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Abstract

In this thesis, we consider a first order partial differential equation with coefficient
that contains a jump in the space and time variables. The equation is deeply in-
spired by the one-dimensional model of pedestrian flow introduced by Hughes,
commonly referred to as the Hughes” model [57]. To be precise, our equation con-
sists in a scalar conservation law whose flux coefficient is a time dependent func-
tion that switches sign according to the location of the "turning curve’, ¢ (1), given
a priori in the space domain. The equation writes

9o + 9x (sign(x — (1)) f(p)) = 0.

The main object of this thesis is to analyse the well-posedness of the above equa-
tion via entropy solutions taken in an appropriate sense. In this text, the basic no-
tions of scalar conservation law with continuous and discontinuous flux functions
are revisited with a detailed discussion and comparison of existing results regard-
ing entropy admissibility criteria for both classes of equations. Furthermore, the
theory of L!-dissipative germ introduced by Andreianov, Karlsen and Risebro [14]
is reviewed and is then extended to our equation with the goal of analysing the en-
tropy solutions for the case of non-classical flux interface coupling at the turning
curve.

In a series of steps leading to the existence of solutions to the above equation,
we properly define the entropy solutions and construct the exact solution of the
Riemann problem that arises at the turning curve. Using the Riemann solver at
¢(t), the total variation in the solution as the slope of ¢ changes in time and as ¢
interactions with classical waves (i.e. shock and rarefaction) are studied.

Finally, a numerical scheme with a moving mesh adaptation and a modified nu-
merical flux near the turning curve x = ¢(t) is also proposed. In order to be able
to prove that the scheme converges to the weak entropy solution, we first establish
that it is well-balanced and stable in L* space. The approximate solution is further
analysed in the sense of entropy process solutions. We also present some explicit
examples and their approximate solutions to numerically check convergence of
the approximate solution provided by the scheme to the weak entropy solutions.
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Introduction

The main object of this thesis is to analyze the solution of a scalar conservation law
with a flux function that has a jump in the space and time variables. Conservation
of mass is a naturally occurring phenomenon that has been studied for decades in
the physical sciences and continues to enrich an active area of research until the
present from both theoretical and application points of view. Typical examples of
application problems of mass conservation are macroscopic motion of pedestrian
flows [57, 28], flooding models [77], and macroscopic models of traffic flow [74,
69, 78, 66] among others. Nevertheless, the birth of these models have roots deep
within some ideas of continuum physics, where fundamental balance equations
for mass, momentum, and total energy of fluids are formulated by neglecting the
effects of small-scale induced mechanisms. Mostly, such models are proposed by
engineers and/or physicists, and then their analytical properties are subsequently
studied by mathematicians with the aim of proposing solutions that may serve as
the basis for computer simulations and analysis.

The Hughes” model for pedestrian flow [57] is a typical example. It was originally
developed by an engineer but used by mathematicians and simulation experts
to predict the motion of large crowds as it serves as one of the model equations
adapted to run computer simulations of pedestrian flows [19, 79, 40, 48]. Since dif-
ferent application problems lead to different conservation laws, specific assump-
tions are made when studying the solutions to a conservation law from a theo-
retical point of view. For instance, macroscopic models of traffic flow on a single
lane were first proposed as conservation laws with simple single flux functions
resulting from the assumption of a non-increasing speed function [69]. However,
incorporating additional conditions on the single road results in further extensions
of the simple model (see [74] for the case of traffic flow models), that in turn leads
to the derivation of different classes of conservation laws for the single problem.

A class of conservation laws commonly arising in this direction is scalar conser-
vation laws with discontinuous flux functions, herein referred to as discontinuous
flux problems, which is also the main subject of the work presented in this thesis.
In this introductory chapter, we review selected practical problems that motivate
this class of equations and then recall basic notions of entropy solutions adapted
for them in the chapter that follows.



0.1. Traffic flow models 2

0.1 Traffic flow models

Traffic flow models given by partial differential equations (PDEs) are based on
the well-known continuum formulation initially proposed by Lighthill-Whitham-
Richards (LWR) [69, 78]. The models are used to describe the evolution of large
volumes of traffic density on an unbounded highway, mostly with a common flux
function. That is, they are also based on large scale values of traffic density and
flow speed. For this reason, they’re commonly referred to as macroscopic models of

traffic flow.
Consider a one-directional highway parameterized by an interval I C R, possibly
unbounded. The LWR model writes

90+ 3x[po(p)] = 0, (£,x) € [0,00) x I, M

where the unknown function p = p(t,x) € [0, pmax|, is the mean traffic density at
time and position (¢, x), Pmax > 0 is the maximum density, and the function v :
[0, pmax] = [0, Umax] is the mean traffic velocity given as a non-increasing function
with Uyex > 0, being the maximum mean velocity. Setting f(p) := pv(p) to be the
flux-density relation, the LWR models stipulates that f satisfies the following:

(Hl) f(O) = f(pmax) =0,
(H2) f: [0, omax] > [0, +00) is a €2 function.

Equation (1) is a first-order order macroscopic model that is closed by a speed-
density relation v = v(p). Furthermore, it is possible to consider the model on
roads with entrances and/or exits by adding a source term to (1) as in [17]; gener-
alization to multi-class traffic population which comprises of fast and slow mov-
ing vehicles [20] and traffic models on complex networks [44]. In the theory of
traffic flow models, it is mostly convenient to also consider the graph of the speed-
density relation as well as of the flux function, called the fundamental diagram.
The fundamental diagram corresponding to (2) is shown in figure 1. For a single
lane with uniform road conditions, a common choice of the flux function writes

£(0) = Omasp (1 -~ ) . 2)

Pmax

On a highway stretch, it is common for different segments to have varying speed
limits mostly owing to speed control mechanisms such as ramp metering. In mod-
ern transportation networks, these meters are equipped with sensors that can be
controlled in real time to optimize the free flow of traffic. For these modeling
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Omax

0 Pmax O Pmax

FIGURE 1: The fundamental diagram of the simple LWR traffic flow
model.

situations, the LWR model is adjusted to define realistic solutions. This moti-
vates a class of traffic flow model which are scalar conservation laws with time
dependent discontinuous flux functions with the velocity function of the form
v(t) € [Vmin, Umax). See [47, 33, 70, 74]. Toward this direction, a common exam-
ple flux function used are summarized below:

Greenshields [51] 1 f(t,p) = v(t)p (1 — b ) ,

Omax

Newel-Daganzo type [30] : f(t,p) = . .
F%(Pmax_,o) if 0 SP Spc/
where p. € (0, omax)

0.2 Pedestrian flow models

Mathematical aspects of pedestrian flow models have received lots of attention in
the mathematical modeling research community over the past decade and it has
helped to provide deep insights into physical models of pedestrian flow dynam-
ics usually obtained with tools of physics, engineering and social sciences [81].
A basic example is the Hughes” continuum model of pedestrian flow [57] whose
original governing equations are born out of fluid dynamic principles with appli-
cations derived from the general behavior of the Lighthill and Whitham [69, 78]
models of traffic motion. The model is well suited for motions of large crowds in
narrow corridors with a common target. However, in [56], it was applied to a two-
dimensional walking facility in which a pedestrian chooses a route to minimize
the instantaneous travel cost to the destination. In another instance, [89], within a
less general setting, powerful resources for computer games and animated movies
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was utilized efficiently to provide a real-time simulation of large groups consid-
ered as a continuum with common targets. These models provide useful tools for
the planning and design of walking facilities as well as aids in the visualization
of the movement trajectories of pedestrians and their interactions within such a
facility. The motivation to study the qualitative behaviour of pedestrians from an
analytical viewpoint is not arbitrary. First, field experiments with human subjects
are obviously too expensive and difficult to conduct, and hence analytical studies
come only at the cost of computer power [89]. They help architectures and engi-
neers to better plan and design structures such that there will be minimal casualties
in case of fire or natural disasters [53]. However, the overarching importance of
crowd models are but not limited to estimating migratory flows, traffic forecasting,
and urban planning [91].

Mathematical models of crowd motion and dynamics come in two main forms
namely, microscopic and macroscopic. The microscopic models are based on the
idea that the behavior and interactions of the individual entities (as people are
treated as rigid discs) can be determined by physical and social laws subject to con-
straints imposed by their immediate surroundings. The mathematical equations
of these models are generally stated in terms of systems of ordinary differential
equations. Some examples of microscopic models include the so-called floor field
models, [82, 42] and contact model [72]. For an extensive review on different mi-
croscopic approaches we refer to [19, 52]. With respect to macroscopic models, the
whole crowd is treated as a single entity but movements of single individuals are
ignored. Since they seek to predict the advection of large crowds, the model equa-
tions are largely hyperbolic conservation laws with a closure relation expressed as
a speed-density function. Included in the list of examples of macroscopic models
are those based on optimal transport theory [71], on scalar conservation laws with
non-convex flux as in [29] and recently with inspirations from mean field games
[22].

The Hughes’ model
The Hughes” model of pedestrian flow in the multidimensional setting writes:
oo — div(pv?(p) V) =0, x €11y, (3a)
V| = L e, (3b)
v(p)

where x € I1, is the space variable, I, C R4, a bounded domain for d > 1, p(t, x)
represents the crowd density in x at time t > 0. The density dependent function
v plays the role of the speed adapted by the crowd and is usually expressed as a
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decreasing function such that over the interval [0, pmax), where pmax is the maxi-
mum density, the situation in which v(omax) = 0, represents congestion where as
there’s free flow if v(0) = Umax, With vmax > 0. The potential function ¢ (¢, x) in the
Eikonal equation (3b) models the common sense strategy adapted by the pedes-
trians to reach their target (or exit). In most cases it is interpreted as a weighted
distance to the exit and so pedestrians take the path down the minimum gradient.
That is they avoid congested zones so as to optimize the travel time to the exits.

In the one-dimensional setting, the model writes

0ip — Ox (PU(P) Px ) =0, (4a)
| x|
92| = c(p), (4b)
in the spatial domain IT, =] — 1,1[, coupled with a Dirichlet’s boundary condi-
tions:

p(1,t) =p(=1,t) =0, t>0, (40)
p(1,t) =¢(-1,t)=0, t>0, (4d)

and initial data
p(x,0) = po(x), (4e)

where p(t,x) € [0,1] is the unknown crowd density (normalized); c(p) = 1/v(p),
is the running cost; v(p) = 1 — p is the mean velocity. A unique viscous solution
to the Eikonal equation (4b) with boundary condition (4d) gives rise to a unique
turning point ¢(t) € I, that satisfies the implicit relation:

g(t) 1
/ c(p(t,x))dx = /( | c(p(t,x))dx, ¥t >O0. )
-1 &(t

The 1D model (4) can be re-written as a scalar conservation law with space-time
discontinuous flux:

dto + 9x (sign(x — (1)) f(p)) =0, (6)

where, p — f(p) is defined by f(p) = pv(p) and t +— §(t) satisfies the implicit
relation (5) for each (f,x) € [0,00) x IT,.
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0.3 Organisation of the thesis

After reviewing the fundamental theoretical tools used to analyse the solution of
hyperbolic partial differential equation (PDE), we present the main contribution
of the work in two parts beginning from chapters 3 to 4. The thesis is organised as
follows:

In Chapter 1, we discuss known results for scalar conservation law with continu-
ous flux and discontinuous flux. Particular emphasis is given to the selection of an
appropriate notion of entropy admissible conditions, the new tool of admissibility
germ.

In Chapter 2, we then discuss the numerical schemes employed to approximate
weak solutions of the equation studied in this work. The first section of this chap-
ter is focused on the standard methods, the so-called Godunov scheme and a brief
discussion of its failure to the discontinuous flux problems. We then conclude
with an overview of the steps involved to obtain a convergence result for prob-
lems without a spatial bound in the total variation.

Chapter 3 begins with the main contribution of the thesis. Here we present our
equation and analyse the Riemann solver of the Cauchy problem. We also attempt
to lay bare the new tool of admissibility germs and show how it could be useful to
prove existence of solutions. Particular emphasis is given to the fact that we do not
yet have a bound in the spacial total variation on the solution to the problem, lead-
ing to studying the solutions in the framework of the entropy process solutions.

In Chapter 4, we propose a new finite volume scheme with a "localised” adapt-ed
mesh or moving mesh near to the space time flux discontinuity. After analysing
some key properties of the scheme, we attempt to prove the convergence of the
scheme with an L* stability estimate on the approximation solutions. In the final
section, we present some numerical experiments for specific problems and com-
pute the order of convergence of the method.

Finally, in Chapter 5, we draw conclusions and lay a foundation for future works.



Chapter 1

Scalar Conservation laws with
discontinuous coefficients

1.1 Introduction

In this chapter, we review the basic theory of scalar conservation laws with dis-
continuous coefficients. Before discussing the theoretical tools used to study well-
posedness, we dedicate the first part of this chapter to scalar conservation laws
with continuous flux and then in the second part, present the theoretical tools ex-
tended to the discontinuous flux problems.

A scalar conservation law is partial differential equation (PDE) which describes
the evolution of a conserved quantity, such as mass, density of cars or concentra-
tion of a specie in one dimension in space. The general expression of this PDE
appears in the form

oo + 9xf(t,x,0) =0, (1.1)

where p represents the conserved quantity and f is a function representing the rate
of flux of this quantity through the boundary of the domain and hence referred to
as the flux function. The work of this thesis is based on scalar conservation laws in
which f contains a discontinuity in the space and time variables.

In one dimensional space setting, it can be derived from the basic principle of mass
conservation as recalled below. Let (¢,x) — p(t,x) > 0 be a function that repre-
sents a conserved quantity (e.g. density, momentum, energy etc.), and [, p(t, x)dx,
the total amount of p in the interval I = [x;, x,] at time f. Suppose that the total
mass is finite at the time t = 0: [ p(0,x) dx € R, then the conservation principle
simply stipulates that:

%/]Rp(t,x)dx =0. (1.2)
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More specifically, assume that the initial mass is finite over the interval I and using
the function f : R* x R — R represent the flux per unit area, then mass conser-
vation principle implies that

%/x, p(t,x)dx = f(t,x1,0(t,x1)) = f(t, xr, p(t,x1)). (1.3)

X1

In the context of fluid dynamics, p is considered to be a fluid density flowing with
velocity of v(t, x) and hence the flux function is defined by

f(t,x,p(t,%)) = 0(t, ¥)p(t, ). (1.4)

Integrating (1.3) further in time over a finite time interval It = [t1, ;] and rear-
ranging gives

t Xy
/ ’ / 91p(t, x) + 0xf(t,x,p)dxdt = 0.
t1 Jx

The above integral is zero for every choice of [t1, t2] X [x;, x;] if the integrand satis-
ties

9ip(t,x) + oxf(t,x,p) =0, (1.5)

commonly referred to as the differential form of a scalar conservation law. It is
common to study solutions of a scalar conservation law using its differential form.
As this work concerns the existence of solution to scalar conservation law, we shall
also adapt to the differential form of the equation. For most problems studied
with a scalar conservation law, the velocity relation is a function of the density.
Therefore, in such situation, it is convenient to write v = v(p), the flux function
also becomes a density function given by f(p) = pv(p). The differential form of
the conservation law now writes

dip + 9xf(p) = 0. (1.6)

For the purpose of our discussion, we shall use the differential form in (1.6) when
referring to conservation laws with continuous flux in the next section.

1.1.1 The Cauchy problem and the classical solution
We begin with the Cauchy problem for the PDE (1.6) with a given initial condition

{atp +9:F(p) =0, (t,x) € Ry xR, (1.7a)
p(0,x) = po(x), x € R. (1.7b)
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As the equation (1.7a) involves first order derivatives in space and time, it makes
sense to look for solutions that are continuously differentiable both in space and
time.

To illustrate, we parameterize the x — t plane by the characteristic curve starting at
the point y € R as t — X(t;y) and denote by R(t; y) the value of p along X, then

B = dup(t, X (1) + X - dxp(t, X (1))

— dip(E, X(1) + F'(p(t, X(1))) - dap(t, X(1))
=0.

This implies that the solution is constant along characteristic lines and solving the
Cauchy problem (1.7) reduces to finding the characteristic line that also satisfies

the ODE
X =F(R(t)), t >0,
X(0)=y, y R,

whose solution is given by X(t;y) = y + tF/(R(0)). Thus given any point (¢, x),
one only needs to determine the characteristic curve originating from y and that
passes through the point x. If X(¢; -) is invertible, at least for small ¢ > 0, the exact
solution to (1.7) can be traced from the initial solution given at y and is implicitly
given as:

p(t,x) = po(x — tF'(p(t, x))).

Such solutions are referred to as classical solutions defined below.

Definition 1.1. Let F € C'(R;R) and pg € C'(R;R). Let T > 0. A classical
solution of a Cauchy problem (1.7) is a function p € C1([0, T) x R, R) that satisfies
(1.7).

Notice that every characteristic curve (t, X(t)) travel with speed, F'(p) that is also
dependent on the solution itself. This may introduce severe irregularities in the
global in time solution and the smoothness property of p in general breaks down,
even if the initial data is smooth. This severity is a real issue in the study of solu-
tions to hyperbolic conservation laws. For this reason, the concept of weak solu-
tion is introduced in order to define global in time solutions of (1.7) where classical
solutions do not exist.

1.1.2 Weak solutions

The assertions laid in the previous section merits different notions of solutions
when dealing with conservation laws. In this subsection, we describe the notion
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of weak or distribution solutions. Indeed, since the PDE (1.7a) is in divergence
form, multiplication by a continuous function ¢ and a formal integration by parts
lead to the following definition of solution:

Definition 1.2. (Weak solutions) Let QO = Rj xR, pp € L°(R;R) and F €
CY(R;R). A function p € L* ();R) is a weak solution of the scalar conservation
law (1.7) if it satisfies the integral identity

/]R+ /]R Pt + F(p) pxdxdt + /m po@(0,x)dx =0 (1.8)

for all test function with compact support ¢ € C!(Q; R).

This definition of solution allows p to be discontinuous since the partial deriva-
tives on p shift to ¢. It can be proved that every classical solution also satisfies the
integral condition (1.8) for all ¢ and hence a weak solution. An important class of
functions usually considered in literature is the piecewise smooth functions con-
taining jump discontinuities. The next lemma gives a necessary and sufficient con-
dition to be imposed on such functions in order to be admitted as a weak solution.

Lemma 1.1. (Rankine-Hugoniot jump condition) Let Q) be separated into two regions
Q_ and Q. by a Lipschitz curve S parameterized by S = (t,0(t)) where o : R +— R.
Furthermore, assume that p is smooth over Q)_ and Q) occurring in the form

e (tx), if x<o(t),
b = {p*(t,x), if x> o(t), (1.9)

where p= : Qi — R are C! functions and assume that the limits p(t,o(t)+) =
111}1) p(t, x) exist for a.e t. Then, p is a weak solution of (1.7) if and only if the fol-
x—0o(t)£
lowing two conditions hold:
i) pis a classical solution over ()_ and ().

ii) p satisfies the jump condition:

o (t) = P(p;f?tfcy)ci :5((2;(;;3()) forae. t. (1.10)

If p is piecewise constant, (1.9) reduces to

p—, if x <st,
t,x) = 1.11
pit) {P+, if x > st, (111)
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where p* are constants and ¢ is linear with slope s € R and the Rankine-Hugoniot
relation reads:

—s(p” —p")+F(p™) —F(p™) =0. (1.12)
If p~ # pT then by lemma 1.1, any weak solution to (1.7) represented by the pair
(p~,p") of the form (1.11) is referred to as the a shock wave connecting p~ to p™

and travels with speed s, if additional entropy conditions are prescribed to select
admissible weak solutions.

1.1.3 Entropy inequalities

In general, the weak solutions in the sense of Definition 1.2 are not uniquely de-
termined by the initial data, pg. Indeed, one can prescribe an entire family of weak
solutions to the same Cauchy problem for a given class of initial data. This prob-
lem is resolved by the so-called vanishing viscosity reqularization.

Roughly speaking, a term R? is introduced in the PDE (1.7) where ¢ is a small
parameter that approaches 0, and when it does the solution of the Cauchy problem
(1.7) is realized as the limit of the regularized (or viscous) equation:

ap° + 0xF(p°) = RE, (t,x) € Q. (1.13)

Meaning, p® is a sequence of solutions of equation (1.13) regularized by R*. We
may assume that R® has a regularizing effect, so that p® is smooth depend on
of, €0, €20, ... that vanishes as ¢ — 0. Convergence of p¢ to the singular limit
p holds everywhere in R if p® is uniformly bounded in an appropriate sense and
the bound is independent of . The major drawback in this criteria is that it is very
difficult to obtain a priori estimates for (1.13) which would allow one to prove the
convergence to a weak solution to (1.7) as ¢ — 0. This may be overcome by deduc-
ing other viscous conditions that can be easily verified according to the physical
considerations of the problem. The regularization mechanism applied with R? is
very crucial as it determines the kind of admissibility condition that allows one
to select the unique solution. The most-well known mechanism is the entropy-
entropy flux.

Definition 1.3. A pair of functions #, ® with r7 convex is called entropy-entropy flux
pair for (1.7) if

' (0) =1'(0)F'(p), (1.14)
is satisfied at every p where 77, ®, and F are differentiable.

Remark 1.1. If p = p(t, x) is a classical solution of (1.7) in the sense of Definition
1.1, then the consequence of (1.14) implies that p must also satisfy 7(p): + P(p)x =
0.
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The following definitions are needed in order to discuss weak entropy solutions.

Definition 1.4. Let p® be the smooth solutions of (1.13) such that p = lim,_,o p% is a
weak solution of (1.7). Then the regularisation term R¢ is said to be a conservative
reqularization in the limit as e — 0 if

lim / / RE - gdxdt =0, Y € C®(Q;RY). (1.15)

e—0

In addition, it is said to be entropy dissipative regularization for the entropy #(p) if

lim // 7' (0°) - RE- gdxdt <0, Yo € C(Q;RY). (1.16)
&e—

If (1.7) is endowed with a convex entropy function, and appropriate limit condi-
tions on the weak solution p are derived, then the limit solution is a unique weak
solution. The following theorem summarizes the natural conditions on R* needed
to deduce a unique limit of the weak solution:

Theorem 1.1. Let p® be a family of approximate solutions of (1.13) that is bounded in
the L norm as ¢ — 0 and converges a.e to the limit p which is a weak solution of (1.7).
Suppose also that R* is conservative and entropy dissipative for some entropy-entropy flux
pair (11, D). Then p is a weak solution of (1.7) and satisfies the inequality

// 0)3:9 + D(0)drg) dtdx >0, Ve € C(;RT). (1.17)

For proof of Theorem 1.1, we refer the reader to [65]. In the distributional sense,
the inequality (1.17) rewrites as

91 (p) + 0xP(p) < 0in D'(Q). (1.18)

This inequality is called the entropy inequality for all entropy-entropy flux pair
(7, ®) and any weak solution satisfying (1.18) is an entropy admissible solution. A
particular class of useful entropy-entropy flux pair is the so-called Kruzkhov en-
tropy pair [63] given by

k() = lp — k|, ®i(p) = sign(p —k) (F(p) — F(k)) (1.19)

for every fixed k € R.

Definition 1.5. Let pg € L®(R). A function p € L*(]0, T[XR;R) with T > O is a
weak entropy solution of (1.7a) if and only if for every k € R the following integral
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inequality

/OT/IR [ () pe(t, x) +<I>k(p)qvx(t,x)}dxdt+/R loo — k|@(0,x)dx >0  (1.20)

holds for all test functions ¢ € C!(R; x R; Ry ).

Remark 1.2. Notice that 77 and & are convex and Lipschitz continuous functions
that satisfy the equality (1.14) at every p # k.

By Remark 1.1, one can conclude that classical solutions are also entropy admis-
sible. However, it is not immediately clear whether or not a given weak solution
of the form (1.11) is entropy admissible. On this premise, the following definition
gives a simple criterion when a weak solution of the form (1.11) is given.

Proposition 1.1. A weak solution, (1.11), of (1.7) denoted by the pair (p~,p") with
speed A satisfying (1.12) and p~ # p™, satisfies the entropy inequality (1.18) if and only
if Oleinik entropy inequalities
F(p*) = F(p™) o F(p™) = F(p")
pr—p pr—p

Moreover, the condition (1.21) implies the so-called Lax shock inequalities

v

, Yorelp, pflorpelpt, p7]. (121

Fl(p7) 2 A= F(p"), (1.22)

if F is a strictly concave or convex function.

The inequality (1.21) gives a geometric interpretation of admissible weak solution
for a general F, which is the graph of F must be below the secants connecting p~
to p™ if pT < p~. On the other hand, if p™ > p~ the graph of F must remain
above the secants connecting p~ to p™. In addition, Lax inequality imply that only
solutions in which waves on the left of the characteristic travel faster than waves
on the right and impinges on each other to form a discontinuity are admissible.

