed
by Stuart Russel in his recent book [1], the continuous interaction of an agent with the
external environment may lead the agent to acquire new knowledge and also, based on
this knowledge, to develop new objectives (or new plans for existing objectives) that
might not be in line with the ethical principles that the human designer believed to have
instilled into the agent, and might even violate basic human principles and rights. To
avoid this, agents’ behaviour should be verified in a rigorous way, possibly integrating
different verification methods, with the aim to ensure adherence of agents’ operation to
their specification. Such verification should, at least partly, happen at run-time, in order
to monitor the agent’s dynamic behaviours.

In this paper, we discuss the issue of agents’ verification, and its application to
ethics, i.e., to making agent systems trustworthy w.r.t. their expected ethical behaviour.
We propose some technical contributions concerning run-time verification, restricting
ourselves to agent systems based upon computational logic. Many computational-logic-
based agent-oriented languages and frameworks to specify agents and Multi-Agent Sys-
tems (MAS) have indeed been defined over time (for a survey of these languages and
architectures the reader may refer, among many, to [2–4]). Their added value with re-
spect to non-logical approaches is to provide clean semantics, readability and verifiabil-
ity, as well as transparency and explainability ‘by design’ (or almost), as logical proofs
can easily be transposed into natural-language explanations. All these approaches are
based (more or less directly, more or less adherently) on the so-called BDI (’Belief,
Desires, Intention’) model of agency [5], which formalizes means-end-reasoning and
thus encompasses the concepts of perception, goals, actions, plans, commitments. The
BDI model is inspired by Bratman’s theory of human practical reasoning [6], so such
concepts are considered mental attitudes, or mental/epistemic states of agents.

Pre-deployment verification methods for logical agents (also called ‘static’, or ‘a
priori’) are able to certify that agents will fulfil certain requisites of trustworthiness;
this means that they will do what is expected from them, and they will not violate cer-
tain rules of behaviour. However, this kind of verification can be not fully sufficient
for agents that will revise their beliefs and objectives in consequence of the interaction
with a changing not-always-predictable environment. Dynamic, or Runtime, Verifica-
tion (RV) is the “orthogonal” approach, aimed to verify whether a software component
under observation respects or not, over time, during its operation (i.e., at ‘runtime’),
some given properties. Approaches to dynamic verification are meant to be lightweight,
so as not to be a burden on the system’s performances. The two kinds of verification
methods can be profitably exploited in conjunction, as both approaches do not examine
all possible system’s behaviours, but only some explicitly designated ones, as specified
by the system’s designer.

The work presented in the present paper stems from the observation that, in many
practical cases, in particular in agents that learn, or in open MAS where agents can join
and leave the system, it is not possible to fully predict the set of events that will be per-
ceived and considered by an agent, which might even lead the agent itself to devise new
objectives and plans that depart from its expected/acceptable behaviour. We advocate
that agents themselves should keep their own operation under control in changing

circumstances: i.e., agents should be able to observe and to check their own be-
haviour, to take countermeasures against anomalies and also, very importantly, to
correct and constantly improve such behaviour, so as, for instance, to refine their
understanding of human preferences and expectations, as required in [1]. Without that,
agents’ behaviour may become dangerously unpredictable. In our view, agents should
thus reflect on themselves, and act accordingly to modify their state and/or their interac-
tion with the humans and the environment. The methods that we propose fall within the
RV techniques, although our notion of self-observation and self-improvement is new in
this field.

We find similarities between our approach and the point of view of Self-aware com-
puting: quoting [7], Self-aware and self-expressive computing describes an emerging
paradigm for systems and applications that proactively gather information; maintain
knowledge about their own internal states and environments; and then use this knowl-
edge to reason about behaviours, revise self-imposed goals, and self-adapt. . . . Systems
that gather unpredictable input data while responding and self-adapting in uncertain
environments are transforming our relationship with and use of computers. Reporting
from [8], From an autonomous agent view, a self-aware system must have sensors, ef-
fectors, memory (including representation of state), conflict detection and handling,
reasoning, learning, goal setting, and explicit awareness of any assumptions. The sys-
tem should be reactive, deliberative, and reflective.

An example of application of these concepts, devised for computational-logic-based
agents, is presented in [9], which defines a time-based active logic and a Metacogni-
tive Loop (MCL): such loop specifies the system’s self-monitoring, via reasoning and
meta-reasoning, with self-correction whenever needed. As discussed in [9], MCL con-
tinuously monitors an agent’s expectations, notices when they are violated, assesses the
cause of the violation and guides the system to an appropriate response. In the terms
of [8], this is an example of Explicit Self-Awareness, where the computer system has a
full-fledged self-model representing knowledge about itself.

In this paper, we propose contributions to an envisaged toolkit for run-time self-
monitoring of evolving agents. Differently from [9] however, we do not aim to con-
tinuously monitor the entire system’s state, but rather to monitor only the aspects that
a designer deems to be relevant for keeping the system’s behaviour safely under con-
trol. We specify techniques and tools for: (i) checking the immediate, “instinctive” re-
active behaviour in a context-dependent way, and (ii) checking and re-organizing an
agent’s operation at a more global level. In particular, we introduce meta-rules and
meta-constraints for agents’ run-time self-checking, where checking of each specified
condition occurs upon need, or at a certain –customizable– frequency. The proposed
meta-constraints are based upon a simple interval temporal logic tailored to the agent
realm, which we called A-ILTL (‘Agent-Oriented Interval LTL’)1. A-ILTL constraints
and evolutionary expressions are defined over formulas of an underlying logic language
L, where however we make A-ILTL independent of L, thus ensuring applicability of
our approach to any logic-based language.

1 LTL stands as customary for ‘Linear Temporal Logic’. For an introduction and formal defini-
tions concerning Temporal Logics cf., e.g., [10].

In A-ILTL, a designer can specify properties that should hold in specific time in-
stants and time intervals, according to past but also future events. Evolutionary A-ILTL
Expressions, that we have implemented and experimented, are in fact composed of the
following elements. (i) A (partially specified, possibly empty) sequence of events that
have happened (i.e., have been perceived by the agent); the occurrence of an instance
of such sequence enables the check of (ii) a temporal-logic-like expression defining a
property that should hold (in a given interval), provided that the agent monitors (iii) a
(possibly empty) sequence of events that are supposed to happen in the future, without
affecting the property, or that are supposed not to happen, otherwise the property is no
longer significant; and, finally, (iv) “repair”/“improvement” countermeasures (optional)
to be undertaken if the property is violated. Countermeasures can be: at the object-level,
i.e., related to the application domain at hand; or, at the meta-level, e.g., they can inspect
elements of the agent’s internal state, and even result in replacing a software compo-
nent with a diverse alternative. The act of checking A-ILTL expressions can indeed be
considered as an introspective act, as an agent suspends its current activities in order to
inspect and possibly self-modify its own state.

Our work has a clear connection in its objectives to the work of [11], which pro-
poses to implement a “restraining bolt”2 for agents’ behaviour; this by conditioning
reinforcement learning of reactive actions, so as to obey LTL specifications defining
behavioural/ethical principles. This (very promising) method is orthogonal to ours, thus
the two might profitably coexist.

A toolkit for logical agents’ run-time self-verification can be obtained by means
of the synergy between the new features proposed here and those introduced in past
work (notably [12, 13], [14], and [15])3. The proposed approach can be seen under
two perspectives. On the one hand, as a means of defining an enhanced “restraining
bolt” (not in exclusion but complementary to the one of [11]), capable of preventing
agents from engaging in unwanted behaviours which could not be fully predicted at
design time. On the other hand, since agents are supposed to be able to learn rules of
behaviour over time, as a means of defining a potentially “disobeying robot” that can
on occasion disallow behaviour hardwired at design time; this in cases where, in the
present agent’s context, such behaviour violates context-dependent learned behavioural
or ethical rules4.

2 A “restraining bolt” as imagined in the Star Wars Science Fiction saga is a small cylindri-
cal device that, when activated, restricts a droid’s actions to a set of behaviours considered
desirable/acceptable by its owners.

3 The author acknowledges the co-authors of the aforementioned papers, that contributed to
various extents to the development of this research. Apart from [14] which is an extended
abstract, all these other papers appeared in venues with a limited audience and/or without
formal proceedings.

4 There is an open discussion in the literature, initiated by Arkin in [16], about whether agents
should be allowed not only to disobey, but also, on occasions, to deceive (though, according to
Kant’s categorical imperative, lying is fundamentally wrong). This for cases where deception
may have societal value, to preserve the user’s state of mind or even possibilities of survival. A
problem is, however, how to ensure that deception is only used in the contexts it was designed
for. To this problem, the proposed approach might provide some initial answer.

The paper is organized as follows: in Sections 2 and 3 we introduce and discuss
existing approaches to the verification of agent systems, and very shortly provide a
review and some pointers to existing work on Machine Ethics, in particular concerning
Logical Agents; in Section 4 we introduce metarules for checking reactive behaviour,
and in Sections 5, 6 and 7 we introduce A-ILTL constraints in theory and practice.
In Section 8 and 9 we present some experiments, and discuss the complexity of our
approach in terms of the burden that it might add to agents’ execution performance.
In Sections 10 we briefly discuss some more related work, and then conclude. In the
examples, we adopt a Prolog-like syntax (cf. [17]) for rules, of the form Head :−Body ,
where Head is an atom, Body is a conjunction of literals (atoms or negated atoms, that
are often called ’subgoals’) and the comma stands for ∧. The specific syntax that we
use is however purely aimed at illustration: the approach can be, ‘mutatis mutandis’,
re-worked w.r.t. any different syntax.

2 Background: Verification Methods for Agent Systems

The verification of a MAS global behaviour, as well as the verification of a single agent
or, more generally, of an autonomous system, is an intrinsically complex but unavoid-
able problem: in fact, many different approaches to its solution have been presented in
the literature. For an extensive illustration and comparison of approaches to ensuring
reliability of autonomous systems, we refer the reader to the recent survey [18] and to
the many references therein.

In this section, we intend to shortly introduce, for the sake of completeness, the most
established methods for the verification of agents or MAS, i.e.: (i) verification that is
performed statically, or ‘a priori’ (prior to deployment) by checking the system against
given input configurations, sequences of external events, etc., and (ii) verification that is
performed dynamically, by monitoring the evolution of the system during its operation
(at ‘runtime’), in order to stop, or try to recover, every situation that appears incorrect
with respect to the system’s specification. The methods that we propose in this paper
are of the latter kind.

Static verification can be accomplished through model checking [19, 20], abstract
interpretation (not commented here, cf. [21]) or theorem proving [22, 23]. Although
model checking techniques have been originally adopted for testing hardware devices,
their application to software systems and protocols is constantly growing [24, 25], and
there have been a number of attempts to overcome some known limitations of this
approach, for instance so-called ‘state explosion’, which occurs when the situations to
check generate too many combinations.

The application of static techniques such as model checking to the verification of
MAS encounters some difficulties, due to the marked differences between the languages
used for the definition of agents and those needed by verifiers (usually ad-hoc, tool-
specific languages). The model-checking paradigm, in fact, allows one to model a sys-
tem S in terms of an automaton, by building an implementation Ps of the system at
hand by means of a model-checker-friendly language. Programs written in such suit-
able input language can then be submitted to model checkers in order to verify formal

specifications. These are commonly expressed either as formulae of the Branching Time
Computational Tree Temporal Logic CTL [26, 27] or as formulae of Linear Temporal
Logic LTL [28–31]. It can be not easy to re-model an agent or MAS in another lan-
guage: this task is usually performed (at least partly) manually, and thus it requires an
advanced expertise and gives no guarantee on the correctness and coherence of the new
model: the current research in this field is in part still focused on the problem of defining
a suitable language that can be used to easily and/or automatically reformulate a MAS
in order to verify it through general model checking algorithms (cf., e.g., [25, 32]). The
literature reports however fully-implemented verification frameworks (e.g., [33–36]).

Lomuscio et al. have defined the bounded semantics of CTLK [37, 34], a combined
logic of knowledge and time. Their approach is to translate the system model and a for-
mula φ, indicating the property to be verified, into sets of propositional formulae to be
then submitted to a SAT-solver. The approach has evolved over time until [38, 36], lead-
ing to the proposal of an open-source model checker, MCMAS, for the verification of
MAS. MCMAS takes ISPL (Interpreted Systems Programming Language) descriptions
as input, where an ISPL file fully describes a multi-agent system, i.e., both the agents
and their environment. Model-checking techniques have been adopted in order to check
systems implemented in AgentSpeak(L) [39], where a variation of the language aimed
at allowing its algorithmic verification has been proposed. The work [33] proposes in
fact a technique to model-check agents defined in a subset of the AgentSpeak language,
that can be automatically translated into languages accepted by the model checkers
SPIN [24] and Java PathFinder [40]. These simplifications and translations - though
partly or mostly automated - make the process of model checking, though very useful,
not-too-easy to apply.

