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Abstract

This thesis was written under a rather curious analytical eye on the behavior of Kuramoto
oscillators. Note that ours are not the first eyes that fall on this type of oscillators, the good
thing is that the dynamic system has multiple forms and questions, and, like the universe,
mathematical theories continue to expand and give us more opportunities to analyze a
problem in different ways, allowing us to cover every question we have. This is how we
arrive at this thesis, where we work with two-layer oscillators, analyze their behavior and
exploit their structure through the lens of dissipation theory.

In the first part of the thesis, we present the theory surrounding the Kuramoto model,
from the first questions raised about the synchronization phenomenon, to the most significant
properties of the model. We also establish the mathematical framework that will be used in
the rest of the chapters of the thesis.

The second part of the thesis is focused on the proposed two-layer models, the work of
systems over networks is quite popular nowadays since it allows us to apply them to a great
variety of phenomena, such as human interactions, neuronal, electrical networks, among
others. In general, they are studies focused on the general behavior of the system and not on
the behavior of each layer, our interest goes beyond this uniform coupling and falls on the
ability of each layer to achieve a synchronization state under a fairly weak coupling between
layers, the study of the models under this perspective allows us to exploit the characteristics
of its own topology. Thus, we analyze the stationary state of the system with identical
oscillators and the behavior of the corresponding order parameters both analytically and via
numerical simulations. Then, we study the case for non-identical oscillators, analyze the
diameter of each layer and present the sufficient conditions to control the diameter. Moreover,
our numerical results allow us to validate the presented theoretical derivation.

Finally, in the third part of the thesis, our focus is redirected to the study of dissipation
theory. We make a review of the Dissipation Function and cast the Kuramoto model in the



framework of the exact response theory. We analyze the behavior of the Dissipation Function
in the simplest case of two interactive oscillators as well in the presence of the N coupled
oscillators. Then, we compare the predictions of linear response theory with those of the
exact response theory. Finally, we extend our analysis to a model constituted by two sets (or
"layers") of Kuramoto oscillators, interacting with one another via a small coupling constant
ε . Our theoretical derivation is also complemented by numerical simulations of the Kuramoto
dynamics.
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Chapter 1

Introduction

This thesis is devoted to researching nonlinear systems of oscillators constrained to Kuramoto
dynamics, the analysis of their behavior, and the exploration of the system in terms of the
exact response theory.

This above sentence points out two of the three main topics of the thesis, the Kuramoto
oscillators and the exact response theory. As a starting point, we consider the model
introduced by Kuramoto [78] under a dynamic model to replicate the journey of these
coupled self-sustained oscillators from their disarranged and isolated state to a coherent and
connected state. This phenomenon is called synchronization and it is object of many books
and monographs [12, 106, 123, 125]. It is persistently found in nature [17, 88, 129], in social
science [95, 108] and in engineering [18, 92], among others. For this reason, different models
have been proposed to describe this behavior [74, 89, 119, 134]; among them is the Kuramoto
model, which since its formulation in 1975, has been widely studied [57, 91, 97, 120],
modified [7, 140], extended [47, 55, 124] and applied to different phenomena [72]. One of
the general forms of the model for N oscillators (see [36]) is given by:

ẋi = ωi +K
N

∑
j=1

Wi j sin(x j− xi)

N

∑
j=1

Wi j = 1 ∀ i = 1, . . . ,N,

xi(0) = x0
i

(1.1)



2 Introduction

where xi(t) represents the phase of the i oscillator at time t, ωi ∈ R is the natural frequency,
K is the uniform coupling strength and Wi j ∈ [0,1] is an element of the matrix encoding the
topology of the network, in the classic Kuramoto model Wi j = 1/N. This generalization of
the classic model is among many extensions in which networks are used to represent the
oscillators’ interaction [111]. This use is naturally justifiable in view of the advancement
of the field of network sciences and the need to answer how the topology of the interaction
influences the dynamic process and the possible patterns it can form.

This quest to understand how it affects the network structure led us to the study and
analysis of oscillators under layered models, a pretty recent approach [68, 137] which
represents the second main topic of the thesis. We mostly focused on models constituted by
two groups of oscillators, in which each oscillator experiences a mean field interaction with
the members of its own group and also a weaker interaction with all members of the other
group. The presence of a coupling term between members of different groups can thus be
regarded as a perturbation of the classical Kuramoto dynamics. This approach allows us to
improve the modeling of real systems such as spreading processes [31], epidemic dynamics
[52] and neuronal dynamics [10], in addition, consider a more complicated interaction that
assumes an all to all connectivity, allow us to encounter other collective phenomena such
as chimera states [2, 85], amplitude death [113], explosive synchronization [70], cluster
synchronization [87] and so forth. Under this assumption, two types of connection between
layers were considered. The first model follows the Singular Interlayer Connectivity, where
each oscillator of one layer is connected with only one oscillator of the other layer, this
type of configuration is called multiplex network, and the second model to be analyzed is
with an Average Interlayer Connectivity where each oscillator weakly interacts with all the
oscillators of the other layer. Under this type of connection, different oscillators’ final states
are studied depending on the natural frequency of each oscillator, in particular, the case where
the oscillators have identical natural frequencies, the necessary conditions for the diameter
between the oscillators of each layer to decrease and the behavior of the synchronization
estimators proposed for the model. Then, we studied the case for nonidentical oscillators,
and in the same way, we established the necessary conditions on the connection strengths
of each layer to restrict the diameter of each layer. Different approaches [11, 22, 91] and
techniques were used for these studies, from the differential diameter analysis [21, 34, 57] to
the use of an energy function [61].

Finally, the exact response theory, based on the definition of the Dissipation Function and
on the notion of transient mixing is the last topic of this thesis. Such theoretical framework
makes it possible to study the Kuramoto dynamics both in its classical form and under
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the connectivity frameworks presented above. This theory was developed with the aim of
analyzing the response of particle systems to external perturbations [77, 86]. Such set-up fit
nicely with the Kuramoto model if this is considered as a system in which each oscillator is
initially driven only by its natural frequency until its dynamics gets suddenly perturbed by the
classical Kuramoto-type of interaction with all the other oscillators. We start by reviewing the
definition of the Dissipation Function [42], next we study the case of identical oscillators, and
we then make a comparison with the standard linear response theory [41]. Finally, we adapt
the system framework to consider the two-layer case with Average Interlayer Connectivity,
from which we extract information about the divergence shape of the vector field and the
dissipation function.

1.1 Outline of the thesis

In Chapter 2, we begin the introduction of Kuramoto oscillators with a summary of the
history of the synchronization phenomenon, in it, we explain the first ideas that led to the
creation of the Kuramoto model with its respective mathematical formulation and take as a
practical example the behavior of fireflies. After this, we establish the mathematical concepts
of synchronization and the different types of patterns that we will find in the dynamics of our
model, and finally, we return to the classical Kuramoto model where we explain the main
properties of the model which will be used in various demonstrations of the dynamics and
compared with respect to the proposed layered models.

Chapter 3 presents the proposed layer models in detail, starting with their mathematical
formulation; then, together with the proposed order parameters, we explain their properties
and gradient flow formulation. Subsequently, we study the case for identical oscillators, where
we present the form of their stationary solutions and the behavior of the order parameters with
their respective numerical examples. Finally, we study the cases for non-identical natural
frequencies, where we analyze the behavior of the oscillator diameters in each layer and of
the system, in this analysis we present the sufficient conditions to control the diameters and
we show different numerical results of the oscillator behavior under these conditions.

Finally, in Chapter 4, we review the essential elements and results of the exact response
theory for the study of the classical Kuramoto model. There, we regard the Dissipation
Function as the observable of interest and analyze its behavior both for the simplest case
of two oscillators and for the case of N oscillators. After that, we present and compare the
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linear response theory with respect to the exact response theory. At last, we use the exact
response theory to study the onset of synchronization in a model made by two distinguished
layers of oscillators, for different values of the interlayer coupling strength.



Chapter 2

General view of the Kuramoto model

2.1 Synchronization in a nutshell

At the heart of the universe is a steady, insistent beat: the sound of cycles in sync
(Strogatz, 2012).

It is evident that in the mind of a pattern seeker, such as a scientist, a phenomenon
like synchronization will always stand out ([139],[104], [37],[109],[130]). Indeed, there
are many natural and experimental phenomena associated with it. In the first recorded
experiment of this phenomenon the components were expected to oscillate chaotically, but
without looking for it, they began to influence each other and adjust the oscillation rate; this
system was the Huygens’s mechanical clocks described in his letters to the Royal Society
in London [65] (Figure 2.1). After that, many phenomena of pulse-coupled oscillators have
been studied [89], for instance, in the slime mold Physarum polycephalum has been observed
synchronization phenomena in the cell’s intrinsic cellular oscillation [129], in power grids
[18, 92, 125], in social networks phenomena as waves of rhythmic applause [95] and in the
opinion dynamics in a network of scientific collaborations [108]. However, in the same way
that synchronization can be part of the behavior of the system and in some cases benefits it,
its appearance like a stable state can push the system to an unwanted critical value, causing
damage, as in the case of the pacemaker cells system in the heart generating heart attacks
[88, 131] or epileptic seizures in our brain and neuronal system [94, 110, 117, 118, 126].
The last of our examples will be the flashing of fireflies studied by Buck and Buck [17]. We
will use this example as a guide during the analysis of the construction of the most popular
synchronization mathematical models.
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Fig. 2.1 Excerpt from Christian Huygens’s letter to his father talking about the discovery
of an "odd kind of sympathy" in the experiment carried out with two pendulum clocks and
presented to the Royal Society of London. [65]

In 1968, an article on the behavior of fireflies was published describing how the fireflies
flash in unison and at a constant tempo [17]. Even when the fireflies were isolated from one
another, they still kept to a steady beat. This idea of a particular pulse can be traced back to:
A. Winfree [134], one of the pioneers in the field of collective behavior. In this model, one
looks at the phases of a system constituted by a large number of oscillators, in which each
oscillator is equipped with its own natural frequency. Moreover, each oscillator has its mean
of keeping time, some sort of internal clock, or in other words, a natural frequency. Then,
setting the phase of the ith oscillator with θi, in a system where the oscillators do not interact
with each other the dynamics of the phases can be described with their particular natural,
which is usually taken as a random variable ω drawn from a probability distribution g(ω)

and leads to having an initial description of the phase dynamical system with the form

θ̇i = ωi ∀i ∈ {1, . . . ,N},

nevertheless, the works models developed after the Winfree model are so varied that today we
have different studies where ωi depends on time [29, 39, 105], the topology [80], and even
the configuration of the system [28]. All these patterns start with something in common: they
are, in principle, a self-sustaining periodic process which means that it has to be non-linear,
and this implies that the oscillator must possess a limit cycle. The next element imposed
for Winfree is related to the moment the fireflies start to connect in the same place, in other
words, the system’s interaction. Usually, at the moment of studying the state of an oscillator,
it is considered both its phase and amplitude [136]. However, as was Winfree’s one, our
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interest only relies on the phase dynamics that we already started to describe before. Indeed,
we will assume that the oscillators are weakly perturbed, which means that the orbital shape
of the limit cycle is approximately inflexible under perturbations while the deviation on phase
from his natural orbit is quite pronounced. Thus, the dynamics of the N-oscillators can be
reduced to an N-dimensional vector field described with the phases of each oscillator with
the nonlinear equation:

θ̇i = Fi(θ1, . . . ,θN) = ωi +Kgi(θ1, . . . ,θN),

where gi : RN → R contains all the coupling effects produced by the oscillators of the system
to the i-oscillator, and K ∈ R+ indicates the overall coupling strength. In general, the
vector field can explicitly depend on time t, in other words, we can have Fi(θ1, . . . ,θN , t) =
ωi(t)+Kgi(θ1, . . . ,θN , t) but we are just going to consider autonomous systems that depend
on phase. The reason why only the phase variable is considered can be understood with the
iteration of fireflies, it has its maximum synchronization exponent when they flash, and then
there is an interval of darkness while it recharges its light-emitting organs, so the influence
is given by the moment in which the light is generated, ergo the phase of the light emitting
organ and is not directly related to the time in which it is produced. The model designed by
Winfree considered two functions: the sensitivity function, which encodes how an oscillator
responds to the signals it receives, and the influence function that we already described. For
simplicity, all the oscillators in a given population have the same influence and sensitivity
functions. As a result, the Winfree model has the form

θ̇i = ωi +
K
N

S(θi)
N

∑
j=1

I(θ j), t > 0 i = 1,2, . . . ,N.

For more details about the Winfree model, examine his starters works [134, 135] and
other works on the model [6, 58, 102]. Even though Winfree’s model was the first successful
attempt to model macroscopic synchronization, there were very few studies on the rigorous
treatment for the emergent dynamics compared to the hundreds of literature studies made
to a more tractable model, the Kuramoto model [78]. Kuramoto simplifies the view of
interactions between oscillators with the symmetrical rule sets up the faster one slows down,
and the slower one goes faster. This property of the motion is fundamental when the complete
synchronization of the oscillators is analyzed [57]. The result pairwise structure is with the
form
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θ̇i = ωi +
K
N

N

∑
j=1

Γ j,i
(
θ j−θi

)
(2.1)

Then just like Winfree, Kuramoto decides to consider a sinusoidal dependency between
the phases. He just considers the case where all oscillators affect each other without distinc-
tion (All-to-All)

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j−θi).

The wide exploit of the model lies in the possibilities of carrying out a theoretical
mathematical work, Kuramoto himself was able to demonstrate in a few pages the existence
of a transition phase to synchronization. From this moment, the investigations carried out on
the model have been quite numerous, so much that it is natural to go beyond the classical
Kuramoto model and bring it closer to real problems with generalizations, like the use of
inertia [47, 55, 124], delay coupling [140], noise [7], time-depending parameters [105] or
the use of complex networks in the connectivity between the oscillators [36].

The study of the Kuramoto dynamics over complex networks was one of the first gen-
eralizations proposed by Watts and Strogatz [133], which work not only contributes to the
synchronization field but also the modern theory of complex networks.

This merging between the field of synchronization with the field of complex networks
was mutually beneficial since understanding the complex network topology allowed the
analysis of synchronization processes, while these processes contributed to understanding
the emergent properties in networks. To work with the Kuramoto oscillators over complex
networks is necessary to consider the equation (2.1) modified as follows:

θ̇i = ωi +K
N

∑
j=1

Wi j sin(θ j−θi),
N

∑
j=1

Wi j = 1, ∀i ∈ {1, . . . ,N}, (2.2)

where Wi j ∈ (0,1] if the oscillators i and j are connected and Wi j = 0 if are disconnected
pairs. Wi j = 1/N for all i and j recovered the original Kuramoto model. The use of complex
networks requires a more rigorous treatment when establishing the coupling strength and the
connectivity matrix to preserve at most the properties for the all-to-all case and provide some
rigorous mathematical treatment from the phenomenology study to the stability analysis.
The classic Kuramoto model shows that employing the coupling component 1/N sets a
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perturbation over the average between the interaction with the whole system without a
dependency on the number of oscillators. This disaffiliation is an essential asset for the
system analysis in the thermodynamic limit N→ ∞. Reusing this coupling strength for a
Kuramoto model on complex networks makes it dependent on N. Therefore, it is advisable
to consider a more appropriate weight for the interaction of the system, such as a Wi j = 1/ki

where ki is the degree of the node i, in other words, is the number of connections that as
the oscillator i, as has been used in [93]. Other possibilities are considering the average
connectivity of the graph ⟨k⟩ [63] or the maximum degree kmax [50].

It can be observed that the selection of the appropriate coupling strength is directly
connected with the topology of the connectivity matrix. In general, this matrix also present
some rules, like connectedness and symmetry, in the sense that

• For any i, j∈{1, . . . ,N} there exist a set of m distinct indices k1,k2, . . . ,km⊂{1, . . . ,N}
such that i = k1, j = km and Wkl ,kl+1 > 0 for l ∈ {1,m−1},

• Wi j =Wji ≥ 0 for 1≤ i, j ≤ N,

also, it is expected that their configuration can be translated from a finite set of oscillators
N→ ∞ to their thermodynamic limit.

2.2 Synchronization patterns

Pikovsky et al. defined synchronization as the adjustment of rhythms of oscillating objects
due to their weak interaction [106]; such a general concept opens the doors to different
definitions and types of synchronization. For this reason, in this section, we provide a formal
definition of the dynamics considered.

In terms of one to one oscillator, we said that:

Definition 2.2.1. Two Kuramoto oscillators i and j are

• phase synchronized if

lim
t→∞

(
θi(t)−θ j(t)

)
≡ 0 ( mod 2π) ;
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• antiphase if
lim
t→∞

(
θi(t)−θ j(t)

)
≡ π ( mod 2π) ; (2.3)

• phase-locked if
sup
t>0

∣∣θi(t)−θ j(t)
∣∣<+∞;

• frequency synchronized if
lim
t→∞

∣∣θ̇i(t)− θ̇ j(t)
∣∣= 0

These concepts can be extended to the whole system in the following way:

Definition 2.2.2. Let Θ(t) = {θi}N
i=1 be the solution of a Kuramoto system. We say that the

system has asymptotic complete phase synchronization if and only if the phase differences
tend to zero asymptotically, i.e.

lim
t→∞

(θi(t)−θ j(t))≡ 0 ( mod 2π), ∀ i, j ∈ {1, . . . ,N} ; (2.4)

it has an asymptotically phase-locked state if and only if each phase difference goes to a
constant as t→ ∞, i.e.

lim
t→∞

θi(t)−θ j(t) = θi j, ∀ i, j ∈ {1, . . . ,N} ; (2.5)

And we said that, the system has asymptotic complete frequency synchronization if and only
if the following condition holds,

lim
t→∞

(θ̇i(t)− θ̇ j(t)) = 0, ∀i, j ∈ {1, . . . ,N} . (2.6)

Notice that the equation (2.5) and (2.6) are not equivalent in general; for instance,
condition (2.6) implies condition (2.5) under the assumption that θ̇i− θ̇ j decays at +∞ in an
integrable mode, but the implication may fail in general.

In the dynamic behavior of generalized Kuramoto oscillators given by (2.2), the presence
of heterogeneous coupling forces makes the complete synchronization of the coupled system
a rare phenomenon compared to other forms of synchrony. This is why weaker definitions of
synchronization have been postulated, like for example, the concept of practical synchronized
employed in [62, 71, 141]. The practical synchronization is set for generalized Kuramoto
models (2.2) as follows:
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Definition 2.2.3. The solution Θ(t) = (θ1, . . . ,θN) to the system (2.2) and initial condition
Θ(0) = Θ0 for t = 0 exhibits asymptotic practical synchronization if and only if the following
conditions hold:

lim
K→∞

limsup
t→∞

(θi(t)−θ j(t)) = 0, ∀i, j ∈ {1, . . . ,N} .