Proposition 1.2. A function p(t,x) € L®((;R) as in (1.11) is a weak entropy solution
of (1.7) in the sense of Definition 1.5 if and only if (1.21) holds.

The next proposition establishes the uniqueness of the weak entropy solutions.

Proposition 1.3. (L!-contraction principle): Suppose that p', 0> € L= (]0, T[xR;R),
with T > 0 are two weak entropy solutions of (1.7) with F € Lip(R) and initial data
o3, pb € L*(R), then the following L-contraction property holds:

It ) =t )

S PR (1.23)
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implying the uniqueness of weak entropy solutions.

This proposition can be proved by following the classical idea of the '"doubling
of variable” technique introduced by Kruzkhov [63]. Using this technique, one
relies on the entropy inequalities of (1.18) with the Kruzkhov entropy-entropy flux
pair (1.19) satisfying the integral inequality (1.20) of Definition 1.5. Integrating
(1.20) first in (¢, x) with the constant k = p!(s,y), if p?(t, x) and then in (s,y) with
k = 0%(s,y), if p'(t, x), using an appropriate test (or cut off) function, one recovers
the Kato inequality

%" — p?| +3x (sign(p’ — p)F(p") —F(p)) <0, inD'(Q).  (129)

With M being the Lipschitz constant of F and any P > 0, this inequality is then
integrated along the trapezoid, A = {(t,x) € Rf xR : [x| < P+M(T —t), t €
[0, T]}, to obtain the inequality (1.23). This directly implies that if p'* have the
same initial conditions, then clearly p! = p?2.

1.1.4 The Riemann solvers

From the foregoing, it is clear that shock wave solutions, (1.11) form a special class
of weak solutions of (1.7) that merit attention. The most basic form of initial data
that gives these forms of solution is the so-called Riemann data.

Definition 1.6. A Riemann’s problem is a Cauchy problem with initial datum of

the form
pL, ifx <O,
= 1.25
po(x) {PR/ x>0, (1.25)

where pr, pr € [0, R]. Any function that provides a weak entropy solution to the
Riemann problem is referred to as the the Riemann solver.

The Riemann problem serves as a building block for developing admissible weak
solutions and numerical approximations to the general Cauchy problem. The Rie-
mann solvers allows one to track the solution across a jump discontinuity such that
the entropy conditions are satisfied. An important property of Riemann solvers is
that they are self-similar. Meaning, if p(t, x) is a solution to (1.25), then p(Af, Ax)
is also a solution for any scalar A > 0 and therefore is invariant under the trans-
formation x — Ax, and t — At. For this reason, the Riemann solver is written
as a function of x/t: w(x/t) = p(t, x). Here we describe the basic types of waves
assuming that the flux function is convex, F”' > 0.



1.1. Introduction 15

1. Centered Rarefaction: Set z = x /t, then insert w(x/t) into (1.7a), and observing
that w'(x/t) # 0, we obtain
z = F(w). (1.26)

With convex F implies that F’ is strictly monotone, and so w = (F')~1(z).
More precisely, if p; < pg, and F’ is strictly increasing for z € [F'(pr), F'(or)]-
Then we can define a continuous function of the form

oL, if x < F'(pp)t,
p(t,x) =< (F)"Y(x/t), if x € [F(op)t, F'(or)t], (1.27)
OR, if x > F/(pR)f.

Solution of this form is referred to as centered rarefaction wave.

2. Shocks: In the case where p;, > pg, the weak solution is called a shock wave
and it is given by:

if x < At
o(t,x) = P X =Ab (1.28)
OR, if x > At,

where A € R is the speed of the wave provided by
3 - Elpr) — Fpr)
PL — PR
Shocks waves are admissible if (1.21) holds.

Remark 1.3. In the case of concave flux (i.e. when F” < 0), the Lax admissible
condition (1.22) implies that shocks are admissible if p; < pr whereas for convex
flux admissible shocks are due to pr, > prg.

The concept of entropy solution of scalar conservation laws presented in this sec-
tion concerns continuous flux problems (i.e., conservation laws in which the flux
function depends only on p). However, as outlined in the introduction section of
this thesis, there are many application problems in which the flux is also a func-
tion of the space and, or time variables and is also possibly discontinuous. We
refer to such problems as the discontinuous flux problems. The main equation
considered in this work is an example of this class of problems. The concepts of
entropy solutions presented in this section cannot be extended to characterise a
well-defined solution framework for these so-called discontinuous flux problems
and hence would require a new set of tools to develop a well-posedness theory.
These tools are introduced in the next section.
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1.2 The Discontinuous flux problem

In this section, we focus on a specific form of equation (1.1), which is a scalar
conservation law with discontinuous flux function written as

{atp + 0+F(k(t,x),0) =0, onQ, (1.29a)
0(0,x) = po(x), x € R, (1.29b)

where p : ) — R as usual is the unknown conserved variable, F : R x R — R
is the flux function, and k :  — R is a real valued function mostly referred
to as the flux coefficient. The standard theoretical tools and numerical methods
applied to (1.7), some of which are discussed in this work, readily applies to (1.29)
as long as k differentiable. However, physical problems modelled by the equation
(1.29a) requires that k to belong to certain classes of discontinuous functions, e.g.
L*(O;R) N BV((;R) [73].

Example 1.1. (variable speed limit problem) Consider the flow of traffic on a single
lane with speed control mechanism that the maximum speed varies across the road
and must be evaluated at discrete points in time. The resulting scalar conservation
law has a flux function f with time-dependence discontinuity

F(k(t),p) = k(t)p(1 —p) (1.30)

where k : [0,T] — [Umin, Umax), representing the maximal (mean) traffic velocity
limit belongs to BV([0, T]; [Umin, Umax])-

See other examples in [73, 25, 21, 85, 44] and references therein. The study of these
equations require the use of novel theoretical tools and design of new numerical
methods. In this section, we recall the theoretical tools used to study existence of
solutions to equations of the form (1.29a).

1.2.1 The problem

To illustrate the difficulty in studying (1.29a) we suppose that k is constant in time,
then the equation can be written as a 2 x 2 system:

ot + 9xF(k(x),p) =0, (1.31)
dik =0,
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where (p, k)" is a vector of the conserved variables and in the matrix representation
form, written as
JF OF
o o K el _ |0
i+ [ 8] -[o)

The Jacobian matrix has eigenvalues A; = 0 and A, = 3—5. Therefore, if g—l; =0

for some (k,p), the system (1.31) fails to be strictly hyperbolic. Indeed the lack
of strict hyperbolicity is largely due to the existence of k which presents a major
difficulty toward analysis of solutions, since the standard well-posedness theory
strictly hyperbolic systems of conservation laws which is well understood, doesn’t
readily apply to (1.29a). Also, a key ingredient to establish existence of solutions
to the general scalar conservation law is to prove that the solution operator is total
variation diminishing (TVD). That is, the total variation of the solution does not
increase in time. However, for conservation laws with discontinuous flux the total
variation in the solution is usually greater than the total variation in the initial
data. Moreover, where 4 % vanishes then the two eigenvalues coincide and the

system becomes resonant. This problem is even worse in the situation where k
also has time dependent variable.

Another delicate issue is the lack of uniqueness for solutions. The framework of
entropy solutions proposed for the discontinuous flux problems are based on ap-
plying a standard admissibility criterion (such as the Kruzkhov and Lax-Oleinik
entropy conditions) over the space domain away from the flux interface and then
applying a Rankine-Hugoniot jump relation at each interface. This entropy ad-
missibility condition may not always be enough to select the physically relevant
solutions, since for a single problem, it is possible to obtain at least one solution
in which both conditions are satisfied. See [3, 10, 73] and references therein. We
illustrate this in the following example

Example 1.2. Consider a simple case example of the model of (1.29) with

= k(x
forx<0
for x > 0,
—pe
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The using the notation that f'(p) = p(1 — p) and f"(p) = 20(1 — p), the Lax-
Oleinik admissible criterion dictates that the function

p, ifx <O,
p(t,x) =140, if0<x<o't,
p, ifx>o't,

where 0 € [0,p] such that f7(8) = f'(p) with " = (f"(8) — f"(p)) /(0 —p) is a
weak entropy solution. However, using the so-called AB type solution introduced
in [3], yields yet another weak entropy solution is

p, ifx< o't,

A, ifdt<x<0,
p(t,x) = .

B, if0<x<o't,

p, ifx>o't,

where A,B € [0,1] are chosen such that f/(A) = f"(B) with A € [1/2,1] and
B € [0,1/2]. The AB type solution also satisfies the Lax-Oleinik conditions as well.

Clearly there’s lack of uniqueness and increase in the total variation in the solu-
tion. Therefore, there’s the need for additional criteria in order to obtain physically
relevant solutions.

1.2.2 Entropy weak solutions

As discussed in Section 1.1, classical solutions to scalar conservation laws gener-
ally exist up to a finite time even if the initial data is smooth and the flux function is
smooth. A considerable amount of work has been done in this direction by several
authors some of which are discussed below.

In [46, 45], Gimse and Risebro derived the ‘'minimal jump condition” for shocks
at the interface to supplement the Rankine-Hugoniot jump condition (1.33). This
condition consists in requiring that there exist a unique pair (A, B) satisfying (1.33)
such that the jump |A — B| across the interface ( x = 0 in the original paper) is
minimum. This minimum jump condition was used in [62] to define unique and
stable weak solutions for problems with convex flux k(x)f(p), k(x) # 0, under
an additional wave entropy condition. The wave entropy condition has the addi-
tional advantage of not requiring that the solution satisfy further regularity condi-
tions. Compare [61, 80]. Later in [35, 36], Diehl coined the I'—condition which is
a slight modification of the minimum jump condition. In [87], Towers also proved
a Kruzkhov-type entropy inequality and for uniqueness, a geometric condition at
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the interface using the hypothesis of the minimal jump condition. The geometric
condition is a consequence of the standard admissible shock condition (see Section
1.1 and Definition 1.1) which requires that the characteristics on at least one side of
the flux discontinuity extends toward the x—axis if traced backwards in time. With
exception of [87], sign changes in k was ruled out due to some technical difficulties
that it introduces in the analysis.

Karlsen, Risebro and Towers in [58] still proposed a modified version of the Kruz-
khov-type entropy condition (1.34) for a degenerate equation with flux functions
discontinuous in space. These solutions are shown to be L! stable and hence
unique if traces of the solution at the flux interface satisfy a geometric condition
termed "crossing condition". Moreover, Audusse and Perthame proved unique-
ness of a Kruzkhov-type entropy solutions to a class of conservation law with
spatial flux discontinuity by using the so-called ‘adapted entropies” without re-
lying on traces, interface conditions and BV assumptions [16]. The flux crossing
condition introduced in [58] was later extended to the case of time dependent coef-
ficients in [59]. Nevertheless, entropy solutions to equations with time-dependent
flux discontinuity was also dealt with in [75] by Ostrov, by solving a Hamilton-
Jacobi equation associated to the scalar conservation law, with Lipschitz initial
data. More recently, Bressan, Guerra and Shen in [21] introduced the concept of
requlated functions to prove uniqueness of solutions by a vanishing viscosity ar-
gument. They obtained comparison estimates for the Hamilton-Jacobi equations
corresponding to a parabolic equation and proved that for a family of flux func-
tions whose time-dependent discontinuity is regulated, there exist unique weak
limit which is also a solution to the related scalar conservation law.

Since the problem studied in this work satisfies the crossing condition, we largely
rely on the entropy framework established in [58] for our analysis. The definition
of entropy weak solutions for scalar conservation law with discontinuous flux is
recalled in this section.

Definition 1.7. A function p € LL _((;R), such that (t,x) — F(k(t,x),p(t,x)) €
Ll (Q;R) is a weak solution of (1.29) if

loc

/o:o /Ooo (potp + F(k(t, x),p)0xq) dtdx + /o; ®(0,x)po(x)dx =0 (1.32)

for each ¢ € C°((L R).

Given that the flux function contains a discontinuity, the traces in the solution at
the discontinuity need to be well-defined.

Assumption 1.1. Suppose that k is piecewise smooth and has a finite set of dis-
continuities along the non-overlapping curves wi, wy,...,wy parameterized by
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x = &(t) fort € IRSr and 1 < v < M, then the right and left traces along each
w, are denoted ki (t) = k (t, @ljr(t)> respectively. Furthermore, if the traces in

the solution at each (t,&,(t)) exist for almost every ¢t € R?, we denote them by
You(t) = lim, .z, ;) p(t x) and v py (t) = limy g (14 (2 ).

Lemma 1.2. Let p be a weak solution to the Cauchy problem (1.29) as in Definition (1.7).

If the trace values ki () and +""p,(t), exist they must satisfy the following Rankine-
Hugoniot relation

F(K,(£), 7 pu (1)) — F(k, ()7 pu (1)) = & (1) [V pu (1) =7 0u(t)], 1<v < 5\1/133)
forae t € RT. |

In the following, we will refer to the case M = 1, that is a single discontinuous
curve. As was shown in the case of continuous flux problems, weak solutions are
generally not the unique solution satisfying the identities (1.32) and (1.33) only.
Consequently a notion of entropy solutions is needed to select a physical solution
of the problem. We shall adapt to the following notion of entropy weak solution:

Definition 1.8. A function p € L® ((;R) with traces y"p,(t) is a weak entropy
solution to the Cauchy problem (1.29), if it is a weak solution to (1.29) and for any
¢ € R, and test function ¢ € C((;R"), the following Kruzkhov-type entropy
inequality holds:

/[ (o = clorg + sign(p — ) (F(k(t, ), ) — Flk(t,),))as) dxct
+/IR lpo(x) — c|e(0, x)dx — //Q\{w1(t)}sign(p —¢)F(k(t,x),c)xpdxdt
+ [T 1Bk, — FRL0, )t (1)d 2 0 (1.3

The above integral is a Kruzkhov-type condition presented in [59] and adapted in
[58] for a nonlinear degenerate parabolic with spatial discontinuous flux function
if Assumption 1.1 holds on k. The adaptation to scalar conservation law is made
by ignoring the diffusion terms and assuming that the k is assumed to be piecewise
smooth, which is stronger condition. Moreover, integral (1.34) also agrees with the
natural requirement that jump discontinuities in the solution satisfy the standard
Lax-Oleinik entropy conditions (see section 1.1.3) away from the curves {w, }M ,.

Remark 1.4. Weak solutions satisfying (1.34) also implies the standard Kruzkhov
entropy conditions discussed in Section 1.1 when x # §,(f). In [73] and other
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works, this condition writes

//MR+ (lo — clorg + sign(p — ¢) (F(k(t, x), p) — F(k(t, x),c))ox¢) dxdt
+ [ Ipo(x) = clp(0, x)dx >0, (1.35)

for all test functions ¢ € CZ(Q\ {w1}; Ry ), is also referred to as the interior
conditions.

It is worth pointing out that even with this notion, the entropy solutions of discon-
tinuous flux problems may not be unique. Even with Riemann’s data, the existence
of the jump in the flux create waves that may interact with the classical waves and
so to obtain entropy solutions, additional conditions at the flux interface and in
most cases inspired by the physics of the problem under consideration, must be
derived. Noteworthy to see that these entropy frameworks, with the exception of
[21, 75], share the common property that a Kruzkhov-type entropy condition is
satisfied away from the interface and an interface connection condition satisfying
the dissipativity regularization (1.16) is imposed at the jump in the flux function.
The following theorem gives the L!-contraction property of corresponding entropy
solution.

Theorem 1.2. Given p}, 03 € L®(IR;R), weak entropy solutions p', p*> € L®((};R) to
(1.29) in the sense of Definition 1.8, satisfy the L' —contraction property (1.23).

Generalizing this framework, Andreianov, Karlsen and Risebro introduced a uni-
tied approach in [14] that is focused on the admissibility and dissipative behavior
in the solution at the interface called admissible germs. Compare [10, 11, 13, 15,
9, 12]. As these tools shall be used to prove existence of solutions, we recall this
notion in the next section.

1.2.3 Dissipative germs and entropy solutions

In this section, we review the theory of admissibility germs introduced for scalar
conservation law in which the flux function has a jump at x = 0 as originally de-
fined in [14]. The theory of germs provides a general framework for admissible
weak solutions in which one could easily deal with flux interfaces by simply char-
acterizing the dissipative behavior at the interface with a set of piecewise constant
pairs. In general, these sets are actually the stationary solutions of the problem at
hand. In order to maintain consistency with the literature and also ease the pre-
sentation, compare [11, 10], the review of germs in this section is done with the
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following equation in view

91p + 9xF(k(x),p) = 0,0on O, (1.36)
p(O,X) = PO(x)/ X E ]R/
with k(x) = ¢ 1 Hx <0,
k, ifx > 0.

Definition 1.9. A subset G of pairs of R x R is called admissible germ (germ for
short) if for every (p;, pr) € G, a Rankine-Hugoniot condition F(k;, p;) = F(k, o)
holds. It is also referred to as L!-dissipative (L' D) germ if

q)l(kl/pl/pl) — @, (ky, Pr/pr) >0, (1.37)

is additionally satisfied for all pairs (9;,0;) € §. Here ®;, : (k,p,c) € RxR —
sign(p — ¢)(F(ky, p) — F(ki €))-

Roughly speaking, § is the set of peicewise constant pairs encoding the conserva-
tion and the entropy dissipativity of the solution at the interface.

Remark 1.5. Admissible germs can also be defined for continuous flux problems.
In such cases, the dissipativity condition is recovered at the shockwave disconti-
nuities instead. See Section 1.1.3.

Remark 1.6. Due to the conservation property induced by the Rankine-Hugoniot
condition, § may also be referenced as a conservative germ. However, non- conser-
vative germs has also been used to obtain uniqueness of solution for some models
in which case the Rankine-Hugoniot jump condition F(k;, p;) = F(k:, pr) is either
omitted or takes the form (1.33). Compare [13, 15].

The dissipativity inequality (1.37) is induced by the Kruzkhov entropy flux ap-
plied to a centered test function as in Definition 1.8 which essentially derives a
Kato inequality and an L! contraction principle. This inspires a new notion of
admissible solution for the model (1.36).

Definition 1.10. A function (f,x) — p(f,x) € L® ();R) admitting strong traces
v'7p(t) at x = 0 is a weak entropy solution to the Cauchy problem (1.36), if and
only if :
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1. For any ¢ € R, and all test function ¢ € C® ((); Ry ), with ¢(t,0) = 0 for all
t > 0, the following Kruzkhov-type entropy inequality holds

//Q (lo — clorg(t, x) + @ (k, p,c)ox¢(t, x)) dxdt (1.38)

+ [ Ipolx) = clg(0, x)dx > 0,

where & (k, 0, c) is as defined in Definition 1.9.

2. The traces of p satisfy
fora.e. t >0, (v'p(t),7"p(t)) € .

Consider a Riemann data for (1.36) with (p;,p;) € R x R. If (p;,p;) € G is an
elementary solution of the Riemann problem, then it can be shown that any other
elementary solution (0;, 0;) of the same problem also satisfies the dissipative prop-
erty (1.37). Such pairs are called the dual germ of § denoted G*. The following
properties of admissible germs derived from [14] that would be of interest to our
work:

e Let Gy and Gy be two LD germs such that §; C G,. Then we say that G is an
L'D extension of 9.

e An LD germ called maximal, if it is not a strict subset of some other L'D
germ. This also means that it has no extension that still satisfy the property
(1.37).

. 1:‘11'1 LD germ § is called definite, if there exists a unique maximal LD germ
G such that G is a subset of G.

e An LD germ § is called complete, if for every Riemann data, there exists a
self-similar solution p(f, x) to the problem (1.36) such that p| o and p|, are

the Kruzkhov entropy solutions on domains (); and (), respectively, and in
addition admits the one-sided traces (’yl (0),7"(p)) € G at the flux interface

{x =0}.

The general approach which leads to a well-posedness result by the germ admis-
sibility notion is that, given a definite L' D germ one can define the G-entropy solu-
tions and infer their uniqueness. Given a complete L' D germ, one can establish the
well-posedness result and justify convergence of approximate solutions generated
by a Godunov finite volume scheme to the weak entropy solution. See [11, 13]. The
next definition, also introduced in [14], does not require the use of interface traces
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v""0(t) but is based on the ‘adapted Kruzkhov entropies’ [16] and a penalization
term.

Definition 1.11. (G-entropy solutions):

Let G be L'D germ. A function p € L*(Q;R) is a G-entropy solution of (1.36) if it
admits a Kruzhov entropy solution in domains ); and (); it is a weak solution (i.e.
the Rankine-Hugoniot condition holds) over the whole domain (), and then for a
step function,

c(x) = cMMycp(x) + Myso(x), st (c,c) €6,
the following "adapted’ entropy inequality holds

//Q [|p_c(x)|at(p(t,x)-|—@(k,p,c(x))ax(p(t,x)]dxdt-|—/]R|p0(x)—c(x)|q>(0,x)dx
+ [ " Ry (dist(c!, "), §) (£, 0)dt > 0, (139)

where Rg called a penalization remainder term and dist(-,-) is the standard Eu-
clidean distance in IR?.

The definition with (1.39) can be extended to measure-value (G-entropy process)
solutions if the solutions of (1.36) are generated by a finite volume approxima-
tion scheme possessing only L* bound and compatible entropy inequalities [14].
Indeed, the limit of the finite volume approximation is a §—entropy process so-
lution if an appropriate per cell discrete entropy inequality is obtained in such a
way that they ‘'mimic” a global entropy inequality. However, for the existence of
such measure-valued solutions (i.e §-entropy process solution), we need to have
established the existence of solution in the framework of §-entropy solution with
the additional assumption that § = §*.

1.2.4 Measure-valued solutions

As the name suggests, measure-valued solutions is a shift from defining weak
solutions as integrable functions to parameterized probability measures, or Young
measures. A Young measure solution is a function v that assigns to every point y ¢
R* x R a probability measure v, in the probability space over R. When applied
to the scalar conservation law (1.7), the generalized problem is to find a Young
measure vy, satisfying the following Cauchy problem:

Ot (V(xp), ) +0x(Vixp), F(p)) =0, (tx) ERT xR, (1.40)
Vo) = 00(x), x€R, (1.41)
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where (v(y ) = [g(A)dv (x,)(A) represents the expected value of v against
a continuous funct1on g, 0pisa glven Young measure on R and p is the unknown
density function. Note that we are dealing with weak solutions and so the measure
solution that solves (1.40) must be understood in the sense of distributions. We
proceed to define measure-valued solutions.

Definition 1.12. (Measure-valued solution) A Young measure is a measure-valued
solution to (1.40) if the following integral holds:

| [ 0t x) (v, ) + 0t x) v, F(@))dxdt + [ 9(0,)(ov, p)tx = 0,
+
Vo € C}(Ry x R).

As demonstrated for the case of weak solution, an entropy condition is needed in
order to select physically meaningful solutions. This leads to the so-called entropy
measure-valued solutions which is defined as follows.

Definition 1.13. (Entropy measure-valued solutions) A function y € L* is an entropy
measure-valued solution of the problem (1.29) if following integral is satisfied:

/// u(x,t,A))org(t x) + @(p(x, t,A))dxq(t, x) ) dAdxdt

+ /17 00(x))@(x,0)dx >0, V¢ c CY(R. xR), (1.42)

where convex function 7 € C!, and ® € C! a function such that &' = f'r’.

The characterization of measure-valued solutions can be made as an adaptation
of Kruzkhov entropy solution by using the entropy regularization function #(-) =
Al (0,1) forall k € R.

Remark 1.7. In [41], the entropy measure-valued solution is also referred to as
entropy process solutions.

Definition 1.14. (G-entropy process solution): Let G be an L'D germ. A function
u e L®(Ry xR x (0,1);[0,R]) is called a G—entropy process solution of (1.36) if,

1. (weak process formulation):
+oo  rl
/]R/O /0 {u(t,x, A)e(t, x) + F(x,pu(x, t,A)) @ (t, x) bdAdtdx
+ /Rpo(X)(P(O,x)dx =0. (143)

for all test function ¢ € C! (R4 x R).
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2. (penalized entropy process inequalities): For all pairs (c!,c") € [0,1]?, and non-
negative test function ¢ € D(Q)

//Q /01 {n(t,x, M) e(t, x) + @(k, p(x, 1, 1),¢(x)) px(t, x) dAdtdx
+/IR|PO(X) —¢(x)]@(0, x)dx + 0+OOR9 <(Cl’cr)> 0(£0) >0, (1.44)

where ¢(x), Rg (dist(a,b),G), and ® are same as given in Definition 1.11.

In general, the convergence result we seek to obtain is based on the notion of non-
linear weak-x convergence defined [41] and is recapped next.