Finally, concerning model checking of agent systems we mention the recent work
presented in [41–43] concerning the MCAPL model checking framework, where [41]
explicitly considers checking agents’ ethical choices.

Techniques to reduce the heaviness of model-checking have been devised or ex-
ploited in the above-mentioned works, still, the amount of computational resources
needed by model checking is considerable.

The deductive approach to verification uses a logical formula to describe all possi-
ble executions of the agent system that one wants to check, and then attempts to per-
form theorem proving of a required property from this logical formula. Such properties
are often captured using modal and temporal logics. Deductive approaches have been
adopted by Shapiro, Lesperance and Levesque that defined CASLve [23], a verification
environment for the Cognitive Agent Specification Language. A limitation of the theo-
rem proving approach is the problem’s complexity, and thus a human interaction is often
required. In this field, the author of this paper has proposed (with others), in [44], an
approach to the formal description of the operational semantics of any agent-oriented
logic language and of its underlying inference engine. We have fully formalized the
DALI agent-oriented programming language [45–48] and its interpreter [49]. We have
been able to prove various properties of the language (e.g., properties of the communi-
cation protocols that DALI provides) and of its interpreter, first of all correctness of the
interpreter w.r.t. the procedural (resolution-based) semantics of DALI, that can be used
as basis to prove properties of DALI agents.

Overall, the question that a priori verification tries to answer is: “given a set of
rules that the agent will respect, are these rules enough to guarantee the desired future
behaviour, independently of what will happen in an open environment?” However, if an
agent is supposed to learn new knowledge or rules, then there can be properties that it
is difficult or even impossible to fully check by means of the above techniques either a
priori, or by repeating the check whenever the agent performs some learning. Moreover,
a MAS can be composed of heterogeneous agents and it can be open, i.e., agents can
freely join or leave the system. In this cases, a priori verification is clearly insufficient.

Another possible approach to agent validation, based on testing, requires observing
the agent’s behaviour as it performs its tasks in a series of test scenarios before putting
it at work. This approach however, as observed by Wallace in [50], is by its very nature
incomplete since all critical scenarios can hardly be identified and examined.

So, it has been found useful to individuate mechanisms to complement a priori veri-
fication and testing, capable of verifying an agent’s behaviour correctness without stop-
ping its operation. Dynamic, or runtime (RV) verification is the only (semi-)formal ver-
ification technique that directly analyzes system’s operation to check for violations of
formally expressed specifications/properties. This although, as remarked in [51], “Spec-
ification of the requirements to monitor at runtime is the biggest bottleneck to successful
deployment of RV”. This is an issue to which this paper will try to provide at least a
partial answer.

A relevant recent approach to RV, based upon computational logic and especially
tailored to logical agents, is that of Trace Expressions (cf. e.g., [52, 53]), which are in
fact a specification formalism especially devised to this aim. An event trace, in this
approach, is a (possibly infinite) sequence, defined over a fixed universe of events. A
trace expression, built out of suitable constructs, denotes a specific set of event traces.
These specify in a formal way which are the events allowed in a certain state for a given
agent. A Prolog implementation has been devised to allow a user to automatically build
a trace-expression-driven monitor (by means of a user-friendly language, currently un-
der design); this monitor will be able to observe events taking place in the environment,
and check whether such events are indeed allowed in the current agent’s state. A system
can successfully terminate if the trace expression representing the current state can halt,
i.e., it contains the empty trace. Experiments demonstrate that, in most cases, verifica-
tion of trace expressions is linear in the length of the trace, whatever available modelling
features have been exploited; thus, performances are guaranteed to be acceptable.

Interestingly, trace expressions can be exploited for use in a model checker: in fact,
an algorithm has been proposed to check LTL properties satisfiability on trace expres-
sions [54]. Vice versa there are tentative approaches, not yet applicable to agents but
nonetheless interesting, notably [55], to adapting existing software model checkers to
perform runtime verification.

The difference with our approach is that we do not check event traces ‘per se’.
Rather, we define constraints based upon a special interval logic, to specify which be-
haviours are allowed or not, also depending upon the present agent’s BDI state: which is
to say, in the formulation of these constraints it is possible to access meta-level notions
about the agent’s internal state such as goals, plans, actions; that is why our technique
is ‘introspective’. Moreover, our constraints can (optionally) take a sequence of events

that are supposed to have happened as a precondition, i.e., a certain behaviour is al-
lowed or required after certain events sequences; but, we also consider events which are
expected or prohibited in the future, to evaluate whether a constraint has succeeded (is
satisfied) or not. Another main difference is that we do not devise a monitor which is
conceptually external to the agent: rather, the proposed meta-level rules and constraints
act as monitors, although fully integrated into the agent’s operation.

3 Background: Machine Ethics, Ethics in Agents and MAS

AI ethics, or – more generally – Machine Ethics, is concerned with the question of
how AI systems can behave ethically. It is a recent research field, dating back to the
early 2000’s, concerning both philosophy and computer science. In fact, Philosophers
should answer questions on whether a machine could behave ethically, and on the ba-
sis of which ethical principles, and are challenged with the more general question on
whether society should (and to which extent) delegate moral responsibility to machines.
Computer scientists are concerned with devising techniques usable to build ethical ma-
chines. In the definition of such techniques, the distinction must be made between im-
plicitly ethical agents, i.e., (i) machines designed to avoid unethical outcomes, and (ii)
explicitly ethical agents, i.e., machines that can reason about ethics. In this paper, we
propose an approach that copes with case (i), and only to some extent with case (ii).

According to Winfield [56], where an extensive discussion with many references
can be found, the field of machine ethics was established by Allen et al. [57, 58], where
the concept of “Artificial Moral Agent” was introduced, and three approaches to ma-
chine ethics were identified: top-down, bottom-up and hybrid (combination of top-down
and bottom-up). The top-down approach constrains the actions of the machine in accor-
dance with pre-defined rules or norms. The bottom-up approach instead requires an
agent to be able to learn, recognise and correctly respond to morally challenging sit-
uations. Other relevant contributions soon followed (cf. among many, [59–62]). The
proposal by Arkin [16] for the design and implementation of an ethical governor for
robots – intended as a run-time mechanism for moderating or inhibiting a robot’s be-
haviour to prevent it from acting unethically – brings a conceptual similarity with the
approach proposed in the present paper. Because of the burden of expectation on the
behaviour of ethical machines, such governor will need to be especially robust, and to
this aspect our work attempts to provide some contributions.

To date, many approaches exist to Machine Ethics, Ethics in Artificial Intelligence
systems, and more specifically Ethics in Agents and MAS, where the latter ones are
of particular concern for the topics treated in this paper. For recent literature reviews,
a reader may refer to [63–66]. There, the authors start from the illustration of moral
philosophical concepts ranging from ancient philosophers to recent works in neurology
and cognitive sciences, discuss concepts like morals, ethics, judgment or values, and
then identify the kinds of philosophical ethical theories that have been applied or are
potentially applicable to agents and multi-agent systems, providing many relevant ref-
erences. In particular, [63, 65] concern theories developed in logic, and then transposed
into Computational Logic. They discuss in some depth two seminal lines of work: the
one by Pereira et al., starting from the famous book [67], and summarized in the more

recent book [68], which exploits a blend of many forms of logic programming; and,
the one by Marek Sergot (cf. [69–72]), mainly exploiting Answer Set Programming to
compare and weigh alternative scenarios in order make ethical decisions5.

Other more recent attempts at modelling and implementing forms of Ethical Rea-
soning in logical agents are [79–81] that try to exploit Answer Set Programming and
(variants of) the Event Calculus [82]. A very recent work [83] develops theory and
concepts concerning ethical reasoning in changing contexts.

Ethical rules to be exploited in ethical reasoning can be defined a priori by a sys-
tem’s designer, but, in alternative, they can be learnt, as proposed in [84–87].

However, the above-mentioned approaches propose theories and implementations
to represent and reason about ethical principles and their applications, i.e., how agents
should make ethical judgements and decisions. The tools proposed in this paper aim to
check and possibly enforce respect of such decisions, so they are “agnostic” w.r.t. the
kind of ethical reasoning that is performed. That is why we do not go into any further
depth concerning Machine Ethics.

4 Checking Agents’ Reactive Behaviour

In the BDI model, an agent will have objectives, and devise plans to reach these objec-
tives. In addition, most agent-oriented languages and frameworks provide mechanisms
for ‘pure’ reactivity, i.e. ‘instinctive’ immediate reaction to an event. The acceptable
reactions that an agent can enact are in general strictly dependent on the context, the
agent’s role and the situation. Let us consider the need to ensure an agent’s ethical be-
haviour. Assume for sake of example an agent (either human or artificial) which finds
itself to face some other agent which might be, or certainly is, a criminal. We can state
in general that: (i) if the context is that of playing a video-game, every kind of reaction is
allowed, including beating, shooting or killing the ‘enemy’, with exceptions, e.g., when
small children are watching; (ii) same if the context is a role game: the players can
pretend to threaten, shout or kill the other players, where every action is simulated and
thus harmless; (iii) in reality, a citizen can shout, call the police, and try enact defensive
strategies or actions; a policewoman/policemen can threaten, arrest, or in extreme cases
shoot the suspect criminal.

Or, assume that a self-driving car has to decide on whether to accelerate or not,
where accelerating is in general allowed if the speed limit has not been reached. The
different contexts here may concern whether the car is in town, or out of town, or on
a motorway, as in each of these cases the speed limit is different. There are however
exceptions, due to speed limitations that can be found on the way for various reasons
(e.g., construction), or due to the kind of vehicle, as for instance an ambulance, or the
police, or the fire truck, can run faster than the limit in case of an emergency.

5 Answer Set Programming (ASP) is a successfully logic programming paradigm (cf. [73] and
the references therein) stemming from the Answer Set (or “Stable Model”) semantics of Gel-
fond and Lifschitz [74, 75], and based on the programming methodology proposed by Marek,
Truszczyński and Lifschitz [76, 77]. ASP is put into practice by means of effective inference
engines, called solvers, which are freely available, see [78].

The reaction to enact in each situation can be ‘hardwired’ by the agent’s designer.
In the case of the self-driving car, it might seem that a priori verification could be
sufficient; however, if one considers the unpredictability of circumstances (i.e., when
and where speed limits can be found or emergencies can arise), a blend with dynamic
verification can be more practical: this case is in fact discussed in [52], and coped with
by means of trace expressions.

In the other case, general ethical rules will reasonably be provided, where however
their specific application in the domain at hand can be learned, e.g., via reinforcement
learning. Here, run-time checking of agent’s behaviour w.r.t. ethical rules is in order,
as the results of learning are in general unpredictable and to some extent potentially
unreliable. The method of conditioning reinforcement learning to obey desirable prop-
erties proposed in [11] is applicable but might not completely suffice, due to possible
unexpected dynamic changes of context and roles not foreseeable in advance.

In this section, we introduce mechanisms to verify and possibly enforce desired
properties of reactive behaviour by means of metalevel rules. To define such new rules,
we assume to augment the underlying language L at hand with a naming (or “reifica-
tion”) mechanism, and with the introduction of two distinguished predicates, solve and
solve not . These are meta-predicates, that can be employed to control the object-level
behaviour. In fact, solve , applied to (the name of) an atom which represents an action
or an objective of an agent, may specify conditions for that action/goal to be enacted;
vice-versa solve not specifies under which conditions it should be blocked.

Below is a simple example of the use of solve: the aim is to specify that action Act
can be executed in the present agent’s context of operation C and role R, only if this
action is allowed, and it is deemed to be ethical w.r.t. context and role. Any kind of
reasoning can be performed via metalevel rules in order to monitor and assess base-
level ethical behaviour. Below, lowercase syntactic elements such as p′, c′, are names
of predicates and constants, according to some naming mechanism6, and uppercase
syntactic elements such as V ′ are metavariables.