This definition allows the phase difference to be arbitrarily small instead of tending to
zero as long as the coupling strength is large enough. This type of synchronization could be
noted in a subgroup of oscillators with the same intrinsic dynamics. In fact, for Kuramoto
models whose dynamics form homogeneous subgroups it is natural to introduce a local
synchronization definition:

Definition 2.2.4. A k-cluster state with k ≥ 2 is defined as a partition of the set of oscillators
(θ1, . . . ,θN) for which the entire set of their indices can be split into subsets in the following
way

A = {1, . . . ,N}=
k⋃

j=1

A j, A j∩Ai = /0 for j ̸= i,

and i1, i2 ∈ A j ̸= /0 if they preserve any of the asymptotic dynamics defined in Definition 2.2.1.

In addition, we will say that the system has a splay state Θsplay if

|θi(t)−θ j(t)|= 2
mπ

N
, i, j = 1, . . . ,N with i ̸= j and m = 1, . . . ,N−1. (2.7)

Another form of the state is:

Θsplay =

{
θ ,θ +m

2π

N
,θ +m

4π

N
, . . . ,θ +m

2(N−1)π
N

}
,

for some θ ∈ [0,2π).

2.3 Fundamentals of the Kuramoto model

Throughout this thesis, well-established mathematical concepts and properties are used and
extended to study the behavior of the Kuramoto oscillators for the specific models that we
will introduce. This section displays some basic formalism and properties of the classical
Kuramoto model.
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The Kuramoto dynamics is defined on the N-dimensional torus, T N = (R/(2πZ))N ,
with N ≥ 1, by the succeeding set of coupled first-order ODEs, for the phases θi(t):

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j−θi) i = 1, . . . ,N, (2.8)

where K > 0 is constant, and the natural frequencies ωi ∈ R are drawn from a given distribu-
tion g(ω). The N oscillators are represented by points rotating on the unit circle centered at
the origin of the complex plane, more precisely by eiθ j with j = 1, . . . ,N. We introduce their
barycenter expressed in polar coordinates R and Φ:

ReiΦ =
1
N

N

∑
j=1

eiθ j . (2.9)

It is clear that 0≤ R≤ 1 and Φ ∈T (defined if R > 0). The modulus R = R(θ(t)) is called
the order parameter and Φ = Φ(θ(t)) the collective phase. One can rewrite Eq.(2.8) as
follows:

θ̇i = ωi +KRsin(Φ−θi) , i = 1, . . . ,N, (2.10)

with θ = (θ1, ...,θN) ∈M = T N , and M the phase space. This order parameter introduced
by Kuramoto [79] has quite interesting properties and plays a key factor when measuring the
degree of phase synchronization. The equation (2.9) implies the following identities:

R =
1
N

N

∑
i=1

cos(Φ−θi) , (2.11)

0 =
1
N

N

∑
i=1

sin(Φ−θi) , (2.12)

Rsin(Φ−θi) =
1
N

N

∑
j=1

sin(θ j−θi) , i = 1, . . . ,N (2.13)

Rcos(Φ−θi) =
1
N

N

∑
j=1

cos(θ j−θi) , i = 1, . . . ,N . (2.14)

Equations (2.11) and (2.14), further imply:

R2 =
1

N2

N

∑
i, j=1

cos(θ j−θi) . (2.15)
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As was defined in Subsection 2.2, the complete frequency synchronization occurs as
t → +∞, when the difference θi(t)− θ j(t) tends to a constant for all i and j. It has been
proved by [3, 57, 120] that the Kuramoto model displays this behavior for large values of K
over some specific configurations. Indeed, for N ≤ ∞, Ha et al. [57] study the case in which
the variations between the natural frequencies and the mean of the natural frequencies ωc are
zero:

ω̂i := ωi−ωc = 0 with ωc :=
1
N

N

∑
i=1

ωi

which is also called the case of identical oscillators. Over this condition, the dynamics for
θ̂i = θi−θc becomes

dθ̂i

dt
=

K
N

N

∑
j=1

sin(θ̂ j− θ̂i) (2.16)

since
dθc

dt
= ωc

where θc := 1/N ∑
N
i=1 θi is the center of mass of the oscillators.

Considering this setting, in [57] the authors prove that for the case of identical oscillators
any smooth solution {θi(t)}N

i=1 of the system (2.8) with an initial configuration θ 0
i satisfying

the size condition
max

1≤i, j≤N

∣∣θ 0
j −θ

0
i
∣∣≤ π

undergoes an asymptotic complete phase synchronization. Moreover, R(θ(t)) tends to
R∞ ∈ (0,1], and the case in which R∞ = 1 implies that all the N terms of the sum in (2.11)
coincide with Φ. This work was extended by [34], proving that frequency synchronization
can occur for all initial phase configurations distributed over the whole circle. In their work,
they use the fact that the Kuramoto dynamics (2.10) can also be written as a gradient flow:

θ̇ =−∇ f (θ) (2.17)

with potential

f (θ) =−
N

∑
i=1

ωiθi +
K

2N

N

∑
i, j=1

(
1− cos(θ j−θi)

)
. (2.18)

that is analytic in θ .

After this, Benedetto et al. in 2015 [11] continued the study of N identical oscillators
for any initial condition and proved the complete frequency synchronization with a different
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method concerning [34] indeed several of their results will be used in conjoint with this
thesis.

We are going to define when a set of N oscillators is of type (N− k,k)ϕ :

Definition 2.3.1. Given ϕ ∈ [0,2π), N ∈ N and k ∈ {0, . . . ,N/2}, a set {αi}N
i=1 ⊂ R is of

type (N− k,k)ϕ if there exists I ⊂ {1, . . . ,N} of cardinality N− k such that

αi =

ϕ mod 2π i ∈ I

(ϕ +π) mod 2π i ∈ Ic

In other words, if a set of oscillators is of type (N− k,k)ϕ then have a complete synchro-
nization state when k = 0 or a bi-polar state when k > 0.

Proposition 2.3.2. {θ ∗i }N
i=1 is a stationary solution of (2.16) iff one of the following proper-

ties hold:

• R≡ 0

• {θ ∗i }N
i=1 is of type (N− k,k)ϕ∗

The first possible state of the stationary solution correspond to an incoherent state,
meanwhile, in the second case, we will have that R∞ = 1− 2k/N which corresponds to a
complete frequency synchronized state for k ≥ 1, and complete phase synchronized state for
k = 0. Benedetto et al. also studies the asymptotic behavior of R and ϕ , proving that:

Proposition 2.3.3. If {θi(t)}N
i=1 is not a stationary solution, then

• Ṙ(t)> 0, ∀t > 0

• R(t)→ R∞ ∈ (0,1]

• ϕ(t) is well defined ∀t > 0

We can present the main result of [11].

Theorem 2.3.4. If θi(t), i = 1, . . . ,N is not a stationary solution, then it converges to a com-
plete frequency synchronized state of type (N− k,k)ϕ . Moreover, if θi(0) ̸= θ j(0) mod 2π

when i ̸= j, the solution converges to a stationary solution of type (N,0) or (N−1,1).
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The theory developed over the classic Kuramoto model is quite extensive, and we limited
ourselves in this chapter to just recovering the properties used in our work. As we established
before, thinking in a collection of oscillators with just an all to all connectivity is relatively
restricted when we are trying to describe real collective behaviors, for this reason we exploit
the most important features of the generalized Kuramoto model moreover we focus on the
branch of multilayer networks.

A first instance of a multilayer Kuramoto model can be found in Okuda and Kuramoto
and was later developed e.g. in [3, 56, 111]. The last comprehensive summary covers
the recent development of synchronization of the Kuramoto oscillator model in multilayer
networks from a numerical approach and also offers a survey on the stability analysis [137].
Primarily, the work developed until now and presented in this review from a rigorous stability
analysis focuses on the classical Kuramoto model and on sufficient conditions leading to
asymptotic complete phase-frequency synchronization and bounded synchronization [21,
23, 57]. More general structures of the network have been addressed in Montbrió et al.[90],
where synchronization between two interacting populations is investigated and a rich dynamic
behavior is outlined. Moreover the interplay of coupling, noise and phase asymmetries in
coupled oscillators is discussed by Sheeba et al.[116], where also the continuum limit of the
model is studied. In Ha et al.[61] the author discuss the formation of phase-locked states
for local Kuramoto oscillators that are locally connected and symmetric instead of having
an all-to. Dong and Xue[34] besides studying the original Kuramoto oscillators, works
also with the generalized Kuramoto and shows sufficient conditions to obtain frequency
synchronization. The focus of the work of Kawamura et al.[69] is the study, in the continuum
limit, of the synchronization of two groups of nonidentical weakly interacting oscillators. Ha
and Li[60] studies the asymptotic emergence of full synchronization with hierarchical driving.
Panaggio and Abrams[99] finds chimeral states in systems with a finite number of oscillators
organized in two groups. Schaub et al. [114] exploits graph-theoretical concepts to study the
synchronization in Kuramoto networks and Tiberi et al.[127] uses a geometric approach for
the synchronization patterns. While studies of the multilayer Kuramoto model are numerous,
most of the studies concern the continuum limit of the model. The study of synchronization
mechanisms in multilayer Kuramoto models with a finite numer of oscillators is, hence, still
open.



Chapter 3

Kuramoto oscillators on two-layers
networks

In the last decades, the work conducted in synchronization has been expanding and focused
on increasingly complex phenomena. A recent research line pointed towards the investigation
of multilayer networks [67, 68, 128, 137, 142], these studies differ from formal proposals
for complex networks in the fact that complex networks have focused mainly on cases in
which the topology of the system is mapped in a network, and each unit-unit interaction is
represented under a number that quantifies its weight in the connection of the graph. However,
the multilayer approach has a particular interest in the interplay between the structure of the
networks and their dynamics since can provide a solid foundation for modeling, controlling,
and simulating dynamical behaviors of real work networks such as spreading processes [31],
epidemic synchronization [52], social [33] or brain [10].

Even when is a quite recent approach, if we consider a two populations system as a
two-layer system, one of the first works in this direction would be by Okuda and Kuramoto
[96]. His real-life example was motivated by the investigations conducted between 1988 and
1989 on the oscillatory responses of functional columns in the visual cortex of cats; these are
spatially separated and synchronized under certain conditions [38, 54]. Other more modern
examples can be found in the analysis of social networks, where each group of people seems
as if the connections between its members occur at the same level, that is, the interactions that
are made with each person are uniform. However, either because of the way we connect with
people or because of the algorithms developed in social networks, the strongest relationships
occur within specific groups formed by our offline relationships, common ideals, lifestyles,
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and so on [33]. More examples of multilayer networks can refer to surveys [13, 73]. The
majority of the studies in this field meanly relies on numerical investigations of the onset
of different synchronization patters, such as the explosive synchronization [68, 142] and
the chimera states [85] letting behind the stability analysis that until now has been mostly
covered in the continuum limit [69, 116]. Our particular interest is studying the two most
common multilayer networks from a stability analysis approach and covering problems
in which the connection between the layers is weak. To better understand the importance
of this hypothesis, it is significant to mention that in most of the works carried out so far,
the necessary conditions to obtain some type of synchronization depended directly on the
minimum coupling force [34, 61, 83, 138], considering that ours is already weak, we focus
in the other forces capable of establishing these conditions and studying the different types
of synchronization.

3.1 The SIC and AIC Kuramoto Models

Let us consider a system of nonlinear oscillators, formed by two layers of N oscillators in
each layer, the positions of them can be represented in a unitary circle on the complex plane:{

x j = eiθ j
}N

j=1
and

{
x̄ j = eiξ j

}N

j=1
(3.1)

in function of the phases:

Θ =
{

θ j
}N

j=1 , Ξ =
{

ξ j
}N

j=1 .

During the work over two-layer model, we will use the notation above to differentiate the
characteristics of each layer and the following notation when we emphasize the properties of
the 2N-system:

X = (Θ,Ξ) O = (Ω,Ω̄) = (ω1, . . . ,ωN , ω̄1, . . . ω̄N) ∈ R2N ,

with components Xi, Oi, respectively. The study of the temporal dynamics of the phases
described by a Kuramoto model is pursued, i.e., the behavior of each oscillator θ j (ξ j)
governed by a stationary natural frequency ω j ∈R (ω̄ j ∈R) and a sinusoidal coupling where
ψi j is an element of the adjacency matrix Ψ that represents the coupling strength connection
encoding the topology of the network:
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(a) Matrix scheme (b) Graph scheme

Fig. 3.1 Visualization of the network of 2-layer with weak singular interconnection (SIC)

Ẋi = Oi +
2N

∑
j=1

ψi j sin(X j−Xi) , i = 1, . . . ,2N (3.2)

Our interest goes beyond the uniform coupling of the system and lies in the weak
interlayer coupling; this means that the coupling strength between layers is considered to be
relatively small. This study is divided into two possible types of interlayer connectivity; the
first model follows Singular Interlayer Connectivity (SIC), in which each oscillator will be
connected with just one oscillator of the other counterpart. This model is represented by:



θ̇ j = ω j +
K1

N

N

∑
l=1

sin(θl−θ j)+ ε sin(ξ j−θ j),

ξ̇ j = ω̄ j +
K2

N

N

∑
l=1

sin(ξl−ξ j)+ ε sin(θ j−ξ j) ,

(3.3)

where K1 > K2 > 0 are the intralayer coupling strengths between the oscillators of the same
layer, and ε > 0 is the weakly coupling strength between two oscillators of different layers.
It is assumed that:

K1,K2 ⩾ ε > 0. (3.4)

The model is described by a graph whose matrix is represented in Figure 3.1 a. Note that
this configuration forms a particular type of multilayer network called a multiplex network,
where, like in the SIC model, different layers have the same number of nodes, and the only
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(a) Matrix scheme (b) Graph scheme

Fig. 3.2 Visualization of the network of 2-layer with weak average interconnection (AIC)

possible type of inter-layer connections are those in which a given node is only connected to
its counterpart nodes in the rest of the layers [73]. Multiplex networks have attracted much
attention as they allow us to divide the different layers into distinct types of interactions;
indeed, we can find works in the evolution of cooperation [51], the interplay between
awareness and epidemic spreading [53], social structures [75] and in particular in social
networks [81, 132]. Other examples include the real-world network of user ratings for films,
namely, the Netflix data set [64], the European Air Transport Network [19], coupled power
grids [16], and coupled climate networks [35].

Similarly, the second model to study follows Average Interlayer Connectivity (AIC), in
which each oscillator interacts weakly with all the oscillators from the other layer:



θ̇ j = ω j +
K1

N

N

∑
l=1

sin(θl−θ j)+
ε

N

N

∑
k=1

sin(ξk−θ j)

ξ̇ j = ω̄ j +
K2

N

N

∑
l=1

sin(ξl−ξ j)+
ε

N

N

∑
k=1

sin(θk−ξ j) ,

(3.5)

Models with the AIC shape are popular because the discrete average connections are
easily translatable to a continuous form [96, 122]. Moreover, thanks to the Ott and Antonsen
ansatz for models with global sinusoidal coupling [97, 98], the analytical treatment of coupled
phase oscillators in the continuum limit has been rapidly developed [1, 9, 90, 99, 101, 107].
Besides, the idea of two populations of phase oscillators asymmetrically interacting is likely
to occur since it can be related to a difference between the type of oscillators and not just the
capacity of connectivity as it is in the case of the SIC Model.
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Taken t = 0 as the initial time of the system’s state each phase is represented by:

θ j(0) = θ
0
j ξ j(0) = ξ

0
j X j(0) = X0

j , (3.6)

Moreover, any of the systems can be written in the general form given by the equation
(3.2), where the capacity matrix ψ = (ψi j) is described by:

ψi j =



K1

N
if i, j ∈ [N]

K2

N
if i, j ∈ [N]+N

ε if i ∈ [N], j = i+N

ε if j ∈ [N]+N, i = j−N

0 otherwise.

,ψi j =



K1

N
if i, j ∈ [N]

K2

N
if i, j ∈ [N]+N

ε

N
if i ∈ [N], j ∈ [N]+N

ε

N
if i ∈ [N]+N, j ∈ [N]

, (3.7)

or
ψi j =

K
N
,

where we used the notation [N] = {1, . . . ,N}. The final form of ψi j depends on what type of
model we are working on: All-to-All, SIC or AIC. As we have already mentioned, there are
numerous works where the system is analyzed as a complex system where the possibility of
dividing the oscillators into different capacities is ignored, the fact of showing the form of
the SIC and AIC models as other complex systems implies that many of the results obtained
can be applied in the models.

3.2 Fundamentals of the SIC and AIC models

As in the classical model, most of the essential features of each layer’s dynamics and of the
system can be measured with the macro-variables that we will define in this section.

We propose the following order parameters for the interlayer and intralayer analysis
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z1 = r1eiϕ1 =
1
N

N

∑
j=1

eiθ j z2 = r2eiϕ2 =
1
N

N

∑
j=1

eiξ j (3.8)

z3 = r3eiϕ3 =
1
N

N

∑
j=1

ei(ξ j−θ j) and z = reiϕ =
1

2N

N

∑
j=1

eiθ j + eiξ j (3.9)

Notice that the order parameter preserves the identities analogous to (2.11), (2.12) for the
order parameter (2.9), i.e.:

r1 =
1
N

N

∑
j=1

cos(ϕ1−θ j) (3.10)

0 =
1
N

N

∑
j=1

sin(ϕ1−θ j) (3.11)

r2 =
1
N

N

∑
j=1

cos(ϕ2−ξ j) (3.12)

0 =
1
N

N

∑
j=1

sin(ϕ2−ξ j). (3.13)

Indeed, it is sufficient to take the real and imaginary part of the two identities

r1 =
1
N

N

∑
j=1

ei(θ j−ϕ1) and r2 =
1
N

N

∑
j=1

ei(ξ j−ϕ2) .

to get the expressions (3.10)- (3.13). Using these parameters the SIC system (3.3) can be
rewritten as 

θ̇i = ωi +K1r1 sin(ϕ1−θi)+ ε sin(ξi−θi)

ξ̇i = ω̄i +K2r2 sin(ϕ2−ξi)+ ε sin(θi−ξi),

(3.14)

and in the same way the AIC system (3.5) transforms into:
θ̇i = ωi +K1r1 sin(ϕ1−θi)+ εr2 sin(ϕ2−θi)

ξ̇i = ω̄i +K2r2 sin(ϕ2−ξi)+ εr1 sin(ϕ1−ξi).