Definition 1.15. Let Q) be an open subset of R x R™. Given a sequence {p, }nen C
L*(Q)), we say that {p,} converges towards p € L*(Q) in the "nonlinear weak-x
sense” as n — oo if for every test function ¢ € L(Q), all ¢ € C(R;R)

/ g(pn(t, x))@(t, x)dxdt — / / (t,x,A))(t, x)dAdxdt. (1.45)

This definition allows for a useful interpretation of convergence of approximate
solutions toward a unique Young measure just by relying on the L* stability bound
on the approximate solution by a finite volume method.

Theorem 1.3. (Convergence of L solution [43, Theorem 1.1]) Let ¥ be an open subset of
R and {pn }nen be a bounded sequence of L. Then there exists a subsequence of { pn }neN
still denoted by {pn }new, and a function p € L®(X) such that the subsequence {py }neN
converges towards p in the nonlinear weak-x sense.

Instead of requiring a strong BV regularity estimate on the approximate solution
to establish compactness, a ‘'weak BV’ estimate is only required to prove the con-
vergence of approximate solution in the sense of Definition 1.15. However, it is
worth noting that this ‘'weak BV’ estimate does not yield any compactness prop-
erty for the approximate solution because it is not a necessary condition to have
convergence. Applying this method to prove convergence of a scheme, the nec-
essary and sufficient condition is the availability of L*—stability bound on the
approximate solution together with the monotonicity of the numerical flux chosen
for the scheme.
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Chapter 2

Approximation methods for scalar
conservation laws

2.1 Introduction

We dedicate this chapter to selected approximation methods used to construct so-
lutions to scalar conservation laws of the Cauchy problem

{atp +0xF(k(t,x),p) =0, (t,x) € Ry x R, (2.1a)
0(0,x) = po(x), x € R. (2.1b)

It is standard to approximate solutions to a partial differential equation since for al-
most all models exact analytical solution may be out of reach. There are numerous
approximation methods available to generate numerical solutions, namely, wave
front tracking methods, finite volume schemes, finite difference methods and fi-
nite element methods. The selection of one method over the other is motivated by
physical features of the particular model, the specific properties of solution to be
captured and the depth of analysis needed for the study.

For scalar conservation laws, finite volume schemes are highly favored and in
some situations wave front tracking methods over finite difference methods since
their setup allows one to obtain weak discontinuous solutions. However, each
mathematical model needs individual numerical treatment in order to recover
their respective physical and analytical features. In the next section, we recall the
Finite volume method first for the Cauchy problem with continuous flux function
and then in the next section, motivate the selection of an appropriate finite volume
method for the discontinuous flux problem of the form that we consider in this
work. In the last section, we shall also recall the ideas or tools to be used to prove
the convergence of the scheme to weak entropy solutions.
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2.2 Finite volume schemes
We begin with finite volume methods for the continuous flux problem

{atp +0xF(p) =0, (t,x) € R xR, (2.2a)
p(0,x) = po(x), x € R. (2.2b)

To illustrate, the spacial domain is subdivided into smaller intervals or cells over
which the conserved quantity is approximated as an average value. Let us first
introduce the space step Ax > 0, and a time step At, usually assumed to be con-
stant. We define the mesh interface xj 1/, = (j +1/2)Ax for j € Z and the times
t" = nAt for n € IN and set v = At/Ax. Then the intervals or cells can be denoted
Ci= [x]-_l/z, x]-+1/2) with midpoints x; = jAx for j € Z. At each time t", the goal
is to find an approximate solution p? of (2.2a) and is written as

1 Xj+1/2 .
pl = _/ p(t",x)dx, j € Z,n € N. (2.3)
4 Ax Xji_1/2

Indeed over each C;, conservation of mass implies that

d
" /cp(t,x)dx = F(o(t, x;-1/2)) — F(p(t, Xj11/2)), forall t > 0.
]

If this relation is integrated from " to #"*1 and divided through by Ax, we obtain
the difference formula:

At
n+l _ n__ =% n _ n
oyt = pf - (FH% F ) (2.4)

-3

where
n +1

1
aniuz = A7 /tn F(p(t, xjﬂ/z)) dt, (2.5)

is the representation of the flux function and often (and herein) referred to as the
numerical flux at point xj11,7 and time " = nAt. One can immediately observe
that the integrand of the numerical is also a function of the unknown function
p(t, x). This motivates some additional approximation strategies to determine the
numerical flux, leading to different Finite volume schemes. A common finite vol-
ume scheme known to approximate the weak entropy solutions is the Godunov
scheme [50]. We recall the Godunov scheme in the next sub section.
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2.2.1 The Godunov scheme

In this section, we recall the Godunov scheme for the Cauchy problem (2.2). One
reason why the Godunov scheme is popular is because the numerical flux is cho-
sen based on the exact solution of a local Riemann problem at each interface. It
is well-known that the Godunov’s scheme consists in two main steps namely: (1)
time evolution of a local Riemann problem at each interface at " and (2) projection
of the piecewise constant solution on each cell at " 1. We briefly present these be-
low:

Step 1:
Forn > 0, let p;? be defined by (2.3). At each x;,1,2, one solves the local Riemann
problem
qt+F(q)x =0,(t,x) € G,
n if x < x; , 2.6
TGRS =0
Pit+1 if x > Xxj11/2,

for small t > t" to obtain the self-similar solution written as

X +1/2
qi(t,x) =q <—]tn,p]”,p]+1) , forall (t,x) € (¢",t"1) x C;.

Since the self-similar solutions are also elementary waves, At needs to be chosen
so that waves from neighboring cells do not interact at each time step. This means

that At must satisfy

At
max <

na (2.7)

1
2

F'(o})| 3%

Step 2:
In this step, the new values p”Jrl are computed from by the update formula:

1
n+l _ n+1 ;
i = A /qu(t ,x)dx, jEZ.

This choice of formula is consistent with the conservation of mass in the control
volume [, t"T1) x C; as demonstrated below by applying the Green’s theorem:

-

- Axp”+1 Axp} -1—/

1
/ gt + F(q)xdxdt

t"+1 tn+1

00} ol = [ (0300} 1)),



2.3. Finite volume method for discontinuous flux 30

where g(0%; p;?, p;? ') represents the traces of the Riemann solutions at the inter-
face. This allows the numerical flux for the Godunov’s scheme to be written as:

1:]?11/2 = F(q(Oi;p}?,p;ﬂrl)), forallje€ Z, n > 0. (2.8)

It will be convenient to denote the numerical flux by

W o0y, 0j11) = F(9(0% 07, 0%11)).

Since the arguments of the numerical flux are the exact solution of the Riemann
problem (2.6), it can be shown in a lengthy and case-by-case study that the numer-
ical flux (2.8) becomes:

min F(gq), if a<kp,

h(a,b) = { 1€ 2.9
(,5) max F(g), if b<a. 29)
q€bal

See [67, 54] for detailed presentation.

Remark 2.1. The numerical flux in (2.9) holds for both convex and concave flux.
In fact, it is valid for any Lipschitz continuous F.

Therefore with (2.9), the classical Godunov scheme can be expressed in conserva-
tive form as

At
ot = o = (el pla) — o)) ) (210

Remark 2.2. A key observation in the Godunov scheme is that at the projection
step, the traces of the local traces at 0~ and 0" obtained from the previous time
say t", are projected unto the same interface x;, 1, at t"+1 via the update formula
above. That is the x;,1,, remains unchanged in time and the Rankine-Hugoniot
jump condition

f@(07507,0f41)) = £(a(07; 07, 0f11)), (2.11)

holds for all j € Z and n € IN which also ensure mass conservation.

2.3 Finite volume method for discontinuous flux

For a conservation law with smooth function, we have shown how to construct
a finite volume scheme to approximate the entropy weak solution. With inspira-
tion from the previous section, we recall the finite volume scheme for the equation
(2.1a) in this section. Recall that the Godunov flux uses the explicit solution of
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the Riemann problem at each cell interface. The major challenge in adapting a
straightforward approach for equations of the form (2.1a) is the presence of ad-
ditional jump in the flux. Away from the jump, the solution satisfy classical en-
tropy conditions and so the Godunov flux (2.9) holds but may fail to compute
the non-classical waves due to the flux interface. Consequentially, the numeri-
cal version of the Rankine-Hugoniot jump condition (2.11) at the flux interface
would be violated. For this reason, the Godunov numerical flux is modified to
accommodate the new Riemann problem arising at the flux interface. Compare
[2,10, 11, 13,73, 60, 24, 87].

Using the discretization notations of the previous section, the conservative form
of the numerical scheme for the equation (2.1a) is

At
oyt = pf = o (F Ko = EK o)), (212)

where k}? .17 1s a discretization of the flux coefficient. Since the k is time depen-
dent, some of the cell interface points shall be non-vertical and so an intermediate
step are required in most cases before choosing a numerical flux. Finite volume
methods for equation (2.1a), how to approximate the flux coefficient is as impor-
tant as how the numerical flux itself is approximated. Along this line, two main
types of numerical schemes emerges from the literature depending on how the flux
coefficient is discretized in (2.12), namely: (1) aligned and (2) staggered schemes
[73].

2.3.1 Aligned schemes

The central idea in aligned schemes is that the discretization of the unknown, p
and discontinuous coefficient k in the prescription of the numerical flux are exactly
aligned. This alignment is done in the following sense:

where F(k,p,k,p) = f(k,p) satisfy the consistency principle defined earlier and
the flux coefficient k is discretized over C; = [xj_1/2,Xj11/2)

.
K= L / T, x)dx,
X

I Ax i1/
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The numerical flux function F above is usually determined by solving the problem
(1.31) with local Riemann data

(0(0,x),k(0,x)) = { (prk), A <z (2.13)

(0r,kr), ifx > xj11/2

This leads to a Godunov type numerical scheme capable of handling the interface
flux conditions, the so-called AB-entropy condition [3, 2].

2.3.2 Staggered schemes

In these types of finite volume scheme, the discretization of the flux coefficient
writes

no_ i/x’“k(t” ¥)dx (2.14)

JH1/2 7 A x Jy, Y : :
This implies that the boundaries of the centers of the control volume is actually the
boundary of the cell used to discretize the flux coefficient and hence the discretiza-
tion is staggered with respect to that of the p;?. That is the numerical flux with (2.14)
is determined by a local Riemann solver with associated data

p;lJrl, if x > Xjt1/2-

The main advantage of the staggered schemes is the reduction in complexity as
compared to the aligned schemes and ease of implementation. An example of
tinite volume schemes of this nature has been prescribed in [87, 86, 59].

2.3.3 Approximation of non classical shocks

Small-scale dependent shock waves are fundamental to conservation laws with
discontinuous flux. As discussed in section the previous chapter, the problem we
consider in this work admits non-classical shocks and therefore in deriving a nu-
merical scheme to approximate the solutions, the non classical behaviour needs
to be included. In this section, we briefly recall some of the methods applied to
capture classical shocks in the conservation laws.

A moving mesh algorithm

In [93], Zhong, Hou and LeFloch introduced a numerical method for conserva-
tion laws capable of computing the dynamic phase boundaries transition in an
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exact way. Their strategy leads to a front-tracking that tracks phase boundaries
and a shock capturing scheme to capture conventional shocks. They introduced
an intermediate step in the Godunov scheme in which exact position of the non
stationary phase boundary with speed V" is computed exactly and then the grid
mesh is shifted according to the movement of the phase boundary. To implement
the ideas, they used the following algorithm:

1. Compute the speed of propagation of the phase boundary.

2. Shift grid points according to: x}fll/z = x;l 1o+ VAL, V]

3. Compute p}”l.

4. Repeat steps 1-4.

2.4 A finite volume approach to prove existence

For scalar conservation law, it can be recalled from Section 1.1.3 that the regular-
ization of entropy solutions are based on a the regularized’ scalar equation (1.13)
with a fixed parameter ¢ > 0, which are studied in the limit as ¢ — 0. In this
sense, {p€}8>0 is considered as a sequence of approximate solutions that can be
constructed an approximation scheme like vanishing viscosity method, wave front
tracking and finite difference /volume numerical methods. With the availability of
corresponding norm estimates, one can then show that these approximate solu-
tions converge to the weak entropy solution as ¢ — 0. In most cases, this is equiv-
alent to establishing that the set { p* }s>0 is compact, guaranteeing the existence of a

subsequence denoted {p }Zozl that converges to the weak entropy solution p(t, x)
as k — oo. This is referred to as the compactness argument that leads to global en-
tropy solutions and plays a very important role in the study of conservation laws.

However, since most scalar conservation laws with discontinuous flux functions
are resonant systems, such bounds on the solution are not readily available mak-
ing it impossible to establish a compactness arguments for this class of equations.
To subvert this problem, alternative methods are sought in order to prove that
approximate solutions converges to the entropy solutions so defined. In this sec-
tion, we describe the alternative approach dubbed entropy process solutions [41],
which are essentially measure-valued solutions, introduced by DiPerna in his sem-
inal paper [37].

In order to study the convergence of the scheme to the exact weak entropy so-
lution, it is convenient to introduce the generic form of the scheme, the so-called



2.4. A finite volume approach to prove existence 34

2k + 1 point one step (in time) form of the scheme where k € IN*, written as
ot = H (0 plhr), Y20, j€Z, (2.15)

where H : R?**! — R is a continuous function and p;? denotes the approximate so-
lution in the cell C; = [xj_1/2, Xj41/2)- The set of points {p;?_k, . p;l+k} is referred
to as the stencil of the scheme and H the update function depending on 2k + 1 sten-
cils. The generic form of a numerical scheme makes it easy to deduce some essen-
tial features of the scheme that lead to convergence. Since we are studying scalar
conservation laws, its natural to deduce whether or not the scheme also satisfies
the conservation principle. The discrete version of conservation principle states

Y ot =Y 0}, wn>o0, (2.16)
jeZ jEZ

if boundary conditions are ignored. We can deduce that the scheme (2.15) is con-
servative thanks to the next lemma.

Lemma 2.1. Assume that H(0,...,0) = 0. The numerical scheme (2.15) is conservative
if and only if there exist a function F]n-u/z = h(p;?_kﬂ, . -'97+k) such that (2.4) can be
written in the conservative form

n+1 At

ot = o = (0] ) = h 0P| 217)

The proof is classical and can be found for example in [67, 49]. Indeed if (2.15)
can be written as (2.4), then the conservation property (2.16) follows immediately
by using a telescoping sum and cancellation. The sufficiency comes from that
H(O,...,0) = 0, implies that a continuous function

Ax
Glp" o 0}) = Sy (0 = H(e" o 0})

can be defined such that } ;c7 G <p7_k, ey p? +k) = 0 using the discrete conserva-
tion. There exist therefore F]n+1/2 = h(p;l_kﬂ, e ,p7+k) such that Fﬁuz - F]”_l/z =

G (P10

For the problem considered in this work, it is enough to set k = 1. Another impor-
tant feature of the scheme is consistency,



2.4. A finite volume approach to prove existence 35

Definition 2.1. A finite volume scheme is consistent with a scalar conservation law
if
h(p,p) = f(p). (2.18)

Consistency is a natural requirement which ensures that the scheme approximates
the correct conservation law.

Remark 2.3. Note that the definition of conservation need to be modified when
considering boundary conditions of the problem under consideration.

Remark 2.4. For finite volumes used to approximate a conservation law with dis-
continuous flux the consistency requirement must be in accordance with the type
of scheme, whether staggered or aligned scheme.

Not all numerical schemes that are conservative and consistent schemes converge
to the weak entropy solution. For example, the so-called central schemes and Roe
schemes are consistent and conservative but do not converge. This motivates the
following definition of monotonicity:

Definition 2.2. A numerical scheme is monotone if H is non-decreasing in each of
its arguments.

For a 3-point scheme (k = 1), the sufficient condition is,

Lemma 2.2. (L*—bound stability) Consider the conservative and consistent scheme
with a locally Lipschitz flux h(a,b). Then the scheme is monotone if and only if,

a +— h(a,b) is non-decreasing for any fixed b,
b +— h(a,b) is non-decreasing for any fixed a,

and satisfies the CFL-type condition

<Ax

oh oh
’— S Ar Yu,v,w. (2.19)

aa(v,w)‘ + ‘%(u,v)

Combining these conditions leads to a class of finite volume schemes that satisfy
all these three important requirements. In [41], this class of schemes is referred to
as "Monotone flux schemes" which is collected in the next definition.

Definition 2.3. Under a CLF condition, a finite volume scheme is said to be a "
monotone flux scheme" if k = 1 and if the numerical flux satisfies,

e 1:R? — Ris locally Lipschitz.
e consistency flux: h(p,p) = f(p) for all p € [Pmin, Pmax]-
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e (a,b) — h(a,b) is non-decreasing w.r.t. a and non-increasing w.r.t. b.

The monotone flux schemes are useful to consider particularly for problems where
no strong BV estimates are readily available or difficult to obtain. Convergence
of such schemes follows only with the L**—bound and discrete entropy inequal-
ities which are easy to obtain. Then passing to the limit as At,Ax — 0, can be
achieved using the so-called "weak BV" estimate. We derive this estimate for a
general monotone flux in the next lemma.

Lemma 2.3. (Weak BV estimate) Assume that p;? forall j € Z,n € N is the approximate

solution of (3.1) defined by the scheme (2.10) with the CFL condition (2.7) and a flux
satisfying (2.3). Then, for all T > 0, there exists C > 0 such that

)3 Z(h o}, p11) —h(ol 1, 0})| < C/VAx. (2.20)

neNnAt<T jeZ

Proof. Multiply (2.10) by Atp;? and sum over 7, j to obtain A + B = 0, where

N |1
A=Y Axpl (" —pf)
n=0j=Jo
and

N
B—zmz[ o pf) = hoj-01)] o

The term A, by the same algebraic rearrangements from [41], re-writes as

1N I il o Ax Ji N1 J1
A:—EZZAJC(P —Pj)+7 Z(P] )? - Z(p])

=077 =Jo =l
c, N 1 2
> _71 Z%)Af Z]; [h(P?/P;?H) —h<P?—1fP] ‘ /‘0 A,
n= J=Jo

where C; is chosen to satisfy the CLF condition (4.14). For the B term, we have

N
BByt Bam 3 A3 [h(el, o) — (el o] o7
n=0 = ]0

+ZNZ[&& M#wﬂ#

n=0  j=Jo
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Let’s introduce a function ¢(a) = [, s94h(s, b)ds, for any a € R if b is fixed. Then
it can be deduced that

$(8) = $(a) = bIF(0) ~ h(ab)] ~a (@) ~ hia b)) - [ [F(5) ~ hla b)) ds. @21

An application of Lemma 18.5 of [41] to s +— h(s,b) + h(a, b) in the above equation
leads to , )
| 186,0) = 8@, )] = 5 (h(6,6) + h(a, b)), ¥(a,b),
a h
where L} is the Lipschitz constant of & w.rt. the first variable. If we set a =
p}[l, b= p}l, the B, term gives

At NS n n ny | 2 AR n n
B, > Yl Z Z f(Pj) _h(Pj—lfpj) — At Z Z [QD(P]') —P]'_1]
hn=0j=Jp - i n=0j=Jo
At N 1 . -2 N
= L L D) —hef 0] = At Y [#eh) — 9(of, )|
h n=0j=] n=0
At N L a2
Z 5T Y ) flpj) —h(pj_1,0f)| —C2-N, G >0.
h n=0j=]o
Similarly, defining the function ¢(a) = — foa soph(b,s)ds, and proceeding as earlier
leads to
At XL 2
Bizop ) ) o) = hlofpfn) | = ALY [#(0f 0 = oy
n=vj=Jo

At N , N
= _22 )3 [f(Pj)_h(ijPjH)} —C3-N, C3>0.
2Ly 10T

This implies that there exists C4, C5 > 0 independent of n, j, At, Ax, such that
N |

2
Bi+ By > Cant Y Y [h(plofhy) — h(plp, )| +O(T).
n=0j=Jo
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Now,

N 2
0=A+B> (C4 - 7) At ZO Z] (el 0ts1) = (01,0 |
n=vj7=Jo

0]l
— /Ipodx + O(7T).

This also implies that if C= Cy — Q, then

0
!leloo [ o,

which gives the existence of a constant C; > 0, only depending on py, At, T, and
the flux h such that

al n n 2 |
Cat Z%) Z}: [ 07, 0741) — h(pj-1, 0] )] <
n 7=Jo

N 2
Y- Y At (el pfa) = hipfy,pf)] < G
n=0j=Jo

Now, applying the Cauchy-Schwartz inequality further we have

N Ji

i N
< C1 Z Z At (2.22)
n=0j=Jo j=Jo n=0

Z ZAt‘h p] p}—i—l) h(P] 1’p])

from which (2.20) can be deduced by noting that T = EnNzo At, and 2]11 I j < ffx,
where R > 0 and v € (0,1) completing the proof. O
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Chapter 3

An existence result for conservation
law with discontinuous flux

3.1 Introduction

In this and the following chapters, we present the main results of this thesis which
concerns a scalar conservation law with discontinuous coefficients consisting of
a sign (switch) function in both space and time variables. Though the equation
we consider here has some inspirations from the Hughes” model [57] of pedes-
trian flow, it is not exactly similar to it. The Hughes” model is a conservation law
strongly coupled to an eikonal equation whose viscous solution leads to the ap-
pearance of the so-called turning curve function, which is interpreted as the point
at which pedestrians are bound to alter their speed so as to reach the boundary (or
exit) as fast as possible. See the introduction sections of this thesis for more details.
The existence of solutions together with numerical approximations of the Hughes’
model has been studied by several authors. See [5, 48, 40, 7, 34]. Granted that the
time-dependent flux discontinuity in our equation is also referred to as the turning
curve and is also assumed to be Lipschitz continuous, ours has the simplification
that the curve is given a priori. Put simply, the turning curve does not need to
satisfy the non-local integral identity.

Scalar conservation law with discontinuous flux has received lots of attention by
several authors due its extensive applications. See the following partial list and
references therein [2, 14, 21, 3, 73, 45, 24, 22, 59, 58, 60, 75, 86, 87, 88] for well-
posedness results of these equations. However, almost all these studies are fo-
cused on space dependent discontinuous coefficient problems out of which only a
selected few even allows for a change in sign of the coefficients for simplicity. See
[75, 21,59, 27, 88] for time dependent problems with [59] using the hypothesis that
the coefficients may change sign even in time.
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The classical approach to a well-posedness result is to approximate the solution
and prove convergence of the approximate scheme using a compactness argu-
ment. The shortage of well-posedness results for space-time dependent problems
can be attributed to lack of a straightforward compactness argument needed to
prove convergence of approximate solution to the weak entropy solution. In [59]
and [88] the authors used the compensated compactness and one-sided Lipschitz
continuity methods respectively both of which did not require a bound on total
variation to prove convergence with L™ data. The problem we consider in this
work also suffers from a similar severity. We begin this chapter by studying the
weak entropy solution of the Cauchy problem in this section, construct entropy
solutions for the Riemann problem at the interface ¢ in Section 3.1.3, analyse the
changes in time of total variation when the slope of the interface function changes
and when it is likely to interact with classical waves in 3.2. In order to prove
the convergence of a Godunov-type scheme, we explore the tool of admissibility
germs [14] and derive some of their useful properties in Section 3.4. In the final
part of this chapter, we state the uniqueness and stability result for our problem.

3.1.1 The Cauchy problem

Consider the initial value problem of the form:

91p + 0xF(t,x,0) =0, (£,x) € Q= (0,+00) X (—00, +00), (3.1a)
p(0,x) = po(x), x €R, (3.1b)

where,

e t € R" and x € R are the usual time and space variable, (f,x) — p(t, x) is
the unknown density function, p € L*((); [0, R]);

¢ the flux function is

(t,x,p) — F(t,x,p) := sign(x — ¢(t))f(p)
where

- o — f(p) is a bell-shaped (uni-modal) function, f € Lip([0, R];R™).
Here we will consider the special case f(p) = pv(p), where v(p) is a
non-increasing function, but in general f could be any function satisfy-
ing the following condition:

{f € Lip([0, R; RY), with [|f']l« <L, f(0) =0=f

(R); (32)
3p €]0, R[ such that f'(p) (6 — p) > 0 fora.e. p € [0, '

R];
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— ¢ is here referred to as the turning curve such that

& :R*T — Qs Lipschitz continuous, Z(t) > 0ast — oo. (3.3)

Recall from the discussions of Chapter 1 that classical (or smooth) solutions of
scalar conservation laws breaks down even with smooth initial data and/or flux
function for which reason weak solutions are sought. Without additional entropy
conditions, these weak solutions are not unique. If the flux contains a discontinu-
ity, like the equation considered in this work, there are additional issues like the
loss of strict hyperbolicity. This severity becomes complicated if the discontinu-
ity in the flux is also time-dependent. Worse yet if the discontinuous coefficient
changes sign as is the case of the problem considered in this work.