6 A “naming relation”, or “naming mechanism” or “reification mechanism” is a method for rep-
resenting, within a first-order language, expressions of the language itself without resorting to
higher-order features. Naming relations can be introduced in several manners. For a discussion
of different possibilities, with their advantages and disadvantages, see, e.g., [88–91]. However,
all such mechanisms are based upon introducing distinguished constants, function symbols (if
available), and predicates, devised to construct names. For example, given an atom p(a, b, c),
a name might be atom(pred(p′), args([a ′, b′, c′])) where p′ and a′, b′, c′ are new constants
intended as names for the syntactic elements p and a, b, c. Notice that: where p is a predi-
cate symbol, which is not a first-class object in a first-order setting, its name p′ is a constant,
which is instead a first-class object and can be manipulated. The possibility to manipulate,
even if indirectly, every syntactic object of given language is the purpose of the introduction
of names. In the above sample name, atom is a distinguished predicate symbol, args a dis-
tinguished function symbol and [. . .] is a list. This name might be shortened as p′(a′, b′, c′).
Naming mechanisms have been widely studied, cf., among many, [92–94]. Whatever the cho-
sen naming mechanism, it is necessary to relate objects and their names. It is common practice
to denote the name of an object α as ↑ α. E.g., ↑ p(a, b, c) = ↑ p(↑ a, ↑ b, ↑ c). Since in our
sample naming relation we have stated that ↑ p = p′, ↑ a = a′, ↑ b = b′, and ↑ c = c′, we
have ↑ p(a, b, c) = p′(a′, b′, c′).

solve(execute action ′(Act ′)) :−
present context(C), agent role(R),
allowed(C ,R,Act ′), ethical(C ,R,Act ′).

We assume that solve(execute action ′(Act ′)) is automatically invoked whenever
subgoal (atom) execute action(Act) is attempted at the object level. More generally,
given any subgoalA at the object level, if there exists an applicable solve rule, then such
rule is automatically applied, and A can succeed only if solve(↑A) succeeds, where the
expression ↑A denotes the name of A according to the chosen naming mechanism.
We assume, also, that the present context and the agent’s role are kept in the agent’s
knowledge base. Since both parameters may change, the same action may be allowed
in some circumstances and not in others. Notice that the predicate ethical is meant
to be user-defined because, as said before, our approach is agnostic w.r.t. the ethical
principles that an agent’s designer intends to enact.

Symmetrically we can define metarules to forbid unwanted object-level behaviour,
e.g.:

solve not(execute action ′(Act ′)) :−
present context(C), ethical exception(C ,Act ′).

this rule prevents successful execution of its argument, in the example
execute action(Act), whenever solve not(↑A) succeeds. Then, action/goal A
can succeed (according to its object-level definition) only if solve(↑A) (if defined)
succeeds and solve not(↑A) (if defined) does not succeed.

The outlined functioning corresponds to upward reflection when the current subgoal
A is reified (i.e., its name is computed) and applicable solve and solve not metarules
are searched; if such metarules are found, control in fact shifts from the object to the
metalevel (consider that solve and solve not can rely upon any set of auxiliary met-
alevel rules). If no rule is found or whenever solve and solve not metarules complete
their execution, downward reflection returns control to the object level, to execution of
A if confirmed or to subsequent goals/actions if A has been cancelled by either failure
of an applicable solve metarule or success of an applicable solve not metarule.

Via solve and solve not metarules, fine-grained activities of an agent can be punc-
tually checked and thus allowed and disallowed, according to the context an agent is
presently involved into with a certain role.

Semantics of the proposed approach can be sketched as follows (a full semantic def-
inition can be found in [95–97]). According to [98], in general terms we understand a
semantics SEM for logic knowledge representation languages/formalisms as a function
which associates a theory/program with a set of sets of atoms, which constitute the in-
tended meaning. When saying that P is a program, we mean that it is a program/theory
in the (here unspecified) logic languages/formalism that one wishes to adopt.

We introduce the following restriction on sets of atoms I that should be considered
for the application of SEM . First, as customary we only consider sets of atoms I com-
posed of atoms occurring in the ‘ground’ version of P (where the ground version of
program P is obtained by substituting in all possible ways variables occurring in P by
constants also occurring in P). In our case, metavariables occurring in an atom must
be substituted by metaconstants, with the following obvious restrictions: a metavariable

occurring in the predicate position must be substituted by a metaconstant representing
a predicate; a metavariable occurring in the function position must be substituted by a
metaconstant representing a function; a metavariable occurring in the position corre-
sponding to a constant must be substituted by a metaconstant representing a constant.
According to well-established terminology, we therefore require I ⊆ BP , where BP
is the Herbrand Base of P . Then, we pose some more substantial requirements: we
restrict SEM to determine only acceptable sets of atoms7, where I is an acceptable set
of atoms iff I satisfies the axiom schemata:

A← solve(↑A) ¬A← solve not(↑A)
So, by means of this restriction we model the implementation of properties that have

been defined via solve and solve not rules, without modifications to SEM . For clarity
however, one can assume to filter away solve and solve not atoms from acceptable
sets. In fact, the Base version IB of an acceptable set I can be obtained by omitting
from I all atoms of the form solve(↑A) and solve not(↑A). Procedural semantics, and
the specific naming relation that one intends to use, remain to be defined, where the
above-introduced semantic modelling is independent of these aspects. For approaches
based upon (variants of) Resolution (like, e.g., Prolog and like many agent-oriented
languages such as, e.g., AgentSpeak [99], GOAL [100], 3APL [101] and DALI [45–48])
one can extend their proof procedure so as to automatically invoke metarules whenever
applicable, to validate or invalidate success of subgoal A.

How to define the predicate ethical(C ,R,Act ′)? Again, rules defining this predi-
cate can be specified at design time, or they can be learned, or a combination of both
options. In previous works [102–104], a hybrid logic-based approach was proposed for
ethical evaluation of agents’ behaviour, with reference to dialogue agents (so-called
‘chatbots’) but easily extendable to other kinds of agents and of applications. The ap-
proach is based on logic programming as a knowledge representation and reasoning
language, and on Inductive Logic Programming (ILP) for learning rules needed for
ethical evaluation and reasoning, taking as a starting point general ethical guidelines re-
lated to a context; the learning phase starts from a set of annotated cases, but the system
is then able to perform continuous incremental learning.

5 A Logic for Checking Agent’s Behaviour over Time

The techniques illustrated in the previous section are “punctual”, in the sense that they
provide context-based mechanisms to allow/disallow agents’ actions. However, it is
necessary to introduce ways to monitor an agent’s behaviour in a more extensive way.
In fact, properties that one wants to verify often depend upon time and time intervals,
and possibly on which events have been observed by an agent up to a certain point,
and which others are supposed to occur later. The definition of frameworks such as the
one that we propose here, for checking agent’s operation during its ‘life’ based on its
experience and expectations, has not been widely treated so far in the literature.

7 modulo bijection: i.e., SEM can be allowed to produce sets of atoms which are in one-to-one
correspondence with acceptable sets of atoms

Below we introduce a logic which constitutes the basis of our approach for checking
an agent’s behaviour during the agent’s activity.

5.1 A-ILTL

For defining properties that are supposed to be respected by an evolving system, a well-
established approach is that of Temporal Logic, and in particular of Linear-time Tempo-
ral Logic (LTL). This logic [10] evaluates each formula with respect to a vertex-labeled
infinite path (or “state sequence”) s0s1 . . . where each vertex si in the path corresponds
to a point in time (or “time instant” or “state”). In what follows, we use the standard
notation for the best-known LTL operators.

In [13], we formally introduced an extension to LTL based on intervals, called A-
ILTL for ‘Agent-Oriented Interval LTL’. A-ILTL is useful because the underlying dis-
crete linear model of time and the complexity of the logic remains unchanged with
respect to LTL. This simple formulation can be efficiently implemented, and is suffi-
cient for expressing and checking a number of interesting properties of agent systems.
Formal syntax and semantics of a number of A-ILTL operators (also called below “In-
terval Operators”) are fully defined in [13].

LTL and A-ILTL expressions are interpreted in a discrete, linear model of time.
Formally, this structure is represented byM = 〈N, I〉 where, given countable set Σ of
atomic propositions, interpretation function I : N 7→ 2Σ maps each natural number i
(representing state si) to a subset of Σ. Given set F of formulas built out of classical
connectives and of temporal operators, the semantics of a temporal formula is provided
by the satisfaction relation |= : M × N × F → {true, false}. For ϕ ∈ F and i ∈ N
we write M, i |= ϕ if, in the satisfaction relation, ϕ is true w.r.t. M, i. We can also
say (leaving M implicit) that ϕ holds at i, or equivalently in state si, or that state si
satisfiesϕ. For atomic proposition p ∈ Σ, we haveM, i |= p iff p ∈ I(i). The semantics
of |= for classical connectives is as expected, and the semantics for LTL operators is as
reported in [10]. A structureM = 〈N, I〉 is a model of ϕ ifM, i |= ϕ for some i ∈ N.
Similarly to classical logic, a LTL or A-ILTL formula ϕ can be satisfiable, unsatisfiable
or valid and one can define the notions of entailment and equivalence between two
formulas.

Some among the A-ILTL operators are the following, where ϕ is an expression in
an underlying agent-oriented language L, and m,n are positive integer numbers used
to (optionally) specify the interval where the formula must hold, according to the se-
mantics specified below. If the interval is not specified, then the meaning is the same as
for LTL. A limitation that we impose is that temporal operators cannot be nested.
Fm,n (eventually (or “finally”) in time interval). Fm,nϕ states that ϕ has to hold some-
time on the path from state sm to state sn. I.e.,M, i |= Fm,nϕ if there exists j such
that j ≥ m and j ≤ n andM, j |= ϕ.
Gm,n (always in time interval).Gm,nϕ states that ϕ should become true at most at state
sm and then hold at least until state sn. I.e.,M, i |= Gm,nϕ if for all j such that j ≥ m
and j ≤ nM, j |= ϕ. Can be customized into Gm, bounded always, where ϕ should
become true at most at state sm.

Nm,n (never in time interval). Nm,nϕ states that ϕ should not be true in any state
between sm and sn. I.e., M, i |= Nm,nϕ if there not exists j such that j ≥ m and
j ≤ n andM, j |= ϕ.

In practical use, as seen below A-ILTL operators will allow one to construct useful
run-time constraints.

5.2 A-ILTL and Evolutionary Semantics

In this section, we refine A-ILTL so as to operate on a sequence of states that cor-
responds to the Evolutionary Semantics of an agent-oriented programming language
[105]. This is a meta-semantic approach, as it is independent of the underlying agent-
oriented logic languages/formalism L. It assumes that, during agent’s execution, the
agent can evolve: at each evolution step i the agent’s program (that initially will be
P0) may change (e.g., by learning and via interaction with other agents), with a trans-
formation of Pi into Pi+1, thus producing a Program Evolution Sequence PE =
[P0, . . . , Pn, . . .]. The program evolution sequence will imply a corresponding Seman-
tic Evolution Sequence ME = [M0, . . . ,Mn, . . .] where Mi is the semantic account of
Pi at step i according to the semantics of L.

The agent’ history H , which includes what the agent has recorded of its own ac-
tivities and of its interaction with the environment, will evolve as well. The history H
constitutes in fact the agent’s memory. We assume H to contain, at least, the set of (the
last versions of) past events, where past events record the external and internal events
that have been perceived (where internal events are those events originated within the
agent itself, in the course of its reasoning activities), and the actions that the agent has
performed; thus, H defines the up-to-date image that the agent has of its own and of
the external world’s state of affairs8. We assume that past events are time-stamped, and
that the timestamp is automatically added to newly recorded past events; we omit the
explicit indication of timestamps when not needed. When referring to a past event, we
will implicitly refer to its most recent version (the one with the newest timestamp),
should several versions exist.

The Evolutionary Semantics εAg of Ag is thus the tuple 〈H,PE,ME〉, with n =

∞ (i.e., over a potentially infinite evolution). The snaphot at stage i, indicated with εAgi ,
is the tuple 〈Hi, Pi,Mi〉

Notice that states, in our case, are not simply intended as time instants. Rather, they
correspond to stages of the agent evolution. Time in this setting is considered to be local
to the agent, where with some sort of “internal clock” is able to time-stamp events and
state changes. We borrow from [108] the following definition of timed state sequence,
that we tailor to our setting.

Definition 1. Let σ be a (finite or infinite) sequence of states, where the i-th state ei,
ei ≥ 0, is the semantic snaphots at stage i, i.e., εAgi , of given agent Ag . Let T be a
corresponding sequence of time instants ti, ti ≥ 0. A timed state sequence for agent
Ag is the couple ρAg = (σ, T). Let ρi be the i-th state, i ≥ 0, where ρi = 〈ei, ti〉 =
〈εAg
i , ti〉.

8 For a recent formal approach to memory management in logical agents, cf. [106, 107].

We in particular consider timed state sequences which are monotonic, i.e., if ti+1 >
ti then ei+1 6= ei. In fact, there is no point in semantically considering a static situation:
as mentioned, a transition from ei to ei+1 will in fact occur when something happens,
externally or internally, that affects the agent.

Then, in the above definition of A-ILTL operators, it is immediate to let si = ρi
(with a refinement, cf. [13], to make states correspond to time instants).