(3.15)
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Another important feature is the center of mass of the phases and the average of the
natural frequencies in each layer given by:

θc(t) =
1
N

N

∑
i=1

θi(t) , ξc(t) =
1
N

N

∑
i=1

ξi(t), ωc =
1
N

N

∑
i=1

ωi , ω̄c =
1
N

N

∑
i=1

ω̄i (3.16)

Similarly, we can define the average phase and frequency for the whole system,

Xc =
1

2N

2N

∑
i=1

Xi , Ωc =
1

2N

2N

∑
i=1

Oi .

Lemma 3.2.1. Let X = (Θ,Ξ) be a phase vector which dynamics is governed by (3.3), then
the quantity Xc moves with a constant velocity, while θc and ξc preserve a sinusoidal motion
over the interlayer-perturbation.

Proof. It is easy to check that

Xc =
1
2
(θc +ξc) , Ωc =

1
2
(ωc + ω̄c) .

While the dynamics of each center of mass considering (3.3) is

θ̇c =
1
N

d
dt

N

∑
i=1

θi =
1
N

N

∑
i=1

ωi +
K1

N2

N

∑
i, j=1

sin
(
θ j−θi

)
︸ ︷︷ ︸

=0

+
ε

N

N

∑
i=1

sin(ξi−θi)

= ωc +
ε

N

N

∑
i=1

sin(ξi−θi)

and similarly

ξ̇c = ω̄c +
ε

N

N

∑
i=1

sin(θi−ξi)

Then we have that the perturbation of the connectivity between each layer neutralizes,
preserving a setting up a constant dynamic:

Ẋc(t) = θ̇c(t)+ ξ̇c(t) = ωc + ω̄c = Ωc,

This property is a consequence of the symmetry of the coefficients in (3.7).
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By a change of variables (θ̂i = θi−Ωc and ξ̂i = ξi−Ωc ), we can assume:

Ωc = ωc + ω̄c = 0 (3.17)

and therefore the mean phases of the whole system is conserved over time:

Xc(t) = Xc(0) ∀ t > 0 (3.18)

that implies that θc(t)+ξc(t) = θc(0)+ξc(0) .

By another change of variables, we can fix the value of Xc(0); for instance we can assume
that

Xc(0) = 0
N

∑
i=1

θi(0)+
N

∑
i=1

ξi(0) = 0 . (3.19)

3.2.1 A gradient flow formulation

Here, we present new formulations of the SIC (3.3) and AIC (3.5) models as gradient systems.
For the classic Kuramoto model and in a population of locally interacting Kuramoto oscilla-
tors, such a gradient flow formulation was first introduced in [11] and in [61] respectively.
Now, consider the function U(X) : R2N → R for the SIC model we have

U(X) =
N

∑
k=1

{
− (ωkθk + ω̄kξk)+ ε (1− cos(ξk−θk))

+
N

∑
j=1

[
K1

2N

(
1− cos(θ j−θk)

)
+

K2

2N

(
1− cos(ξ j−ξk)

)]}
(3.20)

Our analytic potential satisfies

∂θiθ jU(X) = ∂θ jθiU(X), ∂θiξiU(X) = ∂ξiθiU(X), ∂θiξ jU(X) = ∂ξ jθiU(X)

and ∂ξiξ jU(X) = ∂ξ jξiU(x) i ̸= j .
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Then is clear that

∂θiU(X) =−ωi−
K1

2N

N

∑
j=1

sin(θ j−θi)+
K1

2N

N

∑
k=1

sin(θi−θk)− ε sin(ξi−θi)

=−θ̇i.

In the same way, ∂ξiU(X) =−ξ̇i. This shows that the system (3.3) is a gradient system with
the form

Ẋ =−∇U(X),

for the AIC system, we have that a suitable function that meets the properties presented
above for the SIC model is:

U(X) =
N

∑
k=1

{
−(ωkθk + ω̄kξk)+

N

∑
j=1

[
K1

2N

(
1− cos(θ j−θk)

)
+

K2

2N

(
1− cos(ξ j−ξk)

)
+

ε

N

(
1− cos(ξ j−θk)

)]}
. (3.21)

The fact that the SIC and AIC model are gradient flow systems with analytic potentials is
an expected characteristic given the symmetry of the coupling system.

3.3 Identical Oscillators

In this part, we present complete phase and frequency synchronization estimates for identical
oscillators with the same natural frequency, i.e.

ω j = ω̄ j = ω ∀ j = 1, . . .N. (3.22)

Without loss of generally is possible to take ω = 0 since we can subtract ωt from the phases.
To analyze of the patterns of synchronization, we study the stationary solutions, the dynamics
of the order parameters, and the diameter of the phases. For the following analysis, we
introduce the definitions of phase diameters:

D(Θ(t)) := max
1≤i, j≤N

∣∣θi(t)−θ j(t)
∣∣ , D(Ξ(t)) := max

1≤i, j≤N

∣∣ξi(t)−ξ j(t)
∣∣ ,



3.3 Identical Oscillators 25

D(X(t)) := max
1≤i, j≤2N

∣∣Xi(t)−X j(t)
∣∣ .

3.3.1 SIC

The SIC model with identical oscillators (3.22) and simplified with the proposed order
parameters (3.8) reads as



θ̇i =
K1

N

N

∑
j=1

sin(θ j−θi)+ ε sin(ξi−θi) = K1r1 sin(ϕ1−θi)+ ε sin(θi−ξi)

ξ̇i =
K2

N

N

∑
j=1

sin(ξ j−ξi)+ ε sin(θi−ξi) = K2r2 sin(ϕ2−ξi)+ ε sin(ξi−θi)

θi(0) = θi0 ξi(0) = ξi0

(3.23)

Moreover, thanks to the properties (3.10)-(3.13) of the order parameters (3.9), we have that

1
N2

N

∑
j,k=1

cos(θ j−θk) = r2
1 and

1
N2

N

∑
j,k=1

cos(ξ j−ξk) = r2
2.

The equation above gives us the final form of the gradient function (3.20):

U(X) = N
[

K1

2
(
1− r2

1
)
+

K2

2
(
1− r2

2
)
+ ε (1− r3 cos(ϕ3))

]
.

The final form shows that an absolute minimum of the function U is achieved by a
complete synchronizations state of the whole system, that is when r1 = 1 and r2 = 1, r3 = 1,
and ϕ3 = 2nπ with n ∈ N. And the maximum of energy will be reached when r1 = 0,r2 = 0
and r3 = 1 with ϕ3 = (2n+1)π which means that each couple θi and ξi are antipodal for all
i ∈ [N].

Definition 3.3.1. Given ϕ ∈ [0,2π), N ∈ N and k ∈ N0 := N
⋃
{0} with N− k ≥ k, a set

{αi}N
i=1 ⊂R is of type (N−k,k)ϕ if there exists I ⊂ {1, . . . ,N} of cardinality N−k such that

αi =

ϕ mod 2π i ∈ I

(ϕ +π) mod 2π i ∈ Ic
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Considering the above definitions, we can classify the stationary solutions of the SIC
system into two main types.

Proposition 3.3.2. {θ ∞
i ,ξ ∞

i }
N
i=1 is a stationary solution of (3.3) iff one of the following

properties holds

1. r1 = 0 and r2 = 0 and each pair θi = ξi + kiπ for ki ∈ Z

2. There exist ϕ̄∞
1 and ϕ̄∞

2 such that {θ ∞
i }

N
i=1 is of type (N− k1,k1)ϕ1 , {ξ ∞

i }
N
i=1 is of type

(N− k2,k2)ϕ2 and ϕ1 = ϕ2−Kπ for any K ∈ Z.

Proof. The first case corresponds to an incoherent state in each layer with a balance phase
and antiphase synchronization between pairs i of inter-layer connections. In the second case,
we have that 

K1r1 sin(ϕ1−θi)+ ε sin(ξi−θi) = 0

K2r2 sin(ϕ2−ξi)+ ε sin(θi−ξi) = 0

Notice that thanks to (3.11) and (3.13), summing the equations over θi and ξi we obtain that

sin(ϕ1−ξi) = 0 and sin(ϕ2−θi) = 0

summing the equations above again over ξi and θi respectively, we obtain that sin(ϕ1−ϕ2) =

0 then we have that ϕ1 = ϕ2 +Kπ and each oscillator θi = ϕ2− kiπ and ξi = ϕ1− k̄iπ

which by transitivity means that {θ ∞
i }

N
i=1 is of type (N− k1,k1)ϕ1 , and {ξ ∞

i }
N
i=1 is of type

(N− k2,k2)ϕ2 .

The last proposition proved that the only stationary states of the SIC model are either
incoherent, bipolar or complete synchronization states. Like in the classical Kuramoto
model [56], for an ensemble of identical oscillators with N ≥ 4, it is possible to construct a
continuum of phase-locked states with zero-order parameters.

Example. For µ1,µ2 ∈ [0,2π] and N ≥ 4, we can have a state X µ1,µ2 = {Θµ1,Ξµ2} such
that it is a permutation of:

σ(Θµ1)i :=


2iπ

N−2
+µ1, i = 1, . . . ,N−2,

0, i = N−1,

π, i = N.
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and

σ(Ξµ2)i :=


2iπ

N−2
+µ2, i = 1, . . . ,N−2,

0, i = N−1,

π, i = N.

where the bijection σ implies the same ordered arrangements of the vectors Θµ1 and Ξµ2

and µ1−µ2 = kπ with k ∈ Z.

Moreover, since we have the form of every possible equilibrium point, it is also possible
to perform a linear stability analysis at an equilibrium point X̄ = {θ ∞

i ,ξ ∞
i }

N
i=1, with δ̇X(t) =

J(X̄)δX(t) where δX = X− X̄ and J(X̄) is the Jacobian matrix of V with components:

Jii = −K1r1 cos(ϕ∞
1 −θ

∞
i )− ε cos(ξ ∞

i −θ
∞
i )

J(N+i)(N+i) = −K2r2 cos(ϕ∞
2 −ξ

∞
i )− ε cos(θ ∞

i −ξ
∞
i )

Jih = −K1

N
cos(θ ∞

h −θ
∞
i ) i,h ∈ [1,N] i ̸= h

J(N+i)(N+h) = −K2

N
cos(ξ ∞

h −ξ
∞
i )

Ji(N+i) = −ε cos(ξ ∞
i −θ

∞
i )

J(N+i)i = −ε cos(θ ∞
i −ξ

∞
i )

Jih = 0 o/w

Notice that J is a symmetric 2N× 2N matrix with zero row-sums; this implies that it
always has a zero eigenvalue with the 1 eigenvector. For the incoherent states, if at least one
of the pairs θi−ξi = kiπ is with ki odd we will have that the equilibrium points is unstable,
this claim is proved by Monzón and Paganini in [91] for the classic Kuramoto model but can
be easily used for the J matrix since both share the same properties, and if there is an odd
ki, then an element of the diagonal will be positive, and J can not be negative definite nor
semi-definite.

Due to the connectivity of the oscillators, we have that the dynamics of the order parameter
that measure the level of synchrony of the system and the layers are not monotonic; indeed,
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Fig. 3.3 Dynamics of the order parameter r1, r2 and r, for {θi(t),ξ(t)}N
i=1 following the

equation (3.23) and r1(t), r2(t) and r(t) given by (3.8) and (3.9) with {θ 0
i }N

i=1 ∈ [0,(2π +
1)/4], {ξ 0

i }N
i=1 ∈ [π,(3π)/2], with K1 = 2.5, K2 = 1.2 and ε = 1 for t ∈ [0,7].

the final form of the r dynamics is given by

ṙ =
1

4rN

{
K1r2

1

N

∑
j=1

sin2(ϕ1−θ j)+K2r2
2

N

∑
j=1

sin2(ϕ2−θ j)

+N(K1 +K2)r1r2

[
cos(ϕ1−ϕ2)

2
− r1 cos(ϕ1)− r2 cos(ϕ2)

]
+2ε

N

∑
j=1

sin2(ξ j−θ j)

[
r1 cos

(
ϕ1−

ξ j +θ j

2

)
+ r2 cos

(
ϕ2−

ξ j +θ j

2

)]}
.

3.3.2 AIC

The system (3.5) reduced with the order parameters (3.8) and natural frequencies given by
(3.22) reads:


θ̇i = K1r1 sin(ϕ1−θi)+ εr2 sin(ϕ2−θi)

ξ̇i = K2r2 sin(ϕ2−ξi)+ εr1 sin(ϕ1−ξi)

(3.24)
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The following lemma can be proved in the same way as in [57] and [34] and will be
valuable in the analysis of phase collisions and stationary solutions for (3.5).

Lemma 3.3.3. (Uniform boundedness of X,Θ and Ξ) Let X(t) = {θi(t),ξi(t)}N
i=1 be the

solution of system (3.24) with initial conditions D(Θ0) < 2π and D(Ξ0) < 2π . Then we
have that D(Θ(t))< 2π and D(Ξ(t))< 2π for t ≥ 0. Moreover, if D(X0) := DX0 ≤ π , the
diameter of the phases of the total system satisfies D(X(t))≤ DX0 for t ≥ 0

Proof. For the intralayer bound, assume that the initial conditions are D(Θ0) < 2π and
D(Ξ0)< 2π . Now, we are going to prove that D(Θ(t))< 2π for t ≥ 0. Assume the contrary.
Then there exist i and j such that

θi(t)< θ j(t)+2π, for t ∈ [0, t0) and θi(t0) = θ j(t0)+2π. (3.25)

For (3.24) follows that

dθi

dt
(t0) = K1r1 sin(ϕ1−θi(t0))+ εr2 sin(ϕ2−θi(t0))

= K1r1 sin(ϕ1−θ j(t0)−2π)+ εr2 sin(ϕ2−θ j(t0)−2π)

= K1r1 sin(ϕ1−θ j(t0))+ εr2 sin(ϕ2−θ j(t0))

=
dθ j

dt
(t0),

with r1,r2,ϕ1,ϕ2 at time t0, then θ̇i(t0) = θ̇ j(t0). Moreover, by the successive differentiation
of the system (3.24), we have

d2θi

dt2 (t0) = K1
[
ṙ1 sin(ϕ1−θi(t0))+ r1 cos(ϕ1−θi(t0))

(
ϕ̇1− θ̇i

)]
+ ε
[
ṙ2 sin(ϕ2−θi(t0))+ r2 cos(ϕ2−θi(t0))

(
ϕ̇2− θ̇i

)]
= K1

[
ṙ1 sin(ϕ1−θ j(t0))+ r1 cos(ϕ1−θ j(t0))

(
ϕ̇1− θ̇ j

)]
+ ε
[
ṙ2 sin(ϕ2−θ j(t0))+ r2 cos(ϕ2−θ j(t0))

(
ϕ̇2− θ̇ j

)]
=

d2θ j

dt2 (t0),

thanks to the periodicity of cosine and sine. Similarly, we can obtain

dnθi

dtn (t0) =
dnθ j

dtn (t0), for n≥ 2, (3.26)
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hence, combining this fact with the analyticity of θi and θ j, and Corollary A.1.3 [76] we
have that

θi(t)< θ j(t)+2π, t ∈ (0,T ) T > t0.

This equality contradicts the assumption (3.25).

For the boundedness of X , let T ∈ (0,∞] be any number. Suppose that the phase-diameter
D(X(t))< π with t ∈ [0,T ). Then the dynamics will depend on whether the extreme indices
belong to the same layer or not. In the first case, we have:

dD(X(t))
dt

=
d (θM−θm)

dt

=
K1

N

 N

∑
j=1

sin(θ j−θM)︸ ︷︷ ︸
≤0

−sin(θ j(t)−θm)︸ ︷︷ ︸
≥0


+

ε

N

 N

∑
j=1

sin(ξ j−θM)︸ ︷︷ ︸
≤0

−sin(ξ j(t)−θm)︸ ︷︷ ︸
≥0


≤ 0,

in the second case:

dD(X(t))
dt

=
d (θM−ξm)

dt

=
K1

N

N

∑
j=1

sin(θ j−θM)︸ ︷︷ ︸
≤0

−K2

N

N

∑
j=1

sin(ξ j(t)−ξm)︸ ︷︷ ︸
≥0

+
ε

N

 N

∑
j=1

sin(ξ j−θM)︸ ︷︷ ︸
≤0

−sin(θ j(t)−ξm)︸ ︷︷ ︸
≥0


≤ 0.



3.3 Identical Oscillators 31

Several things change from the AIC model with respect to the SIC model. One of the
many properties that the classic Kuramoto has is that in the set of solutions, there will
be finite-time phase collisions between two identical oscillators [57]; this property is not
preserved in the SIC case; indeed, if θi = θ j unless ξi = ξ j, the oscillators will be detached,
the same will happen if two oscillators in the Ξ layer collide. On the other hand, for the
AIC case, we will have this property preserved between oscillators from the same layer,
i.e., if θi(t0) = θ j(t0), then they will remain attached for t ≥ t0, and the same will happen
for ξi(t0) = ξ j(t0). Following a similar argument that when we prove that D(Θ)≤ 2π it is
easy to see that if two oscillators θi and θ j collide at t = t0 ∈ (0,∞) then the equality θ̇i = θ̇ j

and equation (3.26) will be satisfied, and thanks to Corollary 1.2.5 in [76] (rewritten for
completeness in A.1.3) θi(t) = θ j(t) for t ≥ t0, clearly if t0 = 0 then θi(t) = θ j(t) for t ≥ 0.
This property is not preserved between oscillators from different layers. Also, notice that
for the dynamics of D(X(t)), the only condition for the diameter decrease in time is that the
initial diameter of the system DX0 is less than π . Since the topology does not interfere with
this dynamic, this property is easily transferable to the SIC model.

Based on the last Lemma 3.3.3 and eqs. (3.18) and (3.19), it follows that for t ≥ 0,
i = 1, . . . ,N, if DX0 < π then

|θi(t)|= |θi(t)−Xc(t)| ≤
1

2N

N

∑
j=1
|θi(t)−θ j(t)|+

1
2N

N

∑
j=1
|θi(t)−ξ j(t)|< π,

in the same way ξi(t)< π for all i = 1, . . . ,N.