To simplify the presentation, if (3.1a) is written as hyperbolic partial differential
equation with discontinuous space-time discontinuous flux function

3o + dx (k(t,x) f(p)) =0,
{ k(t, x) = sign(x — ¢(t)), (3.4)

it is immediately clear that k has the effect of changing the shape of the continuous
flux function, f at every t € R*. This is also due to the presence of the turning
curve that divides Q) into two sub domains (); := {(t,x) : x < §(t)} and Q, :=
{(t,x) : x > ¢(t)} each with its corresponding conservation equation

dip —9oxf(p) =0, (t,x) €y,
atp —‘I_ axf(p) — O, (t, X) E Qr.
The following assumptions are made on t — ¢(f):
S1: Piecewise Lipschitz continuous on [0, +00) with constant Lg defined:

¢(t) —&(h)

< o0
t1— b

L = sup
0<t1<ty

for any t1,t, € [0, ).

3.1.2 The entropy weak solution

In this section, we characterize the solution of the Cauchy problem (3.1) with an
L*—data. Following the general entropy inequality of [59], the entropy weak so-
lution of the Cauchy problem (3.1) should be understood in the following sense
also used in [7]:
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Definition 3.1. A weak solution (¢, x) — p(t x) is an entropy solution to the
Cauchy problem (3.1), if p is in L% ([0, +oo[; L (Q); [0,R])) and for any ¢ € [0, R],
and any test function ¢ € C2 (R?; [0, +oo[), the following Kruzkov-type entropy
inequality holds:

//Q(]p—c|8t¢+?(t,x,p,c)ax¢)dxdt—//Q\gsign(p—c)F(t,x,c)x(pdxdt

—+o00
+ [ loox) —elg@x)dx +2 [ fle)g(t &)t > 0, ©5)

where F(t, x,p,c) = sign(p —¢) [F(t,x,p) — F(t,x,¢)].

The first line and the first terms of the second line are the KruZkov definition of
entropy weak solution of a Cauchy problem, [63] whereas the second term of the
second line are due to the contribution of the non stationary jump at x = {(t). As
will be shown in section 3.3, this condition satisfy the interior condition and the
Rankine-Hugoniot jump condition of lemma (3.1).

Remark 3.1. By choosing ¢ = 0 and ¢ = R, in (3.5), we recover the integral formu-
lation of the weak solution

[ (0oup+ E(k(t, ), 0)2:0) dtdx + [ i (0, %)po(x)dx = 0.

Remark 3.2. This integral can also be interpreted that p admits the Kruzkov en-
tropy conditions away from the discontinuity, ¢ and an additional interface flux
condition in order to ‘connect’ the left and right states or traces, the so-called inte-
rior conditions [73].

Remark 3.3. By the assumption (S1), there exist traces of p, denoted 7/ p(t), v o(t).
Since the flux function f is non-linearly degeneracy these traces are indeed strong
traces, thanks to the result of Panov [76] and Vasseur [90].

The next lemma yields the condition across ¢(t) that need to be satisfied for the
entropy solution defined above.

Lemma 3.1. Assume (S1). Let p be a weak solution of the Cauchy problem (3.1) con-
taining a jump at x = &(t) and admits the left and right traces v'p(t), ¥ p(t), then the
following jump condition holds a.et > 0

FOp(E) + F( p(0) = a [77p(8) = o (1)), (3.6)

where o is the slope of &(t).
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3.1.3 The Riemann problem

We devote this section, for the Riemann problem, which is the Cauchy problem
(3.1) coupled with the initial data

oL, ifx <O,
= 3.7
olx) { pr, ifx>0. (3.7)

The interior condition, see remark 3.2 implies that the solution shall admit the
Lax admissible criterion, where downward jumps are admissible shocks on ()
whereas on (), admissible shocks are upward jumps to select the unique entropy
solution. Furthermore, the presence of ¢(t) shall introduces non-classical waves
which need to be explicitly defined. The following notations are used to represent
the Riemann solvers:

* R%pr,pr)(t, x), for the non standard Riemann solver at the turning point;

e R*(p1, pr)(t, x), for the classical Standard Riemann solver (SRS) by Lax with
+f depending on which side of the discontinuity the solution is provided.

We will define Riemann solvers which are self-similar, and hence we shall write
R*(pr, pr)(x/1), RE(prL, pr)(x/1) instead of R*(pr, pr)(t, x), R= (oL, pr)(E, X) re-
spectively. Our construction of the Riemann solvers can be distinguished into two
main cases of « = 0 or o # 0.

Case « = 0: Here ¢(t) = 0, Vt > 0, and so the Riemann problem is standard. That
is for any couple (o1, or) € [0, R]? in (3.7), the solution takes the form

R~ (pr,0)(x/t), for x/t <0,

RT(0,pr)(x/1), for x/t > 0. (5.8)

R* (oL, pr)(x/t) = {

If (or,pr) € [0,R), the solution actually experiences a non-classical undercom-
pressive shock at x = 0 joining vacuum states. This means that the solution is
continuous but characteristics emanate from the vertical line ¢(t) = 0 from both
sides and v;(p) = v+(p) = 0. Furthermore, if p; or pg = R, then the solution has
the same structure, but the discontinuity at x(¢) = 0 is only a one-side undercom-
pressive wave. In the special case p; = pr = R the solution is continuous and
characteristics lines run into the line x = 0 from both sides. The geometry of the
flux function allows us to say that the solution can be rewritten as

OL, ifx/t < —v(pr),
R*(pL,pr)(x/t) = { 0, if —ov(pr) <x/t<v(pr), (3.9)
OR, if x/t > v(pr),
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because the waves joining p; to ¥;(p) = 0 and 7,(p) = 0 to pr are necessarily
shock discontinuities.

f(p) “f
o f
’0&9’ :
e .
-7 :
-~7PL oM
‘ ‘ —~
R
&° P
Q
A
<

FIGURE 3.1: Non classical Riemann solvers at turning curve with & >
v(pr) (left) and & < —v(pr) (right) given a priori and data (3.7) where
OL, PR € (O,R)z.

Case o # 0: This case can be discussed under two subcases, namely & > 0 and
a <0.

1.

Suppose & > 0, then if « € [0,v(pr)] the Riemann solver will be composed of
double sided shocks given by the pairs (0, pr) with speed v(pr) and (pr,0)
also with speed —v(pr ) emanating from & (¢) = at. This description is exactly
the same as the Riemann solver defined in (3.9).

. If « > v(pr), two shocks emanates from x = 0 as in the previous cases. But

since « > v(pg) > 0, the discontinuity ¢ impinges on the right side shock
and so to satisfy the Rankine Hugoniot relation (3.6), an intermediate state in
[0, pr) needs to be added. See figure 3.1. The Riemann solver writes:

R~ (oL, pm)(x/1), forx/t < a,

3.10
OR, forx/t > «a, (3.10)

R* (oL, pr) (x/1) = {

where pj is the intermediate value in [0, pg) such that the jump condition
across &(t) = at,
o FoR) + Flows) o)
PR — PM
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is satisfied with ;(p) = pm and +(p) = pr. Therefore the Riemann solver
is composed of a classical shock (o1, pum) in Qp and a non-classical shock

(om, pr) at x = ¢.
On the other hand, if &« < 0, we have:

3. Ifa« € [-v(pL),0), the Riemann solver is same as in case « = 0 above.

4. If &« < —ov(pr), the Riemann solver is similarly written

w OL, forx/t <a,
R , t) = 3.12
(oL, pr)(x/1) {fR*(pM,pR)(x/t), forx/t > . (3.12)
where the intermediate state value, pp; € [0, p1) satisfies
o= fFem) + flor) (3.13)

oM — PL

See the figure 3.1 above. The following lemma proved in [6] shows that the
intermediate state value is unique.

Lemma 3.2. Let f be a concave function. Then for any given pr € (0, R) and a > v(pRr)
there exists a unique pp1 € (0, pr) which satisfies (3.11).

To ensure that the Riemann solver in (3.10) is well defined, a necessary condition
is that for any couple (pr,pr) and « > v(pr) the speed of waves in R~ (pr, pum)
is lower than «. This condition is easily verified, thanks to the convexity of —f.
From the foregoing, the Riemann solver R can be summarized in the following
proposition.

Definition 3.2. The Riemann solver R : [0, R]> — L®(Q; [0, R]) of the associated
Cauchy problem of (3.1a) with the Riemann data (3.7), is defined as follows:

1. If € [—o(pr), v(pr)], then

R~ [pL,0](x/t), ifx/t <0,

RloL, pr](x/t) := {Jz+[0,pR](X/t), if x/t > 0.

2. If &« > v(pgr), then

R~ oL, om](x/t), ifx/t <ua,

R[PL/PR](x/t) = {jzﬂé[pM,pR](x/t), if x/tZOC.

sta = LR Tf(om)

where pp; € [0, pRr) OR—PM
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3. Ifa < —v(pr), then

R¥or, om)(x/t), ifx/t <ua,

Rlpr, pr](x/1t) == {R+[PM/PR](x/t)’ it x/t > a.

s.t.x = jM

where pp; € [0, p1) NPl

3.2 Analysis of the total variation

In this section, we analyze the spatial total variation in the solution, which is de-
noted TVp(t,-). Estimating the bounds on the TVp(t, ), which implies that the
solution has a bounded variation, is a crucial step to prove the compactness of
approximate solutions of a scalar conservation laws. See [32, 68]. In our case, it
turns out that the total variation in the solution is higher than the total variation
in the initial data if the turning curve changes slope or interacts with a shock or
rarefaction wave. These situations make it difficult to prove that the solution has a
bounded variation. We illustrate this difficulty with the following set of examples
using the Riemann solvers constructed in Section 3.1.3.

3.2.1 Changes in slope of turning curve

Fix T > 0andlet¢ : [0, T| — R be a polygonal line with

&t = a, IfO<t<r,
B, ift>t<T.

We take p; < pgr and also assume that there are interactions between shocks
and/or rarefaction waves in the domains (); ,. Since the Lax admissible conditions
are satisfied in ), , this assumption allows us to focus the analysis x = ¢(t).

Consider case studies in whicha € [—v(pr), v(pr)]and B € R. If B € [—v(pL), v(pRr)],
then TVp(t,-) = TVp(0,-), Vt € (0,T). On the other hand, if B € (v(pr), +o°) (or

B € (—o0,—v(pL))), then TVp(t,-) = TVp(0,-), Vt € (0,7*), where T € [1,T) is
the time at which ¢ interacts with the one-sided shock (0, pr) (or (pr,0)). There-
fore since ¢ is surrounded by vacuum, a change its slope does not lead to a change

in the total variation of the solution until the turning curve interacts with an in-
coming shock or a rarefaction wave. Att = 7%, a new Riemann problem needs
solved. See the next section. We next discuss two cases studies in which TVp(t, -)
increases as a result of changes in the slope of the turning curve.
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+f(p)

pm”

Or

FIGURE 3.2: Left: Geometric representation of the how to Riemann

solver after the change of ¢'(t) corresponding to Case: & > v(pr) and

B < —v(pr). Right: characteristic solution in the x — ¢ plane for Case:
a > v(pr) and B < —v(pr).

Case: « > v(pr) and B < —v(pr). Using points 2 and 3 of Definition 3.2, there
exist a unique ppr € (0, pr) and p}; € (0, pumr) respectively such that

f(PR)‘l'f(PM)a dp f(P}ka)ﬂLf(PM)_

PR — PM Pyp — PM

Note that the wave (pr,ppm) is a rarefaction wave if p; < ppr but a shock wave
otherwise and the wave (p},, pr) is a shock wave since p3, < pr and — f is convex.
See the Figure 3.2. Denoting by ATVp(t,-) the change in total variation at t = T,
we have

ATVp(t,-) = TVp(t+,:) — TVp(T—,"),
= |oL —pml + lom — pml + ler — oM| = loL — pm| = [orR — PMml,
=2(pom — PM) -

Clearly, there is an increase in total variation in the solution as a consequence of
the change in the slope of the turning curve.
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3.2.2 Analysis of interactions

In this section, we consider selected case studies of interactions between waves
(shock or rarefaction wave) and the turning curve that also results in a change in
TVp(t,-). Without loss of generality, we assume that any incoming wave approach
the turning curve from the right if ¢’(t) > 0. On the other hand, if ¢'(t) < 0,
then any incoming wave approaches ¢ from the left. Since the solution structure
is symmetric, we simplify the presentation by considering only interaction cases
with & > 0.

FIGURE 3.3: Illustrating a generic interaction (or collision) of incom-
ing wave 07" (p}, pr) with the turning curve &(t) at time t = T in the
x — t plane.

For notation convenience, we let O'Z-i (PR, PR) represent an incoming wave connect-
ing py to pr with a speed, 0’l-i, and 0 (pk, or), the outgoing wave after the inter-
action connecting p} to pr with a speed of ¢;°. The superscripts + allows for easy
identification of the flux function +f. See Figure 3.3. Clearly, an interaction be-
tween the turning curve and a wave (TijE (0%, pr) occurs only if &¢'(t) > ¢;-. By the
geometry of the flux function, the Lax admissibility condition requires that if an
incoming wave is a shock wave, then the corresponding outgoing wave will be a
rarefaction and vice versa after the interaction.

We assume further that the slope of ¢ remains constant before and after an inter-
action. The following are the main types of interactions between the turning curve
and waves. The first set of cases concerns incoming shock, thus px < pg.

(I1) Case pj = 0. The incoming shock wave ¢;" (0%, or) has a Rankine-Hugoniot
speed ¢ = (f(pr) — f(0%)) /(pr — ). Moreover, p; = 0 implies that
&'(t) = v(p}) for t < 7. After the interaction, a new Riemann problem needs
to be resolved at (7,&(7)). Since v(p}) > v(pr), the Riemann problem is
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resolved by introducing a unique intermediate state py; € [0, pr] such that
the slope of the turning curve is kept constant and satisfies

§'(t) = (f(or) + f(om)) / (or — pMm) (3.14)
for t > 7. See the Figure 3.4. The outgoing wave o, (0, pp) is a rarefaction.
+£(p)
oM
PR/ PR /P

FIGURE 3.4: Geometric interpretation of resolving the new Riemann
problem in Case I1.

The change in the total variation is

ATVp(t,) =TVp(t+,-) — TVp(T—, ")
= PR = P&l = PR = pm]
=M~ PR
Therefore the total variation decreases after the interaction t = T since py; <
PR-

(I2) Case p; € (0,pr). This case implies that '(t) > v(p%) for t < 7. Note also
that v(pr*) > v(pr). The new Riemann solver at t = T requires a unique
intermediate state p}; € [p},pr) such that ¢’(t) remains constant for t >
and satisfies the same condition as in (3.14). In this case there is no net change
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in the total variation after the interaction as

ATVo(t,-) = TVp(t+,-) — TVp(Tt—, ")

= |om — pL| + lor — pm| — (lor — PL| + loR — PR])
=0.

We now consider the cases pr < px which is equivalent to an incoming rarefaction
wave. Here, we reckon that the interaction of the rarefaction wave o, (og, o) with
the turning curve not instantaneous. As such, let t = 71 and t = Ty, be the initial
and final times at which the first and last characteristics in the rarefaction wave
collide with the turning curve where N is a positive integer. The total variation for
t < 1 is given by

TVo(t—,-) = |ok — pL| + |lor — PR
=20 — (oL + PR)-

FIGURE 3.5: Interaction between ¢ and incoming rarefaction waves
(PR, Pr) from the right corresponding to case (I3).

(I3) Case p; = 0. Here p; = 0 implies {'(t) = v(pg) for t < 7. Since v(pr) >
v(pk), the new Riemann problem at = 7 can only be solved with pp; = 0
and an outgoing shock wave o, (0, pg) that travels with a speed of v(pg).
See Figure 3.5. The change in the total variation in the solution after the
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interaction at t = Ty is given by

ATVp(t,-) = pr — [0k + (0k — PR)]
= 2(pr — PR),

which is clearly negative indicating that the total variation after the interac-
tion decreases after the interaction.

+£(p) 0;

omffrn )

PL

FIGURE 3.6: Interaction between ¢ and incoming rarefaction waves
(pr,pr) from the right corresponding to case (I4).

(I4) Case pj # 0. Here the new Riemann problem for 7y <t < Ty is resolved by a
set of unique time-dependent intermediate densities {pp(71), pm(T2), ..., pm(TN)}
where pp(T11) < pm(m2) < ... < ppm(TN), such that each small wave
oi(om(Tiz1), pm(7)) for 2 < i < N is a shock wave having a Rankine-

Hugoniot speed
o+ = flom(w) — flpm(Ti-1))
’ om(T) —pm(Ti-1)

As illustrated in Figure 3.6 (left), these small shocks focus at time t = t* > 1
to form a large shock o, that travels with a speed of ¢;7 = v(p}). Then at
t = Ty, an outgoing shock wave ¢, (0, og) detaches from the turning curve
and moves with a speed of ;" = v(pR).
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In this case the total variation in the solution for 71 < t < Ty becomes:

N
TVp(t,-) = lof —pm(T)| + Y lom(Tic1) — pm ()| + ok — PR
=2
=01 —om(m) +om(m1) — om(TN) + PR — PR
= p; —om(™N) + PR — PR/

and if t > Ty, the total variation becomes
TVo(t,-) = p; + pr.

Therefore the change in total variation after the interaction is

ATV(t,-) = [of +pr] — [(ok — pL) + (PR — PR)]
= 2(pg — PR) + 20R-

Granted that the above presentation demonstrates the increase in the total varia-
tion both on the changes in the slope of the flux interface and on interactions with
classical waves it would be desirable to estimate this increment with the aim of
controlling it. In [32, 68] and other works, the authors defined for BV solutions, a
type of Glimm functional and show that it is non-increasing in time. This gives an
estimate on the bound of the total variation as expected. Other authors achieve the
same goal by the singular mapping approach for spatial discontinuous problems.
Compare [86, 87]. We know of no result where compactness was established with
a bound on the TV for the space-time discontinuous problems and at the moment
have not obtained a BV bound on the solution for (3.1). For this reason, we yet
consider an alternate approach to prove a well-posedness result.

3.3 Stability and uniqueness of entropy solution

In this section, we study the uniqueness and derive some stability properties of
the solution to the Cauchy (3.1). We begin with the next theorem which estimates
the L1 distance of two solutions to the Riemann problems

9ip+ s (sign(x — E1(1)F() =0 [ 9rp+ s (sign(x — &) f(0)) = O,

0(0, %) = pr forx <0, 0(0,x) = pr forx <O,
’ pr forx >0, ’ pr forx >0,

(3.15)
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where p1(t,x) and px(t,x) are solutions to the appropriate Riemann’s problem
(3.15) when ¢; and > are given respectively. We consider two constants a and
B in the interval (—f'(0), f/(0)). To fix our notations we assume & < B and we call
¢1(t) = at and &> (t) = Pt the corresponding turning point curves. We recall that
f(p) = pv(p), for some smooth function v representing the velocity of the density

P.

Theorem 3.1. Let p1(t,x) and py(t,x) be the two solutions to Riemann problems re-
spectively in (3.15) when &1(t) = wat and () = Pt are given, with a« < P and
oL, PR € [0,1]? then we have that

| lent )~ pat ) dx < 2 maxtpu, i} - (16— (o)) + [a— oo,

- (3.16)
where [x] 1 stands for the positive/negative part of the real number x.

Proof. First, we observe that —v(pr) < v(pr) if pr # pr- In this case, « and B are
chosen in one of the following ways:

1. —o(pr) < a < B < o(pr);
2. —v(pr) <a<v(or) <B;
3. —v(pL) <v(pr) <a < B;
4. « < —v(pr) <v(pr) < B;
5. a < —v(pr) < B < v(oR);
6. « < B < —v(pL) < v(pRr).

Case (1) is trivial. Cases (2) and (5) are analogous in the same way as cases (3) and
(6). Therefore to avoid duplication of results, we only provide detailed computa-
tions for cases (2), (3) and (4) to prove the theorem.

Case (2): With —v(pr) < a < v(pr) < B, the solutions to (3.15) are constructed
using the Riemann’s solver introduced in Section 3.1.3 and applying lemma 3.2,
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p1(t, x) is given as in (3.9) and p; given by (3.10). Then for every ¢ > 0

—+o0
| lrltx) = pa(t,x)ldx
st st &1
:/ |pL—pL|dx+/ |0—pL|dx+/ |0 — pum|dx
—00 —v(pp)t st

v(oR)t ) +o0
+/ |0—pmldX+/ |.0R_PM|dx+/ lor — pr|dx
1 o(pr)t v(or)t
=t{pL(s +v(or)) +om(v(or) —5) + (B —v(pr) (R —PMm))},

wheres = —(f(or) — f(om)) /(oL — pm) is the speed of the shock in R~ (pr, o) of
p2. If we expand and re-arrange the first two terms in the previous line to obtain:

s(por —pm) +prv(pr) + pmo(pr), and then apply lemma 3.2 again, we have

[ lont )~ pat, ) dx = £ (£ pa) + pwe(ox) + (6 — (or)) ok — pa0)}-

Now add and subtract f(pr), and using the fact that the condition (3.11) is satisfied
across ¢ leads to

—+00
| len(tx) = pa(t ) dx = 26 {(8 — 0(ox)) ox — o)}
< 2t - max{pr}[B — v(px)] -
Analogously, by similar argument the following result can be obtained for case (5):

a < —v(pr) < B < v(pr), leading to

[ lortt,x) — pa(t,x) dx < 26 max{o, 1} o(px) +a]

Next consider the case (3). For every t > 0, we have

/_:o lo1(t, x) — p2(t, x) [ dx =t{(s2 —s1) (0l — o) + (& — 52) (s — Pv1)
+ (B—a)(or — Pip) }

where s; and s, are the speed of the shocks due to p; and p, respectively, and
Py € (0,01) and p}; € (0,p1) are the corresponding intermediate states formed
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according to lemma 3.2 with p, — p; > 0. Then the above equation can be sim-
plified as

- lort3) — patt, ) dx = (B ) (px — ) + (6~ ) ok — o)
< 2t-max{0, pr}[B — ]+

Finally, case (4). It can be observed that this case is equivalent to a < —v(pr) <
v(pr) < B. By setting (¢, x) as solution to the trivial case (1), we have for every
t>0

/J:o lp1(t, x) — p2(t, x)| dx (3.17)

- 400 +o0
< [ etk =t dx+ [ ptx) — palt, ) dx

Again observe that the first term of the right hand side of (3.17) coincides with case
(5) whereas the second term corresponds to case (2). Hence

+0o0
[ 11t 2) = palt ) dx < 2 - max{or,pr} - (8 — o(or)]s + [—a — o(pL)])
(3.18)
completing the proof. O

In the Lemma below, we derive an entropy jump condition at the interface.

Lemma 3.3. Let p be a weak solution of the Cauchy problem (3.1), then the following
entropy jump condition in the flux £f at x = (t) is satisfied

fOe)+&(Cc—7"p) < fo), ifp<c<v'p, (3.19)
—f('o) +&(c—~'p) = —f(c), ifYp < c<p, (3.20)

and
O(1'p(t), ) + (7' p(1),¢) < &'() 1770 (1) el = [7p(t) — el | +2f(e),  (3B21)

holds for t € R, where ®(p,c) = sign(p — ¢)(f(p) — f(¢)).

Proof. The proof follows the one of [59, Lemma 6.3]. If p is weak solution then
the integral identity (1.32) is satisfied for every ¢ € D([0, +o0[xR). Choose a test
function

P(t,x) = 0:(x — (1)) (1), (3:22)
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such that for e > 0, 6 is a Lipschitz compact function defined as

(e+x), x€[—¢0]
(e—x), x€]0,¢
x| > ¢,

0 (x) =

O oo

4

and ¢(t) € D([0,T]), T > 01is an arbitrary test function. Noting that i, = 6/(x —
£()0(0) and = (x ()9 () ~ &L — Z()o(r), we see rom (1)
that

/_0; /ooo [o(Be(x — Z(£)) @' (t) — 0 (x — £(1))Z'(1)) (3.23)
FE(tx,0)0L(x — E(1) ()] dtdx = 0.

The first term in the integrand is
/Ooo /_o; p[0e(x — &)@ () — Oe(x — &(1))& (t)] dxdt
= /00 /oo pﬁol t 98 x—é‘(t))dxdt

— _/ / o(t, x)dxdt + - / / )p(t, x)dxdt,

where [i7 [% ¢/ (t)0e(x — &(t)) — 0 ase — 0 in L'(IR) and the sum of other

integral terms becomes

“+o00
| (e + e (gt (6.24)
as ¢ — 0. Similarly, the next term in (3.23) gives

/O+oo /+oo F(t,x,0)0L(x — &(t))@(t)dtdx = ——/+w/ t)dxdt

“+o00
— = / / t)dxdt
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Again letting ¢ — 0, we have fora.e t € R™

+o0 +oo

LT s [ sodeweta
+oo +£

3 / Daxdt — [ o p()p(t)a

and so summation gives

- /O+°° [f(Yp(t)) + fF(v p(t))] @(t)dt.