We need to adapt the interpretation function I of LTL to our setting. In fact, we
intend to employ A-ILTL within agent-oriented languages, where we restrict ourselves
to logic-based languages for which an evolutionary semantics and a notion of logical
consequence can be defined. Thus, given agent-oriented language L at hand, the set
Σ of propositional letters used to define an A-ILTL semantic framework will coincide
with all ground expressions of L (an expression is ground if it contains no variables,
and each expression of L has a possibly infinite number of ground versions). A given
agent program can be taken as standing for its (possibly infinite) ground version, as
it is customarily done in many approaches. Notice that we have to distinguish between
logical consequence in L, that we indicate as |=L, from logical consequence in A-ILTL,
indicated above simply as |=. However, the correspondence between the two notions
can be quite simply stated by specifying that in each state si the propositional letters
implied by the interpretation function I correspond to the logical consequences of agent
program Pi:

Definition 2. Let L be a logic language. Let ExprL be the set of ground expressions
that can be built from the alphabet of L. Let ρAg be a timed state sequence for agent Ag ,
and let ρi = 〈εAg

i , ti〉 be the ith state, with εAg
i = 〈Hi, Pi,Mi〉. An A-ILTL formula τ

is defined over sequence ρAg if in its interpretation structureM = 〈N, I〉, index i ∈ N
refers to ρi, which means that Σ = ExprL and I : N 7→ 2Σ is defined such that, given
p ∈ Σ, p ∈ I(i) iff Pi |=L p. Such an interpretation structure will be indicated with
MAg . We will thus be consequently able to state whether τ holds/does not hold w.r.t.
ρAg .

A-ILTL properties will be verified at run-time, and thus they can act as constraints
over the agent behaviour9. In an implementation, verification may not occur at every
state (of a given interval). Rather, sometimes properties need to be verified with a certain
frequency, that can be specific for each property. To model a frequency k, we introduce
a further extension that consists in defining subsequences of the sequence of all states: if
Op is any of the operators introduced in A-ILTL and k > 1,Opk is a semantic variation
of Op where the sequence of states ρAg of given agent is replaced by the subsequence
s0, sk1 , sk2 , . . . where for each kr, r ≥ 1, kr mod k = 0, i.e., kr = g × k for some
g ≥ 1.

A-ILTL formulas to be associated to an agent to establish the properties it has to
fulfil can be defined within the agent program, though they conceptually constitute an
additional separate layer. Agent evolution can be considered to be “satisfactory”, or
“coherent”, if it obeys all these properties. An “ideal” agent will have a coherent evo-

9 By abuse of notation we will indifferently talk about A-ILTL rules, expressions, or constraints.

lution. Instead, violations will occasionally occur, and actions should be undertaken so
as to attempt to regain coherence for the future.

It is important to observe that, A-ILTL expressions are not built-in in any agent
program (though some basic ones might be). Rather, they are defined by the agent’s
designer, according to the application at hand. In fact, in the following sections we
will outline many applications of A-ILTL expressions, and some useful extensions to
their basic form. Our examples will concern ethics but also other issues: as said in
the Introduction, we propose in fact a toolkit for run-time self-checking (and self-
correction/improvement, as we will see) which is particularly suitable for ethical control
in the sense of [1], but can be useful to many purposes.

6 A-ILTL for Reflexive Self-Checking: Liveness and Safety
Properties

In this section we illustrate the usefulness of A-ILTL constraints to define and check
liveness and safety properties, and to define complex reactive patterns. To this aim, we
use the pragmatic form that we have adopted in DALI10, where an A-ILTL expres-
sion is represented as OP(m,n; k)ϕ. Herein, m,n define the time interval where (or
since when, if n is omitted) expression OP ϕ is required to hold, and k (optional)
is the frequency for checking whether the expression actually holds. For instance,
EVENTUALLY (m,n; k)ϕ states that ϕ should become true at some point between
time instants m and n. Notice in fact that A-ILTL constraints act as monitors, where
each constraint however is not checked continuously, but rather at a certain frequency,
that will be related by a designer to the intended meaning of the constraint itself. A
default frequency is provided if k is not specified.

In rule-based logic programming languages like DALI, we restrict ϕ to be a con-
junction of literals. In pragmatic A-ILTL formulas, ϕ must be ground when the formula
is checked. However, we allow variables to occur in an A-ILTL formula, to be instan-
tiated via a context χ (we then talk about contextual A-ILTL formulas). Notice that, for
the evaluation of ϕ and χ, we rely upon the procedural semantics of the ‘host’ language.

In the following, a contextual A-ILTL formula τ will implicitly stand for the ground
A-ILTL formula obtained via evaluating the context.

The following formulation deals with complex reaction according to a temporal
condition. The way reaction is performed will depend upon the underlying language L,
and will be defined by an expression (a single statement, a sequence of statements, or
an entire subprogram) that we call reactive pattern.

Definition 3. A reactive A-ILTL rule is of the form (where M,N,K can be either vari-
ables or constants)

OP(M ,N ;K)ϕ :: χ÷ ρ
where (i) OP(M ,N ;K)ϕ :: χ is a contextual A-ILTL formula, called the monitoring
condition, that should involve the observation of either external or internal events; (ii)
ρ is called the reactive part of the rule, and is a reactive pattern.
10 cf. Subsection 8.1 below for a short description of the main features of the DALI language.

Whenever the monitoring condition (automatically checked at frequency K) is vio-
lated (i.e., it does not hold) within given interval, then the reactive part ρ is executed.

Take for instance the example of a controller that has to keep the temperature in
office hours (say between 8 a.m. and 5 p.m.) in the range 19–21 (celsius degrees). In this
case, temperatureN is a present event (N standing for now), i.e., the current value of an
external event which is observed at a certain frequency by the system. If the condition
is violated, a reaction will try to restore the wished-for situation. However, we assume
to be in a smart building (where in fact the temperature is monitored by intelligent
agents) where the agent is able to select, in order to modify the temperature, the best
suitable energy source, for instance the less expensive. Notice that at different times of
the day different sources of energy can be less expensive. Remember also that the A-
ILTL constraint is dynamically checked at a certain frequency, here ten minutes (which
will be the default one if no frequency is specified explicitly). So, in a given interval the
monitoring condition will sometimes succeed (then nothing is done) and sometimes fail.
In the latter case, the font of energy S which is cheaper in that moment is used in order to
suitably affect the temperature and try to keep it in the specified range. In the proposed
approach, this can be formalized as follows (where, as there are no variables, context
is omitted, and modify temperatureA is an action). The expression that allows S to be
selected within a set of alternatives according to some kind of preference (here on cost),
can be expressed in any of the existing preference mechanisms for logic programming
languages (cf., e.g., [109–111]).

ALWAYS (8 : 00 a.m., 5 : 00 p.m.; 10m)
19 ≤ temperatureN ≤ 21 ÷
modify temperatureA(S),S IN

{external electricity ,
gas,
solar panel electricity :

less expensive}
The next example is a meta-statement expressing single-minded commitment in

agents, i.e., that a goal should be pursued until reached, or no longer believed possible.
In this example, the constraint performs an act of introspection to access and evaluate
aspects of the agent’s BDI state. This requires that such aspects are suitably represented
at the metalevel. The fact that a goal G is possible is evaluated, in our formalization,
w.r.t. a module M that represents the context for G, via a ‘possibility’ predicate P : so,
G is deemed to be possible w.r.t. M if P (G,M) is true. How to define such a predicate
is discussed in [112], where the choice is to represent and evaluate M as an Answer
Set Programming (ASP) module; here, M should be such a module. In case the goal
is still deemed to be possible and is not timed-out but has not been achieved yet, then
the reaction consists in re-trying the goal, which is an action that might imply either
resuming a suspended plan, or a re-planning.

NEVER
goal(G),
eval context(G ,M),P(G ,M),
not timed out(G)
not achieved(G)÷

retryA(G)

Another possibility is not simply retrying the goal, but also reconsidering the evalu-
ation context, that might for some reason have become obsolete. Thus, the reactive part
might be

reconsider context(G ,M ,M ′),P(G ,M ′), retryA(G)

here, the module for evaluating possibility could be updated, and this might lead to
either continue or stop retrying the goal.

Each element of the conjunction composing the reactive part can have precondi-
tions. If preconditions do not hold for some element, then that element is skipped. One
could for instance add the precondition that a goal can retried if sufficient resources are
available, i.e.,

retryA(G) :< have resources(G)

where the goal would not be retried in the negative case.
The following expression states that any goalG that the agent may have formed due

to its interaction with the environment has to be dropped if not coherent with designer’s
intention or user’s interests. This is very important, because, as discussed by Stuart Rus-
sel in his recent book [1], agents that learn can dangerously depart from the behaviour
that is expected from them. So, conformity of an agent’s goals to specification, or how-
ever adherence to user approval, must be constantly verified. Here, the frequency-based
checks and the introspective capabilities of A-ILTL constraints play a relevant role, as
they are able to detect changes in an agent ‘mental state’ that may happen over time in
an unpredictable way.

ALWAYS
goal(G),
not designer specified(G) OR
not user approved(G) ÷

drop(G)

Notice that in the examples we used some metapredicates which are reminiscent of
the BDI model, i.e., goal(G), timed out(G), achieved/not achieved(G), retry(G).
Such predicates explicitly represent (we might say reify) elements of the agent’s opera-
tion, so that such elements can be evaluated and, possibly, affected: in the last example,
the A-ILTL constraint may decide that a goal can be dropped. According to the ‘host’
language, such predicates might be pre-defined, or they might be fully user-defined. For
instance in DALI they are, at the moment, user-defined, so for instance how to assume
or drop a goal must be determined by a piece of code written by a programmer. The
possibility of making (at least some of them) pre-defined, and which mechanisms to
implement to affect the agent’s internal operation is under careful consideration.

7 Evolutionary Expressions

It can be useful to define properties to be checked upon arrival of sequences of events,
of which however only relevant ones (and their order) should be considered. To this
aim, we introduce a new kind of A-ILTL constraints, that we call Evolutionary A-ILTL
Expressions. To define partially known sequences of any length, we admit for event
sequences a syntax inspired to that of regular expressions so as to be able to ignore
irrelevant/unknown events, and repetitions (cf. [13]). Notice that, the incoming event
sequence is represented as a sequence of past events, ordered by their timestamp (that
we omit when not needed).

Definition 4 (Evolutionary A-ILTL Expressions). Let SEvp be a sequence of past
events, and SF and J J be sequences of events. Let τ be a contextual A-ILTL formula
Op ϕ :: χ.
An Evolutionary A-LTL Expression $ is of the form

SEvp : τ ::: SF :::: J J

where: (i) SEvp denotes the sequence of relevant events which are supposed to have
happened, and in which order, for ‘triggering’ the rule; i.e., this event sequence acts as
precondition: whenever one or more of these events happen (and are thus recorded) in
the specified order, τ will be checked (i.e., check of τ is triggered by any prefix of SEvp);
(ii) SF denotes the events that are expected to happen in the future without affecting τ ;
(iii) J J (optional) denotes the events that are expected not to happen in the future; i.e.,
whenever any of them should happen, ϕ is not required to hold any longer, as these are
“breaking events”.

An Evolutionary A-ILTL Expression can be evaluated w.r.t. a state si which includes
among its components the agent’s history. Precisely, in a state si, the component Hi of
si satisfies an event sequence S whenever either no event in S is present in Hi, or
events are present in Hi which constitute a prefix of S, as they occur (according to the
timestamps) in the order specified by S itself. All past events (which include past actions
performed by the agent) are assumed to be stored in a ground form, and are indicated
by the postfix ‘P’ (for instance, in the example below supplyP is a past event).

All variables occurring in evolutionary A-ILTL expressions are implicitly univer-
sally quantified, in the style of Prolog-like logic languages. The context can be omitted
if not needed.

A sample evolutionary A-ILTL expression is the following (where N stands for
operator “never”):

supplyP
+(r, s) : N(quantity(r, V), V < th) ::: consumeA

+(r,Q)

Syntactically: supplyP
+(r, s) stands for a sequence (of unknown length) of past

supply actions of unknown quantities (‘unknown value’ s), performed by the agent
itself or by some other agent, with the effect to replenish the agent’s stock or resource r;
consumeA

+(r,Q) stands for a sequence (of unknown length) of future consumption

actions of certain quantities (‘unknown value’ r) of resource r, that the agent may
perform. The ‘core’ A-ILTL expression N(quantity(r, V), V < th), N standing for
‘never’, specifies that, whatever the supply and consumption, the available amount V
of the resource r must remain over a certain threshold th, i.e., V should never be less
than th.