Since the system can be rewritten in a gradient form and our solution X(t) is bounded,
it implies that there exists a vector X∞ = (θ ∞

1 , . . . ,ξ ∞
N ) and some sequence tn→ ∞ such that

X(tn)→ X∞ as N→ ∞. Then using theorem A.1.5, we conclude that X(t)→ X∞ as t→ ∞,
which implies that there exists Xi j such that X j(t)−Xi(t)→ X∞

i j as t→ ∞ and in particular
exist a θi j such that θi(t)−θ j(t)→ θ ∞

i j and a ξi j such that ξi(t)−ξ j(t)→ ξ ∞
i j .

Moreover, following the same approach as Choi et al., Monzón and Paganini [22, 91],
since each of the oscillators can be represented in a unitary circle on the complex plane
just like we describe in (3.1), for the critical point X∞, we can make use their positions
{x∞

j = eiθ ∞
j }N

j=1 and {x̄∞
j = eiξ ∞

j }N
j=1 to define the numbers:

αi := K1

N

∑
j=1

x∞
j

x∞
i
+ ε

N

∑
j=1

x̄∞
j

x∞
i



32 Kuramoto oscillators on two-layers networks

= K1

N

∑
j=1

eiθ ∞
j −θ ∞

i + ε

N

∑
j=1

eiξ ∞
j −θ ∞

i

= K1

N

∑
j=1

cos(θ ∞
j −θ

∞
i )+ ε

N

∑
j=1

cos(ξ ∞
j −θ

∞
i )

+ i

[
K1

N

∑
j=1

sin(θ ∞
j −θ

∞
i )+ ε

N

∑
j=1

sin(ξ ∞
j −θ

∞
i )

]

and

ᾱi := K2

N

∑
j=1

x̄∞
j

x̄∞
i
+ ε

N

∑
j=1

x∞
j

x̄∞
i

= K2

N

∑
j=1

eiξ ∞
j −ξ ∞

i + ε

N

∑
j=1

eiθ ∞
j −ξ ∞

i

= K2

N

∑
j=1

cos(ξ ∞
j −ξ

∞
i )+ ε

N

∑
j=1

cos(θ ∞
j −ξ

∞
i )

+ i

[
K2

N

∑
j=1

sin(ξ ∞
j −ξ

∞
i )+ ε

N

∑
j=1

sin(θ ∞
j −ξ

∞
i )

]

Since X∞ is an equilibrium point, we have that:
K1

N

∑
j=1

sin(θ ∞
j −θ

∞
i )+ ε

N

∑
j=1

sin(ξ ∞
j −θ

∞
i ) = 0, i = 1, . . .N

K2

N

∑
j=1

sin(ξ ∞
j −ξ

∞
i )+ ε

N

∑
j=1

sin(θ ∞
j −ξ

∞
i ) = 0, i = 1, . . .N

(3.27)

By (3.27), αi and ᾱi are real numbers that obey

K1

N

∑
j=1

x∞
j + ε

N

∑
j=1

x̄∞
j = αix∞

i

K2

N

∑
j=1

x̄∞
j + ε

N

∑
j=1

x∞
j = ᾱix̄∞

i .

These equations imply that the weighted sum of angles of each layer in the complex plane
must be parallel to the angle of the i-oscillator in their layer. On the other hand, according to
the last lemma, the phases {X∞

i }2N
i=1 are distributed in an open half-circle. Then
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θ
∞
i = θ

∞
j and ξ

∞
i = ξ

∞
j for any i, j = 1,2, . . .N.

Otherwise, we can find an oscillator whose angle cannot be parallel to the weighted sum of
angles influencing it. Therefore, the phases are asymptotically synchronized.

In Lemma 3.3.3, we discussed the existence of phase-locked states as solutions of the
Kuramoto dynamics, with general initial conditions, in the large time limit. Moreover, we
show the final structure of the oscillators if the initial configuration is bounded by π . So
far, the structure of the phase-locked states for the AIC model is given by the following
proposition.

Proposition 3.3.4. The set {θ ∞
i ,ξ ∞

i }
N
i=1 is a stationary solution of (3.24) iff one of the

following properties hold

• r1 = 0 and r2 = 0

• There exist ϕ∞
1 and ϕ∞

2 such that

ϕ
∞
1 = ϕ

∞
2 + kπ mod 2π

where {θ ∞
i }

N
i=1 is of type (N− k1,k1)ϕ∞

1
or {ξ ∞

i }
N
i=1 is of type (N− k2,k2)ϕ∞

2

Proof. The first case corresponds to the state in which each center of mass θc and ξc are at
the origin and, ϕ1 and ϕ2 are undefined. In the second case from the equation (3.24), we
use the trivial case in which each stationary solution {θ ∞

i ,ξ ∞
i } follows sin(ϕ∞

1 − θi) = 0
and sin(ϕ∞

2 −ξi) = 0 then ϕ∞
1 = θ ∞

i +kiπ = ϕ∞
2 = ξ ∞

i +kiπ (mod 2π). If sin(ϕ∞
1 −θ ∞

i ) ̸= 0
then we have that considering the sum of (3.24) over i we have that:

K1r1

N

∑
i=1

sin(ϕ∞
1 −θ

∞
i ) =−εr2

N

∑
i=1

sin(ϕ∞
2 −θ

∞
i ) (3.28)

then by (3.11) and (3.13):

0 = εr2

N

∑
i=1

sin(ϕ∞
2 −θ

∞
i ) = εNr2r1 sin(ϕ∞

2 −ϕ
∞
1 )

then sin(ϕ∞
2 −ϕ∞

1 ) = 0, so we have that ϕ∞
1 = ϕ∞

2 + kπ for any k ∈ N then we have that
(3.28) is

sin(ϕ∞
1 −θ

∞
i )(K1r1 + εr2) = 0
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for k even, but since sin(ϕ∞
1 −θ ∞

1 ) ̸= 0 and K1,K2,r1,r2 > 0, we arrive at a contradiction. For
k odd, if any of the oscillators is of type (N− k1,k1)ϕ∞

1
for the Θ layer or type (N− k2,k2)ϕ∞

2

for the Ξ layer we need K1r1 = εr2 and in the same way, K2r2 = εr1 but since K1 > ε and
K2 > ε , then r2 > r1 and r1 > r2 at the same time then we arrive again to a contradiction.
Therefore, the oscillators of the layer must be of type (N− k1,k1)ϕ∞

1
for the Θ layer or type

(N− k2,k2)ϕ∞
2

for the Ξ layer.

Next, we prove that the order parameter of the system r is a monotonically non-decreasing
function while the interlayer order parameters r1 and r2 are not necessarily monotone.

Proposition 3.3.5. If X(t) = {θi(t),ξi(t)}N
i=1 is not a stationary solution then

1. ṙ > 0, ∀t > 0

2. The dynamics of the order parameters r1 and r2 are given by:

ṙ1(t) = r1
K1

N

N

∑
j=1

sin
(
ϕ1−θ j

)2
+

εr2

N

N

∑
j=1

sin
(
ϕ1−θ j

)
sin
(
ϕ2−θ j

)
, (3.29a)

(3.29b)

ṙ2(t) = r2
K2

N

N

∑
j=1

sin
(
ϕ2−ξ j

)2
+

εr1

N

N

∑
j=1

sin
(
ϕ2−ξ j

)
sin
(
ϕ1−ξ j

)
, (3.29c)

Proof. To prove point 2, we consider the first equation in (3.8) and deriving with respect to t

ṙ1eiϕ1 + ir1ϕ̇ieiϕ1 =
i
N

N

∑
i=1

eiθi θ̇i,

multiplying both sides of the equation by e−iϕ1 and separating the real part from the imaginary
part, we obtain the system:



ṙ1 =−
1
N

N

∑
i=1

sin(θi−ϕ1)θ̇i,

ϕ̇1 =
1

Nr1

N

∑
i=1

cos(θi−ϕ1)θ̇i,

(3.30)
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in the same way, for z2, we reach the following identity

ṙ2 =−
1
N

N

∑
i=1

sin(ξi−ϕ2)ξ̇i

ϕ̇2 =
1

Nr2

N

∑
i=1

cos(ξi−ϕ2)ξ̇i

(3.31)

then from the equation (3.30) and (3.31), we obtain

ṙ1 =
K1

N

N

∑
i=1

sin(ϕ1−θi)
2 + ε

N

∑
i=1

sin(ϕ1−θi)sin(ϕ2−θi)

ṙ2 =
K2

N

N

∑
i=1

sin(ϕ2−ξi)
2 + ε

N

∑
i=1

sin(ϕ2−ξi)sin(ϕ1−ξi)

(3.32)

Now back to point 1, notice that from (3.9) we have that

z = reiϕ =
1
2
(r1eϕ1 + r2eϕ2)

then we have that for any xi ∈ R

reiϕ−xi =
1
2
(
r1eϕ1−xi + r2eϕ2−xi

)
which give us for r > 0

sin(ϕ− xi) =
1
2r

(r1 sin(ϕ1− xi)+ r2 sin(ϕ2− xi)) (3.33)

considering the equation above, we have that differentiating z in (3.9) with respect to time
and multiplying for e−iϕ both sides we obtain the system

ṙ =− 1
2N

[
N

∑
j=1

sin(θ j−ϕ)θ̇ j +
N

∑
j=1

sin(ξ j−ϕ)ξ̇ j

]

rϕ̇ =
1

2N

[
N

∑
j=1

cos(θ j−ϕ)θ̇ j +
N

∑
j=1

cos(ξ j−ϕ)ξ̇ j

] (3.34)
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Then using the equation (3.33) with xi equal to θi and ξi in the dynamics of (3.34)

ṙ =
1

2N

[
N

∑
i=1

1
2r

(r1 sin(ϕ1−θi)+ r2 sin(ϕ2−θi))(K1r1 sin(ϕ1−θi)+ εr2 sin(ϕ2−θi)

+
N

∑
i=1

1
2r

(r1 sin(ϕ1−ξi)+ r2 sin(ϕ2−ξi))(K2r2 sin(ϕ2−ξi)+ εr1 sin(ϕ1−ξi)

]

=
1

4Nr

[
N

∑
i=1

K1r2
1 sin2(ϕ1−θi)+ εr2

2 sin2(ϕ2−θi)

+(K1 + ε)r1r2

N

∑
i=1

sin(ϕ1−θi)sin(ϕ2−θi)+K2r2
2 sin2(ϕ2−ξi)+ εr2

1 sin2(ϕ1−ξi)

+(K2 + ε)r1r2

N

∑
i=1

sin(ϕ1−ξi)sin(ϕ2−ξi)

]

since K1 > K2 > ε , we have that

ṙ ≥ ε

4Nr

[
N

∑
i=1

(r1 sin(ϕ1−θi)− r2 sin(ϕ2−θi))
2

+(r2 sin(ϕ2−ξi)− r1 sin(ϕ1−ξi))
2
]

> 0

It is not possible to exclude the possibility in which ṙ1 and ṙ2 can take negative values
even though r always increases. In fact, if we take randomly initial states with {θ 0

i }N
i=1 ∈

[3π/2,2π] and {ξ 0
i }N

i=1 ∈ [0,π], we can observe that for K1 = 3, K2 = 2 and ε = 1, the order
parameters tend to 1, but given the initial configuration, r1 and r2 decrease at the beginning
while r increases until it reaches a steady state, as shown in Figure 3.4.
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Fig. 3.4 Dynamics of the order parameters r1, r2 and r following the equations (3.32) and
(3.34) for {θ 0

i }N
i=1 ∈ [3π/2,2π] and {ξ 0

i }N
i=1 ∈ [0,π] with K1 = 3, K2 = 2 and ε = 1 in the

time t ∈ [0,0.2].

3.4 Asymptotic formation of a 2-cluster locked state for the
SIC Model

Consider the system (3.3)-(3.6), with a natural frequency ωi randomly chose from a generic
frequency distribution g(ω). We now introduce the natural frequency diameter between
oscillators of the same layer and the whole network:

D(Ω) := max
1≤i, j≤N

∣∣ωi−ω j
∣∣ , D(Ω̄) := max

1≤i, j≤N

∣∣ω̄i− ω̄ j
∣∣ ,

d(Ω) := min
1≤i, j≤N

i ̸= j

∣∣ωi−ω j
∣∣ , d(Ω̄) := min

1≤i, j≤N
i̸= j

∣∣ω̄i− ω̄ j
∣∣ ,

and D(Ω,Ω̄) := max
{

D(Ω),D(Ω̄), max
1≤i, j≤N

|ωi− ω̄i|
}
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The diameter of the natural frequencies is an important measure since it is directly related
to the variations of the frequencies. Indeed, the larger the frequency’s diameter, the higher
the variation of the frequencies.

Also, let us set the dual angles D∞
1 and D∞

2 of the initial phase diameters D(Θ0) and
D(Ξ0) under the assumption that the initial phase diameters are in the range (0,π):

D∞
1 ,D

∞
2 ∈

(
0,

π

2

)
, sin(D∞

1 ) = sin(D(Θ0)), sin(D∞
2 ) = sin(D(Ξ0)).

Then is clear that for an D(Θ0) ∈
[
0, π

2

]
, the dual angle D∞

1 coincides with D(Θ0), the
same would be for D(Ξ0) ∈

[
0, π

2

]
and D∞

2 .

As in the case of identical oscillators, we can use the phase diameter of each layer
as a Lyapunov functional, and study the temporal evolution of each layer via Grönwall’s
inequalities

Lemma 3.4.1. Suppose N ≥ 2 and that the system (3.3)-(3.6) has a global smooth solution
X(t) = (Θ,Ξ) with the initial phases satisfying D(Θ0), D(Ξ0) ∈ (0,π), and the coupling
strengths K1 > Kc

1 and K2 > Kc
2 where

Kc
1 =

D(Ω)+2ε

sin(D(Θ0))
and Kc

2 =
D
(
Ω̄
)
+2ε

sin(D(Ξ0))
. (3.35)

Then the phase diameters D(Θ(t)) and D(Ξ(t)) are uniformly bounded by D(Θ0) and D(Ξ0)

respectively:
D(Θ(t))≤ D(Θ0), D(Ξ(t))≤ D(Ξ0), t ̸= 0.

Moreover, we have the following linear Grönwall’s inequality for D(Θ(t)) and D(Ξ(t)):

dD(Θ)

dt
≤ D(Ω)+2ε−K1

sin
(
D(Θ0)

)
D(Θ0)

D(Θ)

dD(Ξ)

dt
≤ D(Ω̄)+2ε−K2

sin
(
D(Ξ0)

)
D(Ξ0)

D(Ξ)

Proof. First, let us define the extremal indexes M1, M2, m1 and m2 as

M1 = argmax
1≤i≤N

|θi| , M2 = argmax
1≤i≤N

|ξi| , (3.36)

m1 = argmin
1≤i≤N

|θi| , and m2 = argmin
1≤i≤N

|ξi| . (3.37)
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Considering the initial setup, we have that since D(Θ0)< π:

dD(Θ(t))
dt

∣∣∣∣
t=0

= θ̇M1(0)− θ̇m1(0)

= ωM1−ωm1 +
K1

N

N

∑
j=1

sin
(
θ

0
j −θ

0
M1

)︸ ︷︷ ︸
<0

−sin
(
θ

0
j −θ

0
m1

)︸ ︷︷ ︸
>0


+ ε [sin(ξM1−θM1)− sin(ξm1−θm1)]

≤ D(Ω)+2ε +
K1 sin(D(Θ0))

ND(Θ0)

N

∑
j=1

[(
θ

0
j −θ

0
M1

)
−
(
θ

0
j −θ

0
m1

)]
≤ D(Ω)+2ε−K1 sin(D(Θ0))< 0. (3.38)

Where we used that if −π <−D(Θ0)≤ x≤ 0, then

sin(x)≤ sin(D(Θ0))

D(Θ0)
x, (3.39)

and if π > D(Θ0)≥ x≥ 0:

sin(x)≥ sin(D(Θ0))

D(Θ0)
x. (3.40)

Therefore, D(Θ(t)) starts to strictly decrease at t = 0+. Then as the functional D(Θ(t)) is
continuous, it follows that the set

T1 :=
{

t ∈ [0,∞],0≤ τ ≤ t : D(Θ(τ))< D(Θ0)
}
, and T1 := supT1,

T1 is not empty, and T1 > 0 is well-defined. Then let us suppose that there exists a time
t = T1 < ∞ such that D(Θ(T1)) = D(Θ0), we are going to work on the derivative of D(Θ(t))
at time t = T1, following the same argument above is easy to see that:

dD(Θ(t))
dt

∣∣∣∣
t=T1

≤ D(Ω)+2ε−K1 sin(D(Θ0))< 0.
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Therefore, Ḋ(Θ)|t=T1 < 0 which is a contradiction, since if T1 < ∞ then Ḋ(Θ)|t=T1 ≥ 0,
which means that T1 = ∞. Furthermore, we apply the standard Grönwall’s lemma to obtain,

D(Θ)≤ (D(Ω)+2ε)D(Θ0)

K1 sin(D(Θ0))

[
1− e

−K1 sin(D(Θ0))
D(Θ0)

t
]
+D(Θ0)e

−K1 sin(D(Θ0))
D(Θ0)

t
= Z(t) (3.41)

The behavior of the diameter of Ξ group is analogous since the phase-diameter D(Ξ0)< π

we are going to have

dD(Ξ(t))
dt

∣∣∣∣
t=0
≤ D(Ω̄)+2ε−K2 sin(D(Ξ0)))< 0,

let T2 ∈ (0,∞] be any number. Suppose that the phase-diameter D(Ξ)(t) < D(Ξ0) for t ∈
[0,T2), then in this time interval, we have that

dD(Ξ(t))
dt

= ξ̇M2− ξ̇m2

= ω̄M2− ω̄m2 +
K2

N

N

∑
j=1

[
sin
(
ξ j−ξM2

)
− sin

(
ξ j−ξm2

)]
+ ε [sin(θM2−ξM2)− sin(θm2−ξm2)]

≤ D(Ω̄)+2ε−K2
sin(D∞)

D∞
D(Ξ(t))

≤ 0.

Defining again a set T2 and a time T2 such that:

T2 :=
{

t ∈ [0,∞],0≤ τ ≤ t : D(Ξ(τ))< D(Ξ0)
}
, and T2 := supT2 = Z̄(t)

if T2 < ∞ then
lim

t→T−2
D(Ξ(t)) = D(Ξ0), (3.42)

but from the differential inequality, we know that

D(Ξ(t))< D(Ξ0), t ∈ [0,T2).