Combining this with (3.24) leads to

L [ ere) - £(re) + £ O 00 — o] o =0 (325)
Since ¢ is not zero, then

—f(p()) = F(p(1) + &' (D) (v p(t) = 7'p(t)) =0

which is (3.6).

In a similar way, if p is entropy solution then the Kruzkhov-type entropy solution
(1.8) is satisfied for test function in (3.22) as earlier. With ¢; and ¢, given above,
the integral becomes

/000 /_O:o o —cl (¢ (1)0e(x — £(£)) — &' ()0 (x — £(1)) (1)) dxdt

+ [T atxeo @(t))qo(t) dxdt (3.26)

// sign(p — ¢ (txc)e( g(t))(p(t)dxdt-I—Z/OOOf(c)z/J(t,é(t))dt20.
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By the definition of the test function, the first term in the second line goes to zero
as ¢ — 0in L1(R). Checking the other terms

/00 /oo Aq(t, x)dxdt
= [7 [ o~ dlatx- & ——// o —cl¢/ (g (ndxat
e 7L el gt

As done earlier, it can be observed that as ¢ — 0, the first term goes to 0 and so

/ / Altxdxdt—>/ (=I'p(6) = el + 7o) — ¢l ) @(t)dt (3.27)

as ¢ — 0. Furthermore

/w/oo Ao (t, x)dxdt
/ / F(t,x,p,c)p(t)dxdt — —/ / F(t,x,p,c)p(t)dxdt

which, as ¢ — 0, converges to

N /()+Oo [Sig“WlP(t) —o)(f(Vp(1) = £(e)) (3.28)
+sign(7'p(t) = ) (f(1'0() — £(€))] @(t)dt.

Combining (3.27), (3.28) and the last term of (3.26) leads to

[ [ @0 =+ 17p() — ) —sign(3p(e) = ) (F (2 o(6) — £(0)
— sign(1/p(t) — ) (F(7'p(t)) — F(c)) +2f(c)] ()t > 0.
Since ¢(t) is arbitrary, then
sign(7p(t) — o) (f (Y p(1)) = f(c)) +sign(v'p(t) = ) (f(+'p(t) = £(c))
=&Y e(t) = el = [7Vo(t) —¢|) <2f(c)
which is (3.21). ]
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In passing, the uniqueness result shall depend on the so-called flux crossing condi-
tion.

Assumption 3.1. Given the discontinuous coefficient, k(t,x) = sign(x — ¢(t)),
with jump at ¢(t) and (pr, pr) be states in solution left and right of ¢(¢) for ev-
ery t > 0, then the crossing condition must hold:

flpr) <0< f(pr) = pr < pr- (3.29)

As mentioned in [59], the geometric interpretation of the crossing condition given
therein implies that the graphs of —f and f do not cross except if graph of —f lies
above f to the left of any crossing point. The geometry of our flux function implies
that it there is no point in p € [0, R] that violates assumption 3.1 and therefore we
can conclude that the flux crossing condition holds for our flux function. With this
in mind, we state and prove the stability and uniqueness result for our problem.

Theorem 3.2. Let p and p be two entropy solutions of the Cauchy problem associated with
(3.1) with the same turning curve &(t) such that k(t, x) is defined and initial conditions
po, 00 € L% (R) respectively. Assuming that the crossing condition of assumption 3.1,
and existence of traces then for a. e. t > 0, we have for r > 1 that

7 _ H‘HBPFHt ~
/ (¢, %) — p(t, x)|dx < / ol lpo(x) — Po(x)|dx, ¥x € R. (3.30)
—r —r—|(9p

Proof. Let p(t,x) and §(t, x) be two entropy solutions according to the definition
3.1, the following contraction holds for a non-negative test function y € D(Q \ &)
and a constant C:

+oo ptoo 400 ptoo
—/0 / o —plYr + F(t, x, 0, )] dxdt < C/O / lo — plwdxdt. (3.31)

The above integral is derived from [58] for scalar conservation laws with space
flux discontinuity by using the Kruzkhov’s doubling of variable technique with a
test function that vanishes on the discontinuity and has been extended to the case
of time dependent flux discontinuity in [59]. Following the proof of [58, Theorem
A.1], we observe that the inequality (3.31) leads to

400 o0
_/0 /_oo [lo = pl: + F(t, x,0,0)¢x] dxdt <0, (3.32)

since the time dependent coefficients, k(t, x) are constants and bounded away from
¢ without the diffusion term. To account for the flux discontinuity, let ¢ € D(Q)
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be an arbitrary test function that doesn’t vanish near ¢ for all t > 0 and introduce

F2h+x) ifx € [-2h, —h],
o,(x) = 1 if x € [—h, h]
T Loh—x) ifx e 120

0, if |x| > 2h

a Lipschitz function for a real number 1 > 0 such that 6,(x) — 1ash — 0. Set
Yyu(x —&(t) = 1—6,(x — &(t)) so that ¥, — 1 in L' but vanishes near &(t).
Then for any test function ¢, we have ¢y = ¢¥}, is an admissible test function.
This is implied by the fact that sending h — 0, we have ¢ — ¢0;, — ¢, in the
neighbourhood of ¢(t) and ¢ — ¢ away from ¢(¢). Inserting this into (3.32) with
the following derivatives

O¥n(x —&(t)) = 6;,(x — £(£))' (1),
Ip(t, x) = @r¥n(x — ¢(1) + @by, (x — (£))2'(£),
Axp(t, x) = @ ¥(x — &(t)) — @by (x — E(1)),

leads to
+oo  ptoo ~ 3
_/0 /_ (lo—plo: +F(t,x,0,0)px) ¥ydxdt

o:oo oo
- / (lo — BIE (10, (x — E(t)) — F(t,x,0,0)6),) pdxdt

0 —o0
A 7
TV

Ih(t,x)

<0.

Expanding Ij,(t, x) and performing a change of variables in the neigbhourhood of
¢ for h > 0 gives

+00
/ / (Io = pI&"(t) = F(E x,0,0)) 96}, (x = §(¢))dxdt
400 t)+2h .
/ (o~ PI'(6) — 5(t,x,p,p) gl

- 5|&' (1) — F(t,x,0,0)) @dxdt
+E/O /C(t)Zh(’P—MC()— (t,x,p,p)) pdxdt.
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Sending /1 — 0 leads to

) +o0 e o X=E
tim (1) = [ (o= p1¢'(5) — 5t 0, p)] 5 9t )t

and so (3.32) becomes

— [ [ llo—plo: + 3t x, 0, )] dudt (333)
< [ 5) — & 51%=¢" d
< [ [Fxep) —EWlo—pllIE o0,

where the signs are used to indicate the left and right limits of x = ¢. The next
thing to do is to show that limy, o I;(t,x) < 0 by using the entropy conditions in
lemma 3.3 and the crossing condition of Assumption 3.1. From the contribution at
¢(t) this is equivalent to showing that

Te(t) = F(t,x,90,9'9) = F(t,x,7'0,9'0) =& ()17 p— "8l = &' (D)+'o —~'pl < 0.
Proceeding as in the proof of theorem 6.5 of [59], we choose the modified flux
+f(0) := £f(p) = &'p
so that the associated entropy flux
F(t,x,p,¢) :=F(t,x,0,¢c) —&p —c|.

Here the f and f admits the same crossing condition, in that there’s p € [0, R] such
that the crossing condition is satisfied. In this way, we can write from the I'¢(t)

N

Pey = F(t,x,7"0,7'P) — F(t, x,7'0,7'p). (3.34)

Now we check on case by case basis that fg(t) with the aid of the following entropy
jump condition in the flux £ f

fOrp)+&(c—7"p) < fle), ifv'p < c < 9'p, (3.35)
—f(¥'p) +&'(c='p) = —f(0), ifv'0 < c < +'p, (3.36)
which is obtained by using the fact that — f(c) < f(c) for any constant c. We check

the following cases for (3.34) for a fixed ¢’
Case 1:(7'0 = 75,70 = 7' p). This case is trivial in that fg(t) =0.
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Case 2:(7'0 = 76,7 p # ' p). Assume 7"p > 75, then (3.34) becomes

Tey = fF(¥'0) — f("0) =& (v'D—7"p) <0,

and the inequality is due to (3.35) with ¢ = 9"p. On the other hand if we assume
Y p < 7" p the same computation is made and so omitted.

Case 3: (Yo = 7"p, ’ylp # 'ylﬁ). Assume ’ylp < 'ylﬁ, then
Fey = —f(V'o) + f(V'D) + &' (45— 7'p)
=-[f(o+& (e —2'B)] + F(+'p).
The jump condition of (3.36) allows the conclusion that

A

ey < —f(2'p) + f(+'p) = 0.

If v'o > +'p, we proceed with same computation and apply (3.36) with ¢ = /p.

Case 4: (7"p < 7"p and y'p < 9'p). Here (3.34) becomes

Fey = —(fF(V0) = f(VD) =& (VB —7"0) = f('0) + F(4'B) + &' (+/6 — 7'p)
==+ (VE =)~ (-7 +E(v6 ')

by the Rankine-Hugoniot jump condition and leads to 0 by cancellation.
Case 5: ("0 > 7"p and 7/p > /). Same as the preceding case.
Case 6: (7"p < 7"p and 7/p > 9'p). Again (3.34) becomes

Tey=—f(0)+ (VD) =& (YB—p)+ f(2'p) — F(V'P) + &' (W' p — +'p)
=—(f(p)+f('D) + (f(o) + F('D) =& (Yo — ") + & (+'p — 7'P)

which again leads to zero by applying the Rankine Hugoniot condition and can-
cellation of terms.

Case7: (y"p > v"pand 0 p < 7! p). This case can also be concluded as the previous
case.

The above computations implies that (3.33) holds for any non-negative test func-
tion, ¢ and becomes

—/0 /_ [lo— plo: + F(t,x,p,0) x| dxdt < 0. (3.37)
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With this inequality, we now choose for any fixed positive real sg, s such that 0 <
sop < s < T a piecewise linear function:

0, ift € [0,50] U[s+x,T],
Lt—1), ifte[so,s0+ 1]
H=<7 ’ ! ! 3.38
Prx(t) 1, ift € [sp+T,5], (3:38)
1 .
s(x—t), iftels,s+x,

where 7, x are chosen to satisfy 0 < sp < sop+ T < s < s+« < T for any fixed
T > 0. Furthermore, consider the trapezoid ()t given by:

Qr:={(tx): [x| <r+||B|[(T—1),s0<t<T}

and define A, : R + [0, 1], a characteristic function by

A(x)— 1, ifxeQr,
! a 0, otherwise,

then set test function to be ¢(t, x) = A,(x — §(t))Br(t). If we compute the deriva-
tives

or = —& ()AL (x = §(1)) Brx(t) + Br () Ar(x — E(1))
Pr = Ap(x = &(t))Brx(t)

and insert them into (3.37), we have

__/50”/ (t,%) — p(t, x)| Ay (x — (b)) dxdt
+/ /_r (t,) = p(t, x) | A (x — &(1))dxdt < 0.

Sending sgp — 0, leads to

/ / B(t, x)|dxdt < = / / B(t,x)|dxdt.  (3.39)



3.3. Stability and uniqueness of entropy solution 64

Insert +p¢(t, x) and 0 (t, x) into the r.h.s of (3.39) and apply the triangle inequal-
ity, it becomes

= [T [ lotex) — o) ldwde < /””M”t 190(x) — polx)|dx
T Jo JPH TR = oo OV O

L axdt+ > [ [ Go (x)|dxd
e [0 1ot = po)laxat+ = [ [ 1p(t,x) = po()ldat,

Letting T — 0, the last two terms of the above integral tends to 0 (uniformly in r)
and so (3.39) becomes

1 pstx g1 _ r—|—||apF||t _
L L e —pt i< [0 oo —po(oldx - (40)
S —r —r—||9p

]

Considering the observation that p € L* of (3.1) admits one-sided strong traces
at the interface, we consider the possibility of reducing the problem to finding an
appropriate flux connection across the interface [8], so-called dissipative coupling
or dissipative germs. Introduced in [14] with a spatial flux discontinuous example,
this interface coupling conditions is referred to as (A, B)-connection in [3], employ
the principal tools of satisfying the Kato inequalities away from the interface and
near the interface, strong traces theory [76], adapted entropies [16] and monotone
finite volume schemes with the Godunov solver at the interface [11], entropy pro-
cess solutions and weak BV estimates arguments [13, 15]. Here in this work, we
extend the notion of admissible germs to (3.1).

The presentation of section 3.1.3 demonstrates how this connection are derived
for the present problem. This allows one to study the problem well-posedness of
solution to the problem with L* data within the framework of entropy process
solutions as was done in [13, 38, 11] and other papers. Later in Chapter 4 of this
thesis, the finite volume method with adapted moving near ¢ generates the L™
representation of the solution to equation (3.1). In the next section however, we
re-formulate the problem following the theory of admissibility germs formally for
our problem, establish the equivalence of adapted entropy and entropy process
solutions. These two sections would allow the treatment of convergence of ap-
proximate solutions to the entropy solutions already introduced.
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3.4 Admissibility germs and entropy solutions

In this section, we formulate the weak entropy solutions of (3.1) in the framework
of G-entropy solutions via the admissible germs theory, § introduced in [14] with
L* data. In doing so, we reckon that since ' (t) € R is given a priori, and that there
exist strong trace at ¢ (see remark 3.3, we expect that p equivalently satisfies the
following Cauchy-Dirichlet problems in the sense of distributions

9ip —9xf(p) =0, inD(Y), t >0 (3.41)
9o+ 9xf(p) =0, inD(Q), t >0 (3.42)
F@ o)+ f(e(t) = &' (Vp(t) = 7'p(t), onx=¢(t), t >0, (3:43)
and
Ny ifx <0
p(0,x) = {PR/ x>0, (3.44)

The discontinuous flux function can equivalently be set to

F(tx,-) i= =f(Olecey + f(Leser) (345)

where for every t > 0, = f(-) are non-linear functions in p satisfying the conditions
(F), implying that (¢,x) — F(t,x,-) has a jump across the interface discontinuity.
Throughout this section we shall consider (t) = at, to simplify the analysis even
though the result can be extended in general to Lipschitz continuous functions of

¢.

3.4.1 Flux connections and the dissipative germ

We hereby define the admissible germ for the equation (3.1) in this section. Thisis a
family of piecewise constant weak solutions of the form p;1, #s) + prl,~g(p), with
p; and p, in [0, R]. Of course, each of these solutions is completely characterized
by the values of p; and py, so that we describe the germ as a set of ordered couples.
This tool will be used later to prove the convergence of approximate solutions to a
weak entropy solution.

Equivalently, the germ can be defined as a set of possible couples of traces 7" p(t)
at the sides of the interface . We stress that since by assumption & f are continu-
ous over [0, R]? and the measure of set {s € [0,1]s.t.f’(s) = 0} is zero, we conclude
that 7" p(t) are in fact one-sided strong traces based on the [14, Theorem 2.1].
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Definition 3.3. Let {(t) = at, with « € R fixed. The germ of admissible solutions
9. for the conservation law (3.1) is

G 1= {(O,p,x) € [0,R]%: f(pon) = ocp,x}. (3.46)

Definition 3.4. A germ § is L!-dissipative (LD for short), if for any two pairs
(p1,pr), (q1,9-) € G the following dissipative property holds

F(tx, pr 1) = I %, proqr) 2 a(p(pr,qr) = 1(pr,ar)), (3.47)
where F(t, x, p, ¢) is defined in Definition (3.1) and #(p, c) := |p — ¢|.

Proposition 3.1. The unique maximal L'D extension of G, is the subset of [0, R)? defined
by
Gat={(pupr) € 0.R: f(pr) + f(p1) = wlpr = p1) } . (3.48)

Proof. The fact that §,x contains G, is obvious as

f(pa) + f(0) = apy — 0.

To show that §,X is LD we distinguish three cases: « = 0, « > 0, and a < 0.

If « = 0 the germ only contains four elements (0,0), (0,R), (R,0), (R,R) and we
can check that (3.47) holds as an equality by direct computations.

If « > 0 we consider two sub-cases

I. If g, = g, = O we have

F(t, x,p1,0) = F(t,x, pr, 0 )=( f(p1) + £(0)) — (f(pr) — £(0))
~(f(pr) + f(p1)) = a(pr — qr)
= a(n(p1,0) —n(pr,0)),

for all p;, p; € [0, R]?. The case in which g; = g, = R is similar.

IL. If g; < g, (the reverse inequality being impossible due to the sign of «
and the geometry of the problem) we can observe that

sign(p; — q1) = sign(pr — 4r)-
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Therefore

F(t,x, pr,q1) — F(t, x, pr,qr) = sign(pr —q1) [ — f(pr) + f(q1)
— f(pr) + f(qr)]
= sign(p; — q))a (9 — q1 — pr + p1)
= a(n(pr,q) —1(prqr)) -

If « < 0 the analysis is exactly the same as in the previous case.

It is also clear that G, is maximal : given any L'D germ § one can look for its
possible LD extensions, the largest of which is its dual G*, i.e. the set containing
all couples (q;,9,) € [0, R]*> which satisfy the Rankine-Hugoniot conditions and

(3.47) for any (p;, pr) € G. Of course G, and G coincide.
O

Additionally, given any piecewise constant initial condition p;1, () + prLise(r),
for, (01,p0r) € [0, R]?, the left and right side traces of the solution of the associate
Riemann problem correspond to an element of G,.

Lemma 3.4. For any & = at, the L'D germ G, is complete.

Proof. This lemma immediately follows from the study of the Riemann problem at
the interface in Section 3.1.3. O

Definition 3.5. Assume that f, ¢ satisfy, (3.2) and (3.3) respectively. We say that
map (t,x) — p(t,x) is a G-entropy solution to the initial-boundary value prob-
lem (3.1), if p is in L* (H; 0, R]), is a weak solution of this problem and for any
(p1, pr) € G, and any test function ¢ € CZ (Q); [0, +o0[) we have

+oo p1
/0 /_1 [lo—c(t,x)|9rp + F(t,x,p,c(t x))dxp] dxdt
1
+ [ leox) —e(t,) (0, x)dx
—+o00
[ 1ot 1-) = fen)] gt 1)di+ (3.49)
+ [T 1 —14) - fle) ot 1)t 2 0,

where c(t, x) = c/ly¢(4)(x) + ¢/l g4y (x) and F (¢, x, p, ¢) the same as in Definition
3.1.

Remark 3.4. Following [14, Remark 3.12 and Th. 3.18] we recall that
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e p € L®(IL; [0,R]) is a G4-entropy solution if and only if it is a weak solu-
tion and for almost every t > 0 the couple given by its traces at x = (),

(7'p(5),7'p(1)),is in o = ;.
e In our setting G- and G,-entropy solutions coincide.

The consequence of Remark 3.4 is that one can consider the existence of a measure-
valued solution, herein referred to as §-entropy process solution, to which approx-
imate solutions of (3.1) obtained by a finite volume scheme converges. The defini-
tion of entropy solution with global adapted entropy inequality is given next.

Definition 3.6. Assume that f, ¢ satisfy (3.2), (3.3) respectively. We say that a
function p € L (IL; [0, R]) is a Gu-entropy process solution to the initial-boundary
value problem (3.1), if the following conditions hold :

1. For any test function ¢ € CZ (IT; [0, +oc0[) we have

1 p4oo pl
/ / / [y(t’x’a)atqo+F(tlx/,lfl(t/x;a))ax@}dthdﬂ
0 JO -1

1
+ / ) po(x) (0, x)dx = 0. (3.50)
2. The inequality

1 +o00 p1
/0 /0 /_1 [|p(t,x,a) — c(t,x)|0ep + F(t, x, u(t, x,a),c(t, x))0xp|dxdtda
(3.51)

+ /11 lpo(x) —¢(0,x)|¢(0,x)dx >0,

where F(t, x,p,c) = sign(p —¢) [F(t,x,p) — F(t,x,c)], is satisfied

e for any test function ¢ € C (IL; [0, +o0[) and for any
c(t,x) = prllycey(x) + Prilesg)(x)

such that (p;, pr) € Gy ;
e for any test function ¢ € C (IT; [0, +oo[) such that ¢ = 0 on x = ¢(¢)
and any constant ¢(x) = c € R.

Remark 3.5. We could define G,-entropy process solutions, but since they do not
coincide in general with G,-entropy process solutions, we do not use them here.
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The fact that G, is maximal L' D is a necessary hypothesis in the following theorem,
see [14, Th: 3.28].

Theorem 3.3. Let G be a maximal L'D germ and let pg be an initial condition for which
the Cauchy problem (3.1) admits a G-entropy solution, p. Then there exists a unique G-
entropy process solution u associated to the initial condition pg and u(a) = p for almost
everya € (0,1).

Thanks to the existence result proved in [58] we are then sure that our problem
admits a unique solution.

In Chapter 4 of this thesis, we shall prove the convergence of the scheme relying
on the L estimate and on the discrete solution.

3.5 A note on boundary conditions

The main equation considered in this work posed as a Cauchy problem in IR needs
to be supplemented with boundary conditions if considered in a boundary do-
main. Indeed implementing a finite volume scheme for (3.1) also requires a re-
striction of R to a bounded domain accompanied by appropriate set of boundary
conditions that must also satisfy the weak formulations previously defined. By
approximate set of boundary conditions, we mean conditions that are physically
meaningful to the problem at hand and the same time fulfills the corresponding
PDE. We hereby state the initial-boundary value problem for the equation studied
in this work by setting IT := [0, +c0) x| — 1,1[ and IT, =] — 1,1].

dip + 9xF(t,x,p) =0, (t,x) €I,
p(0,x) = po(x), forx € Ily, (3.52)
p(t,+£1) =0, for t >0,

where p € [0,R], F(t,x,p) := sign(x — {)f(p) have the same meaning as intro-
duced for the Cauchy problem (3.1). Following [7], we look for weak solutions in
the following sense:

Definition 3.7. Assume that F, ¢ satisfy the same hypothesis as in (3.1), we say
that the map (t,x) — p(t,x) is a weak entropy solution to the initial-boundary
value problem (3.52), if p is in C° ([0, +-o0[; L' (Q); [0,R])) and for any ¢ € [0,R],
and any test function ¢ € C2 (R?; [0, +o0[), the following Kruzkov-type entropy
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inequality holds:

+oo 1 1
/0 /1 [lo — clorp + F(t, x,p,c)0x¢] dxdt /1 lpo(x) — c|@(0, x)dx+
+oo

[T 1) — fel gt a2 [ f@gt s 65
+ [T 1ot —14) - ) 9t~ 2 0,

where F(t, x,p,c) = sign(p —¢) [F(t,x,p) — F(t,x,¢)].

The first line in (3.53) originates from the Kruzkov definition of entropy weak solu-
tion as would be in the case of a Cauchy problem, [63]. The first term in the second
line and the last line comes from the boundary condition introduced by Bardos et
al [18] where as the last term of the second line accounts for the discontinuity in
the flux along the turning curve. These boundary conditions are intended in the
weak form meaning that the following inequalities

—f(p(t,—14)) > —f(k), forall k € [0, p(t, —1+)],
Flp(t,1-)) > £(K), forallk € [0,p(t,1-)],

are satisfied. Compare [7] and [40] where these conditions are verified for the
boundary conditions in the Hughes” model.
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Chapter 4

Approximate solution and
Convergence to the entropy weak
solution

4.1 Introduction

In this chapter, we derive a numerical scheme that converges to the weak solution
of the problem studied in this thesis. For clarity, we re-state the problem intro-
duced in Chapter 3 below

dip + 0+F(t,x,p) =0, (t,x) €],
p(0,x) = po(x), forx € Ily, (4.1)
p(t,£1) =0, for t > 0.

In equation (4.1), there is the existence of a function ¢t — ¢(t), here referred to as
the turning curve or the flux interface function. Taking ¢ to be piecewise linear in
time, we seek to approximate weak entropy solutions to (4.1) in L*-setting using a
mixture of standard and non-standard finite volume method with a moving mesh
strategy near the turning curve, .

There are multiple approaches that could be applied to solve equations of type
(4.1) for given initial data, such as the vanishing viscosity limit [21, 75], numerical
schemes such as the wave front tracking method [48, 46, 27, 23], and finite differ-
ence/volume method [24, 11, 2, 59, 60] or by solving the corresponding Hamilton-
Jacobi equation of the problem, [1, 21, 4]. In this work, we use the Godunov-type
scheme [50] which is an example of of finite volume methods and has been ex-
tensively used to approximate entropy weak solutions of scalar conservation laws
with discontinuous flux functions. See for instance [2, 60, 10]. It is based on a
numerical flux function whose input argument is the exact solution of a local Rie-
mann problem at each vertical interface (discrete) with data from adjacent cells
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ensuring that there is less numerical diffusion, the numerical flux is conservative
and consistent with the flux function of the problem at hand [67]. This makes the
Godunov scheme a natural choice for us. For a detailed discussion, see Chapter 2
of this thesis.