Such expression is supposed to be checked at run-time at a certain frequency (here
the default one, not having the frequency been specified explicitly) whenever a supply
action is performed (and thus recorded), which makes the precondition verified. A viola-
tion may occur if in some state the A-ILTL formula τ does not hold, i.e., in the example,
if the available quantity V of resource r runs too low. Notice that, since the constraint
is checked periodically, it might be the case that the condition quantity(r, V), V < th
be momentarily violated between one check and the subsequent one. To avoid possible
misfunctionings deriving from this problem, either the frequency must be suitably in-
creased, or the quantity V must be set to a precautionary higher value, in order not to
really arrive at a too low value.

The above constraint is significant from an ethical point of view: in fact, a very
common unethical behaviour concerns the improper use/waste of limited resources.
Think, for instance, of the excessive and/or improper use of environmental resources,
like, e.g., water.

Below, we formally state when an Evolutionary A-ILTL Expression holds or not.

Definition 5. An Evolutionary A-ILTL Expression $, of the form specified in Defini-
tion 4:

1. holds in state si whenever (i) historyHi satisfies SEvp and SF and does not include
any event in J J , and τ holds or (ii) Hi includes some event occurring in J J (we
say that the expression is broken);

2. is violated in state si whenever Hi satisfies SEvp and SF and does not include any
event in J J , and τ does not hold.

Operationally, an Evolutionary A-ILTL Expression can be finally deemed to hold if
either the upper bound of the specified interval has been reached (if a finite interval has
been specified) and τ holds, or an unwanted event has occurred. Instead, an expression
can be deemed not to hold (or, as we say, to be violated as far as it expresses a wished-for
property) whenever τ is false at some point without the occurrence of breaking events.
In this case, a repair action (like in reactive A-ILTL rules) can be optionally specified.

For instance, in the variation of previous example listed below a repair measure is
specified, which states that no more consumption can take place if the available quantity
of resource r is scarce.

supplyP
+(r, s) : N(quantity(r, V), V < th) :::

consumeA
+(r,Q) ÷ block(consumeA(r,Q))

We might instead opt for another (softer) formulation, that forces the agent to limit
consumption to small quantities (say less than some quantity q) if the threshold is ap-
proaching (say that the remaining quantity is th+ f , for some f).

supplyP
+(r, s) : N(quantity(r, V), V < th+ f) :::

consumeA
+(r,Q) ÷ allow(consumeA(r,Q), Q < q)

The above example demonstrates that the proposed approach to dynamic verifica-
tion is indeed needed: any sequence of performed ‘supply’ and ‘consume’ actions may
arrive, so the number of potential configurations is not limited and static verification
methods appear hardly applicable. One might provide total supply and consumption
figures: however, one would just draw the quite pleonastic conclusion that the desired
property holds whenever supply is sufficiently generous and consumption prudentially
limited. Instead, in the proposed approach we are able to verify the target property “on
the fly”, whatever the sequence of performed actions and the involved quantities. More-
over, we are also able to try to repair an unwanted situation and regain a satisfactory
state of affairs.

Below we provide another example of an Evolutionary A-ILTL expression that,
though simple, is in our opinion significant as it is representative of many others.
Namely, we assume that an agent manages a FIFO queue, thus accepting operations
of pushing and popping elements on/from the queue. The example thus models in an
abstract way the very general and widely used architecture where an agent provides a
service to a number of ‘consumers’. We establish the restriction that the queue must
never contain any duplicated elements e1 and e2. This means that customers cannot re-
iterate a request of service if their previous one have not been processed. This in order to
ensure fairness in the satisfaction of different customers’ requests. The possible actions
are: pushA(Req,Q), that is performed by other agents and inserts a generic value Req
in the queue, representing (in some format) a request of service (each inserted element
is given an index ei); popA(e,R), that extracts the oldest element from the queue, i.e.,
the request to be presently processed. The A-ILTL expression considers an unknown
number of pushing actions happened in the past (and thus are now recorded as past
events) and can foresee an unknown number of future popping actions.

pushP
+(Req,Q) : N(in queue(e1 ,RX), in queue(e2 ,RX)) ::: popA

+(e,Q)

This expression will be be the subject of the experiments illustrated in the next
section.

The next one is an example of Evolutionary A-ILTL Expression that might occur
in an agent program installed on an autonomous robot working on batteries, which is
able to check its own charge level. The robot moves in some environment to perform
some task, thus consuming battery. The following A-ILTL axiom states that, after a
battery recharge (indicated as a past event, postfix ’P ’) at time T , the charge level
should be sufficient for six hours despite a sequence of actions which can be considered
to be ‘normal’ in relation to the robot’s task. These actions may for instance involve
moving around, cleaning rubbish, delivering packages, etc. Instead, the charge level can
be expected to be low (the property is ‘broken’) in case of extensive usage actions, for
instance in case of an exceptional unexpected event that requires the robot to increase
its activities (e.g., drying water in case of a flooding from a broken pipe). There must
be of course a classification, in the agent’s background knowledge base, of what should
be intended by ‘normal’ or ‘extensive’ usage.

recharge batteryP :T :
ALWAYS (T, T + 6hour) charge level(L), L > low
::: normal usage action(Act)∗ :::: extensive usage action(Act)∗

The above expression should be combined with another A-ILTL expression, seen
below, which forces recharge every six hours. This one should state that if the last
battery recharge recharge batteryP has occurred at time T which is more than six
hours different from present time now , then the goal recharge batteryG must be set
(where postfix ‘G’ stands for ‘goal’). Achieving this goal may require, for instance,
reaching the nearest recharge station.

ALWAYS
recharge batteryP :T ,now − T > 6hour ÷ recharge batteryG

Whenever an Evolutionary A-ILTL expression is either violated or broken, not only
an immediate reaction can be attempted, but measures can be undertaken aimed at re-
covering a desirable or at least acceptable agent’s state.

Definition 6. An evolutionary LTL expression with repair $r is of the form $|η1||η2
where $ is an Evolutionary LTL Expression adopted in language L, and η1, η2 are
atoms of L. η1 will be executed (according to L’s procedural semantics) whenever
$ is violated, and η2 will be executed whenever $ is broken. η1 and η2 are called
countermeasures.

In the robot example, whenever a low level of charge is detected, the immediate
reaction can be to stop the robot’s operation. However, there can be the case of low
battery under normal usage, that might imply a fault either in the battery or in the
recharge station. Countermeasure η1 in fact, may (for the sake of the example) alert the
user. Instead η2, taken in case of low battery under exceptional usage, will simply imply
the robot to resort to the recharge station. The overall expression will take the form:

recharge batteryP :T :
ALWAYS (T, T + 6hour) charge level(L), L > low
::: normal usage action(Act)∗ :::: extensive usage action(Act)∗
÷stop robot operation
| alert user possible faultA || recharge batteryG

Evolutionary A-ILTL expressions can be further enhanced (by means of a slight ex-
tension to the above definition) by introducing a third kind of counter-measure, aimed
at preventing a potentially breaking event from disrupting the wished-for property. In
the following example, there has been an accident at place D at time T , and an ambu-
lance has been sent for rescue. The condition is that the rescue should never arrive late.
However, there is news of a traffic jam that blocks the ambulance. In the example, the
new kind of counter-measure consists in sending either an helicopter or a coast guard
boat, with preference to the option which is evaluated as more effective in terms of time
for reaching place D from the rescuers’ present location11.

11 The construct used to express the preference has been discussed and formalized in [111, 109,
110]

accidentP (D) :T :
NEVER late rescue(D ,T)
:::: trafficP , ambulance sentP , ambulance blockedP ÷
||| alternative transportation IN

{elicopter , boat : faster reach(here,D)}

8 Experimental Evaluation

We have implemented the proposed approach within the DALI multi-agent system
[113]. In this section, we present some experiments, aimed to establish the effective-
ness of the approach. In particular, we wish to practically demonstrate that the use of
A-ILTL expressions is computationally affordable, in the sense that they do not slow
down an agent’s operation, while, on the contrary, using them is even more efficient
than using ad-hoc solutions.

We could not establish a comparison w.r.t. competitor approaches, that at present do
not exist. So, we compared our approach w.r.t. a correspondent solution developed in
pure Prolog12. Notice that, DALI is in fact an agent-oriented extension to Prolog whose
interpreter is implemented in Prolog itself so, when stripped of its peculiar features,
DALI “collapses” into Prolog.

Below, we first preliminarily briefly illustrate the DALI language [45, 46] in order
to make a reader able to understand the code. Then, we show the alternative (Prolog and
DALI) solutions, and finally we propose their experimental comparison.

The experiments concern the queue constraint illustrated above:

pushP
+(Req,Q) : N(in queue(e1 ,RX), in queue(e2 ,RX)) ::: popA

+(e,Q)

here, a Queue agent Q considers an unknown number of pushing actions happened
in the past (recorded as past actions, postfix P) and expects an unknown number of
future popping actions, each one always returning the “oldest” element of the queue in
response, whereas the agent keeps checking that the queue never contains duplicated
elements.

8.1 DALI in a Nutshell

In DALI, the autonomous behaviour of an agent is triggered by several kinds of events,
which are “first-class objects” in the language syntax and semantics: external events,
internal, present and past events.

External events are syntactically indicated by the postfix E. Reaction to each such
event is defined by a reactive rule, denoted by the special token :>. The agent remem-
bers to have reacted by converting an external event into a past event (postfix P). An
event perceived but not yet reacted to is called “present event” and is indicated by the
postfix N. It is often useful for an agent to reason about present events, that make the
agent aware of what is happening in its external environment.
12 The author wishes to thank former Ph.D. student Dr. Alessio Paolucci who has written the

code and practically performed the experiments.

Actions (indicated with postfix A) to be performed by DALI agents may have or
not have preconditions: in the former case, the actions are defined by “actions rules”, in
the latter case they are just action atoms. The new token :< characterizes an action rule
that specifies an action’s preconditions. Similarly to events, actions are recorded as past
actions.

Internal events is the device which makes a DALI agent proactive. An internal
event is syntactically indicated by the postfix I, and its description is composed of two
rules. The first one contains the conditions (knowledge, past events, past actions, etc.)
that must hold so that the reaction (in the second rule) is triggered. Thus, a DALI agent
is able to react to its own conclusions, therefore enacting “spontaneous” proactive be-
haviour, i.e., behaviour not directly dependent upon external stimuli. Internal events are
automatically attempted at a default frequency, customizable by user directives.

Agents usually record events that happened and actions that they performed. Notice
in fact that an agent can describe the state of the world only in terms of its perceptions,
where more recent remembrances define the agent’s approximation of the current state
of affairs. We thus define setP of current (i.e., most recent) past events and actions (each
one time-stamped), and a set PNV where we store previous ones (where a designer can
specify which past events to keep and which to cancel, and under which conditions).

The DALI communication architecture [114] implements the DALI/FIPA protocol,
which consists of the main FIPA primitives13, plus few new primitives which are pe-
culiar to DALI. Each DALI agent has its own customizable filter for incoming and
outgoing messages, composed by user-definable metarules which are to be specified in
a special file. So, a message will then be sent/received if the metarule rule for the prim-
itive used is present in the communication file, and the conditions are met. It is also
possible not to enter conditions, but to use ’true’ instead, which implies that the mes-
sage will always pass. In addition, there are rules for meta-reasoning which allow the
agent to consult its knowledge and ontologies for understanding incoming messages.
Notice that, DALI has been made compatible with the Docker technology (cf. [113] for
details). So, a DALI agent can be deployed within a container.

The semantics of DALI is based upon the declarative semantic framework intro-
duced in [47]. DALI has been fully implemented on the basis of Sicstus Prolog [115],
and the DALI programming environment is freely available at https://github.
com/AAAI-DISIM-UnivAQ/DALI. The DALI framework has been experimented and
practically applied in many, also industrial, applications.

DALI is a general-purpose agent-oriented programming language, non-committal
w.r.t. any agent architecture. However, it has features that can emulate a BDI-oriented
language such as AgentSpeak. In particular, DALI provides Goals, syntactically in-
dicated by the postfix G, which are special internal events that, when triggered, are
executed only once (i.e., they are not attempted periodically). This construct emulates
AgentSpeak’s plans, as the first rule provides the context that, if verified, triggers the
execution of the second rule (where in AgentSpeak these two components are joined

13 FIPA is a widely used standardized ACL (Agent Communication Language), cf. http:
//www.fipa.org/specs/fipa00037/SC00037J.html for language specification,
syntax and semantics.

within a unique rule). Moreover, DALI is equipped with a plugin to an ASP solver: this
allows an agent to compute entire plans that can then be inspected, evaluated, executed,
re-evaluated, etc., in the BDI fashion, according to the desired level of commitment of
the agent to the current goal.

For exploring advanced DALI features such as the communication architecture, the
integration with the Docker technology, the web interface, the cloud implementation,
the ability to use Redis as a database, cache, message broker, and interface with Phyton,
and the interoperability with agents written in other languages, plus the integration with
ASP, and more, the reader may refer to [114, 113, 116, 117] and to the github repository.