This inequality implies that
lim

t→T−2
D(Ξ(t))< D(Ξ0),
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which is a contradiction to (3.42) then T2 = ∞ and D(Ξ(t)) is bound for any t ≥ 0 by:

D(Ξ)≤
(
D(Ω̄)+2ε

)
D(Ξ0)

K2 sin(D(Ξ0))

[
1− e

−K2 sin(D(Ξ0))
D(Ξ0)

t
]
+D(Ξ0)e

−K2 sin(D(Ξ0))
D(Ξ0)

t
. (3.43)

Notice that the last lemma gives us sufficient conditions under which we can bound
the diameter of each later without depending on the size of ε , in the sense that even for a
significantly small value of ε the diameter of each layer can be locked.

In the same way that we calculate an upper bound, we can estimate a positive lower
bound, which depends on the minimum possible distance between the natural frequencies
and the values of the intralayer coupling strength.

Lemma 3.4.2. Let X(t) = ({θi(t)}N
i=1 ,{ξi(t)}N

i=1), be the smooth solution to the system with
initial configuration

{
θ 0

i
}N

i=1 and
{

ξ 0
i
}N

i=1 satisfying DX0 ≤ π/2 then

D(Θ(t))≥ d(Ω)

K1
−
(

d(Ω)−2
K1

−D(Θ0)

)
e−K1t

D(Ξ(t))≥ d(Ω̄)

K2
−
(

d(Ω̄)−2
K2

−D(Θ0)

)
e−K2t

Proof. We estimate the evolution of the minimal phase following similar arguments to those
made for the proof of Lemma 3.4.1 and the elementary inequalities

sin(x)≥ x, x≤ 0, sin(x)≤ x, x≥ 0

to obtain

dD(Θ)

dt
≥ d(Ω)−2ε +

K1

N

N

∑
j=1

sin(θ j−θM1)− sin(θ j−θm1)

≥ d(Ω)− K1

N

N

∑
j=1

(θ j−θM1)− (θ j−θm1)

≥ d(Ω)−K1D(Θ),

this yields the desired result. The same procedure gives us the inequality for D(Ξ).
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For the following statement, we will use Lemma A.1.1, given by [21]. In this proposition,
we estimate the time in which the diameter of the layers is reduced until entering the range
of D∞

1 and D∞
2 , respectively.

Proposition 3.4.3. Let X(t)= (Θ,Ξ) be the global solution to the system (3.3)-(3.6) satisfying

D(Θ0), D(Ξ0) ∈ (0,π), K1 > Kc
1 and K2 > Kc

2

Then there exists t1, t2 > 0 such that

D(Θ(t))≤ D∞
1 for t ≥ t1, D(Ξ(t))≤ D∞

2 for t ≥ t2.

Proof. We will only work on the Θ case since the proof is quite long and Ξ is analogous.
For the case D(Θ0) < π

2 , we have D∞
1 = D(Θ0), and it follows from Lemma 3.4.1 that

D(Θ(t))≤ D(Θ0) = D∞, for any t ≥ 0.

Next, for any D(Θ0) ∈ (0,π), it follows from the assumptions and Lemma 3.4.1 that
D(Θ(t))≤ D(Θ0)< π and

Ḋ(Θ(t)) = θ̇M1− θ̇m1 = ωM1−ωm1−
K1

N

N

∑
j=1

(
sin(θ j−θM1)− sin(θ j−θm1)

)
+ ε (sin(ξM1−θM1)− sin(ξm1−θm1))

= ωM1−ωm1 + ε (sin(ξM1−θM1)− sin(ξm1−θm1))

+
K1

N

[
−2sin(θM1−θm1)+

N

∑
j ̸=M1,m1

(
sin(θ j−θM1)− sin(θ j−θm1)

)]
= ωM1−ωm1−K1 sin(θM1−θm1)+ ε (sin(ξM1−θM1)− sin(ξm1−θm1))

+
K1

N

N

∑
j ̸=M1,m1

(
sin(θ j−θM1)+ sin(θm1−θ j)+ sin(θM1−θm1)

)
.

We use the result of Lemma A.1.1:

sin(χM−χm)+ sin(χl−χM)+ sin(χm−χl)≤ 0,

and K > Kc
1 to get

Ḋ(Θ(t))≤ D(Ω)+2ε−K1 sin(D(Θ(t))). (3.44)
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Hence, we have that in the case of D(Θ0) = π/2 we get

Ḋ(Θ0)≤ D(Ω)+2ε−K1 sin(D(Θ0)) = D(Ω)+2ε−K1 < 0,

thus, there exists a time t1 > 0 such that D(Θ(t1))< π

2 , moreover, we can designate a constant
γ such that

K1 >
D(Ω)+2ε

sin(γ)
> D(Ω)+ ε and D(Θ(t1))< γ < D(Θ0),

then using the same arguments as the case D(Θ0)∈ (0,π/2) we found that D(Θ(t))≤ γ ≤D∞

after a time t ≥ 0.

To conclude, consider the case where D(Θ0)∈ (π/2,π) and suppose that D∞≤D(Θ(t))≤
D(Θ0) for t ≥ 0. Since sin(D(Θ(t))) ≥ sin(D∞

1 ) = sin(D(Θ0)) for t ≥ 0 and from (3.44)
precedes

Ḋ(Θ(t))≤ D(Ω)+2ε−K1 sin(D(Θ(t)))

≤ D(Ω)+2ε−K1 sin(D∞
1 )

= D(Ω)+2ε−K1 sin(D(Θ0))

=

(
1− K1

Kc
1

)
(D(Ω)+2ε)< 0.

Integrating the above differential inequality, we get

D(Θ(t))≤ D(Θ0)+

(
1− K1

Kc
1

)
(D(Ω)+2ε) t

then with

t1 :=
D(Θ0)−D∞

1(
K1
Kc

1
−1
)
(D(Ω)+2ε)

,

we have that for t > t1

D(Θ0)+

(
1− K

Kc
1

)
D(Ω)t ≤ D∞

1 .

Hence, at t = t1, we have that D(Θ(t)) leaves the interval
[
D∞

1 ,D(Θ0)
]
. The next step is to

prove that after t ≤ t1, the dynamics D(Θ(t)) remains bounded to D∞
1 , this proof follows the

same procedure given by 3.4.1, where instead of being D(Θ0), our upper bound it is D∞
1 .
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The last lemma gives us sufficient conditions to bound the diameter of each layer for all
t > 0. After this, it is reasonable to analyze whether the given conditions also imply that
the entire system is bound. Only considering the above conditions, this behavior cannot be
guaranteed; in effect, if, for example, we consider a state in which the extremes of the system
are given by oscillators in different groups, we are going to see in the following lemma that
the influence of the intralayer strength over the dynamics of the diameter of the system is
inversely proportional to the diameter of each layer, in other words, the greater the intralayer
synchronization is, the lower the influence of the intralayer forces on the dynamics of the
system diameter.

Lemma 3.4.4. Suppose that the initial configuration X0 and coupling strengths satisfy:

• D(Θ0), D(Ξ0) ∈ (π

2 ,π)

• K1 > Kc
1 , K2 > Kc

2 and

ε >
D
(
Ω,Ω̄

)
−
(
D(Ω)+D(Ω̄)

)
2

, (3.45)

where Kc
1 and Kc

2 are defined in (3.35). Then, there exists a finite time tε ∈ (0,∞) such
that Ḋ(X(tε))≤ 0.

Proof. We are going to work over the derivative of D(X(t)) at time t = 0, in connection with
the membership of the extremal phases of the whole system X = {Θ,Ξ}. Let M and m be
indices such that

XM(t) := max{θM1,ξM2} , Xm(t) := min{θm1,ξm2} , (3.46)

then we will have two cases: when the maximum and the minimum belong to the same layer
and when not.

The first case: (Maximal and minimal from the same layer) For this case it is clear that
there are two possibilities, either XM = θM and Xm = θm or XM = ξM and Xm = ξm, in any of
the cases, thanks to the result of Lemma 3.4.1 we have that Ḋ(X(0))< 0.

The second case(Maximal and minimal from different layers). Assume that XM = θM1

and Xm = ξm2 , then

d+D(X(t))
dt

∣∣∣∣
t=0

= ωM− ω̄m +
K1

N

N

∑
j=1

sin(θ 0
j −θ

0
M)− K2

N

N

∑
j=1

sin(ξ 0
j −ξ

0
m)
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+2ε [sin(ξM−θM)− sin(θm−ξm)] .

By Lemma 3.4.1, and considering the initial setup, we have

d+D(X(t))
dt

∣∣∣∣
t=0
≤ D(Ω,Ω̄)+2ε−K1 sin(D(Θ(t)))−K2 sin(D(Ξ(t)))

≤ D(Ω,Ω̄)+2ε−K1 sin(D(Θ0))−K2 sin(D(Ξ0))

≤ D(Ω,Ω̄)+2ε− D(Ω)+2ε

sin(D(Θ0))
sin(D(Θ0))− D(Ω̄)+2ε

sin(D(Ξ0))
sin(D(Ξ0))

≤ D(Ω,Ω̄)−
(
D(Ω)+D(Ω̄)

)
−2ε

≤ 0,

due to the condition (3.45). Therefore, Ḋ(X)|t=0 < 0 and for the continuity of D(X(t)) there
exist a tε such that Ḋ(X)|t=tε ≤ 0.

Note that Lemma 3.4.4 establishes sufficient conditions so that in a finite time we can
control the total distance of the oscillators of the system. In general to control this diameter,
it is required that the initial configuration of the system is within the range [0,π], but the
conditions of Lemma 3.4.4 allow us to relax this restriction and to know the behavior of
the system for cases outside the range in a finite time. An example of the behavior of the
diameters of the system under these conditions can be seen in Figure 3.6, note that this plot
not only allows us to observe how the diameter of the oscillators in the system is shortened
for a while and then grow but also how under the same conditions the diameter of each layer
is maintained at a constant distance, highlighting the importance of analyzing the system as a
layered structure. Moreover, if we consider a system with more restricted initial conditions
we can restrict in a finite time the diameter of the system under a linear equation:

Lemma 3.4.5. Suppose that the initial configuration DX0 ∈ (π

2 ,π) and the coupling strengths
satisfy:

K1 > Kc
1 =

D(Ω)+D(Ω,Ω̄)

2sin(D(Θ0))
, K2 > Kc

2 =
D(Ω̄)+D(Ω,Ω̄)

2sin(D(Ξ0))
, and ε > 0.

Then, exists a finite time tε ∈ (0,∞) such that Ḋ(X(tε))≥ 0. And D(X(t))≤D∞ for t ∈ (0, tε).

D(X(t))≤ DX0.
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Proof. Suppose that

D∞ ≤ D(X(t))≤ DX0

D∞
1 ≤ D(Θ(t))≤ D(Θ0)

and D∞
2 ≤ D(Ξ(t))≤ D(Ξ0),

for t ≥ 0. Consider the definitions of extremal phases given in (3.46) and the two possible
extremal phase states.

The first case: (Maximal and minimal from the same layer)

Assume that XM = θM and Xm = θm then

d+D(X(t))
dt

∣∣∣∣
t=0

= ωM−ωm +
K1

N

N

∑
j=1

sin(θ 0
j −θ

0
M)− sin(θ 0

j −θ
0
m)

+ ε
[
sin(ξ 0

M−θ
0
M)− sin(ξ 0

m−θ
0
m)
]︸ ︷︷ ︸

≤0

≤ D(Ω)−K1 sin(DX0)

≤ D(Ω)−K1 sin(D(Θ0))

=−1
2

[
D(Ω)

(
K1

Kc
1
−1
)
+

(
K1

Kc
1

D(Ω,Ω̄)−D(Ω)

)]
< 0.

Notice that we use the same approach for the calculations on Lemma 3.4.1, and the case
XM = ξM and Xm = ξm is analogous. Moreover, if we integrate the above inequality to get

D(X(t))≤ DX0−
1
2

[
D(Ω)

(
K1

Kc
1
−1
)
+

(
K1

Kc
1

D(Ω,Ω̄)−D(Ω)

)]
t.

Note that after
t1 :=

2(DX0−D∞)

D(Ω)
(

K1
Kc

1
−1
)
+
(

K1
Kc

1
D(Ω,Ω̄)−D(Ω)

) ,
we have that D(X(t1))≤ D∞, which means that D(X(t)) leaves the interval [D∞,DX0] at the
time t = t1. In the case that maximal and minimal are in the layer of Ξ, we have that the time



3.5 Asymptotic formation of a 2-cluster locked state for the AIC Model 47

in which D(X(t)) leaves [D∞,DX0 ] is given by:

t2 :=
2(DX0−D∞)

D(Ω̄)
(

K2
Kc

2
−1
)
+
(

K2
Kc

2
D(Ω,Ω̄)−D(Ω̄)

) .
Second case (Maximal and minimal from different layers) Set XM = θM and Xm = ξm

d+D(X(t))
dt

∣∣∣∣
t=0

= ωM− ω̄m +
K1

N

N

∑
j=1

sin(θ 0
j −θ

0
M)− K2

N

N

∑
j=1

sin(ξ 0
j −ξ

0
m)

+ ε
[
sin(ξ 0

M−θ
0
M)− sin(θ 0

m−ξ
0
m)
]

≤ D(Ω,Ω̄)−K1 sin(D(Θ0))−K2 sin(D(Ξ0))

≤ D(Ω,Ω̄)− K1

2Kc
1
(D(Ω,Ω̄)+D(Ω))− K2

2Kc
2
(D(Ω,Ω̄)+D(Ω̄))

≤−1
2

[
D(Ω,Ω̄)(

K1

Kc
1
+

K2

Kc
2
−2)+

K1

Kc
1

D(Ω)+
K2

Kc
2

D(Ω̄)

]
< 0,

in the same way as before, if we integrate the inequality, we get

D(X(t))≤ DX0−
1
2

[
D(Ω,Ω̄)(

K1

Kc
1
+

K2

Kc
2
−2)+

K1

Kc
1

D(Ω)+
K2

Kc
2

D(Ω̄)

]
t.

3.5 Asymptotic formation of a 2-cluster locked state for the
AIC Model

In this subsection, we provide sufficient conditions for reaching a 2-cluster configuration on
the AIC model.

Lemma 3.5.1. Suppose that the system (3.5)-(3.6) has N ≥ 2 and a global smooth solution
X(t) = (Θ,Ξ) with the initial phases satisfying D(Θ0), D(Ξ0) ∈ (0,π), and the coupling
strengths K1 > Kc

1 and K2 > Kc
2 where

Kc
1 =

D(Ω)+2ε sin(D(Θ0)
2 )

sin(D(Θ0))
and Kc

2 =
D
(
Ω̄
)
+2ε sin(D(Ξ0)

2 )

sin(D(Ξ0))
. (3.47)
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Then the phase diameters D(Θ(t)) and D(Ξ(t)) are uniformly bounded by D(Θ0) and D(Ξ0)

respectively:
D(Θ(t))≤ D(Θ0), D(Ξ(t))≤ D(Ξ0), t ̸= 0

Proof. Let T1 ∈ (0,∞] be any number. Suppose that the phase-diameter D(Θ(t)) satisfies
D(Θ(t)) < π for all t ∈ [0,T1). Considering the extremal indexes defined in eqs. (3.36)
and (3.37) over the time interval [0,T1) and the AIC dynamics (3.5), we have

dD(Θ(t))
dt

= θ̇M1(t)− θ̇m1(t)

= ωM1−ωm1 +
K1

N

N

∑
j=1

sin
(
θ j−θM1

)︸ ︷︷ ︸
<0

−sin
(
θ j−θm1

)︸ ︷︷ ︸
>0


+

ε

N

N

∑
j=1

[
sin
(
ξ j−θM1

)
− sin

(
ξ j−θm1

)]
≤ D(Ω)+

K1 sin(D(Θ0))

ND(Θ0)

N

∑
j=1

[(
θ j−θM1

)
−
(
θ j−θm1

)]
+

2ε

N
sin
(

θm1−θM1

2

) N

∑
j=1

cos
(

ξ j−
θM1 +θm1

2

)
,

where we use eqs. (3.39) and (3.40). This yields

dD(Θ(t))
dt

≤ D(Ω)+2ε sin
(

D(Θ(t))
2

)
− K1 sin(D(Θ0))

D(Θ0)
D(Θ(t)). (3.48)

Moreover, a time t = 0 we have

dD(Θ(t))
dt

≤ D(Ω)+2ε sin
(

D(Θ0)

2

)
−K1 sin(D(Θ)0)< 0.

Therefore, D(Θ(t)) starts to strictly decrease at t = 0+. Then, since the functional D(Θ(t))
is continuous, it follows that the set

T1 :=
{

t ∈ [0,∞],0≤ τ ≤ t : D(Θ(τ))< D(Θ0)
}
, and T1 := supT1,
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is not empty, and T1 > 0 is well-defined. Then let us suppose that there exists a time
t = T1 < ∞ such that D(Θ(T1)) = D(Θ0), then we are going to work over the derivative of
D(Θ(t)) at time t = T1, following the same problem as earlier, it is easy to see that:

dD(Θ(t))
dt

∣∣∣∣
t=T1

≤ D(Ω)+2ε sin
(

D(Θ0)

2

)
−K1 sin(D(Θ0)))< 0.

Therefore, Ḋ(Θ)|t=T1 < 0 which is a contradiction, since if T1 < ∞ then Ḋ(Θ)|t=T1| ≥ 0,
which means that T1 = ∞.

The behavior of the diameter of the Ξ group is analogous. Since the phase-diameter
D(Ξ0)< π , we have

dD(Ξ(t))
dt

∣∣∣∣
t=0
≤ D(Ω̄)+2ε sin

(
D(Ξ0)

2

)
−K2 sin(D(Ξ0)))< 0, (3.49)

Defining again a set T2 and a time T2 such that:

T2 :=
{

t ∈ [0,∞],0≤ τ ≤ t : D(Ξ(τ))< D(Ξ0)
}
, and T2 := supT2 = Z̄(t),

From the equation (3.49) we know that T2 ̸= /0, assume T2 < ∞ then

lim
t→T−2

D(Ξ(t)) = D(Ξ0), (3.50)

let T2 ∈ (0,∞] be any number. Suppose that the phase-diameter D(Ξ)(t) < D(Ξ0) for
t ∈ [0,T2), then in this time interval, we have that

dD(Ξ(t))
dt

≤ D(Ω̄)+2ε sin
(

D(Ξ(t))
2

)
−K2

sin(D(Ξ0)

D(Ξ0)
D(Ξ(t))

from the differential inequality, we know that

D(Ξ(t))< D(Ξ0), t ∈ [0,T2).