A straightforward application of the Godunov scheme in its standard form to
problem (4.1) could lead to numerical inaccuracies in the solution at the turn-
ing curve. There are two main issues here that need to be addressed, namely the
undercompressive (non-classical) wave at the turning curve and the space-time
discretization near the turning curve. We already know from chapter 3 that the
Riemann problem at the interface admits non-classical solutions, i.e. non com-
pressive waves, and hence a non-classical Riemann solver was devised to in order
to have an “entropy’ flux connection between the left and right state value of the
solution at the flux interface. Furthermore, unique intermediate states appears in
the evolution of the solution so as to satisfy the Rankine-Hugoniot jump condi-
tion at the interface whenever the slope of the turning curve changes in time. This
leads to a non-classical Riemann solver, R* at &(t) in which the intermediate states
are captured. Therefore, the Godunov-type scheme we propose in this work uses
a standard Godunov flux away from x = ¢(#) and a modified numerical flux that
is consistent with R* 'near’ x = ¢(t) fora.et > 0.

On the second issue, we note that since the turning curve is time-dependent, one
should expect that it may not coincide with at most one cell interface point as the
solution evolves. This shall lead to severe numerical instabilities in the solution
as the turning curve may interact with the self-similar solution of the local Rie-
mann problem. Even if the turning curve does not coincide with a cell interface
point but is very close to it, the ‘'wave’ emanating from the local Riemann solver at
that interface point may interact with the turning curve before the next time level.
The occurrence of these scenarios shall lead to a breakdown of the straightforward
application of the standard Godunov scheme to (4.1). We deal with this issue by
introducing a moving mesh strategy into the scheme where the turning curve re-
places any nearby interface point (i.e within 1/2Ax), recomputes the density av-
erages in adjacent cells affected by this replacement before applying the modified
flux function mentioned earlier.

Finite volume schemes with moving mesh were originally developed to approx-
imate solutions to hyperbolic problems with propagating phase boundaries, [93],
and have been successfully applied to solve several problems. For instance, see
[31], for an application to the study of traffic dynamics in the presence of a slow
moving vehicle like a bus, which acts as a moving bottleneck. In order to satisfy
the flux constraint and deal with interactions with incoming waves, a non-classical
Riemann’s solver at the bottleneck was enforced by locally shifting the closest cell
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interfaces. The scheme used a locally nonuniform mesh at the bus trajectories
and a tracking algorithm which reconstructs the bus position through its interac-
tion with the density waves. Other applications in [26] can be found for traffic
flow models with different flow regimes and in [39] for phase transition model of
liquid-vapour fluids.

The chapter is organized as follows: we begin with Section 4.2 where we show that
a straightforward application of the standard Godunov scheme to problem (4.1)
fails. The motivates the presentation of our proposed scheme with the moving
mesh near ¢ in the Section 4.3. We then deduce some key properties of the scheme
in Section 4.4 which would enable us to prove the convergence of the scheme in
Section 4.5. Finally in Section 4.6, we validate the scheme with several examples
including application to the Hughes” model of pedestrian flow. We demonstrate
a numerical convergence of the scheme to the weak entropy solution in this final
section.

4.2 The Godunov Scheme

In this section, we demonstrate the failure of the standard Godunov scheme when
applied to (4.1). To introduce the notations, let the spatial and temporal discretiza-
tion parameters Ax > 0 and At > 0 respectively be given such that the ratio AA—fC is
kept constant. Then the space domain is discretized into cells [xj_l /2, Xj11 12), ] €
Z, where x;j11/2 = (j = 1/2)Ax and the centers of each of these cells are located
at x; = jAx. Similarly, the time interval [0, T] is discretized via t" = nAt, for
n=0,1,2,...,N, where N := |T/At| + 1. We denote by p!, the piecewise con-
stant approximate solution x — p(t", x) of (4.1).

Given po(x) € L®, discretize the initial data in each cell by

X
o) = Aix/ e po(x)dx, forallje€ Z. (4.2)
Xj-1/2

With the slope of the turning curve given a priori, we assign & = &(0) as the
initial position of ¢ and discretize k(t, x), the flux coefficient at t = 0 as k? 12 =

sign(xjy1/2 — &0). The standard Godunov scheme consists in two main steps:
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Step 1:
Solve the following Riemann problem of our PDE model at each interface x;,1,>:

9P + 0x (sign(xj11/2 — &")f(p)) =0,
R ‘01~1 X < Xjit1/2 (43)
po(x) = {7 N ]+

Piv1 X = Xj+1/2/

for t € [0, At] to obtain

3t x) = p [ 20 5n o1\ forall (%) € [0, ] x C;
P 7 —,0 t—t” ;P]‘/P]‘_H 7 ’ 77
a self-similar solution of (4.3). Note that here the data at f = 0 is obtained from (4.2)
above and the temporal parameter At, is chosen according to the CFL condition

A
A< — 2% (4.4)
2-max||f;

The solution to (4.3) over the entire space domain is given by "gluing together" all
the self-similar solutions at each interface so that p(t, x) is piecewise constant at
each time.

Step 2:
In the next step, we project the piecewise constant solution obtained in step 1 over
each cell C; at time t"+1, via the update formula:

y
gt = 1 [ bt xdx, foralljez. (45)
4 Ax Jxj 1)

The following simplifications can be made from (4.5). In the figure 4.1, we integrate
the PDE in (4.3) over the element E = (pgqrs) and apply the Green’s theorem to get

0= //Eatp —I—Bx (Sign(x]‘+1/2 _ gn)f(p)) dxdt
At
0= Axp;?+1 — Axpjl + ; Klq /2 f (0(07; 07, pfy))dt (4.6)
At
~ /o K12 (P(07; 0]y, 07))dt,

where 0F represents the traces in the Riemann solution at the interfaces x;11,,. We
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n+1
tn+1 g
/
q r
" P;‘Ll |4 p;l S p;l+1
Xj-3/2 Xj-1/2 Xj+1/2 Xj13/2

FIGURE 4.1: Cell averages with the Riemann problems at each inter-
face.

use 0 with the inspiration that the cell interface is vertical w.r.t. time and hence
the quantity (x — xjy1,2)/(t — ") is zero at each interface. If the flux across the
interface is defined by

F(Kis1/2:0],0}41) 1= k}?ﬂ/zf(ﬁ(oir'(??rpﬁl)),

the the time marching formula can be obtained from (4.6) as

At
i =0 = & [F(k?+1/z;97fp7+l) - F(k?—l/z?p;?fl'f)?)] ' (7)

For any given k]’.‘ 172 < O(or k? 12 > 0), the numerical flux function satisfies the
Rankine-Hugoniot condition at x;,1,>

k?+1/2f(ﬁ(0+;p?,p;l+1)) = k?+1/2f(p(0_;9?rp?+1)) (4.8)

if p(0~; p]’.’, p;? ', 1) is continuous or discontinuous along the line x;,1/,. In the latter
case, a stationary shock located at the interface leads to the condition (4.8). Let’s
introduce the standard Godunov flux

min f(p), if p<g,

Ijl , — pE[p,L]] 4.9
(p4) max f(p), if p=>gq, *9)
p€Elq, pl

which can be deduced on case by case basis from the solution of the Riemann
problem at the cell interface from which the numerical flux in (4.7), can be written
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as
h(Pj/Pj+1), ifk7_|_1/2 <0,
F(K}i1/0:07,011) = § h*(0j,0j51), if K} 5/, =0, (4.10)

h(pjt1,p5), if kﬁrl/z >0,
where h* is defined by

hpj,pjr1),  ifa>o(pl,y),
W (o}, 1) = § hlojrap0p),  ifa < —o(p}), (4.11)
0, otherwise,

is the modified flux at the turning curve. At the next time step, the turning curve
is
E =" fw,At, VneN. (4.12)

It must be noted that the Godunov’s flux (g, p) is Lipschitz continuous with re-
spect to both arguments and consistent with f, meaning that i(p, p) = f(p). This
also implies that the flux function (4.10) is consistent with the flux function of the
problem (4.3) and hence holds also for (4.1).

4.2.1 The failure of the standard scheme

Since the solution to the Riemann problem is explicitly known from section 3.1.3,
computing the traces at 0" and 0~ away from the turning curve is does not present
a problem in the scheme presented above. Indeed the Rankine-Hugoniot condition
(4.8) is trivially satisfied at the turning curve (which also correspond to x; 1,2 = &"
for any fixed n € IN). However, observe that the Riemann solver at the turning
curve is not classical and so, where the turning curve coincides with the interface,
the line x;,1,; is no longer a straight vertical line. Without a proper treatment of
the turning curve and the closest cell interface from the previous time step, the
state value p;”rl resulting from the update formula can be over- or underestimated
since the averaging procedure at the next time step shall not consider the varying
size of the adjacent. This leads to the following two implications: (1) the input of
the numerical flux may not result from the non-classical Riemann solver at ¢ as
presented in section 3.1.3. This shall occur at the next time step where after ap-
plying (4.12), the turning curve coincides with no cell interface. (2) If the scheme
is designed to ensure that the turning curve coincides with at most one interface,
then the cells adjacent to the turning curve have non-uniform sizes. The standard
scheme fails to accommodate the non-uniform sizes of these cells. As a conse-
quence of point (1), we yet modify the numerical flux at the turning curve where
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we introduce a moving mesh strategy in the scheme to resolve the problem posed

by (2).

4.3 A finite volume scheme with moving mesh

In this section, we present the numerical scheme that deals with the numerical
instabilities observed at the turning curve in the straightforward application of
the standard Godunov scheme to (4.1). Our strategy consists in adapting the finite
volume mesh near to ¢ such that ¢ is actually a cell interface point at which the
solution of the non classical Riemann solver (R*) will have to be computed and
a modified numerical flux defined accordingly. This is a slight departure from
the mesh adaptation strategy introduced in [93] and applied in [31], where one
replaces the cell interface nearest to ¢ and shifts an adjacent interface point after
which new temporal density averages are computed in the two adjacent cells by a
Lagrange interpolation formula. Even though this scheme is conservative, the re-
computation of the new averages makes it impossible to proof the well-balanced
property of such scheme.

As the scheme introduced here does not use a re-computation formula, the well-
balanced property is straightforward. This would allow one to prove the conver-
gence of the scheme to the weak entropy solution.

We use the following notations, let

e At > 0 be the time step,

° x]’.Z ', 1, be the set of grid points for j € Z, at time ¢",

e (j, be a computational cell, and C! the computational cells at ¢",

* Axbe the length of the cell Cj and Ax7, the length of each cell at time #".

4.3.1 Discretization

Let Ax > 0 fixed, and x;, 1/ := (j + 1/2)Ax be the set of cell interface points with
centers x; = jAx, for Jo < j < J;, where

1 1 1 1
]O:{_A_ijE]' h:{A_x_E]'

Here above, [x] denotes the integer part of the real number x, that is, the only
integer that satisfies [x] < x < [x] 4+ 1. Then, letset Z* := {j € Z: Jo <j < J1}.
That is Jo, J; are indices of the computational cells (to be properly defined later)
satisfying —1 € Cj, and 1 € CJ, respectively.
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For a fixed T > 0, choose At > 0, and discretize the time interval [0, T| by " = nAt,
for all n € IN. Suppose that the turning point curve is given by t — ((t) €
Lip ([0, T], (—1,1)), and denote by « € R its slope discretized by

1 t?l+1
e A_t "

n

g(tdt, neN,

then trajectories of the turning curve is discretized by (4.12) which we repeat as
gl = gm 4w At.

tn+5 T
|
|
|
tn+4
4
sz(_n+4)+1
ti’l+3
3
(n+3)+1
tn+2 +
2
p?n-‘(_n{Z)-H
|
tn+1 -
1
p;—fn-}—l)-ﬁ-
" - - b T m pn 7
Pm(n)—z pm(n)—l &n Pm(n)+1 m(n)+2 pm(”)+3
Ym(n)-5/2 Ym(n)=3/2  Xp(n)—1/2 Xm(n)+3/2  Ym(n)+5/2

FIGURE 4.2: Illustration of cases A and B. Dashed lines is used to
imply that the corresponding cell boundary is cancelled.

Starting from x; 1,5, the moving mesh at each time t", denote T]’7+1 /o 18 given as

Xi_1/2, ifj < m(n) —1,
T2 =14 ¢" if j =m(n), (4.13)
Xiy172, ifj>m(n)+1,

where m(n) € Z* is unique such that §" € [xm(n)_l/z, xm(n)+1/2) for every n.

This implies that the set of intervals C; := [xj_1/2,Xj41/2) for each j < m(n) —2
and Cj 1 := [xj_l/z, xj+1/2) for each j > m(n) 4 2 have fixed length of Ax, and are
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parts of the computational cell. The remaining parts are for j = m(n) £ 1 defined
by Cy(n)—1 = [xm(n)_s/zf C") and C,,( [C Xy +3/2> with variable sizes
AXpy(ny-1 = ¢" — Xm(n)—3/2 and Axm(n)+1 = xm(n)+3/2 ¢" respectively. Then

Cl:=Cyx [t "), VjeZ" \m(n), VneN,

represents the computational cells and

- U o

n€N j£m(n)

as the cell grid discretization of I'l. Assume the following CFL condition

Atmax {||f' || 1]} < %Ax, (4.14)

oo’/

then in projecting the grid at time t"*!, three cases arises for the definition of
the moving mesh T”jll/z namely, Case A: m(n+1) = m(n), Case B:m(n +1) =
m(n) +1and Case C: m(n+1) = m(n) — 1.

Indeed, if the CFL condition (4.14), holds then ‘Q’”H — (Z”‘ < 1/2Ax and that the
turning curve ¢(t) crosses at most one boundary cell in the time strip [t",#"1).
The third case is possible only if a;, < 0 and since the solution to (4.1) is symmetric,
we conclude that this case is very similar to that of cases A with B. For this reason,
we shall present the scheme in the light of only cases A and B.

Case A: m(n + 1) = m(n). This case leads to the same definition of the mesh as in

(4.13). Then ‘3'7:11/2 ‘.T]TZH/Z, Vj € Z* and Vn € IN. See Figure 4.3.

Case B: m(n +1) = m(n) + 1. Here it can be noticed that the line joining (", ")
and ("1, #"*1) crosses the vertical line x = Xm(n)+1/2- See Figure 4.4. The moving
mesh at "1, is similarly updated as

Xj-1/2 lf]S m(n+1)—1,
Ty = @, ifj=m(n 1), (4.15)
Xiy172, ifj>m(n+1)+1.

The intervals [xM(n)—l/z, §n+1) and [Cn+1, Xm(n)+5/2) are the cells adjacent to "1

respectively from the left and right. With the exception of these two intervals, all
other intervals at t"*! have the fixed size of Ax. The computational cells are then
updated accordingly.
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Jcm(n)—S/Z Xm(n)+3/2 xm(")+5/2
f
(o e
Xm(n)-5/2 Xm(n)-3/2 & Xm(n)+3/2 Xn(n)+5/2
FIGURE 4.3: Illustration of mesh adaptation for Case A.
Xm(n)-3/2 Xm(n)-1/2 Xm(n)+5/2 Xm(n)+7/2
f
P Ax
-
e
Xim(n)-3/2 Xin(n)+3/2 Xim(n)+5/2 Xin(n)+7/2

FIGURE 4.4: Illustration of mesh adaptation for Case B. In this case,
the indices of the mesh is shifted forward by one after projecting the
mesh at "1,

Remark 4.1. In Case B, note that while the grid point x,,,(,;) 1/, is now included in

the mesh, the grid point x,,,; 13,5 is excluded at it

Remark 4.2. This discretization procedure ensures that at each time, t" the total
length of the two cells adjacent to ¢", from the left and right is 3Ax. Furthermore,
the total number of computational cells at each time is kept constant. See Figure
4.2.

4.3.2 The Numerical scheme

We now proceed to derive the numerical scheme. Recall that p;?, is the piecewise

constant approximate solution x — p(t",x) of (4.1). At t", the approximate solu-
tion is

m(n)—2
p(t", x) = Z]: 03¢ (%) 4 05 -1 x50 ) () F Oy 41 1, 0y 3/2) (X)
1=Jo
)il
+ ), o, (%) (4.16)
j=m(n)+2
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We start by discretizing the initial data pg(x) € L*(IR) with discretized by:

1 Xjt+1/2 .

f,”l/2 po(x)dx, j#m(0)£1

0_ 20 . B
Pj = ~3/2 f P (x)dx, j=m(0)—1, (4.17)
1 ( )+3/2 :_

*m(0)+3/2—¢0 fCO po(x)dx, J m(0) + 1.

This choice implies that (p(.)) , is its mean value on the computational cells.
1/ jezx\m(0)

To simplify the notations, lets denote the following functions

h?—:l/z(a’ b) = h(b,a) h;i_:_l/z(a/ b) = h(a,b) (4.18)
as the numerical flux if x < &(t), and x > ¢(t) respectively, where h represents the

Godunov flux function already given in (4.9). At x = (t), we use the modified
flux h*,

f(b) —ab, if o > v(b),
h(a,b) =< —f(a)—aa, ifa < —0v(a), (4.19)
0, otherwise,

coming from the non-classical Riemann solver R* introduced in section 3.1.3.

If j <m(n) —2and j > m(n) + 2, the standard time marching formulas with the
standard Godunov flux from (4.9) (here denoted as h]+1/2(p] p]+1) ifj <m(n)—2

and hj:l/z(pj ,Pf4q) if j = m(n) + 2) becomes respectively as

n n At n— n n n— n n
ot = of = - M 0] o) = By (e, o) (4.20a)
and At
P;ZH = P] [h]jr_uz(io] P]+1) hjj1/2(P;l—1/P]r'l)]' (4.20b)

If j = m(n) £1, we derive f1rst the formulae of the Riemann solver at ¢" for case B
and infer for the other cases. Consider the elements E; = (acdb) and E; = (cefd)
to be computational cells of interest. See Figure 4.4. Then by conservation, the
following integral over E = E; U E; should satisfy:

/ (0tp + 0xF(t, x,p)) dxdt = 0.
E
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We detail the derivation over E;. By applying the Green’s theorem and integrating
along the interface in E; give:

gn-&-l

gﬂ
/ o', x)dx :/ p(t", x)dx
Xm(n+1)—3/2 Xo(m)—3/2
t1’l+1
— ‘/t” [ (t C( ) ( m(n)—1s Pm( )+1)> —F (t/xm(n)f3/2'9z_(p:ln72’ p?n(n)—l))} dt.
Set PnJ(r,Lrl)—l the average of p on |:x77111—|(—7}+1 s §n+1> defined by
1 gn-‘rl
n+1 — / 171 x)dx.
pm(n—l—l) ! é‘n—&-l ~ Ym(n+1)-3/2 Y Xm(n+1)-3/2 p( )

This leads to the marching formula

(C"H — Xm(n+1)— 3/2>Pm nt1)— ( 3/2> P;’Z(n)—l

_At[h“ (E-1 Ohnysa) = (P2 Py
(421)

Similarly the update formula in C,;,(,,) 11 writes

(xm(n+1)+3/2 - §H+I>PZE+1)+1 (Tm(n)13/2 =€) Piny+1 + DX ()12

yy [h"+(pm(n)+1,pﬁ1(n>+z) —h (anm)fvpzwnwlﬂ
(4.22)

For case A, the same procedure yields the time marching formula if j = m(n) — 1

<§”+1 - xm(n+1)f3/z>9%1+1)_1 = (Cn - xm(n)f3/2> Orm(n)—1

— At [h"‘" (p’;(n),lf P',L(n) ) W (P (n)—2 Pm() 1)]
(4.23)



4.4. Analysis of the scheme 83

whereas if j = m(n) + 1, it writes

(xm(n+l)+3/2 - 5"“):0%}“)“ ( n)+3/2 )p’,ﬁ( )+1

— At [h”+ <,0$( )+1/Pm( )+2 ) h (pz(n)—lpr(nHl)] '
(4.24)

Compared with the scheme presented of the section 4.2, this modified scheme
has a moving grid at x = ¢(¢) where a non-classical Godunov-type flux is also
applied. Obviously, the interface line corresponding to the turning curve is non-
vertical. Therefore the discretization ensures that ¢(¢) is also a numerical cell inter-
face point. A key advantage of the scheme is that it accounts for the non-uniform
sizes of the two cells adjacent to the turning curve at each time. Using the equa-
tions (4.20 - 4.24), the approximate solution over the entire domain a.e. is obtained
by patching together the piecewise constant values

m(n)—1
A -
p (t’x) T Z Z p?]l[nAt,(n—f—l)At)(t)ﬂ[x],l/z,x]Hﬂ)
nelN ]:]0

J1

+ g\l (Z)—Hp;l]l[nAt,(n—l—l)At)(t)ﬂ[xj1/2,xj+1/2)- (4.25)
n j=m(n

We make the following remarks:

Remark 4.3. Following Remark 4.1, numerical conservation in (4.20a), implies

putting the same density value over the sub-intervals |x,,,)_3/2, Xyu(n)—1 /2> ,and

X(n)—1/2/ C”“) at time 11,

4.4 Analysis of the scheme

It would be interesting to analyse the mathematical properties of the above scheme
so that questions regarding consistency, stability, entropy conditions and conver-
gence to entropy solutions can be addressed. The non-uniform meshes near the
turning curve which also leads to the moving mesh complicates the rigorous anal-
ysis of the convergence of the scheme. In this section, we deduce some preliminary
properties that could pave way to further prove the of the numerical scheme pre-
sented above.
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44.1 Conservation and well-balanced

It is well-known that in general non conservative schemes converges to wrong
solutions [55]. Indeed our choice of flux function in the above scheme as well
as the mesh adaptation near the flux interface obscures the obviousness of the
conservative property of the scheme. In the next proposition, we show that the
scheme is conservative and so by the Lax-Wendroff Theorem [64] gives hope that
it converges to a weak solution of (4.1).

Proposition 4.1. The numerical scheme proposed is conservative and thus satisfies

J1 Ji
1 1 _
Z}: pn+ Axn+ Z}: pnAx — At <h?ﬁ_1/2 h?o 1/2> (4.26)
71=Jo, =Jo,
jm(n1) oemin)

Proof. To show that the scheme is conservative, we start by observing that the
approximate solution satisfies the following integral

n+1

1 ¢ 1
/ o(t", x)dx = / o(t", x)dx + o(t", x)dx. (4.27)
-1 -1

§n+1
Equivalently, this can be written for Case B as

1 mn—

Z}: pn+1Axn+1 Z pn+1Axn+1 <€n+1 . xm(n+1)_3/2> pZ:(r;H)_l
]=Jo, ]* 0
j#m(n)+2

+ (xm(n+1)+3/2 - @mH) Pﬂiﬂ)ﬂ + Z p”HAx”H. (4.28)

j=m(n)+

Substituting (4.20), (4.21) and (4.22) for p;?“, performing telescoping summation,
collecting and cancelling the flux terms leads to

L n+l a1l 2 n 1 n
]-Z]: 0] Ax] = P; Ax + ((j - xm(n)—3/2> Pm(n)—1
=Jo, =J0
jAm(n)+2

J1
+(xm(”)+3/2_€n)p21(n)+1+Axp%(n)+2+' Y. pidx

j=m(n)+3
+
<h7 +1/2 h}lo 1/2)
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The rh.s of the above equation is clearly equivalent to that of (4.26). A similar
consideration if case A leads to the same conclusion concluding the proof. O

We now turn our attention to the 'well-balanced” property of the scheme. The
basic idea of well-balanced schemes the approximate solution exactly preserves
the steady states solution of the problem. According to the analysis of Chapter 3
of this thesis, we shall be interested in stationary solutions that the form p(t, x) =
PLl 1) + PRLysg(r) With pr, pr belonging Gu [15]. Indeed, the definition of the
numerical flux functions and the consistency, this scheme verifies the well-balance
property of the solutions of (4.1). We prove this property in the next lemma.

Lemma 4.1. Let t — &(t) = at for « € R and choose (o1, pr) € [0, R]? such that

f(or) —apr = —f(pL) — apr, (4.29)
holds and consider the initial condition
OL, ifx < 6(0),
xX) = . (4.30)
o) {PR/ if x > ¢(0).

Then numerical scheme (4.20 - 4.24) preserves the exact states from (4.30), p(t,x) =
PLlixce )y + ORL s g(r)y- Thus

pj = Plijem(n)-1} + PRz m(n) 11y, V1 2 0. (431)

Proof. We prove by induction. We make the prove for case B, case A is analogous.