8.2 Pure Prolog Code

Below we report the code of the version of the Queue agent implemented in DALI,
where however the specific DALI features are employed only for the program activation
via an external event triggering a reactive rule. The rest of the program is instead written
using Prolog only. The test agent gets active and performs a test session whenever it
receives from the user a message with content run pure test(Times) where Times
specifies the number of elements to be pushed and popped on the queue.

When the agent receive the event run pure test it reacts, thus invoking the
run pure testing subgoal14 with Times as parameter. run pure testing prints
information for the user on the console, and starts the ’pushing’ phase. The
pushing(Times) goal repeatedly pushes an item (through push item subgoal), as far
as Times > 0, and then it ends. To do so it makes use of recursion.

push item is responsible of items pushing and, as first step, retrieves the data struc-
ture pqueue(Q). Then it randomly generates an item, and checks if that item is already
present in the queue. If it alreay exists, then push item fails, and this item pushing is
skipped. This implements the ‘NEVER’ condition in the A-ILTL constraint. If the new
item is not in the queue, then it is added in the head. The old queue is removed from
memory (retract(pqueue(Q))), and the new one is pushed into the knowledge base
(assert(pqueue(NQ)). popping is then invoked to perform items removal from the
queue. It makes use of pop item, a subgoal that retrieves and unifies the queue through
clause(pqueue(Q),), and then extracts the head of the queue Q. After the ’popping’
phase, the test ends. The time spent in performing the test is displayed.

14 the term ‘subgoal’ is meant here and below in the Prolog sense, as a ‘procedure‘ to execute or,
logically, an atom to prove, with no relation to the BDI meaning.

run pure testE(Times):> run pure testing(Times).

run pure testing(Times):- pretty start,
now(StartT ime),
T1 is T imes+ 1,
nl, write(′PUSHING...′), nl,
pushing(T1),
nl, write(′POPPING...′), nl,
popping(T1),
now(EndTime),
T estT iming is EndT ime− StartT ime,
nl, write(′Time :′), write(TestT iming), nl,
pretty end.

pushing(0).
pushing(Times):- push item, T1 is T imes− 1, pushing(T1).

push item:- clause(pqueue(Q),),
random(1, 300, Item),
not(exists in queue(Item,Q)),
nl, write(′Pushing :′), write(Item),
append(Q, [Item], NQ),
retract(pqueue(Q)),
assert(pqueue(NQ)),
nl, write(′Queue :′), write(NQ), nl.

push item:- assert(pqueue([])).

exists in queue(X, [X|]):- true.
exists in queue(X, [|Tail]):- exists in queue(X,Tail).

popping(0).
popping(Times):- pop item, T1 is T imes− 1, popping(T1).

pop item:- clause(pqueue(Q),),
nl, write(′Popping :′),
Q = [H|T],
write(H),
retract(pqueue(Q)), assert(pqueue(T)),
nl, write(′Queue :′), write(T), nl.

pop item:- assert(pqueue([])).

pretty start:- nl, write(′Start testing...′), nl.
pretty end:- nl, write(′Test finished...′), nl.

8.3 Proper DALI Code

The proper DALI implementation makes use of DALI advanced features, in particular
exploits actions, and the ability to remember what happened in the past (past actions).
Basically, the DALI infrastructure makes us able to write the program in a very com-
fortable manner: each pushing is an action, so every time the action is performed in the
present, the DALI engine records, for future usage, this action as a past event. In this
way, we very simply simulate a queue without using lists, asserts, retracts, etc. When
a pop needs to be performed on the queue, we use DALI past events, to remember
about actions performed, and so, to retrieve the correct item from the head of the queue,
in a very elegant manner. The DALI implementation allows us to concentrate on the
problem, without focusing that much on the data structure, in a declarative fashion.

Below we report the code of the advanced version of the Queue agent imple-
mented in DALI, taking profit of all DALI features. The test agents gets active and
performs a test session whenever it receives from the user a message with content
run dali test(Times) where Times specifies the number of elements to be pushed
and popped on the queue.

run dali testE(Times):> dali test startA, run dali testing(Times).

run dali testing(Times):< dali test startP.
run dali testing(Times):- dali start pushingA,

dali pushing(Times),
dali end pushingA,
dali start popA,
dali popping(Times),
dali end popA,
dali end testingA.

dali pushing(0):- true.
dali pushing(Times):- dali remember(Times), T1 is T imes− 1, dali pushing(T1).

dali remember(Times):- random(1, 300, Item),
not(clause(do action(dali push queue(Item,),),)),
get push index(PI),
dali push queueA(Item,PI).

get push index(I1):- clause(push index(Index),),
I1 is Index+ 1,
retract(push index(Index)),
assert(push index(I1)).

get push index(Index):- assert(push index(1)),
Index = 1.

get pop index(I1):- clause(pop index(Index),),
I1 is Index+ 1,
retract(pop index(Index)),
assert(pop index(I1)).

get pop index(Index):- assert(pop index(1)),
Index = 1.

dali popping(0):- true.
dali popping(Times):- dali forget(Times), V 1 is T imes,− 1, dali popping(V 1).

dali forget(Dummy):- get pop index(Index),
clause(do action(dali push queue(Item, Index),),),
dali pop queueA(Item).

8.4 Experiments

The experiments have been performed on a Microsoft Surface Pro 7 PC, equipped with
Intel(R) Core(TM) i7-1065G7 CPU@1.30GHz-1.50GHz with 16Gb RAM, using Sics-
tus 4.6 as the Prolog interpreter.

We did not consider the frequency of constraint-checking, which is available in
DALI, but could not be implemented in an acceptably simple way in Prolog. So, this
feature alone constitutes a significant enhancement of DALI with respect to Prolog.

Fig. 1. x axis: instance size; y axis: execution time, blue bars pure Prolog green bars DALI

The instance size (number of elements to push and pop on the queue) can be es-
tablished by the user when starting a test session. The items to pop/push are, in the
experiments, randomly-generated numbers. In Figure 1 and Figure 2 we show the exe-
cution time of the two solutions at the growth of the instance size. In Figure 3 we show
the difference in percentage between the execution times.

Fig. 2. Interpolation average values, blue line pure Prolog green line DALI

All figures refer to a dataset of up to 500 elements to push and pop. This has been
sufficient to identify an initial “unstable” stage and then a trend that further consolidates
with the growth of the instance size.

What we can see is that, when the number of events that we consider is small, then
the two solutions are more or less equivalent, the Prolog one a bit better as it involves no
overhead (while the DALI events and actions management necessarily involves some).
But, as soon as the instance size grows, the DALI solution becomes more performant,
despite the overhead of the DALI implementation. We can thus conclude that the new
constructs that we propose are not only expressive and then useful for specifying prob-
lem features in a compact and declarative way, but they also improve efficiency and
thus effectiveness of solutions.

9 Complexity of Check and Discussion

In this section we present an analysis of the complexity of checking A-ILTL expres-
sions. Let us make the simplifying assumption that all expressions are checked at the

Fig. 3. x axis: instance size; y axis: gain (in percentage) when using DALI

same frequency: i.e., the agent devotes (with a certain periodicity) some amount time
to perform the checks. Here we try to evaluate this amount. Let us assume to have f
A-ILTL expressions, and that the time for retrieving each expression from the computer
memory is m. Thus, retrieving all expressions to be evaluated isO(f ?m). Let k be the
number of the different A-ILTL operator occurring in the f expressions. Let if eval be
the time needed in order to understand whether each expression needs to be evaluated
in the present state: this includes checking the related time interval and, in case of Evo-
lutionary A-ILTL Expressions, checking the event sequence SEvp w.r.t. current agent’s
history. Let max eval be the maximum time needed for the evaluation of each contex-
tual A-ILTL formula Op ϕ :: χ. Let if viol or broken be the maximum time needed
to state whether each Evolutionary A-ILTL Expressions is either violated or broken:
this implies checking event sequences SF and J J w.r.t. current agent’s history.

Therefore, the total time to be spent for checking all A-ILTL Expression (in the
worst case, where all of them are of the Evolutionary kind, and each of them needs to
be evaluated at the present state) can be estimated to:

O((f ? m) + (f ? (if eval + max eval + if viol or broken)))

Then, for each expression which is either violated or broken, there will be a time
spent in the recovery and countermeasure actions.

The relatively low complexity of check is due to the definition of A-ILTL in relation
to the Evolutionary semantics: in fact, it is not needed to implement a temporal logic

inference engine. Rather, a system will periodically check Op ϕ :: χ. This in the case
of simple non-nested A-ILTL expressions. Introducing more complex expressions is a
subject of future work. In practice however, this complexity anyway requires to keep
the number of A-ILTL expressions as low as possible, and to tune frequency carefully,
according to the environment change rate. In fact, despite being useful, sometimes even
essential, for a good functioning of a system, dynamic verification may cause a decay
in its performances.

The motivation why, despite the availability of many techniques, the proposed ap-
proach to dynamic verification actually constitutes a step ahead, has been discussed
concerning the above example of supply and consumption. Nonetheless, an important
topic little considered so far, which we intend to to tackle in already-planned future
work, is that of better identifying the boundary between those properties of a MAS than
can be verified statically and the ones which necessarily require dynamic verification. It
would be important to shift ahead this boundary, thus simplifying the task of dynamic
verification.

10 Other Related Works and Concluding Remarks

In this paper, we have extended past work, so as to devise a toolkit for run-time self-
checking of logic-based agents. The proposed toolkit is able to detect and correct be-
havioural anomalies by using special meta-rules, and via dynamic constraints that are
also able to consider partially specified sequences of events that happened, or that are
expected to happen or not to happen. The experiments, performed in the DALI lan-
guage, have shown that the proposed approach is computationally affordable. The com-
plexity of check has been evaluated and discussed. We have argued and shown by means
of examples that the proposed toolkit is applicable to the field of Machine Ethics, in par-
ticular to check and enforce ethical behaviour in intelligent agents.

There are relationships between our approach and event-calculus formulations, e.g.,
the ones presented in [118] where however the temporal aspects and the correction of
violations are not present. Approaches based on abductive logic programming such as
SCIFF (cf. [119] and the references therein) allow one to model dynamically upcoming
events, and to specify positive and negative expectations, together with the concepts
of fulfilment and violation of expectations. Reactive Event Calculus (REC) stems from
SCIFF [120] and adds more flexibility by reacting to new events by extending and revis-
ing previously computed results. These approaches have been devised for either static
or dynamic checking, the latter however performed by a third party and not fully inte-
grated within the agent’s operation like in the present proposal. Event sequences, the
concepts of violated and broken expressions, complex reaction patterns, and indepen-
dence of the underlying logic are other distinguished features of our approach, never
proposed before.

A well-established line of work concerning the use of temporal logic in order to
define run-time monitors is discussed in [121] and the references therein. However, this
work is not related to agents, and does not concern self-checking: in fact, they propose a
rule-based temporal language for defining “monitors” which examine either on-line or

off-line some kind of “observable trace” generated by the program under check. There
is no notion of recovery in case malfunctioning is detected.

Deontic logic has been used for building well-behaved agents (c.f., e.g., [122]).
However, expressive deontic logics are undecidable15. Therefore, although our ap-
proach cannot compete in expressiveness with deontic logics, it can be usefully ex-
ploited in practical applications.

The proposed approach has also been experimented in the context of energy man-
agement in smart buildings [123]. In this application domain, forms of intelligent con-
trol are needed which are dynamic by nature, and must fulfil real-time requirements: in
fact, each building has its own dynamic thermo-physical behaviour and is immersed in
a dynamic environment where weather events change its energy ‘footprint’ in function
of time. In addition, there are users’ needs and preferences concerning the most suitable
and comfortable temperature in each room of the building. The outcome of the exper-
iments is encouraging, in the sense that adopting agents equipped with the proposed
features allows for not only general but also local (room-by-room or area-by-area) con-
trol of energy saving according to user comfort requirements and preferences.

Future work includes making self-checking constraints adaptable to changing con-
ditions, and devising a useful integration and synergy with declarative a priori verifica-
tion techniques. As suggested in [124], a very interesting line of investigation concerns
automated synthesis of runtime constraints from specifications but also from test results,
extracting invariants expressing correct or critical situations.

An unsolved issue in our setting is explicit treatment of time. In fact, in Evolution-
ary A-ILTL expressions time is treated implicitly by means of the sequence of states
underlying the interval temporal logic. These states are related to the subjective agent’s
perception of events, and on the total ordering of their time-stamps. Investigating how
to incorporate in the approach a more general representation of “real” time, deadlines,
etc. is another subject of future work.

Finally, we intend to attempt a synergy between this approach and our recent line
of work on learning ethical rules. More broadly, we would like to extend the approach
to learning agents in general.