This implies that
lim

t→T−2
D(Ξ(t))< D(Ξ0),

which is a contradiction to (3.50) then T2 = ∞.
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Below, we show that the diameter of each layer will collapse exponentially fast. For this,
we propose bigger lower bounds for the intralayer coupling strength:

K̄c
1 =

D(Ω)+ εD(Θ0)

sin(D(Θ0))
and K̄c

2 =
D(Ω̄)+ εD(Ξ0)

sin(D(Ξ0))
. (3.51)

The following lemma states that the diameter of each layer exponentially decrease for any of
the coupling strengths bounds given by (3.47) or (3.51).

Lemma 3.5.2. Let X(t) = (Θ(t),Ξ(t)) be a solution to the system (3.5)-(3.6) with initial
data D(Θ0), D(Ξ0) ∈ (0,π). For a K1 and K2 large enough, there exist positive constants C1,
C2, Λ1 and Λ2 such that

D(Θ(t))≤C1

(
1− e−Λ1t

)
+D(Θ0)e−Λ1t and

D(Ξ(t))≤C2

(
1− e−Λ2t

)
+D(Ξ0)e−Λ2t ,

where the constant estimates will depend on the lower bound, dependent on K1 and K2.

Proof. We use the estimates made in Lemma 3.5.1, in particular, for the Θ layer, we use the
equation (3.48)

d
dt

D(Θ)≤ D(Ω)+2ε sin
(

D(Θ(t))
2

)
− K1 sin(D(Θ0))

D(Θ0)
D(Θ(t)). (3.52)

If we consider K1 > Kc
1 , since D(Θ(t)) ∈ (0,π) and D(Θ(t))≤ D(Θ0) for Lemma 3.5.1 we

have

sin
(

D(Θ(t))
2

)
≤ sin

(
D(Θ0)

2

)
, ∀t ≥ 0,

then the equation (3.52) takes the Grönwall-type inequality:

d
dt

D(Θ)≤ D(Ω)+2ε sin
(

D(Θ0)

2

)
− K1 sin(D(Θ0))

D(Θ0)
D(Θ(t)),

which leads to

D(Θ)≤

(
D(Ω)+2ε sin

(
D(Θ0)

2

))
D(Θ0)

K1 sin(D(Θ0))

[
1− e

−K1 sin(D(Θ0))
D(Θ0)

t
]
+D(Θ0)e

−K1 sin(D(Θ0))
D(Θ0)

t
,
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On the other side, if we consider K1 > K̄c
1 , we can consider the Grönwall inequality

d
dt

D(Θ)≤ D(Ω)−
[

K1 sin(D(Θ0))

D(Θ0)
− ε

]
D(Θ(t)),

where we use the fact that sin(x)< x for x > 0. Then we arrive to the form

D(Θ(t))≤ D(Θ0)

{
D(Ω)

K1 sin(D(Θ0))− εD(Θ0)

[
1− e

−
(

K1 sin(D(Θ0))
D(Θ0)

−ε

)
t
]

+e
−
(

K1 sin(D(Θ0))
D(Θ0)

−ε

)
t
}
.

The case for the Ξ layer is analogous considering Kc
2 and K̄c

1 . This leads to the desired
result.

We present sufficient conditions for a 2-cluster bounded synchronization. Moreover,
notice that when D(Ω) = 0, for a K1 > K̄c1 , D(Θ)→ 0 when t→ ∞, the same behavior can
happen to the Ξ layer if D(Ω̄) = 0 and K2 > K̄c2 .

Now we will present the conditions for the complete synchronization of the system giving
an AIC topology. Primarily, there is a work done for symmetric matrix coupling given by
[61] and [59]. Our work aims to exploit the AIC structure for giving conditions over the
intralayer strengths and not over the interlayer strength. Consider the total variance of the
natural frequencies

σ(Ω,Ω̄) :=
1√
N

(
N

∑
i=1
|ωi|2 + |ω̄i|2

) 1
2

.

and the total difference between the intracoupling strengths ∆K12 = |K1−K2|

Then give it the energy function:

E (X(t)) :=
1
N

2N

∑
i=1
|Xi(t)|2 =

1
N

N

∑
i=1
|θi(t)|2 +

1
N

N

∑
i=1
|ξi(t)|2 ,
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Lemma 3.5.3. Let λ0 ∈ (0,π), and X(t) = {Θ(t),Ξ(t)} be the smooth solution to the system
(3.5) and (3.6) with coupling strength and initial data satisfying:

ε >
1
2

[√
2σ(Ω,Ω̄)

sin(λ0)
+

∆K12

2

]
and E (X0)≤

λ 2
0

2N
. (3.53)

Then we have:
D(X(t))≤ λ0 < π ∀t ≥ 0.

where the energy function E (X(t)) satisfies:

dE (X(t))
dt

≤ 2σ
(
Ω,Ω̄

)√
E (X(t))− (4ε−∆K12)

sin(λ0)

λ0
E (X(t)). (3.54)

Proof. First define the time set:

T := {T : D(X(t))< λ0, ∀t ∈ [0,T )} and T∗ := supT .

Since ∣∣X0
i −X0

j
∣∣2 ⩽ 2

(
|X0

i |2 + |X0
j |2
)
⩽ 2NE (X0)< λ

2
0 , i, j = 1, . . . ,N, (3.55)

thanks to the upper bound give it to the energy function in (3.53). By continuity, there exists
a δ > 0 such that

|Xi(t)−X j(t)|< λ0, t ∈ [0,δ ), i, j = 1, . . . ,N.

Therefore δ ∈T and T ̸= /0. Suppose that there exists a T∗ < ∞, then we have

max
t∈[0,T∗]

D(X(t))⩽ λ0. (3.56)

we use the dynamics of the AIC system given by (3.5) to find

dE (X(t))
dt

=
2
N

N

∑
i=1

θ̇iθi +
2
N

N

∑
i=1

ξ̇iξi

=
2
N

[
N

∑
i=1

ωiθi +
N

∑
i=1

ω̄iξi +
K1

N

N

∑
i, j=1

sin
(
θ j−θi

)
θi +

K2

N

N

∑
i, j=1

sin
(
ξ j−ξi

)
ξi

]
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+2
ε

N2

N

∑
i, j=1

sin(ξ j−θi)θi +2
ε

N2

N

∑
i, j=1

sin
(
θ j−ξi

)
ξi

i↔ j
≤ 2

N

N

∑
j=1
|ω jθ j|+ |ω̄ jξ j|+

2K1

N2

N

∑
i, j=1

sin
(
θi−θ j

)
θ j

+
2K2

N2

N

∑
i, j=1

sin
(
ξ j−ξi

)
ξ j +2

ε

N2

[
N

∑
i, j=1

sin(ξi−θ j)θ j +
N

∑
i, j=1

sin(θi−ξ j)ξ j

]
.

Then for Hölder inequality and since sin(x) is odd we have

dE (X(t))
dt

≤ 2
N

(
N

∑
i=1
|ωi|2 + |ω̄i|2

) 1
2
(

N

∑
i=1
|θi|2 +

N

∑
i=1
|ξi|2

) 1
2

− K1

N2

N

∑
i, j=1

sin(θ j−θi)(θ j−θi)−
K2

N2

N

∑
i, j=1

sin(ξ j−ξi)(ξ j−ξi)

−2
ε

N2

N

∑
i, j=1

sin(ξ j−θi)(ξ j−θi).

Considering that we are working in the time t ∈ [0,T ∗) and the elementary inequality

sin(x)
x
≥ sin(λ0)

λ0
, ∀x ∈ [−λ0,λ0], (3.57)

that implies

xsin(x)≥ sin(λ0)

λ0
x2 ∀x ∈ [−λ0,λ0]. (3.58)

we apply the above inequality to derive

dE (X(t))
dt

= 2
σ
(
Ω,Ω̄

)
√

N

(
N

∑
i=1
|θi|2 +

N

∑
i=1
|ξi|2

) 1
2

− K1

N2
sin(λ0)

λ0

N

∑
i, j=1

∣∣θ j−θi
∣∣2

− K2

N2
sin(λ0)

λ0

N

∑
i, j=1

∣∣ξ j−ξi
∣∣2−2

ε

N2
sin(λ0)

λ0

N

∑
i, j=1

∣∣ξ j−θi
∣∣2

=
σ
(
Ω,Ω̄

)
√

N

(
N

∑
i=1
|θi|2 +

N

∑
i=1
|ξi|2

) 1
2

−2
K1

N
sin(λ0)

λ0

N

∑
i=1
|θi|2

+2
K1

N2
sin(λ0)

λ0

N

∑
i, j=1

θiθ j−2
K2

N
sin(λ0)

λ0

N

∑
i=1
|ξi|2
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+2
K2

N2
sin(λ0)

λ0

N

∑
i, j=1

ξiξ j−2
ε

N
sin(λ0)

λ0

N

∑
i=1

(
|ξi|2 + |θi|2

)
+4

ε

N2
sin(λ0)

λ0

N

∑
i, j=1

ξ jθi

= 2
σ
(
Ω,Ω̄

)
√

N

(
N

∑
i=1
|θi|2 +

N

∑
i=1
|ξi|2

) 1
2

−2(K1 + ε)
sin(λ0)

Nλ0

N

∑
i=1
|θi|2

−2(K2 + ε)
sin(λ0)

Nλ0

N

∑
i=1
|ξi|2

+2
K1

N2
sin(λ0)

λ0

N

∑
i, j=1

θ jθi +2
K2

N2
sin(λ0)

λ0

N

∑
i, j=1

ξiξ j +4ε
sin(λ0)

N2λ0

N

∑
i, j=1

ξ jθi︸ ︷︷ ︸
:=E

.

Focusing on the components in E of the last inequality and noticing that since Pc = 0, we
have that θc =−ξc, which means:

N

∑
i, j=1

θ jθi =
N

∑
i, j=1

ξiξ j =−
N

∑
i, j=1

θiξ j, (3.59)

and (
N

∑
i=1

θi

)2

+

(
N

∑
i=1

ξi

)2

=−2
N

∑
i, j=1

θiξ j, (3.60)

considering the equalities (3.59), (3.60) and that K1 > K2 > ε , we have

E = 2
sin(λ0)

λ0N2

[
K1

N

∑
i, j=1

θ jθi +K2

N

∑
i, j=1

ξiξ j +2ε

N

∑
i, j=1

ξ jθi

]

= 2
sin(λ0)

λ0N2

[
−K1

N

∑
i, j=1

θiξ j−K2

N

∑
i, j=1

ξiθ j +2ε

N

∑
i, j=1

ξiθ j

]

=
sin(λ0)

λ0N2 (K1 +K2−2ε)

( N

∑
i=1

θi

)2

+

(
N

∑
i=1

ξi

)2
 .

using the above equality over the estimates for the dynamics of the energy function and the
Callebaut’s inequality, we have

dE (X(t))
dt

≤ 2

{
σ
(
Ω,Ω̄

)√
E (X(t))− sin(λ0)

λ0

[
K1 + ε

N

N

∑
i=1
|θi|2 +

K2 + ε

N

N

∑
i=1
|ξi|2

]}
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− 2ε− (K1 +K2)

2N2
sin(λ0)

λ0

( N

∑
i=1

θi

)2

+

(
N

∑
i=1

ξi

)2


≤ 2σ
(
Ω,Ω̄

)√
E (X(t))−2

K1 + ε

N
sin(λ0)

λ0

N

∑
i=1
|θi|2

−2
K2 + ε

N
sin(λ0)

λ0

N

∑
i=1
|ξi|2−

2ε− (K1 +K2)

2N
sin(λ0)

λ0

(
N

∑
i=1

θ
2
i +

N

∑
i=1

ξ
2
i

)

≤ 2σ
(
Ω,Ω̄

)√
E (X(t))− (4ε +(K1−K2))

sin(λ0)

Nλ0

N

∑
i=1
|θi|2

− (4ε− (K1−K2))
sin(λ0)

Nλ0

N

∑
i=1
|ξi|2.

Setting ∆K12 = K1−K2 yields the differential inequality

dE (X(t))
dt

≤ 2σ
(
Ω,Ω̄

)√
E (X(t))− (4ε−∆K12)

sin(λ0)

λ0
E (X(t)). (3.61)

In the next step, we will prove that T = ∞.

For simplicity, we can rewrite the differential inequality (3.61) setting

y(t) :=
√

E (X(t)), t ≥ 0. (3.62)

For the inequality (3.61) we can see that y(t) satisfies

dy(t)
dt
≤ σ(Ω,Ω̄)−

(
2ε− ∆K12

2

)
sin(λ0)

λ0
y(t), t ∈ [0,T ∗].

Moreover, analyzing the ODE:
dz(t)

dt
= σ(Ω,Ω̄)−

(
2ε− ∆K12

2

)
sin(λ0)

λ0
z(t)

z(0) =
√

E (X0)

,

we have that it has a unique stable equilibrium point in

z∗ :=
2σ(Ω,Ω̄)

4ε−∆K12

(
λ0

sin(λ0)

)
,
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moreover since

ε >

√
2Nσ(Ω)

2sin(λ0)
+

∆K12

4
←→ z∗ <

λ0√
2N

,

and the ODE solution is:

z(t) =
2σ(Ω,Ω̄)

4ε−∆K12

λ0

sin(λ0)

(
1− e

−
(4ε+∆K12

)sin(λ0)

2λ0
t
)
+
√

E (X0)e
−

(4ε+∆K12
)sin(λ0)

2λ0
t
.

From the last equation, we can see that the trajectory of z(t) increases to z∗ if z(0)< z∗ and
decreases to z∗ in the contrary case. Therefore, z∗ is an asymptotically stable point, and
z(t)≤max{z∗,z(0)}. Then for comparison principle we have that

√
E (t) = y(t)≤ z(t)≤max{z(0),z∗} ≤

λ0√
2
, t ∈ [0,T∗].

in particular

y(T∗)<
λ0√

2
, for t ∈ [0,T ∗+δ1],

and subsequently for the continuity of y, there exist a δ1 > 0 such that

y(t)<
λ0√

2
,

and by (3.62) and the relation give it in (3.55) , we have that

∣∣X0
i −X0

j
∣∣⩽√2E (X0)< λ0, i, j = 1, . . . ,N and t ∈ [0,T∗+δ1).

Therefore, T∗+δ1 ∈T which contradicts T∗ = supT . Therefore, T∗ = ∞.

Then since we assume that the initial center of mass of the system is zero (3.19), the last
theorem guarantees the uniform boundedness of X :

|Xi|= |Xi−Xc|=

∣∣∣∣∣ 1
2N

2N

∑
j=1

Xi−X j

∣∣∣∣∣≤ 1
2N

2N

∑
j=1

∣∣Xi−X j
∣∣< λ0.

Since the system can be formulated as a gradient system (3.21) and we give sufficient
conditions such that the fluctuations around the phase in time are uniformly bounded, we can
use the Theorem 3.5.4 given by [61] for systems of the general form (3.2) to prove that this
boundedness leads to a steady state via Łojasiewicz’s inequality.
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Theorem 3.5.4. Let X(t) be the global solution to (3.2) with (3.6). If X(t) satisfies a priori
uniformly boundedness condition:

max
1≤i≤N

sup
t>0
|Xi(t)|< ∞,

then the frequency of the oscillators Ẋ converges to zero as t→+∞.

Proof. See Theorem 3.1, [61].

With the previous theorem, we obtain the necessary conditions for use the Theorem
3.5.4 and prove the complete frequency synchronization of the system. Furthermore, this
completes the proof of the following theorem

Theorem 3.5.5. Let λ0 ∈ (0,π), and X(t) = {Θ(t),Ξ(t)} be the smooth solution to the
system (3.5) and (3.6) with coupling strength and initial data satisfying:

ε >
1
2

[√
2σ(Ω,Ω̄)

sin(λ0)
+

∆K12

2

]
and E (X0)≤

λ 2
0

2N
. (3.63)

Then we have D(X(t))< λ0,

lim
t→∞

∣∣θ̇i(t)
∣∣= 0 and lim

t→∞

∣∣∣ξ̇i(t)
∣∣∣= 0, i = 1, . . . ,N.

3.6 Numerical simulations

In this section, we provide several numerical examples of the results of sections 3.4 and 3.5.

Starting with the SIC model (3.1), for the simulations, we selected the fourth-order
Runge-Kutta method with a time step of h = 10−3, choosing the initial phases θ 0

i and ξ 0
i

randomly from the intervals [−2(0.95)π/3,0.95π/3] and [0,0.90π] (see Figure 3.5a) so that

D(Θ0) = 2.9801, D(Ξ0) = 2.8244 and DX0 = 3.8936,

with dual angles
D∞

1 = 0.1615, D∞
2 = 0.3175
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(a) Sample initial configuration (b) Natural frequencies’ histogram

Fig. 3.5 Initial configurations of X for the SIC model (3.3). Subfigure (a) Shows the initial
configuration of X0 with Θ0 in blue and Ξ0 in orange. Subfigure (b) shows the natural
frequencies’ histogram of Ω in blue and Ω̄ in orange.

the natural frequencies were chosen at random from a Lorentzian distribution centered
in 0 with cut in [−4,4] for Ω, and centered in 8 with cut in [4,12] for Ω̄ (see Figure 3.5b).
Then, considering the lemmas 3.4.4 and 3.4.1, the lower coupling bounds are:

ε = 0.8034, Kc
1 = 50.7421 and Kc

2 = 27.2267

Our choices for K1 = 77, K2 = 50 and ε = 1 satisfy the assumptions. It is easy to see from
Figure 3.6 that the phase diameters shrink to some positive number less than D∞

1 and D∞
2 .

In fact, the limit of D(Θ(t)) is around 0.0795 while for D(Ξ(t)) is around the value
0.1374. On the other hand, D(X(t)) shrinks until a certain time t1 and then increases without
any upper bound.

Moreover, if we consider the case where the natural frequencies’ distance of the whole
system is less than the sum of the distances of the natural frequencies of each layer, i.e.,
D(Ω,Ω̄)≤D(Ω)+D(Ω̄) over the same coupling strength and initial conditions, the behavior
of D(X) is not guaranteed only with these conditions, the distance can start to grow after
a certain time as in the previous case, or it can decrease to a specific value depending on
D(Ω,Ω̄) as in the case of Figure 3.7.