Suppose we are given the initial mesh, ‘J? 1,2, then clearly p? = pr, if j <m(0) —1,

and Pom(0)+1 = pr if j > m(0) + 1 thanks to the discretized py(x) in (4.17).
This implies that If j < m(1) —2 = m(0) — 1, then

0 =0~ s (1000, 0%1) = 1= (01, 0%) | = o1,

=0~ s O (00,004 1) = 1+ (001, 00) | = o,
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Indeed if j = m(1) — 1, then (4.21) writes

0_
1 _ pgi(O)—l (CO B xm(0)73/2) — At [ha B hm(0)73/2
Pm(1)-1 & X1 372
oL (8% = X(0)—3/2) +a’pLAt iy
- L,
@1 — Xm(1)-3/2

using h* (p%(o)_l,p%(o)H) —f(oL) — wp by (4.29) and ¢! = &° + a%At, and that
xm(l)_3/2 = xm(o)_l/z for the Case B.

Similarly if j = m(1) + 1, then the right density average (4.22) leads to

0 o
) (Xm(0)+3/2 = E0)PN 0y 1 + DX, g) 4o — At [hm+(o)+3/z —h ]
Pm(1)+1 =

Xm(1)43/2 — gt

(Xm(0)+3/2 — Co)pR + Axpr — At [hgjgo)%/z _ hzx]
- 1 = PR/
Xm(0)+5/2 — 6

B0)43/2
+
for the Case A yields the same result and hence omitted to avoid repetition. This

implies that for n > 1, we can iterate this to have

since — h* = apr and p}) = pr,j > m(0) + 1. A similar computation

1/2 . *
= T e dx,  VjeZ'\{mn)},

] 1/2
given in (4.31), completing the proof. O

Recall the complete admissibility germ, G, defined in Chapter 3 of this thesis. A
useful interpretation of this lemma is that if pg € G,, then the approximate solution
with the adapted mesh scheme also belongs to the germ. This will come in handy
when one needs to prove convergence of the scheme to § entropy process solutions
using the L™ stability estimate and the discrete entropy inequality.

For the remaining sections, we introduce the following functions in order to keep
the presentation of the scheme simple

(8" = Huuy—32) b — Bt (b,c) = h"(a, b))

H,im—1(a,b,c) =
-1 ) E" — Xpy(n41)-3/2

, (4.32a)
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(%372 =€) b= AL[" (b,c) — h*(a,b)]

H,m(a,b,c) = , (4.32b)
o ) Xin(nt1)43/2 — 6"
(xm(n)+3 s gﬂ) b+ Axc — At [ (b, ¢) — h*(a,b)]
Hon(my1(a,b,¢) = e (4.32¢)
Xm(n+1)+3/2 — G

These functions are the distinct marching formulae based on the equations (4.21),
(4.22) and (4.24).
The resulting finite volume scheme comes down to the following set of equations:

forj<m(n+1)-2,

n n At n— n n n— n n
Pj = Pi T Ax [hj+1/2(|0jfpj+1) - hj—1/2(pj—1/pj )], Vn €N, (4.33)
P;—i(_,}+1)_1 = j{m(n)fl (9:111(11)72/ prnn(n)fl' p?n(n)Jrl)’ either Aor B,Vn € IN,
(4.34)
pn+1 _ { j{m(”)(p;(n)—l’pzi(n)—&-l’p;(n)—l-z)’ if Case A, Vn e N
m(n+1)+1 n n n ’
() j{m(n)ﬂ(Pm(n)—1fpm(n)+1'Pm(n)+z)f If Case B,
(4.35)
forj>mn+1)+2,
At
P?H =0 - Ax 155 2 (0f 1) = 125 o (01 0) ], Vm €N, (4:36)

with p? given by (4.17), Vj € Z*.

4.4.2 Stability of the scheme

In the next lemma, we prove an L™ —estimate on the approximate solution of (4.1).
For the following sections, let’s introduce the notation 9,3 : [0, R]?> — R be the
partial derivative w.r.t. the i—th dependent argument of the function 3. The func-
tion in (4.32a - 4.32c) allows the scheme to be written as a function of up to four
arguments and from this function, one can prove the stability and monotonicity of
the scheme. See [41].

Lemma 4.2. Assume that pg € L*(Q);[0,R]), R > 0and 1z be the mesh by the discretiza-
tion scheme, then under the CFL condition (4.14), the numerical scheme is monotone and
the finite volume approximate solution p®(t, x) given by the scheme satisfies

0<pf <R, VJo<j<)i, VneN.
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Proof. In what follows, we drop the superscript n on p and « for notation conve-
nience. We first verify that the scheme is monotone i.e. h"* and h*, defined at
(4.18) and (4.19) respectively, are non-decreasing in their first argument and non-
increasing in their second argument.

Observe immediately that h* (0,,(4)—1, Om(n)+1) and h;ﬁ; /» Lipschitz continuous in

both arguments with Lipschitz constant || f’ || and max{||f'||.., || }. Therefore the
montonicity of the scheme can be studied using their derivatives. Since the flux
is classical for j ¢ {m(n) —1,m(n) + 1}, it is easy to infer monotonicity of the
scheme from the classical properties of the standard Godunov fluxes h"'*. See also
[87, Proposition 2.1]. We then focus on h*.

Recall from Lemma 3.2 of Chapter 3 of this thesis thatif & > v(0,,(,)41), there exist
a unique p* such that interface numerical flux writes, i* = h*(0,,(,)_1, Pom(n) 1) =

_f(p*) - “P* = f(pm(n)—H) — XOm(n)+1-
This implies that, 914" = 0 and

3" = F'(Oum(n) 1)) = & = P 419 Oy +1) + 0 (O(uy+1) — & < 0,

since v is a decreasing function. Similarly, if & < —v(0,,(s)—1) then i* = f(p*) —

ap* = —f (pm(n)_l) = AP (n)—1 and the partial derivative w.r.t. first argument is
given by

0" = —f (Omm)—1) = & = =Oum(m)-19 (Om(n)—1) = 2(Om(n)—1) — & >0,
and d2h" = 0. Next, we show that the functions H,,,,)_; and 3{,,(,,); defined in

(4.32a) and (4.32c) respectively are non-decreasing functions in all their arguments.

Lets start with 3(,,(,,) 1 and differentiate w.r.t. the first argument

Atalh“(ﬂl, l’)) >0

al'{}cm(n)—&—l(a/ b/ C) = én+1 —

Xm(n+1)4+3/2 —
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by the monotone arguments of h* presented above and

Ax - Atazhg(“n)ﬁ/z(b,c)
Xm(n+1)+3/2 — gt Xm(n+1)+3/2 —
o Ax = Atmax{|| |, [16"]l o0}

93Hy(ny+1(a,b,c) = gt

B Xm(n+1)+3/2 — gntl
> Ax —1/2Ax > 0.
Xm(n+1)+3/2 — 6"

The partial derivative w.r.t. the second argument also gives

(o) 372 — €)= D[ (b,€) = 9h%(a,b)]

92 (n)+1 (a,b,c) = gn+l

Xm(n+1)+3/2 —
(4.37)
We now verify that (4.37) is non-negative for all a.

D) Ifa € [0(0m(n)=1), 0(Pmn)41)] or & < —U(p;(n)il), then (4.37) is

Xm(n)+3/2 — ¢"— Atalhz,l—’(—n)+3/2(bl c)
(?H_l

azj‘fm(n)Jrl (a/ b,C) = Xm(n+1)+3/2 —

Ax — Atalhﬁn)%/z(b, c)

> ST

Xm(n+1)+3/2 —

which is non-negative by the same deduction as in d33(,,(,) 41 above.
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2) If & > v(0y(n)41), then (4.37) becomes

Ax— AE [ (b,c) — 3ok (a, b))

H,,(mn+1(a,b,c) >
=t )+1( ) Xm(n+1)+3/2 — g+l

B Ax — At [alh”fn)%/z(b,c) — f'(b) + oc]

m

Xm(n+1)43/2 — g+l

o Ax = At2[|f oo + 18" e0)
= _Cn—l—l

Xm(n+1)+3/2
. Ax — 3At max{ || f'||eo, | ||co }

B Xm(n+1)43/2 — Cn+1

2/3Ax >0,

T Xp(na1)4s2 — G T

provided that a stricter version of the CFL condition (4.14) holds:

Atmax{Hf’!

oo’

, 1
ot < gAx-

J
Next, we proof the stability of the scheme. That is to verify that (p;i) " lies in

j=lo
J
[0, R], then (p]’.”rl) .1 also belongs to [0, R]. It is easy to verify that

7=Jo
fHm(n)fl (01 0, 0) =0

and
U-Cm(n)(O, 0,0) = ﬂ{m(n)H(O, 0,0)=0,

because of the consistency of #"* and h*. Similarly

(S 32— EVR+AXR = At [ (R,R) = " (R, R)

(n)+3/2
X (R,R,R) = ~ ,
m(n)+1 Xn(ni1)13/2 — gn+l
_ (xm(n)+3/2 - gn)R + aAtR _
Xm(n+1)4+3/2 — gt '

foralla € R. The same calculations for 3{,,,)_1 (R, R, R) and 3(,,,(,,) (R, R, R) yields
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the same results and hence is omitted to avoid repetition. Therefore we can con-
clude that
0<pf<R VJo<j<h VneN,

to complete the proof. O

Another important property of a scheme that justifies the convergence of scheme
to entropy weak solutions, is to show that it possesses a discrete per cell entropy
inequality. Using this inequality allows one to pass to the continuous entropy
inequality as Ax — 0. See [41]. We shall adapt the following notations,

al b=min(a,b) and aTb = max(a,b).

Proposition 4.2. Let p;?, Vn, j be the finite volume approximate solution obtained by the

monotone scheme (4.20 - 4.24). Suppose the pair of constants (x~, k") € [0, R]? satisfying
(4.29) defines the peicewise constant function

]

W ) xT ifj<m(n) -1,
K — {K+ A (4.38)

Then under the CFL condition (4.14), the following discrete ‘per cell” entropy inequality
holds:

_ . - .
" — x| Ax < { o T |Ax = At EHJH/Z - Hjl/zg fj<mn+1) -2,
] J -

o} —x*|Ax— At (HY , —H ), ifj2m(n+1)+2.

(4.39)
Furthermore, if j = m(n+1) — 1
& — Xyp(n)—

n+l _ . — m(n)—3/2 n _ f‘_
P]' Ko< é’n—!—l — Xpu(n+1)-3/2 pm(n)—Z K
At
H* — H", (4.40)
Cn—i—l — Xp(n+1)-3/2 < m(n)—3/2>
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and if j=m(n+1)+1,

ol Kt < Xm(n)+3/2 — 6" n _ k+‘
Ji — X(n+1)1+3/2 — Cn+1 m(n)+1
Ax At
- k| - (Htt s — HY),
Xn(nt1)43/2 — érn+1 (n)+2 Xn(ns1)43/2 — éfnJrl m(n)+3/2
(4.41)
where,
Hi o = W (0 TR 0fa TeT) = B oo Lo, oy L),

Hi' o = i (0] T, 07 TeT) =BGy o (0f Lk, 0fy LxT),
H* = B (0501 T8 Omyan T8) = B (001 L %7 Oy 1 L 57D

Proof. First, let’s observe that the constants, x~ and kT are ‘steady state solutions’
of (4.1) thanks to the well-balanced property given in Lemma 4.1.
Since we use the classical Godunov flux and marching formulas for j # m(n),
m(n) 4 2 then the discrete entropy inequality is simply
+1 _ + +
: '\ |P] K 7l H]n+1/2 Hn ~1/2
<0,
At Ax -

0]

(4.42)

using case B. This can be verified using the same approach in [41]. However,

for j = m(n+1) —1 and m(n + 1), we deduce the following using Case B. If

j=m(n+1)—1, then

k(8" = X(n)—3/2) — AE[H* (k7 k7)) —h" (k7 k)]
& — Xp(ng1)-5/2

Hon(n)— (K K K")—

=K .
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The monotonicity of H,,(,)_1 implies,

(Cn - xm(n)—3/2)p:ln(n)72 L x™

n+1 J_ K_ >
pm(nJrl) 1 = §n+1 — Xpu(n+1)-3/2
At 4 n — n —
o éfnJrl — Xp(nt1)-3/2 [h (pm(n)—l L x ’pm(n)—l-l L x )
_hn_(qu(n)*Z J_ K_’p:ln(n)fl J_ K_):| ’
= Hon(n)-1Ommy—2 L € Oy -1 L K Onyp1 L €7)-
Similarly
pnmvﬂ) Tr < :Hm(n)—l(p:ln(n)—ZTKi’p;li(n)—lTKifp:ln(n)—i—l_rxi)'
Therefore
p”mJ(rl) —x | = p”*l) [ TK™ —p’;:(rl) L Lx,

¢" — Xim(n)—3/2 — -
I (an(n)—z Lx — P:;(n)—z 1x )

At
— H* — H”_
¢ = Xp(ny1)-5/2 ( = 3/2>
_ ¢" — Xim(n)—3/2
C’n—i—l - xm(n)—3/2

At
Cn—l—l — Xm(n)—-3/2

m(n)—2 — K

n | (H* —Hy o)

which is exactly (4.40).

In a similar way, if j = m(n + 1), we know that the function 3(,(,4 is also non-
decreasing in all its argument. We deduce that

sty — K1 < Iy 1 Oy -1 T Oy o1 TE T gy 2 THT)

- :Hm(n)—&—l (pZ(n)—l 1 K+/ p;(n)—kl 1L K+'p;(n)+2 = K+)

Xm(n)+3/2 — G o B k+‘ N Ax o e
Xm(n4+1)+3/2 — (;IHH m(n)+1 Ym(n+1)+3/2 — €n+1 m(m)+2
At

n—+ B o
X(n41)+3/2 — & (Hm(n)+3/2 H )

which is the inequality (4.41). The same deductions can be done for case A. O]
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4.5 On the convergence of scheme

In this section, we study the convergence of the scheme defined by (4.20) - (4.24).
The first step to prove convergence of a numerical scheme is to establish the com-
pactness of the approximate solution. It consists in obtaining a spatial bound on
the total variation, and then pass to the limit of the solution along a converging
subsequence. As scalar conservation laws with discontinuous flux are known to
be resonant systems, thus a system with no spatial total variation bound for the
conserved variable p, it is almost impossible to establish convergence using this
standard approach [3, 4]. Nevertheless, this difficulty has been overcome by sev-
eral authors who have studied conservation laws with space discontinuous flux
function via the so-called Temple functionals. The functional is named after Tem-
ple [85], who was the first to propose the singular differentiable transformation
denoted @ : (p, k) — (z,k) such that the variation of the approximate solutions
remains uniformly bounded in the zc—plane and therefore the Helly’s theorem,
when applied on this functional, gives convergence (along a subsequence) of the
approximate solutions. As mentioned in the previous chapter of this thesis, the
problem considered in this work has no bound on the total variation to the best of
our knowledge. For this reason, we look for an alternative approach to prove the
convergence of the scheme.

An alternative analytical tools utilized to prove convergence for discontinuous
flux problems are the compensated compactness approach originally introduced
in [84] and first applied in [59] to prove convergence of approximate solutions
by the Lax-Friedrichs scheme to the weak entropy solution. It was shown that
compensated compactness method handles sign changes in the discontinuous co-
efficient very well and does not required any convex/concave assumptions on the
flux function as well. However, it must be noted that the Lax-Friedrichs scheme
has a numerical viscosity, an approximating term in the r.h.s of (1.13), with which
ngcl’z compactness was established and relied upon to prove convergence. Given
that the Godunov’s scheme has no viscosity, we cannot use compensated compact-
ness to the present problem.

4.6 Numerical examples and validation

In this final section, we apply the numerical scheme proposed in this work to ap-
proximate solution to selected Riemann problem, investigate the performance and
accuracy of the proposed scheme and finally study the order of convergence of the
method through the L-norm.
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Algorithm 1: Algorithm for the Finite volume method with the local mesh
adaptation

Input: Initial and boundary data for (4.1) and ¢
Output: Computes the densities at t"*! from the densities at .
Data: I space domain is discretized into Ny + 1 grid points.
my = m(n),my =m(n+1) € Z, the numerical indices to track the
position of the turning curve at #", "1 respectively.
X is an Ny x (Ny + 1) matrix of interface points.
Find m,
X[AJ[1:m —1] =1I[1:mq —1]
X[1][m] = &'
X[1][m14+1: Ny +1] =1I[m; +1: Ny +1]
while n < N; OR [¢"| < 1 do
Compute &1 and m,,
if my = mq + 1 then
Xn+1][1:my—1] =1[1:my —1]
X[n +1][my] = "
X[n+1][my+1:Ny+1] =1I[my+1:Ny+1]
| Compute p" ! using formula (4.20), (4.21) and (4.22).
Ise if m, = m; then
Xn+1][1:my—1] =1[1:my —1]
X[n +1][my] = "
X[n+1][my+1:Ny+1] =1I[my+1: Ny+1]
| Compute p" ! using formula (4.20), (4.23) and (4.24).

| Update "1 = &" + a"At, my

(0]




4.6. Numerical examples and validation 96

We also compare our results with other classical finite volume methods and show
that our scheme captures non-classical shocks without oscillations. Furthermore,
we apply our scheme to solve the 1D Hughes” model [57] of pedestrian flow model
and compare the order of convergence to similar results obtained in the literature.
In the following examples, we use the turning curve given as a piecewise linear
function of the form:

t
E(t) =&+ /0 & (s)ds, (4.43)

and the following sets of initial data and slopes for C :

Initial data &(s)

0.6, if —1 0.3 4/10, ifo0 0.6
Ex. 4.1: pp(x) = ' s &= / ! sS8s
09, if03<x<1. 0, if s > 0.6

1/10, if0<s <03,
& =1{1/4, if03<s<0.6,
0, if s > 0.6.

09, if —01<x<05
0.6, if otherwise.

Ex. 4.2: po(x) = {

Solution profile at T=0.55

05 SlanQard Scheme | |
--------- Turning curve
0.45 Modified Scheme | |
Exact Solution
04
0.35 |
. 03r
=
T025
0.2
0.15
01
0.05
-0.3 0.2 -01 0 0.1 0.2 0.3 0.4

X

FIGURE 4.5: A zoomed view of exact solution and the numerical so-
lutions with the standard Godunov’s flux and the modified flux at
T = 0.55 with Ax = 1/1000.

These examples are chosen in order to observe changes in slope of the turning
curve discontinuity as well as its interactions with the classical waves out of which
non-classical waves are formed. The exact weak solutions are constructed by the
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method of characteristics. For both examples, since p(0,x) > 1/2, the boundary
conditions dictates that rarefaction waves enters the boundary points {(t, —17)}
and {(t,17)} such that p(t,£1) > 1/2 for every t > 0.

Example 4.1. At x = 0.3, a shock defined by oq(t) = 0.3 — 0.5¢ is created and
at x = —0.1 two undercompressive shocks separated with vacuum and defined
op(t) = —1/10(1 + 4t) and or(t) = —1/10(1 — 4¢) are created. Observing that
¢(t) = or(t) and since 7 > ¢7, the turning curve discontinuity shall collide with
the classical shock 7 at t = 4/9. The weak solution for t € [0,4/9) writes

0.6 if —1<x<or(t)

0 if —op(t) <x<E(t)
0.6 if(t) < x < ogr(t)
09 ifor(t) <x<1.

p(t x) =

Att = 4/9, a small rarefaction is formed and a solution of a new Riemann problem
at ¢ is solved with an intermediate state pps = 1/10 (7 —1/24/ %) for4/9 <t <

6/10. The solution in this time interval writes

(0.6 if —1<x<op(t),
0 if —op(t) <x<7/90— (t—4/9),
o(tx) = 57 + 3 17/90 = (¢ —4/9) < x <7/90 — Rmax(t —4/9),
oM if 7/90 — Rimax(t —4/9) < x < &(t),
[ 0.9 if&(t) <x <1

Here Ryax = 1/5 (2 —1/24/ %) , denotes the maximum slope of the rarefaction

fan.

Example 4.2. In this example, at x = 0.5 a rarefaction given by RO(t) := 1/2 +
f'(p)t, where p € [0.6,0.9] is formed and two shocks defined by o7 (t) = —0.1 +
0.4t and og = —0.1 + 0.1t emanates from ¢(0) = —0.1 for 0 < t < 3/10. The



4.6. Numerical examples and validation 98

Approximate solution with Ax =0.001

Approximate solution with Dx=0.00066667

3.5

08

0.7
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-1 -08 06 04 02 0 02 04 08 08 1
X X

FIGURE 4.6: Approximate solution of examples 4.1 (left) and 4.2
(right) with Ax = 1000 and CFL = 0.45 in each case.

solution writes

(6/10 if —148t/10 < x < or(b),
0 ifop(t) <x < {(t),
p(t,x) =4 0.9 if &(t) <x <RY. (),
(t—x)/2t ifRY. () < (x—1/2)/t < RO (1),
| 6/10, if1/2(1—1/5) < x <1—8t/10,

where R%. and RJ,,, represents the minimum and maximum speeds of the R°.
Att = 3/10, turning curve increases velocity with ¢’ > ¢, and so a new Riemann
problem at ¢ is solved with an intermediate state of py := % (50 — v/1636) and a
small rarefaction denoted R(t) := — 75 — f'(p) (t — ), where p € [0, pp), after &
interacts with og. For 3/10 <t < 6/10

(6/10 if —1+8t/10<x <op(t),
0 if o1 (t) < x < RL; (1),
by, iR () <x <R
pt,x) = &5(50 = v/1636), if Rhy(t) < x < (1)
9/10, if &(t) <x < R%. ()
(t—x)/2t if RO, (t) < (x—1/2)/t < R (1),
| 6/10 RY (1) <x <1-8t/10,
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12 Approximate solution with A x =0.001 at T=0.001 12 Approximate solution with A x =0.001 at T=0.15
Approximate solution Approximate solution
1 1
0.8 0.8
0.6 0.6 1
0.4 0.4
0.2 0.2
0 0
1 0.8 06 -04 0.2 0 0.2 04 06 0.8 1 -1 08 -06 -04 0.2 0 0.2 04 06 0.8 1
12 Approximate solution with A x =0.001 at T=0.38 12 Approximate solution with A x =0.001 at T=0.58
Approximate solution
urning curve, £=0.6x t
1 1
0.8 0.8
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0.2 0.2
0 0
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FIGURE 4.7: Evolution of example 4.1.
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Example 4.1 Example 4.2
Ax Err(Ax) —ln(lir(rA(f)x)) Err(Ax) —ln(lir(g(ﬁ)x))

1/50 | 4.3335¢ —2 0.802 4.8727¢ — 2 0.66
1/100 | 2.3590e — 2 0.814 2.3218¢ — 3 0.71
1/250 | 1.0639%e — 2 0.823 1.1388e — 2 0.73
1/500 | 5.8867e — 3 0.826 6.5496¢ — 3 0.73
1/1000 | 3.2550e — 3 0.829 3.7091 -3 0.74
1/1500 | 2.3086¢ — 3 0.830 2.7588¢ — 3 0.74

TABLE 4.1: L1—errors at T = 0.55, for Example 4.1 and at T = 0.58 for
Example 4.2 with mesh size from Ax = 1/50,...,1/1500.

4.6.1 Order of convergence

In this section, we analyse the accuracy of the proposed numerical scheme with
the above examples. To do this, we estimate the L! errors of the scheme and use
it to deduce the order of convergence on examples 4.1 and 4.2. These examples
are carefully chosen to enable us observe the performance of our scheme during
collisions between the turning curve discontinuity and incoming waves.

We define the L-norm at k = T/ At as:

1
Err(k,Ax) =)

=Jo

o(T, x}) = pj| Ax, (4.44)

where p(T, x) is the exact solution which we use as the reference solution and p}‘ is
the approximate solution obtained with our scheme. Though the two cells adjacent
to the turning curve from the left and right have variable sizes, the total number of
cells at each time is constant. In the following simulations, we use a CFL number of
0.45, choose Ax that ranges from 1/50 to 1/1500, and plot the log-log graph of the
errors against Ax values at the time levels where the turning curve discontinuity
collide with the classical incoming waves. Table 4.1 contains the numerical values
representing the order of convergence for Examples 4.1 and 4.2.