References

1. Russel, S.: Human Compatible: AI and the Problem of Control. Viking (2019)
2. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz, J.J.,

Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and
platforms for multi-agent systems. Informatica (Slovenia) 30(1) (2006) 33–44

3. Garro, A., Mühlhäuser, M., Tundis, A., Baldoni, M., Baroglio, C., Bergenti, F., Torroni,
P.: Intelligent agents: Multi-agent systems. In Ranganathan, S., Gribskov, M., Nakai, K.,
Schönbach, C., eds.: Encyclopedia of Bioinformatics and Computational Biology - Volume
1. Elsevier (2019) 315–320

15 The author wishes to acknowledge former Ph.D. student Abeer Dyoub for the thorough inves-
tigation of the applications of deontic logic to build ethical agents during the development of
her Thesis [63].

4. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for multi-
agent systems: a systematic literature review. Auton. Agents Multi Agent Syst. 35(1) (2021)

5. Rao, A.S., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proc. of
the Second Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann (1991) 473–484

6. Bratman, M.E.: Intention, practical rationality, and self-governance. Ethics 119(3) (2009)
411–443

7. Tørresen, J., Plessl, C., Yao, X.: Self-aware and self-expressive systems. IEEE Computer
48(7) (2015) 18–20

8. Amir, E., Andreson, M.L., Chaudri, V.K.: Report on DARPA workshop on self aware
computer systems. Technical Report, SRI International Menlo Park, USA (2007) URL :
http://www.dtic.mil/dtic/tr/fulltext/u2/1002393.pdf.

9. Anderson, M.L., Perlis, D.: Logic, self-awareness and self-improvement: the metacognitive
loop and the problem of brittleness. J. Log. Comput. 15(1) (2005) 21–40

10. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of Theoret-
ical Comp. Sc., vol. B. MIT Press (1990)

11. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining bolts:
Reinforcement learning with ltlf/ldlf restraining specifications. In Benton, J., Lipovetzky,
N., Onaindia, E., Smith, D.E., Srivastava, S., eds.: Proceedings of the Twenty-Ninth Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2018, AAAI Press
(2019) 128–136

12. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tocchio, A.: Ensuring agent properties under
arbitrary sequences of incoming events. In: Informal Proc. of 17th RCRA Intl. Worksh. on
Experimental evaluation of algorithms for solving problems with combinatorial explosion.
(2010)

13. Costantini, S.: Self-checking logical agents. In: Proc. of LA-NMR 2012. Volume 911.,
CEUR Works. Proc. (CEUR-WS.org) (2012) Invited paper (also available on https://
arxiv.org).

14. Costantini, S.: Self-checking logical agents. In: Intl. Conf. on Autonomous Agents and
Multi-Agent Systems, AAMAS ’13, Proc., IFAAMAS (2013) 1329–1330

15. Costantini, S., De Gasperis, G., Dyoub, A., Pitoni, V.: Trustworthiness and safety for intel-
ligent ethical logical agents via interval temporal logic and runtime self-checking. In: 2018
AAAI Spring Symposia, Stanford University, CA, USA, AAAI Press (2018)

16. Arkin, R.C.: Ethics of robotic deception [opinion]. IEEE Technol. Soc. Mag. 37(3) (2018)
18–19

17. Lloyd, J.W.: Foundations of Logic Pr. Springer (1987)
18. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B., Winikoff, M., Yorke-Smith, N.: To-

wards a framework for certification of reliable autonomous systems. Autonomous Agents
and Multi Agent Systems 35(1) (2021)

19. Clarke, E.M., Lerda, F.: Model checking: Software and beyond. Journal of Universal Comp.
Sc. 13(5) (2007) 639–649

20. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., eds.: Handbook of Model Checking.
Springer (2018)

21. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conf. Record of the Fourth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pr. Languages, Los Angeles,
California, ACM Press, New York, NY (1977) 238–252

22. Shapiro, S., LespÃ©rance, Y., Levesque, H.: The cognitive agents specification language
and verification environment (2010)

23. Shapiro, S., Lesperance, Y., Levesque, H.J.: The cognitive agents specification language
and verification environment for multiagent systems. In: Proc. of the First Int. Joint Conf.
on Autonomous Agents and Multiagent Systems, AAMAS ’02, ACM Press, New York, NY
(2002) 19–26

24. Holzmann, G.: The model checker spin. IEEE Transactions on Software Engineering (23)
(199) 279–295

25. Bourahla, M., Benmohamed, M.: Model checking multi-agent systems. Informatica (Slove-
nia) 29(2) (2005) 189–198

26. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via un-
bounded model checking. In: Proc. of the Third Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, AAMAS ’04, ACM Press, New York, NY (2004) 638–645

27. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers: Boston, MA
(1993)

28. Holzmann, G.: Design and Validation of Comp. Protocols. Prentice Hall Intl.: Hemel
Hempstead, England (1991)

29. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Proc. of the 2001 Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2001. Number
2031 in Lecture Notes in Computer Science, Springer-Verlag (2001) 1–22

30. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol. Transf.
12(2) (2010) 123–137

31. Rozier, K.Y.: Linear temporal logic symbolic model checking. Comput. Sci. Rev. 5(2)
(2011) 163–203

32. Walton, C.: Verifiable agent dialogues. J. Applied Logic 5(2) (2007) 197–213
33. Bordini, R., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by

model checking. Autonomous Agents and Multi-Agent Systems 12(2) (2006) 239–256
34. Jones, A., Lomuscio, A.: Distributed bdd-based bmc for the verification of multi-agent

systems. In: Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010). (2010)

35. Montali, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.:
Verification from declarative specifications using logic programming. In: 24th Int. Conf. on
Logic Programming (ICLP’08). LNCS 5366, Springer Verlag (December 2008) 440–454

36. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the
verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1) (2017) 9–30

37. Lomuscio, A., Lasica, T., Penczek, W.: Bounded model checking for interpreted systems:
preliminary experimental results. In: Proc. of FAABS II. Number 2699 in Lecture Notes in
Computer Science, Springer-Verlag (2003)

38. Kong, J., Lomuscio, A.: Symbolic model checking multi-agent systems against ctl*k spec-
ifications. In Larson, K., Winikoff, M., Das, S., Durfee, E.H., eds.: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, ACM (2017)
114–122

39. Fisher, M.: Model checking AgentSpeak. In: Proc. of the Second Int. Joint Conf. on Au-
tonomous Agents and Multiagent Systems AAMAS03. Lecture Notes in Computer Science
3862, ACM Press (2003) 409–416

40. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Autom.
Softw. Eng. 10(2) (2003) 203–232

41. Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Practical verification of
decision-making in agent-based autonomous systems. Autom. Softw. Eng. 23(3) (2016)
305–359

42. Dennis, L.A.: The MCAPL framework including the agent infrastructure layer an agent
java pathfinder. J. of Open Source Software 3(24) (2018) 617

43. Dennis, L.A., Bentzen, M.M., Lindner, F., Fisher, M.: Verifiable machine ethics in chang-
ing contexts. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, AAAI Press (2021) 11470–11478

44. Costantini, S., Tocchio, A.: A dialogue games framework for the operational semantics of
logic agent-oriented languages. In Dix, J., Leite, J., Governatori, G., Jamroga, W., eds.:
Computational Logic in Multi-Agent Systems, 11th International Workshop, CLIMA XI,
Proceedings. Volume 6245 of Lecture Notes in Computer Science., Springer (2010) 238–
255

45. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In
Flesca, S., Greco, S., Leone, N., Ianni, G., eds.: Logics in Artificial Intelligence, Euro-
pean Conference, JELIA 2002, Proceedings. Volume 2424 of Lecture Notes in Computer
Science., Springer (2002)

46. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In
Alferes, J.J., Leite, J.A., eds.: Logics in Artificial Intelligence, 9th European Conference,
JELIA 2004, Proceedings. Volume 3229 of Lecture Notes in Computer Science., Springer
(2004) 685–688

47. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages.
In: Declarative Agent Languages and Technologies III, Third Intl. Works., DALT 2005,
Selected and Revised Papers. Volume 3904 of LNAI. Springer (2006) 106–123

48. De Gasperis, G., Costantini, S., Nazzicone, G.: Dali multi agent systems framework, doi
10.5281/zenodo.11042. DALI GitHub Software Repository (July 2014) DALI: http:
//github.com/AAAI-DISIM-UnivAQ/DALI.

49. Tocchio, A.: Multi-Agent systems in Comp. logic. PhD thesis, Dipartimento di Informatica,
Università degli Studi di L’Aquila (2005)

50. Wallace, S.A.: Identifying incorrect behavior: The impact of behavior models on detectable
error manifestations. In: Proc. of the Fourteenth Conf. on Behavior Representation in Mod-
eling and Simulation (BRIMS-05). (2005)

51. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and autonomy. In
Blazy, S., Chechik, M., eds.: Verified Software. Theories, Tools, and Experiments - 8th
International Conference, VSTTE 2016, Revised Selected Papers. Volume 9971 of Lecture
Notes in Computer Science. (2016) 8–26

52. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and validat-
ing autonomous systems: Towards an integrated approach. In Colombo, C., Leucker, M.,
eds.: Runtime Verification - 18th International Conference, RV 2018, Proceedings. Volume
11237 of Lecture Notes in Computer Science., Springer (2018) 263–281

53. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactability
of agent interaction protocols: Towards a unified approach. In Dennis, L.A., Bordini,
R.H., Lespérance, Y., eds.: Engineering Multi-Agent Systems - 7th International Work-
shop, EMAS 2019, Revised Selected Papers. Volume 12058 of Lecture Notes in Computer
Science., Springer (2019) 43–64

54. Ferrando, A.: The early bird catches the worm: First verify, then monitor! Sci. Comput.
Program. 172 (2019) 160–179

55. Kejstová, K., Rockai, P., Barnat, J.: From model checking to runtime verification and back.
CoRR abs/1805.12428 (2018)

56. Winfield, A.F.T., Michael, K., Pitt, J., Evers, V.: Machine ethics: The design and governance
of ethical AI and autonomous systems. Proceedings of the IEEE 107(3) (2019) 509–517

57. Allen, C., Varner, G., Zinser, J.: Prolegomena to any future artificial moral agent. J. Expt.
Theor. Artif. Intell. (12) (2000) 251–261

58. Asaro, P.: What should we want from a robot ethic? International Review of Information
Ethics (6)

59. Allen, C., Smit, I., Wallach, W.: Artificial morality: Top-down, bottom-up, and hybrid
approaches. Ethics and Information Technology

60. Moor, J.: The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years.
AI Mag. 27(4) (2006) 87–91

61. Powers, T.M.: Prospects for a kantian machine. IEEE Intelligent Systems 21(4) (2006)
46–51

62. Anderson, M., Anderson, S.L., Armen, C.: An approach to computing ethics. IEEE Intell.
Syst. 21(4) (2006) 56–63

63. Dyoub, A.: Towards Ethical Chatbots: Evaluating the Ethical Behavior of Employees in
Customer Service Online Chat. PhD thesis, Department of Information Engineering, Com-
puter Science and Mathematics, University of L’Aquila (2019) Supervisor Prof. Stefania
Costantini.