In order to test the results in Section 3.5 and point out the differences between the
dynamics of the SIC model and the AIC model under similar conditions, we use the same
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Fig. 3.6 Trajectories of D(Θ(t)) and D(Ξ(t)). With their respective dual angles from the
initial state D∞

1 and D∞
2 and the estimate times t in which the length of the diameters pass the

dual angles.

setting on the fourth-order Runge-Kutta, and for the initial conditions of our first example,
we choose a Cauchy distribution for the natural frequencies given by

g(Ω) =
1
π

λ

λ 2 +(ω−δ )2 , (3.64)

whit λ = 1/2 and δ = 0 for the natural frequencies of Ω and δ = 8 for the natural frequencies
of Ω̄, in the same way, the initial phases Θ0 are randomly picked from a uniform distribution
in the interval [−0.952π

3 ,0.95π

3 ] and Ξ0 from [0,090π] (see Figure (3.8) ), which means that
we have adjusted this simulation to the same conditions imposed in the first example of the
AIC model. For this case, we have that the diameters of the initial conditions are:

D(Θ0) = 2.9816, D(Ξ0) = 2.8068 D(X) = 4.8019 (3.65)

D(Ω) = 7.6108 and D(Ω̄) = 7.8287 (3.66)

Then, reviewing the Lemma 3.5.1 and the lower bounds necessary for the 2-cluster locked
state, we take the following coupling strengths
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(a) Natural frequencies’ histogram (b) Diameter’s dynamics

Fig. 3.7 The behaviors of D(Θ), D(Ξ) and D(X) for non-identical oscillators with natural
frequencies Ω and Ω̄ centered in 0 and 1.5 respectively.

K1 = 44 > Kc
1 = 42.7294, K2 = 22 > Kc

2 = 21.0730 and ε = 1

Notice that the lower bounds required for the locked state can be visualized in Figure 3.9
are less than in the SIC case.

To compare the difference between Lemma 3.5.1 and Lemma 3.5.2, we take an identical
natural frequency value ωi = 2 for the Θ layer, and we keep the natural frequencies of Ξ

randomly chosen from a Cauchy distribution (3.64) with λ = 1/2 and δ = 8 see Figs. 3.10a.
For the coupling strengths, we choose the lower bound presented in equation(3.51) for the
Θ layer and equation (3.51) for the Ξ layer. Notice that selecting equation (3.51) gives us a
smaller coupling than the one given by (3.51); indeed, we have that

Kc
1 = 2.57, Kc

2 = 12.06, K̄c
1 = 3.93 and K̄c

2 = 12.16

We observe that the diameter of the Θ layer exponentially goes to zero, following the
same argument presented in Lemma 3.5.2, while the D(Ξ) decrease to a value bigger than
zero.
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(a) X0. (b) Natural frequencies’ histogram

Fig. 3.8 Initial setting for N = 500 oscillators in each layer. (a) Shows the initial configuration
of X0 with Θ0 in blue and Ξ0 in orange. (b) shows the natural frequencies’ histogram of Ω in
blue and Ω̄ in orange.

Fig. 3.9 The behaviors of D(Θ), D(Ξ) and D(X) for the initial configuration shown in
equation (3.66) and coupling strengths K1 = 44, K2 = 22, and ε = 1 for the AIC model eq.
(3.5).
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(a) The initial state of X0. (b) Histogram of Ω and Ω̄.

Fig. 3.10 Initial configuration for Θ layer with identical natural frequencies ωi = 2.

(a) State of X(t) at time t = 3. (b) Trajectories of D(Θ) and D(Ξ).

Fig. 3.11 Comparison between Θ(t) and Ξ(t). (a) shows at time t = 3 the polar coordinates
of the oscillators, i.e., eiθ j in blue and eiξ j in orange. (b) shows the difference between the
trajectories D(Θ) and D(Ξ) when t→ ∞.
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(a) Natural Frequency histogram for Ω and Ω̄ (b) Trajectory of D(Θ), D(Ξ) and D(X).

Fig. 3.12 Initial configuration and trajectories of layers diameters and the system diameter
over the conditions given by (3.53) in Lemma 3.5.3.

The last example corresponds to the necessary conditions for reaching complete synchro-
nization on an AIC topology. As we can observe from the Theorem 3.5.5, we have that, for
N = 100 and λ0 = 2.83, we need an initial energy E (X0)≤ 0.078

As we can see for

K1 = 17, K2 = 13 and ε = 8.43,

following the condition given by (3.53) over ε , i.e. ε > 7.5 and the natural frequencies
randomly picked from the Cauchy distribution (3.64) preserving the scale parameter used in
the other examples, δ =−2 for Ω and δ = 2 for Ω̄ such that the average Ωc = 0, in the same
way Xc(0) = 0. From the Figure 3.12b we can observe that D(X(t))< λ0 and for t > 0.6

dD(Θ)

dt
=

dD(Ξ)

dt
=

dD(X)

dt
= 0,

which means that θ̇ = ξ̇ = 0.

The Figure 3.13 is a comparison between the trajectory of ˙E (t) in blue and the upper
bound estimate exhibit in the equation (3.54) in orange.
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Fig. 3.13 Comparison between Ė (t) in blue and the upper bound estimate given by the
equation (3.54) in orange.

3.7 Summary of the chapter

In summary, we have analyzed two different multilayer networks, the so-called AIC and
the SIC models. While multilayer networks have recently attracted a lot of attention in the
fields of neuroscience and social networks, little is still known about the interplay between
the structure of the layers and the synchronization patterns that can arise. We have aimed
to fill this gap within a rigorous framework of theoretical analysis supported by numerical
simulations. We have thus highlighted, in both examples, the dynamics of the center of mass
and we also outlined a gradient flow formulation. Moreover, we studied the synchronization
problem for the model of identical oscillators, and presented the corresponding stationary
solution. We also considered the model with nonidentical oscillators, where we analyzed
the phase diameter of each layer and the system. The AIC and SIC model are noteworthy
because their study allowed us to understand how the fine tuning the different interaction
strengths may produce different asymptotic states.



Chapter 4

Exact response theory for the Kuramoto
model

Thanks to chaos theory and its early pioneers, like Belgian chemist Ilya Prigogine,
we now know that the conditions which give birth to structure are far from
equilibrium. Though in some places and possibly even on average, things may
drift toward dissolution, nothingness, and entropy, in other places there is a
natural imbalance. Out of this imbalance, energised, highly chaotic activity
spontaneously produces structure and complexity (Briggs,1992)

The response of a system with many degrees of freedom to an external stimulus is a
central topic in nonequilibrium statistical mechanics. Its investigation has greatly progressed
with the works of Callen, Green, Kubo, and Onsager, in particular, who contributed to
the development of linear response theory [77, 86]. In the ’90s, the derivation of the
Fluctuation Relations [40, 42, 48], one of the few exact results about the behavior of non
equilibrium dissipative dynamical systems, provided the framework for a more general
response theory, applicable to both Hamiltonian as well as dissipative deterministic particle
systems [20, 24, 26, 27, 30, 45, 86, 112]. The study of response in stochastic processes,
with a special focus on diffusion and Markov jump processes, has also been inspired by
fluctuation relations, and has been studied e.g. in [4, 8, 14, 25, 32]. Moreover, the role of
causality, expressed by the Kramers-Kronig relations, in nonlinear extensions of the linear
response theory has been discussed in [84].



66 Exact response theory for the Kuramoto model

The introduction of the Dissipation Function, first made explicit in [43], and developed
as the observable of interest in Fluctuation Relations in [44, 115], paved the way to the
construction of an exact response theory. Namely, a theory expected to hold in presence
of arbitrarily large perturbations and modifications of states, which allows the study of
the relaxation of particle systems to equilibrium or non-equilibrium steady states. The
Dissipation Function is the main ingredient of the exact response theory, that we shall develop
in the sequel for it possible to fully charaterize the nonequilibrium dynamics. In the sense,
the Dissipation Function stands as the direct counterpart of the classical thermodynamic
potentials, which describe equilibrium states.

In this chapter, we present and apply the Dissipation Function formalism to Kuramoto
dynamics which undergo synchronization transitions. This is, in our opinion, an important
step forward in nonequilibrium statistical mechanics. In fact, linear response theory does not
apply, in general, to systems undergoing phase transitions, since even a small perturbation
may in that case result in a large modification of the state. Thus, on the one hand, it is
interesting to probe the exact response theory on a dissipative system with many degrees of
freedom undergoing nonequilibrium phase transitions, which is in fact a challenging open
problem. On the other hand, while a vast mathematical literature exists on the Kuramoto
model, it is stimulating to analyze it from a new statistical mechanical perspective, in which
some known results are reinterpreted, cf. e.g. Refs. [11, 34].

4.1 Mathematical framework of Response theory

Let us summarise the mathematical framework of the exact response theory originally derived
in Ref.[45], and further developed in e.g. Refs.[20, 45, 46, 66, 115]. The starting point is
a flow St : M →M , with phase space M ⊂ RN , N ≥ 1, that is usually determined by an
ODE system

θ̇ =V (θ) , θ ∈M (4.1)

with V a vector field on M . Let Stθ denote the solution at time t ∈ R, with initial condition
θ , of such ODEs. The second ingredient is a probability measure dµ0(θ) = f0(θ)dθ on M ,
with positive and continuously differentiable density f0. A time evolution is induced on the
simplex of probabilities on M , defining the probability at a time t ∈ R as:

µt(E) = µ0(S−tE)
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for each measurable set E ⊂M . This amounts to consider probability in a phase space like
the mass of a fluid in real space. The corresponding continuity equation for the probability
densities is the (generalised) Liouville equation:

∂ f
∂ t

+divθ ( fV ) = 0 . (4.2)

Denoting by ft the solution of Eq.(4.2) with initial datum f0, we can write dµt = ftdθ .
Letting Λ = divθ V be the phase space volumes variation rate, and introducing the Dissipation
Function Ω f ,V [66, 115]:

Ω
f ,V (θ) :=−Λ(θ)−V (θ) ·∇ log f (θ) , ∇ = (∂θ1, ... ,∂θN ) (4.3)

the Euler version of the Liouville equation (4.2) may be written as:

∂ f
∂ t

= f Ω
f ,V . (4.4)

which can also be cast in the Lagrangian form:

d f
dt

=− f Λ , (4.5)

with d
dt =

∂

∂ t +V ·∇θ the total derivative along the flow (4.1).

Direct integration of Eq.(4.5) yields

fs+t(St
θ) = exp{−Λ0,t(θ)} fs(θ) , ∀ t, s≥ 0 (4.6)

where we used the notation
Os,t(θ) :=

∫ t

s
O(Sτ

θ)dτ (4.7)

for the phase functions, or observables, O : M → R, so that, in particular, Λ0,t(θ) =∫ t
0 Λ(Sτθ)dτ .

In the following Proposition, this notation is used with the observable O = Ω f ,V , so that
the time integral in (4.7) will correspondingly be denoted by Ω

f ,V
s,t .

Proposition 4.1.1. For all t, s ∈ R, the following identity holds:

fs+t(θ) = exp
{

Ω
fs,V
−t,0(θ)

}
fs(θ) . (4.8)
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Proof. We start by claiming that

Ω
ft ,V
0,s (θ) = log

ft(θ)
ft(Ssθ)

−Λ0,s(θ) . (4.9)

Indeed, one has:

V (Su
θ) ·∇ log ft(Su

θ) =
d

du
log ft(Su

θ) (4.10)

because t is fixed and ft does not depend explicitly on u, hence Eqs.(4.3) and (4.10) imply:

Ω
ft ,V
0,s (θ) =−

∫ s

0

[
Λ(Su

θ)+V ·∇ log ft(Su
θ)
]
du

=−Λ0,s(θ)−
∫ s

0

d
du

log ft(Su
θ)dθ =−Λ0,s(θ)− log

ft(Ssθ)

ft(θ)

which leads to Eq.(4.9). Next, Eqs.(4.6) and Eq.(4.9) yield

exp
{

Ω
fs,V
s,s+t(θ)

}
fs(Ss+t

θ) = exp
{
−Λs,s+t(θ)

}
fs(Ss

θ) = fs+t(Ss+t
θ) (4.11)

which produces (4.8).

As a consequence of Proposition 4.1.1, a probability density f is invariant under the
dynamics if and only if Ω f ,V identically vanishes:

Ω
f ,V (θ) = 0 , ∀ θ ∈M . (4.12)

In the sequel, we shall use the notation

⟨O⟩t :=
∫
M

O(θ) ft(θ)dθ (4.13)

to denote the average of an observable with respect to the probability measure µt = ft dθ .
The exact response theory based on the Dissipation Function states that the average ⟨O⟩t
can be expressed in terms of the known initial density f0, as in linear response theory. The
difference between the two theories lies in the correlation functions that must be integrated
in time.

Lemma 4.1.2. (Exact response): Given {St}t∈R and an integrable observable O : M →R,
the following identity holds:

⟨O⟩t = ⟨O⟩0 +
∫ t

0
⟨(O ◦Sτ) Ω

f0,V ⟩0 dτ . (4.14)
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Proof. First of all, f0 is smooth as a function of θ by assumption, and evolves according
to the Liouville equation. Therefore, ft is also smooth with respect to θ and t for every
finite time t. In turn, Ω ft ,V (θ) is differentiable with respect to θ and t, if f0 (that depends
only on θ ) is differentiable with respect to θ . These conditions are immediately verified for
differentiable f0, and smooth dynamics on a compact manifold. Therefore, two identities can
be derived for integrable O:

O0,s(θ) =
∫ s

0
O(Su

θ)du =
∫ s+τ

τ

O(Su−τ
θ)du =

∫ s+τ

τ

O(S−τSu
θ)du

= Oτ,s+τ(S−τ
θ)

which is valid for every τ ∈ R, and

⟨O⟩t+s =
∫

O(θ) ft+s(θ)dθ

=
∫

O(Ss(S−s
θ)) ft+s(Ss(S−s

θ))

∣∣∣∣ ∂θ

∂ (S−sθ)

∣∣∣∣d(S−s
θ)

=
∫

O(Ss(S−s
θ)) ft+s(Ss(S−s

θ))exp
{

Λ−s,0(θ)
}

d(S−s
θ)

=
∫

O(Ss(S−s
θ)) ft+s(Ss(S−s

θ))exp
{

Λ0,s(S−s
θ)
}

d(S−s
θ)

=
∫

O(Ss
θ) ft+s(Ss

θ)exp
{

Λ0,s(θ)
}

dθ (4.15)

=
∫

O(Ss
θ) ft(θ)dθ

= ⟨O ◦Ss⟩t (4.16)

to obtain [66]:
d
ds
⟨O⟩s = ⟨O (Ω fr,V ◦Sr−s)⟩s (4.17)

which holds ∀r ≥ 0. Note that in the equation (4.16) we used the relation∣∣∣∣ ∂θ

∂ (S−sθ)

∣∣∣∣= exp
{

Λ−s,0(θ)
}

(4.18)

which is discussed in A.2, see Eq. (A.18). Choosing r = 0 in (4.17), one finds

d
ds
⟨O⟩s = ⟨O (Ω f0,V ◦S−s)⟩s = ⟨(O ◦Ss) Ω

f0,V ⟩0 (4.19)

where we used (4.16). Then, integrating over time from 0 to t, Eq.(4.19) yields (4.14).
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The apparently peculiar definition of the Dissipation Function is motivated by the fact
that it can be associated with the energy dissipation of particle systems, if f0 is properly
chosen. In particular, this is the case for models of nonequilibrium molecular dynamics, such
as the Gaussian and the Nosé - Hoover thermostatted systems, if f0 is the invariant probability
density for the corresponding equilibrium dynamics, i.e. the dynamics subjected to the same
constraints of the nonequilibrium ones, in which the dissipative forces are switched off. In
other words, Ω f0,V equals the energy dissipation if Ω f0,V0 ≡ 0 and V0 is the (non dissipative)
vector field implementing the same constraints that V does [115]. Typical constraints are the
constant internal energy, the constant kinetic energy, the constant temperature, the constant
pressure etc.. The state characterised by f0 may be prepared like that at start. Alternatively,
one usually thinks that it is generated by the equilibrium dynamics:

θ̇ =V0(θ) (4.20)

started long before the time t = 0, so that at time 0 it is realised. While this is not mathe-
matically required, it is physically convenient, and it helps our intuition to assume that µ0

is invariant under the dynamics (4.20), which we call unperturbed or reference dynamics.
At time t = 0, the dynamics (4.20) is perturbed and the perturbation remains in place for
all t > 0. In general, the density f0 is not invariant under the perturbed vector field V , cf.
Eq.(4.1). Therefore, it will evolve as prescribed by Eq.(4.4) into a different density, ft , at
time t > 0. Nevertheless, Eq.(4.14) expresses the average ⟨O⟩t in terms of a correlation
function computed with respect to f0, the non-invariant density, which is only invariant
under the unperturbed dynamics. The full range of applicability of this theory is still to be
identified. However, it obviously applies to smooth dynamics on smooth compact manifolds,
such as the Kuramoto dynamics (2.8), which has M = T N . One advantage of using the
Dissipation Function, compared to other possible exact approaches to response, apart from
molecular dynamics efficiency, is that Ω f0,V corresponds to a physically measurable quantity,
e.g. proportional to a current, that is adapted to the initial state of the system of interest.
Moreover, it provides necessary and sufficient conditions for relaxation of ensembles, as well
as sufficient conditions for the single system relaxation, known as T-mixing [66, 115]. The
analysis of the response theory for a specific example of the Kuramoto model is discussed in
the next subsection.
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4.2 Dissipation theory applied to the classic Kuramoto
Model

4.2.1 Recap of the Kuramoto Model and his properties

For θ ∈M , we can rewrite Eq.(2.10) as:

θ̇ =W +V (θ) =VK(θ), (4.21)

where W = (ω1, . . . ,ωN) is interpreted as an equilibrium vector field made of N natural
frequencies that are drawn from some given distribution g(ω), while V represents a nonequi-
librium vector perturbation with components:

Vi(θ) =
K
N

N

∑
j=1

sin(θ j−θi) = KRsin(Φ−θi) , i = 1, . . . ,N . (4.22)

where K > 0 and R is the order parameter defined in equation (2.9)

Lemma 4.2.1. The divergence of the Kuramoto vector field VK of Eq.(4.21), i.e. the associated
phase space volumes variation rate Λ, satisfies:

Λ := divθV = K
(
1−NR2) . (4.23)

Proof. By means of (4.22), for i = 1, . . . ,N one has

∂θiVi =
K
N

∂θi

(
N

∑
i ̸= j=1

sin(θ j−θi)

)

=−K
N

(
N

∑
i ̸= j=1

cos(θ j−θi)

)
=−K

N

(
N

∑
j=1

cos(θ j−θi)−1

)

=−KRcos(Φ−θi)+
K
N

where we used (2.14). Summing over i, and using (2.11) , Eq.(4.23) follows.