We now show the graph of the approximate solution in the x — ¢ plane for exam-
ples 4.1 and 4.2. It can be observed from Figure 4.6 (left) that the approximate
solution of Example 4.1 contains a shock wave that starts from x = 0.3 att = 0
and travels left with a speed less than ¢’ and then collides with the turning curve
discontinuity at approximately t = 0.444. In Example 4.2, we could observe an
interaction between the turning curve and a rarefaction. These are also confirmed
by the presentations of the exact solution given above.
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To observe the performance and accuracy of the scheme against the standard Go-
dunov’s flux, we compare in Example 4.1 at T = 0.55, where the interaction be-
tween classical shock wave and the turning curve occurs in figure 4.5. From the
figure, the approximate solution by the standard Godunov’s flux exhibits spuri-
ous oscillations at x = ¢(t) during interactions between ¢ and an incoming shock
wave from the right. On the other hand, the modified scheme do not only elimi-
nate these oscillation but also effectively captures the non-zero intermediate state
created after the interaction.

order of convergence for Example 4.1 and 4.2

=—8— Example 4.1
35+ —6— Example 4.2

-4.5

log(Err(A x))

-6.5 ' ' ' ' ' ' '
7.5 -7 6.5 6 55 -5 4.5 -4 -3.5

log(A x)

FIGURE 4.8: log-log graph of example 4.1 and 4.2 at T = 0.55 and
T = 0.58 respectively against the log of Ax.

4.6.2 An application to the Hughes” model

Finally, we attempt to apply the modified scheme (4.20 - 4.24), to generate a simula-
tion of the one dimensional Hughes” model for pedestrian flow where the position
of the turning curve, ¢(t) is not known a priori but satisfies a non-local condition
(5). To specity the model (4), we re-write the equation as a scalar conservation law
with space-time discontinuous flux:

dto + 9x (sign(x — &(1))f(p)) =0, (4.45)
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where, p — f(p) is defined by f(p) := pv(p) and t — &(t) satisfies the implicit re-
lation (5) for each (¢, x) € I1. In order to check the accuracy of our approximation,
we use the same initial as used in [48]:

0, if —1<x<0,

po(x) = { (4.46)

09, if 0<x<1.

and a cost function c(p) = 1/v(p). Actually in [48], the model was solved with
the wave front tracking (WFT) and referenced as the exact solution to which the
approximate solution by the Godunov scheme was compared. Also, in [40], the
authors studied the associated Riemann-type problems by constructing explicit
solutions for small times, after which the Godunov and Rusanov schemes were
applied. Except for the wave front tracking algorithm where the Riemann solver
at the turning curve was explicitly calculated for the approximation, the Godunov
and Rusanov schemes in these works were applied in standard ways. Compare
[87, 48, 40].

The main difficulty here concerns the determination of ¢ at each time. Given a
Riemann data, the initial position of the turning curve is determined by

1 _ c(pr) :

coy= ) 2\ o) o= er w17
1 c(or) -1 if > )
2 \c(or) HPL = PR

With a general initial datum p(0,x) = po(x) and the boundary conditions (4d),
(4c), the simplest way to apply our scheme, is to solve once the Eikonal equation
(4b) with the fast sweeping method [92] at t = 0 to determine the starting point
of the turning curve and then approximate by a linear function the turning point
curve such it has a "local” slope determined by

(t)
0 el +elp)] == [ clolonay+ [ oty a9

for small time ¢ > 0, where p*(t) = p(t,&(t)4) are the traces at &. By discretiza-
tion, (4.48) with ¢" = ¢(t") can be re-written for every m,

an [c(Phy1) +clom)] =

m N
- 2 C(P?)(x?ﬂ/z - xﬁl/z) + 2 C(P}q)(xﬁl/z - xﬁlp)r
j=1 j=m+1

where m = m(n) is such that x,, 1,5 < ¢" < x,,11/2. The turning curve position
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With mesh adaptation |  Without mesh adaptation

Ax Err(Ax) % Ax Err(Ax) %
1/250 | 2.09¢ — 2 -0.62 1/250 | 2.49¢ —2 -0.66
1/500 | 6.20e —3 -0.74 1/500 | 1.52¢ —2 -0.67

1/1000 | 2.30e — 3 -0.80 1/1000 | 9.03e —3 | -0.68

1/1500 | 1.60e — 3 -0.80 1/1500 | 6.66e —3 |  -0.69

1/2000 | 1.10e — 3 -0.82 - - -

1/4000 | 6.41e — 4 -0.82 - - -

TABLE 4.2: Comparison of the L!-norm error between the Godunov’s
scheme by [48] and our scheme using the approximate solution by
WEFT method as the reference solution at T = 1.2.

is then updated with &"*! = ¢" 4+ a,At and p is approximated by (4.20 - 4.24)
using the modified flux at the ¢ for all n € IN. Recall that the implicit relations
(5) and (4.48) are non local and at each time require information on the "global’
distribution of p. Therefore a straightforward updating the position of ¢ by the
proposed scheme of this work may lead to inaccuracies in comparison with the
values by [48]. One way to overcome this problem is to apply the fast sweeping
method at each time to generate {{"} and then use a linear interpolation formula
on the generated values, {" so that at each time step we can determine the slope
and next position of §. More precisely, let ¢} := @(t", x;) for simplicity,

e Given p;?, solve the eikonal equation (4b) by the fast sweeping method to

obtain ¢ = (¢,...,¢};). For each n > 1, there exist m € Z such that
Pmax (", xm) = max @ and &" 1= xy.
J

e We then update ¢

and ay, = (&" — " 1) /At forn > 1.

It should be noticed that the WFT solution is not associated to an uniform grid as
it is the case for the approximate solution computed by our scheme. As such, a
data processing step is needed in order to compare the two approximations with
the WFT method and the finite volume method. To do this comparison, one needs
to define a reference grid on x € [—1, 1] with a fixed size, Ax, compare them to the
position of the finite volume flux interface and select the corresponding solution
at that point. The finite volume solution at this point is then compared to the
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reference ‘exact’ solution obtained by the WFT method. Once this is done, we use
the formula (4.44).

Approximate solution with Ax =0.001

0.9
0.8
2
07
0.6
1.5
0.5
- 0.4
1 0.3
: 0.2
05 0.1
.. .
0 01
Kl 0.5 0 05 1

X

FIGURE 4.9: application of the scheme to the Hughes” model with
Ax = 1000, CFL = 0.45 and up to time T = 2.3.
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Chapter 5

Conclusions and Discussion

In this thesis, we considered a first order PDE with discontinuous space-time flux
coefficients. In general, the time dependent jump discontinuity is given a priori
as a Lipschitz continuous function. However, we use a piecewise linear function
in order to simplify the analysis. The flux function is genuinely non-linear and
satisfies the same assumption as the commonly used flux functions for traffic flow
models. With the appropriate modification and assumption the equation could
serve as starting equation for pedestrian and traffic flow models. For this reason
we briefly recalled examples of models by hyperbolic conservation law with vari-
able coefficients such as the traffic flow models with variable speed ramp and road
conditions, the Hughes’ model of pedestrian flow and the ion etching model in the
introduction section.

The equation featured new theoretical aspects of wave interactions and entropy
admissible weak solution. Toward this goal, the theory of entropy solutions for
the general scalar conservation law was revisited and reviewed with examples.
A definition of entropy solutions with Kruzkhov admissible flux away from the
interface was derived. This framework of solution was taken in the same sense
of that developed by Karlsen, Risebro and Towers [58]. This enabled us to fur-
ther derive some stability properties of the solution, including L! distance and L!-
contraction principle. The former was based on the construction of exact solutions
of the Riemann problem at the interface. This led to the well-posedness of the Rie-
mann problem. Furthermore, analysis of the total variation in the solution reveals
that it is higher than the total variation in the solution. A literature search further
revealed that this phenomena is common for problems of the nature considered in
this work. In such cases, a singular mapping approach are used to overcome this
difficulty. However, for our problem it is not clear if it is even possible to obtain a
global bound on the total variation. In the absence of this estimate, we extended to
the notion of admissible germs, which elucidate a dissipative behavior across the
flux interface.
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Finally in Chapter 4, we proposed a finite volume scheme with local mesh adap-
tation near the flux interface that results in a moving mesh. The mesh adaptation
was done to accommodate for the local non-uniform mesh size and avoids ex-
plicit reconstruction of non-classical Riemann solvers near the interface. Though
it was proposed a numerical scheme using the moving mesh strategy also used in
[31], the reconstruction step in such a scheme would not guarantee that it is well-
balanced and hence proving convergence would be difficult. On the other hand,
using the discretization scheme motivated by the work of [83], the approximate
solution by our verifies the well-balanced property of the scheme, monotone and
stable in L.

The properties of the scheme deduced in this thesis, i.e. well-balanced and L*
estimate paves way for a rigorous study of the convergence of the scheme. This
would be a topic for future studies. Though the PDE considered in this here is
general, it can be adapted to study physical problems in traffic and pedestrian
flows.
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Appendices



Appendix I: Notations

Throughout this work, we used the following notations:

p
ai’/ ax

F f

R
RY, Ry

the unknown of the scalar conservation law.

partial derivative operator with respect to time and space
respectively.

the flux function of the hyperbolic conservation law in this
work.

the set of real numbers (—oo, +00).

the set (0, +o0) and the set [0, +0), (i.e. positive real num-
bers including 0) respectively.

the set of natural numbers.

the set of natural numbers including zero.

a subset of R.

the set R™ x R.

the bounded set of R™ x] — 1,1 and | — 1, 1| respectively.

a space of infinitely differentiable and continuous functions
from Q) to R.

the set of bounded and measurable functions from () to
[0, R].

left and right traces in p towards an interface at ¢.

The total variation of a given function p(t, -).

the space of Lipschitz continuous function from [0, R] to
R*.

the indicator function equaling 1 if x > ¢(¢) and 0 other-
wise.

The space of functions of bounded variation from R* to R.
The numerical time step .

The grid point for j € Z at t",V € IN.

A computational cell at t"*, Vj € Z,n € IN.
The space step at the cell 67.

108
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Appendix II: The numerical code

The following is the MATLAB code used to show the simulations of the numerical
solution proposed in this thesis.

O 0 N N Ul R W N =

o
[ N =]

o\°

Description
A Godunov's scheme for space-time discontinuous CL:
\rho_t + (K(x,t)f(\rho))_x = 0 on the interval
[-xa,xa], xa=1l and flux is
f(U) = \rhox* (1-\rho)
K(x,t) = sign(x-xi(t))
boundary condtions: \rho(t, —-xa)=\rho(t, xa) = 0.
In the code, U=\rho.
Files
xi.m encodes the information (like its slope) of the turning curve.
godunov.m has the implementation of the modified flux at xi.
flux.m is the flux f (\rho)=Ux (1-\rho)
square.m contains the Riemann data
d
t

o\

ata2.m contains a general initial data (piecewise constant).

he function profileU.m may be used to obtain a color map of the
U in the

$x-t plane.

o0 o0 o0 O° O O O o° O° A A° A° o o oP

clear
close all
clf

%global declarations
global Nx

global Umax

global Ucrit

global xa
global xb
global Dt
global Dx
Umax = 1; Smaximum density wvalue

7
Ucrit = 0.5; % critical density

%$Space dicretization
Nx= 2000; %the total number of cell grid point

xa = —-1; xb =-xa;
Dx = (xb-xa)/(Nx); % the space step size
I = linspace(xa, xb, Nx+1);

$CFL condition
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42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

cfl = 0.45;
Dt = Dxxcfl;
mu = Dt/Dx;

Tmax = 1.1; %$the maximum time to run the simulation
Tnmax = round(Tmax/Dt) ;

TO = 0.6;

$ T1 = 0.6;

$ T2 = 1.;

Tn0 = round(TO0/Dt);
$Tnl = round(T1/Dt);
$Tn2 = round (T2/Dt)
time_t = 0:Dt:Tmax;

14

$Pre—-location of vectors and matrices

rho = zeros(Tnmax, Nx ); %stores the cell density averages

Xgrids = zeros (Tnmax, Nx+1); %$stores all the grid points

Xcenters = zeros (Tnmax, Nx); S$holds cell centers.

alphas = zeros(l, Tnmax); %store the slope of \xi

Xi_t = zeros(l, Tnmax);

Tcurve = zeros (1l,Tnmax); %needed to be able to show \xi as
vertical line during simulation

TV = zeros(l, Tnmax);

$different slopes of xi apriori

%alphas(l,l:end) = -1.2;
alphas(1,1:Tn0) = 0.6;
%$alphas (1, Tn0+1:Tnl) = 0.;

%$alphas (1,Tnl+1:Tn2)=0;
%alphas (1, Tn2+1:Tn2+2000)=.2;
xi_t(1,1) = -0.1;

$initial mesh grid with adaptation

mO = find(xi_t(1,1) > I(l:end-1) & xi_t(1l,1) < I(2:end));
Xgrids(l, 1:m0-1) = (1: mO-1);

Xgrids(l, mO) = xi_t(1, 1);

Xgrids (1, mO+1:end) I (mO+1:end);

I~ H 1

%$initial centers
Xcenters(l,:) = 0.5 (Xgrids(l, 2:end)+Xgrids(l,l:end-1));

$initial data

rho(l,:) = square(Xgrids(l, l:end-1));
% boundary conditions
rho(:, 1) = 0;

rho(:, end) = 0;
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89
90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107
108

109
110
111

112

113
114
115
116
117
118

119
120
121
122
123
124
125

126

127
128

TV(1l,1) = sum(abs(rho(l,2:end)-rho(l,1l:end-1))) *Dx;
Dfdu = @(u)l-2%*u;

tn = 1;
while tn < Tnmax && abs(xi_t (tn)) < 1-4xDx
xi_t(tn+l) = xi_t (tn) + Dtxalphas(tn);

%$looks for index likely to contain xi”“tn

ml = find(xi_t(tn) > I(l:end-1) & xi_t(tn) < I(2:end));
$finds m(n)

m2 = find(xi_t (tn+l) > I(l:end-1) & xi_t(tn+l) < I(2:end));
$finds m(n+1)

if m2 == ml+l
%% case B corresponding to dot_xi > 0
Xgrids (tn+l, 1:m2-1) = I(1l:m2-1);
Xgrids (tn+l, m2) = xi_t (tn+l);
Xgrids (tn+l, m2+l:end) = I (m2+l:end);

%update centers and cell lengths
Xcenters (tn+l,:) = 0.5 (Xgrids(tn + 1, 2:end) +
Xgrids (tn+l, l:end-1));

$marching formulas for x<xi

hjLl = godunov(rho(tn, 1:ml1-3), rho(tn, 2:ml1-2), -1,
alphas(tn));

hjR1 = godunov(rho(tn, 2:ml-2), rho(tn, 3:ml-1), -1,
alphas(tn));

rho (tn+l, 2:m2-3) = rho(tn, 2:ml-2) - mux(hjRl - hjLl);

%Supdate formulae at x=xi from the left.
ha = godunov (rho(tn, ml), rho(tn, ml+l), 0, alphas(tn));

hjal = godunov(rho(tn, ml-2), rho(tn, ml-1), -1, alphas(tn));

rho (tn+l,m2-1) = rho(tn, ml-1)*(xi_t (tn) - Xgrids(tn,
ml-1))/(xi_t (tn+l) - Xgrids (tn+l, m2-2)) -
(Dt/ (xi_t (tn+l) - Xgrids(tn+l, m2-2)))*(ha - hjal);
rho (tn+l, m2-2) = rho(tn+l, m2-1);

$from the right

hjaR = godunov (rho(tn, ml+l), rho(tn, ml+2), +1, alphas(tn));

rho (tn+l,m2) = rho(tn, ml+1l)* (Xgrids (tn,ml+1)
-xi_t (tn))/ (Xgrids (tn+1l,m2+1) - xi_t (tn+l)) - ...
(Dt/ ( Xgrids (tn+l, m2+1) - xi_t(tn+l)))*(hjaR - ha) +
rho (tn, ml+2)+Dx/ (Xgrids (tn+l,m2+1) - xi_t (tn+l));

rho (tn+l, m2+1) = rho(tn+l, m2);
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$marching formulas for x>xi

hjLrB = godunov(rho(tn, ml+2:end-2), rho(tn, ml+3:end-1),
+1, alphas(tn));
hjRrB = godunov (rho(tn, ml+3:end-1), rho(tn, ml+4:end),
+1, alphas(tn));
rho (tn+l, m2+2:end-1) = rho(tn, ml+3:end - 1) - mux* (hjRrB
- hjLrB);
elseif m2 == ml-1

%% This is a third case corresponding to dot_xi < 0
Xgrids (tn+l, 1:m2) I(l:m2);
Xgrids (tn+l, m2+1) = xi_t (tn+l);
Xgrids (tn+l, m2+2:end) = I (m2+2:end);

%$update centers and cell lengths
Xcenters (tn+l,:) = 0.5 (Xgrids(tn + 1, 2:end) +

Xgrids (tn+l, 1l:end-1));
Dxn (tn+l,:) = Xgrids (tn+l, 2:end)-Xgrids(tn+l, l:end-1);

o\°

o\

$marching formulas for x<xi

hjLl = godunov(rho(tn, 1:ml-4), rho(tn, 2:ml1-3), -1,
alphas(tn));

hjRl1 = godunov(rho(tn, 2:ml1-3), rho(tn, 3:ml-2), -1,
alphas (tn));

rho (tn+l, 2:m2-2) = rho(tn, 2:ml1-3) - mux(hjRl - hjLl);

o\

Supdate formulae at x=xi from the left.
ha = godunov (rho(tn, ml-1), rho(tn, ml), 0, alphas(tn));
hjal = godunov(rho(tn, ml-3), rho(tn, ml-2), -1, alphas(tn));

rho (tn+l,m2-1) = rho(tn, ml-2)*(xi_t (tn) - Xgrids(tn,
ml-2))/(xi_t (tn+l) - Xgrids (tn+l, m2-1)) -
(Dt/ (xi_t (tn+l) - Xgrids(tn+l,m2-1)))*(ha - hjal);

$from the right
hjaR = godunov(rho(tn, ml), rho(tn, ml+l), +1, alphas(tn));
rho (tn+l,m2) = rho(tn, ml)* (Xgrids (tn,ml+2) - .
xi_t(tn))/(Xgrids (tn+l, m2+3) - xi_t(tn+l)) -
(Dt/ (Xgrids (tn+l, m2+3) - xi_t (tn+1)))=*(hjaR - ha);

rho (tn+l, m2+1) = rho(tn+l, m2);

$marching formulas for x>xi

hjLrB = godunov (rho(tn, ml:end-2), rho(tn, ml+l:end-1),
1, alphas(tn));

hjRrB = godunov(rho(tn, ml+l:end-1), rho(tn, ml+2:end),
1, alphas(tn));

rho (tn+l, m2+2:end-1) = rho(tn, ml+l:end-1) - mux (hjRrB -
hjLrB);

else
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166
167
168
169
170
171
172

173
174
175

176

177
178
179
180
181
182

183

184
185
186
187

188

189
190
191
192

193

194

195
196
197
198
199
200
201

%% case A: ml = m2.

Xgrids (tn+l, 1:m2-1) = I(l:m2-1);
Xgrids (tn+l, m2) = xi_t (tn+l);
Xgrids (tn+l, m2+l:end) = I (m2+1l:end);

%update centers and cell lengths
Xcenters (tn+l,:) = 0.5« (Xgrids(tn + 1, 2
l:end-1));

$marching formulas for x<xi

hjL = godunov(rho(tn, 1:ml1-3),
alphas (tn));

hjR = godunov (rho (tn,
alphas (tn));

rho (tn+l, 2:m2-2) = rho(tn,

rho (tn,

2:ml-2), rho(tn,

2:ml-2) - mu
%update formulae at x=xi from the left.
ha = godunov (rho(tn, ml-1), rho(tn, ml),

hjal = godunov(rho(tn, ml-2), rho(tn, ml
rho (tn+l,m2-1) = rho(tn, ml-1)x* (xi_t (tn)

ml-1))/(xi_t (tn+1)

- (Dt/ (xi_t (tn+l) - Xgrids (tn+l,m2-1

+ (Dx/ (xi_t (tn+l) - Xpoints(tn+l,

$from the right

hjaRA = godunov (rho (tn,
rho (tn+l1, m2) = rho(tn,
xi_t(tn))/(Xgrids (tn+l, ml+2)
(Dt/ (Xgrids (tn+l, ml+2) - xi_t (tn+l
; %+ rho(tn,

xi_t(tn+l)));
rho (tn+l1, m2+1) = rho(tn+1,

ml+1l), rho(tn,

m2) ;

$marching formulas for x>xi
hjLrB = godunov(rho(tn, ml+l:end-2), rh
1, alphas(tn));

ml+2), +1,
ml) x (Xgrids (tn,ml1+2) -
- xi_t(tn+l)) -

ml+1l) x (Dx/ (Xpoints (tn+1,

:end) +Xgrids (tn+1,

2:ml-2), -1,
3:ml-1), -1,
*(hjR - hjL);

0, alphas(tn));

-1), -1, alphas(tn));
- Xgrids (tn,

- Xgrids (tn+l,m2-1))

)))=(ha - hjaL);% .
m2-2))) *rho(tn,ml-2);

alphas (tn));
)))*(hjaRA - ha)

ml+2) -

o(tn, ml+2:end-1),

hjRrB = godunov (rho(tn, ml+2:end-1), rho(tn, ml+3:end),
1, alphas(tn));
rho (tn+l, m2+2:end-1) = rho(tn, ml+2:end-1) - mu* (hjRrB -
hjLrB) ;
end
Tcurve(l, l:end) = xi_t (1, tn+l);
TV (tn+l, :) = sum(abs(rho(tn+l, 2:end) - rho(tn+l,l:end-1))) *xDx;
plot (Xcenters (tn+l, :), rho(tn+l,:), '-r', Tcurve(l:Tnmax),

time_t (1:Tnmax), '-.b', 'linewidth',2.0);
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202 hold on
203
204 ylabel ('"\rho(x,t)");
xlabel ('x");
title('Solution profile');

axis([xa-0.1 xb+.1 -0.1 1.17)

205
206
207

208 legend ( strcat ('Dx=', num2str (Dx, '%$4.4f\n'), ', time = "',
num2str (time_t (tn), '$4.3f\n" )), ...

209 strcat ('turning curve, ', '\xi=', num2str(alphas(tn+l)),

"\times t'));

210 grid on

211 hold off

212 pause (0.01)

213 tn = tn + 1;

214 end

The following are the pre-defined functions used in the above code: The flux func-

tion, f(p)

function

-

[f]=flux (U, k)

global Umax;

o)

$global wv;
if U> 0 && U<Umax
f=k*xU.* (1-0U);
else
£=0;
end

O ® N G e W N

=
S

The numerical flux function,

1 function [g] = godunov(ul, ur, k, a)

2 nl = length(ul);

3 % nr = length(ur);

4 g = zeros(l,nl);

5

6 v = @(u)l-u;

7

s Dfdu = @ (uu, kk) kkx*(1-2xuu);

9 for 1 = 1:nl

10 if k ==

11 %$intermediate state for a>v(ur)

12 umra = 0.5x(1 + a) - sqgrt((0.5x(1l+a)).”2 +
ur (i) *(l-a-ur(i)));

13 umrb = 0.5%x (1 + a) + sqrt((0.5%(1+a)).”2 +

ur (1) x (l-a-ur(i)));
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14 ua = [umra,

15 umr = ua (uax>
16 $intermdedia
17 umla = 0.5 (
18 umlb = 0.5x% (
19 ub = [umla,

20 uml = ub (ub>

if a>v(ur (i)

umrb] ;

0 & ua < ur(i));

te state for a<-v(ul)

l-a) - sqrt ((0.5x(1l-a)).”2 + ul (i)~ (l+a-ul(i)));
l-a) + sgrt((0.5%x(1l-a)).”2 + ul(i)*(l+a-ul(i)));
umlb];

0 & ub<ul(i));

)

23 gg = flux(umr, -1) - axumr;

24 elseif a < —-v(ul(1i))

25 gg = flux(uml, +1) - axuml;

26 else

27 gg = 0;

28 end

29 g(i) = gg;

30 else

31 if Dfdu(ul(i),k)<0 && Dfdu(ur (i), k)>0
32 if ul(i) > ur(i)

33 Uc = fzero(Q@(u) Dfdu(u,k), [ul(i),ur(i)]);
34 else

35 Uc = fzero(@(u) Dfdu(u,k), [ur(i),ul(i)]);
36 end

37 g(i) = flux(Uc,k);

38 else

39 s = (flux(ul(i),k)-flux(ur(i),k))/(ul(i) — ur(i));
10 if s > 0

41 g(i) = flux(ul(i), k);

42 else

43 g(i) = flux(ur(i),k);

44 end

45 end

46

47 end

48 end
The initial data

1 function u=square (X)

2 % U=square (X) create a square wave on X

3 global xa;

4 global xb;

5 n = length (X);

6 rhor = 0.9;

7 rhol = 0.6;

8 % rhol = 0.;

9 % rhor = 0.9;

x0= 0.3;

=
o
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11

for i=1:n

end

if

(X (1)
u (i)

elseif (

end

u (i)

< xb)

> xa) && (X (1) < x0)
= rhol;

X(1i) > x0)&& (X (1)
= rhor;
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