64. Nallur, V.: Landscape of machine implemented ethics. CoRR abs/2009.00335 (2020)
65. Dyoub, A., Costantini, S., Lisi, F.A.: Logic programming and machine ethics. In Ricca,

F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich, G., Fodor, P., Kimmig, A., Lisi,
F.A., Maratea, M., Mileo, A., Riguzzi, F., eds.: Proceedings 36th International Conference
on Logic Programming, ICLP2020 Technical Communications. Volume 325 of EPTCS.
(2020) 6–17

66. Tolmeijer, S., Kneer, M., Sarasua, C., Christen, M., Bernstein, A.: Implementations in
machine ethics: A survey. ACM Comput. Surv. 53(6) (2021) 132:1–132:38

67. Pereira, L.M., Saptawijaya, A.: Programming Machine Ethics. Volume 26 of Studies in
Applied Philosophy, Epistemology and Rational Ethics. Springer (2016)

68. Pereira, L.M., Lopes, A.B.: Machine Ethics - From Machine Morals to the Machinery of
Morality. Volume 53 of Studies in Applied Philosophy, Epistemology and Rational Ethics.
Springer (2020)

69. Sergot, M.J., Craven, R.: The deontic component of action language nC+. In Goble, L.,
Meyer, J.C., eds.: Deontic Logic and Artificial Normative Systems, 8th International Work-
shop on Deontic Logic in Computer Science, DEON 2006, Proceedings. Volume 4048 of
Lecture Notes in Computer Science., Springer (2006) 222–237

70. Sergot, M.J.: Action and agency in norm-governed multi-agent systems. In Artikis, A.,
O’Hare, G.M.P., Stathis, K., Vouros, G.A., eds.: Engineering Societies in the Agents World
VIII, 8th International Workshop, ESAW 2007, Revised Selected Papers. Volume 4995 of
Lecture Notes in Computer Science., Springer (2007) 1–54

71. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational societies.
ACM Trans. Comput. Log. 10(1) (2009) 1–42

72. Sergot, M.J.: Norms, action and agency in multi-agent systems. In Governatori, G., Sartor,
G., eds.: Deontic Logic in Computer Science, 10th International Conference, DEON 2010,
Proceedings. Volume 6181 of Lecture Notes in Computer Science., Springer (2010) 2

73. Brewka, G., Eiter, T., (eds.), M.T.: Answer set programming: Special issue. AI Magazine
37(3) (2016)

74. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, August 15-19, 1988 (2 Volumes). Volume 88., MIT Press (1988) 1070–1080

75. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New generation computing, Springer 9(3-4) (1991) 365–385

76. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm. Springer (1999) 375–398

77. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: Logic Programming: The 1999
International Conference, MIT Press (1999) 23–37

78. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques
and systems for answer set programming: a survey. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Con-
ferences on Artificial Intelligence Organization (7 2018) 5450–5456

79. Cointe, N., Bonnet, G., Boissier, O.: Ethical judgment of agents’ behaviors in multi-agent
systems. In Jonker, C.M., Marsella, S., Thangarajah, J., Tuyls, K., eds.: Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems, ACM
(2016) 1106–1114

80. Berreby, F., Bourgne, G., Ganascia, J.: A declarative modular framework for representing
and applying ethical principles. In Larson, K., Winikoff, M., Das, S., Durfee, E.H., eds.:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 2017, ACM (2017) 96–104

81. Berreby, F., Bourgne, G., Ganascia, J.: Event-based and scenario-based causality for com-
putational ethics. In André, E., Koenig, S., Dastani, M., Sukthankar, G., eds.: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 2018, ACM (2018) 147–155

82. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4
(1986) 67–95

83. Dennis, L.A., Bentzen, M.M., Lindner, F., Fisher, M.: Verifiable machine ethics in chang-
ing contexts. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, 2021, AAAI Press (2021) 11470–11478

84. Dyoub, A., Costantini, S., Lisi, F.A.: Towards ethical machines via logic programming.
In Bogaerts, B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal, G.,
Villanueva, A., Vos, M.D., Yang, F., eds.: Proceedings 35th International Conference on
Logic Programming (Technical Communications), ICLP 2019 Technical Communications.
Volume 306 of EPTCS. (2019) 333–339

85. Dyoub, A., Costantini, S., Lisi, F.A.: Learning answer set programming rules for ethical ma-
chines. In Casagrande, A., Omodeo, E.G., eds.: Proceedings of the 34th Italian Conference
on Computational Logic. Volume 2396 of CEUR Workshop Proceedings., CEUR-WS.org
(2019) 300–315

86. Dyoub, A., Costantini, S., Lisi, F.A.: Learning answer set programming rules for ethical ma-
chines. In Casagrande, A., Omodeo, E.G., eds.: Proceedings of the 34th Italian Conference
on Computational Logic. Volume 2396 of CEUR Workshop Proceedings., CEUR-WS.org
(2019) 300–315

87. Dyoub, A., Costantini, S., Lisi, F.A., Letteri, I.: Logic-based machine learning for trans-
parent ethical agents. In Calimeri, F., Perri, S., Zumpano, E., eds.: Proceedings of the 35th
Italian Conference on Computational Logic - CILC 2020. Volume 2710 of CEUR Work-
shop Proceedings., CEUR-WS.org (2020) 169–183

88. Hill, P.M., Lloyd, J.W.: Analysis of metaprograms. In: Meta-Programming in Logic Pro-
gramming, Cambridge, Mass., The MIT Press (1988) 23–51

89. Barklund, J.: What is a meta-variable in Prolog? In: Meta-Programming in Logic Program-
ming. The MIT Press, Cambridge, Mass. (1989) 383–98

90. van Harmelen, F.: Definable naming relations in meta-level systems. In: Meta-
Programming in Logic. Lecture Notes in Computer Science 649, Berlin, Springer (1992)
89–104

91. Barklund, J., Costantini, S., Dell’Acqua, P., Lanzarone, G.A.: Semantical properties of
encodings in logic programming. In: Logic Programming – Proc. 1995 Intl. Symp., Cam-
bridge, Mass., MIT Press (1995) 288–302

92. Perlis, D., Subrahmanian, V.S.: Meta-languages, reflection principles, and self-reference.
In: Handbook of Logic in Artificial Intelligence and Logic Programming, Volume2, Deduc-
tion Methodologies. Oxford University Press (1994) 323–358

93. Barklund, J., Dell’Acqua, P., Costantini, S., Lanzarone, G.A.: Semantical properties of
encodings in logic programming. In Lloyd, J.W., ed.: Logic Programming, Proceedings of
the 1995 International Symposium, MIT Press (1995) 288–302

94. Costantini, S.: Meta-reasoning: a Survey. In: Comp. Logic: Logic Pr. and Beyond, Essays
in Honour of Robert A. Kowalski, Part II. Volume 2408 of Lecture Notes in Computer
Science., Springer (2002) 253–288

95. Costantini, S., Lanzarone, G.A.: A metalogic programming language. In: Logic Program-
ming, Proceedings of the Sixth International Conference, MIT Press (1989) 218–233

96. Costantini, S., Lanzarone, G.A.: Metalevel negation in non-monotonic reasoning. In: LP-
NMR, Proceedings of the Workshop on Logic Programming and Non-Monotonic Logic at
ICLP 1990. (1990) 19–26

97. Costantini, S., Formisano, A.: Adding metalogic features to knowledge representation lan-
guages. Fundam. Informaticae 181(1) (2021) 71–98

98. Dix, J.: A classification theory of semantics of normal logic programs: I. Strong properties.
Fundam. Inform. 22(3) (1995) 227–255

99. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In:
Agents Breaking Away, 7th European Works. on Modelling Autonomous Agents in a Multi-
Agent World, Proceedings. Volume 1038 of Lecture Notes in Computer Science., Springer
(1996) 42–55

100. Hindriks, K.V.: Programming rational agents in goal. In: Multi-Agent Programming.
Springer US (2009) 119–157

101. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Pr. multi-agent systems in 3APL
102. Dyoub, A., Costantini, S., Lisi, F.A.: Learning Answer Set Programming Rules for Ethical

Machines. In Casagrande, A., Omodeo, E.G., eds.: Proceedings of the Thirty Fourth Italian
Conference on Computational Logic CILC2019, CEUR-WS.org (2019) 300–315

103. Dyoub, A., Costantini, S., Lisi, F.A.: Towards an ILP Application in Machine Ethics. In:
Inductive Logic Programming - 29th International Conference, ILP 2019, Proceedings. Vol-
ume 11770 of Lecture Notes in Computer Science., Springer (2019) 26–35

104. Dyoub, A., Costantini, S., Lisi, F.A.: Towards ethical machines via logic programming.
In Bogaerts, B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal, G.,
Villanueva, A., Vos, M.D., Yang, F., eds.: Proceedings 35th International Conference on
Logic Programming (Technical Communications), ICLP 2019 Technical Communications.
Volume 306 of EPTCS. (2019) 333–339

105. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Endriss, U., Omicini, A., Torroni, P., eds.: Declarative Agent Languages and
Technologies III, Third International Workshop, DALT 2005, Selected and Revised Papers.
Number 3904 in Lecture Notes in Computer Science. Springer (2006) 106–123

106. Costantini, S., Pitoni, V.: Reasoning about memory management in resource-bounded
agents. In Casagrande, A., Omodeo, E.G., eds.: Proceedings of the 34th Italian Conference
on Computational Logic. Volume 2396 of CEUR Workshop Proceedings., CEUR-WS.org
(2019) 217–228

107. Pitoni, V., Costantini, S.: A temporal module for logical frameworks. In Bogaerts, B.,
Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal, G., Villanueva, A.,
Vos, M.D., Yang, F., eds.: Proceedings 35th International Conference on Logic Program-
ming (Technical Communications), ICLP 2019 Technical Communications. Volume 306 of
EPTCS. (2019) 340–346

108. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: Real-Time: Theory
in Practice, REX Works., Proceedings. Volume 600 of Lecture Notes in Computer Science.,
Springer (1992) 226–251

109. Costantini, S., Formisano, A.: Weight constraints with preferences in ASP. In Delgrande,
J.P., Faber, W., eds.: Logic Programming and Nonmonotonic Reasoning - 11th International
Conference, LPNMR 2011, Proceedings. Volume 6645 of Lecture Notes in Computer Sci-
ence., Springer (2011) 229–235

110. Costantini, S., Formisano, A.: Preferences and priorities in ASP. In Lisi, F.A., ed.: Pro-
ceedings of the 9th Italian Convention on Computational Logic. Volume 857 of CEUR
Workshop Proceedings., CEUR-WS.org (2012) 47–58

111. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on re-
source consumption and production in ASP. Journal of of Algorithms in Cognition, Infor-
matics and Logic 64(1) (2009)

112. Costantini, S.: Answer set modules for logical agents. In Gottlob, G., ed.: Datalog 2.0.
Number 6702 in Lecture Notes in Computer Science. Springer (2012)

113. Costantini, S., De Gasperis, G., Pitoni, V., Salutari, A.: DALI: A multi agent system frame-
work for the web, cognitive robotic and complex event processing. In Della Monica, D.,
Murano, A., Rubin, S., Sauro, L., eds.: Joint Proceedings of the 18th Italian Conference
on Theoretical Computer Science and the 32nd Italian Conference on Computational Logic
co-located with the 2017 IEEE International Workshop on Measurements and Networking
(2017 IEEE M&N). Volume 1949 of CEUR Workshop Proceedings., CEUR-WS.org (2017)
286–300 Download at https://github.com/AAAI-DISIM-UnivAQ/DALI.

114. Costantini, S., Tocchio, A., Verticchio, A.: Communication and trust in the DALI logic
programming agent-oriented language. Intelligenza Artificiale, International Journal of the
Italian Association AIxIA 2(1) (2005) 39–46

115. Carlsson, M., Mildner, P.: Sicstus Prolog–the first 25 years. Theory and Practice of Logic
Programming 12(1,2) Special Issue on Prolog Systems.

116. Costantini, S., De Gasperis, G., Pitoni, V., Salutari, A.: Dali: A multi agent system frame-
work for the web, cognitive robotic and complex event processing. In: Proceedings of the
32nd Italian Conference on Computational Logic. Volume 1949 of CEUR Workshop Pro-
ceedings., CEUR-WS.org (2017) 286–300 http://ceur-ws.org/Vol-1949/CILCpaper05.pdf.

117. Costantini, S., De Gasperis, G., Nazzicone, G.: DALI for cognitive robotics: Principles and
prototype implementation. In Lierler, Y., Taha, W., eds.: Practical Aspects of Declarative
Languages - 19th International Symposium, Proceedings. Volume 10137 of Lecture Notes
in Computer Science., Springer (2017) 152–162

118. Tufis, M., Ganascia, J.: A normative extension for the BDI agent model. In: Proceedings
of the 17th International Conference on Climbing and Walking Robots and the Support
Technologies for Mobile Machines. (2014) 691–702

119. Montali, M., Chesani, F., Mello, P., Torroni, P.: Modeling and verifying business processes
and choreographies through the abductive proof procedure sciff and its extensions. Intelli-
genza Artificiale, International Journal of the Italian Association AIxIA 5(1) (2011)

120. Montali, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.:
Verification from declarative specifications using logic programming. In: 24th International
Conference on Logic Programming (ICLP’08). Volume 5366 of Lecture Notes in Computer
Science., Springer (2008) 440–454

121. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
eagle to ruler. J. Log. Comput. 20(3) (2010) 675–706

122. Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for engi-
neering ethically correct robots. IEEE Intelligent Systems 21(4) (2006) 38–44

123. Caianiello, P., Costantini, S., De Gasperis, G., Florio, N., Gobbo, F.: Application of hybrid
agents to smart energy management of a prosumer node. In Omatu, S., Neves, J., Rodrı́guez,
J.M.C., Santana, J.F.D.P., Rodrı́guez-González, S., eds.: Distributed Computing and Artifi-
cial Intelligence - 10th International Conference, DCAI 2013. Volume 217 of Advances in
Intelligent Systems and Computing., Springer (2013) 597–607

124. Rushby, J.M.: Runtime certification. In Leucker, M., ed.: Runtime Verification, 8th Intl.
Works., RV 2008. Selected Papers. Volume 5289 of Lecture Notes in Computer Science.
Springer (2008) 21–35