Therefore, the Kuramoto dynamics do not preserve the phase space volumes, and Λ actually
varies in time, since R is a function of the dynamical variables θ(t).
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4.2.2 Response theory for identical oscillators

Let us focus on the case of identical oscillators, namely the Kuramoto dynamics in which
all the natural frequencies ωi in Eq.(2.8) equal the same constant ω ∈ R. In particular, let
the unperturbed dynamics be defined by the vector field V0(θ) = W = (ω, . . . ,ω), which
corresponds to K = 0 in Eq.(2.8), i.e. to decoupled oscillators, equipped with the same natural
frequency. Such dynamics are conservative, since divθV0 = 0. The corresponding steady
state can then be considered an equilibrium state. At time t = 0 the perturbation V is switched
on, and we can write:

θ̇ =

W t < 0

W +V (θ) t > 0 .
(4.24)

The perturbed dynamics corresponds to the Kuramoto dynamics (2.8), which is not con-
servative, cf. Eq.(4.23). As an initial probability density, invariant under the unperturbed
dynamics, we may take the factorized density:

f0(θ) = (2π)−N (4.25)

which, indeed, yields:

Ω
f0,V0 =−(divV0 +V0 ·∇ log f0)≡ 0 , and

∂ f
∂ t

= 0 . (4.26)

After the perturbation, the Dissipation Function takes the form:

Ω
f0,V =−(divθV +V ·∇ log f0) = K

(
NR2−1

)
=

K
N

N

∑
i, j=1

cos(θ j−θi)−K (4.27)

and the density evolves as:

ft(θ) =
1

(2π)N exp
[
−K

(
t−NR2

−t,0(θ)
)]

(4.28)

where R−t,0 denotes the integral of R from time −t to 0, cf. Eq.(4.7).

Remark. The Dissipation Function Eq.(4.27) is of class C∞.

Using the formula (4.14) to compute the response for the observable O = Ω f0,V , we
obtain:

⟨Ω f0,V ⟩t = ⟨Ω f0,V ⟩0 +
∫ t

0
⟨(Ω f0,V ◦Sτ)Ω f0,V ⟩0 dτ (4.29)
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that is∫
M

Ω
f0,V (θ) ft(θ)dθ

= (2π)−N
∫
M

Ω
f0,V (θ)dθ +(2π)−N

∫ t

0

∫
M

Ω
f0,V (Sτ(θ))Ω f0,V (θ)dθdτ .

Moreover:
⟨R2⟩0 =

1
N
, hence ⟨Ω f0,V ⟩0 = K

(
N⟨R2⟩0−1

)
= 0 (4.30)

as expected.

Remark. Note that the scalar field Ω f0,V0 is identically 0, while Ω f0,V is not, see Eq.(4.27).
However, the phase space average

〈
Ω f0,V

〉
0 vanishes.

Therefore, using Eqs.(4.14) and (4.27) we can write:〈
Ω

f0,V
〉

t
=
∫ t

0

〈
(Ω f0,V ◦Sτ)Ω f0,V

〉
0

dτ

= KN
∫ t

0

〈
Ω

f0,V
[
R2 ◦Sτ

]〉
0

dτ−K
∫ t

0

〈
Ω

f0,V
〉

0
dτ

= KN
∫ t

0

〈
Ω

f0,V
[
R2 ◦Sτ

]〉
0

dτ

= K2N2
∫ t

0

〈
R2 [R2 ◦Sτ

]〉
0 dτ−K2N

∫ t

0

〈
R2 ◦Sτ

〉
0 dτ .

For the second integral we have:∫ t

0

〈
R2 ◦Sτ

〉
0 dτ =

1
(2π)N

∫ t

0

∫
M

R2(Sτ
θ)dθdτ

=
1

(2π)N

∫ t

0

∫
M

R2(Sτ
θ)

∣∣∣∣ ∂θ

∂Sτθ

∣∣∣∣dSτ
θdτ

=
1

(2π)N

∫ t

0

∫
M

R2(Sτ
θ)exp

{
Λ0,τ(θ)

}
dSτ

θ .

Explicit calculations can be carried out for N = 2 and will be discussed in Sec. 4.2.2.1, while
the study of the general case with N > 2 is deferred to Sec. 4.2.2.2.
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4.2.2.1 The case with two oscillators

For N = 2 and ω ≥ 0, consider the system for two oscillators:
θ̇1 =

ω

2
+

K
2

sin(θ2−θ1)

θ̇2 =−
ω

2
+

K
2

sin(θ1−θ2) .
(4.31)

In the case in which all natural frequencies coincide, as in Eq.(4.31) for ω = 0, the oscillators
are referred to as identical. Setting ψ = θ1−θ2, we obtain the following equation:

dψ

dt
= ω−K sin(ψ) . (4.32)

With a slight abuse of notation, in the following we denote by Stθ , Stψ the flows correspond-
ing to (4.31), (4.32) respectively, with initial data θ = (θ1,θ2) and ψ = θ1−θ2. Then, the
solution of (4.32) can be explicitly expressed as

tan
(

Stψ

2

)
= g(ψ, t) (4.33)

where:

• if K > ω = 0, then
g(ψ, t) = e−Kt tan

(
ψ

2

)
;

• if K > ω > 0, then

g(ψ, t) =
K
ω

+

√
K2−ω2

ω
· 1+h1(ψ)et

√
K2−ω2

1−h1(ψ)et
√

K2−ω2

h1(ψ) =
ω tan(ψ

2 )−K−
√

K2−ω2

ω tan(ψ

2 )−K +
√

K2−ω2
.

The formulas here above can be deduced by [21, Lemma D.2], Case 1;

• if 0≤ K < ω , then

g(ψ, t) =
K
ω

+

√
ω2−K2

ω
tan

(
t
√

ω2−K2

2
+h2(ψ)

)
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h2(ψ) = arctan
ω tan

(
ψ

2

)
−K

√
ω2−K2

,

see [21, Lemma D.2], Case 3 with R∞ = ω/K.

Recalling Eq.(2.15) and using the identity 1+ cosx = 2
(
1+ tan2 ( x

2

))−1, we find that (R2 ◦
St) can be written as

R2(St
θ) =

1
2
[
1+ cos(St

ψ)
]
=

1
g2(Stψ)+1

, (4.34)

For ω = 0, one explicitly obtains:

R2(St
θ) =

(
tan2

(
ψ

2

)
e−2Kt +1

)−1
(4.35)

and

St
ψ → 0 for t→+∞ , if |ψ| ̸= π

|St
ψ| → π for t→−∞ , if ψ ̸= 0 .

In particular, for θ1 ̸= θ2 and θ1, θ2 ∈ [0,2π), the t→−∞ limit yields Stψ →−π if θ1 < π ,
and Stψ → π if θ1 > π . Then, the set

E∞ = {(θ1,θ2) ∈T 2 : θ1 = θ2}

is invariant and attracting for the Kuramoto dynamics, while the set

E−∞ = {(θ1,θ2) ∈T 2 : |θ1−θ2|= π}

is invariant and repelling. This also implies that:

R2(St
θ)→ 0 , Ω

f0,V →−K , for ψ ̸= 0 , t→−∞

while
R2(St

θ)→ 1 , Ω
f0,V → K , for |ψ| ̸= π , t→ ∞ .

Consequently, Eq.(4.28) shows that the probability piles up on the zero Lebesgue measure
sets E∞ and E−∞, respectively for t→ ∞ and t→−∞.
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For τ ≥ 0, the following relations also hold:

〈
R2 ◦Sτ

〉
0 =

1
(2π)2

∫
M

1

tan2(θ1−θ2
2 )e−2Kτ +1

dθ =
1

e−Kτ +1
(4.36)

and 〈
R2(R2 ◦Sτ)

〉
0 =

1
8π2

∫
M

1+ cos(θ1−θ2)

tan2(θ1−θ2
2 )e−2Kτ +1

dθ =
2e−Kτ +1

2(e−Kτ +1)2

which then yields ∫ t

0

〈
R2 ◦Sτ

〉
0 dτ = t +

ln
(
e−Kt +1

)
K

− ln(2)
K

and ∫ t

0

〈
R2(R2 ◦Sτ)

〉
0 dτ

=
t
2
+

1
2K

[
3
2
+ ln

(
e−Kt +1

2

)
− 2

eKt +1
− 1

e−Kt +1

]
.

Thus, we finally obtain the explicit expressions〈
Ω

f0,V
〉

t
= K tanh

(
Kt
2

)
(4.37)

and 〈
(Ω f0,V ◦St)Ω f0,V

〉
0
=

K2

1+ cosh(Kt)
. (4.38)

In the limit t→+∞, we thus find the asymptotic values〈
Ω

f0,V
〉

t
→ K and

〈
(Ω f0,V ◦St)Ω f0,V

〉
0
→ 0 (4.39)

In particular, the two-time autocorrelation of Ω f0,V is monotonic as also shown in the two
panels of Fig.4.1. Indeed, Eq.(4.38) yields, for t ≥ 0:

d
dt

〈
(Ω f0,V ◦St)Ω f0,V

〉
0
=−K2 sinhKt

(1+ coshKt)2 ≤ 0 .
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Fig. 4.1 Behavior of ⟨Ω f0,V ⟩t and ⟨(Ω f0,V ◦ St)Ω f0,V ⟩0 as functions of time, for N = 2,
K = 1 and ω = 0. Disks and solid lines correspond to the numerical and analytical results,
respectively. The averages were taken over a set of 5000 trajectories with initial data sampled
from the uniform distribution on [0,2π) following the eq. (4.31) for the oscillator’s dynamics
and eq. (4.27) for Ω f0,V .

4.2.2.2 General case

In this Subsection we assume N ≥ 2 and ω = 0, considering the following dynamics:

θ̇i =
K
N

N

∑
j=1

sin(θ j−θi) = KRsin(Φ−θi) , i = 1, . . . ,N . (4.40)

where R and Φ are defined in Eq.(2.9). We are going to prove that the observable
〈
Ω f0,V

〉
t is

a monotonic function of time, and we can estimate the asymptotic value it attains in the large
time limit.

We start by proving the following result.

Lemma 4.2.2. For every t > 0, the time derivative of the expectation of the Dissipation
Function obeys:

d
dt

(
Ω

f0,V (St
θ)
)
≥ 0 and

d
dt

〈
Ω

f0,V
〉

t
=
〈
(Ω f0,V ◦St)Ω f0,V

〉
0
≥ 0 . (4.41)

Proof. First, we note that by setting O = Ω f0,V in Eq. (4.19), we find:

d
dt
⟨Ω f0,V ⟩t = ⟨(Ω f0,V ◦St) Ω

f0,V ⟩0 . (4.42)
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Moreover, Eq. (4.16) with t = 0 and O = Ω f0,V yields:〈
Ω

f0,V
〉

t
=
〈

Ω
f0,V ◦St

〉
0
. (4.43)

Therefore, we can write:

d
dt

〈
Ω

f0,V ◦St
〉

0
=

d
dt

∫
M

Ω
f0,V (St

θ) f0(θ)dθ

=
∫
M

d
dt

(
Ω

f0,V (St
θ)
)

f0(θ)dθ =

〈
d
dt

(
Ω

f0,V (St
θ)
)〉

0
(4.44)

Then, using Eq.(2.5) in Ref.[11] we find:

d
dt

R2(St
θ) =

2K
N

R2(St
θ)

N

∑
j=1

sin2 (St
θ j−Φ

(
St

θ
))

(4.45)

where Stθ j denotes the j−th element of Stθ , and then

d
dt

(
Ω

f0,V (St
θ)
)
= 2K2R2(St

θ)

[
N

∑
j=1

sin2 (St
θ j−Φ

(
St

θ
))]
≥ 0 (4.46)

for all θ ∈M . By integrating over M we obtain (4.41). This completes the proof.

Remark. Unlike stationary current autocorrelations, that may fluctuate between positive
and negative values, the two-time autocorrelation of Ω f0,V , computed with respect to the
initial probability measure, is non-negative.

Theorem 2.3.4 shows that non stationary solutions of the system (4.40) converge, as
t → +∞, either to a complete frequency synchronised state Θ∗, i.e. to a state denoted by
(N,0), that takes the form:

Θ
∗ = (ϕ∗, . . . ,ϕ∗)

in which all phases are equal; or to a state denoted by (N−1,1), that takes the form:

Θ
† = (ϕ∗+ k1π,ϕ∗+ k2π,ϕ∗+ k3π,ϕ∗+ k4π, . . . ,ϕ∗+ kNπ)

where ki ∈ {−1,+1} for a single i ∈ {1,2, ...,N}, and all k j = 0 with j ̸= i. This can
be understood also in terms of the Dissipation Function. In the first place, without loss
of generality, let us consider a fixed point θ̄ of type (N− 1,1) whose antipodal is in the
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N-component, i.e.
θ̄ = (ϕ∗, . . . ,ϕ∗,(ϕ∗+π)mod2π) (4.47)

for a ϕ∗ ∈ [0,2π). Then, the following holds:

Proposition 4.2.3. The set of initial data such that the solution to (4.40) reaches a stationary
(N−1,1)-state for t→+∞ has 0-measure.

Proof. For V (θ) as in (4.21), the Jacobian matrix A(θ)=̇∇V (θ) is given by

Ai j =


∂V j
∂θi

= 1
N cos(θi−θ j), i ̸= j

∂V j
∂θ j

=− 1
N ∑

N
k ̸= j cos(θ j−θk) i = j .

For the fixed point θ̄ set in (4.47) we obtain a symmetric matrix Ā = A(θ̄) whose entries are

Āi j =



1
N i ̸= j and i, j ̸= N

− 1
N i ̸= j and i = N or j = N

−N−3
N i = j < N

N−1
N i = j = N .

By the symmetry of Ā, the extremal representation of the eigenvalues {λk}N
k=1 of Ā are given

by the optimisation problem:

max
1≤k≤N

λk = max
∥x∥=1

{x′Āx}, min
1≤k≤N

λk = min
∥x∥=1

{x′Āx} .

Setting x to be the standard-basis vectors ei, where ei denotes the vector with a 1 in the ith
coordinate and 0’s elsewhere, we see that

min
1≤k≤N

λk ≤ min
1≤i≤N

{Ā}ii =−
N−3

N
< 0 , 0 <

N−1
N

= max
1≤i≤N

{Ā}ii ≤ max
1≤k≤N

λk .

Therefore, there exists at least one positive eigenvalue and at least one negative eigenvalue.
Indeed, the matrix Ā has the eigenvalues λ− = −(N − 2)/N with algebraic multiplicity
N−2, λ2 = 0 and λ3 = 1 with algebraic multiplicity 1. This can be checked considering the
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proposed subspaces of the center, stable and unstable subspace of the linearised system at θ̄

Ec =





1
1
...
1
...
1




, Es =





−1
1
0
...
0
0


,



−1
0
1
0
...
0


, . . . ,



−1
0
...
0
1
0




and Eu =





−1
−1

...
−1
−1

N−1




.

Then, the Center Manifold Theorem [103, p.116] yields the existence of an (N − 2)-
dimensional stable manifold W s(θ̄) tangent to the stable subspace Es, and the existence of a
1-dimensional unstable manifold W u(θ̄), and 1-dimensional center manifold W c(θ̄) tangents
to the Eu and Ec subspaces respectively. Consequently, the dimension of the center manifold
conjoint with the stable manifold is smaller than N, which implies a null Lebesgue measure
in Rn.

Moreover, we have:

Lemma 4.2.4. (Synchronization): For any initial condition θ ∈T , the Dissipation Function
obeys:

lim
t→∞

Ω
f0,V (St

θ) =


K (N−1) , for θ ̸= Θ†

K (N−1)
(N−4

N

)
for θ = Θ†

(4.48)

where K(N−1), the maximum of Ω f0,V in T N , corresponds to (N,0) synchronization.

Proof. Because of Theorem 2.4 in Ref.[11] and the continuity of Ω f0,V , the long time limit
of Ω f0,V ◦St in the case θ ̸= Θ† is given by Ω f0,V (Θ∗). Then, Eq.(2.15) and Eq.(4.27), yield
the first line of Eq.(4.48). The case θ = Θ†, gives, instead:

R∗eiϕ∗ =
1
N

(
(N−1)eiϕ∗+ ei(ϕ∗+π)

)
=

N−2
N

eiϕ∗ .

Substituting in Eq.(4.27) we obtain the second line of (4.48).

Remark. Equation (4.48) implies that

lim
N→∞

lim
t→∞

Ω f0,V (Stθ)

N
= K . (4.49)
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Fig. 4.2 Behavior of ⟨Ω f0,V ⟩t (left panel) and ⟨(Ω f0,V ◦St)Ω f0,V ⟩0 (right panel), both rescaled
by (N−1), as functions of time, for K = 1, ω = 0 and for different values of N. The curves
on the right panel represent the time derivative of those in the left panel. In particular, t = 0
in the right panel represents K2/N, cf. Eq.(4.50).

In other words, the large t limit followed by the large N limit implies that the coupling
constant K, which drives the synchronization process in the Kuramoto dynamics (2.8), equals
the average Dissipation per oscillator. For fixed N, synchronization is also evident from the
fact that Eq.(4.46) must converge to 0, for Ω f0,V to become constant.

This also implies R2(Stθ)→ 1, as t → ∞. It suffices to consider the definition (4.27) of
Ω f0,V and (4.49). For different values of N, Fig. 4.2 illustrates the behavior of ⟨Ω f0,V ⟩t
and of its time derivative, which is ⟨(Ω f0,V ◦ St)Ω f0,V ⟩0, as functions of time. The initial
growth of the autocorrelation may look unusual, since autocorrelations are commonly found
to decrease. However, unlike standard calculations that rely on an invariant distribution,1

our autocorrelation is computed with respect to the transient probability measure µ0. The
figure portrays the result of numerical simulations. The right panel of Fig. 4.2, shows that
for sufficiently large N the autocorrelation function ⟨(Ω f0,V ◦St)Ω f0,V ⟩0 reaches a maximum
before it decreases, as required for convergence to a steady state. An interesting result is the
following.

Lemma 4.2.5. For N ≥ 2, the derivative of the time dependent average of Ω f0,V , computed
at time t = 0 obeys:

d
dt

〈
Ω

f0,V
〉

t

∣∣∣∣
t=0

=

〈(
Ω

f0,V
)2
〉

0
= K2 N−1

N
. (4.50)

1In linear response the initial distribution is considered invariant to first order in the perturbation.
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Note that the derivative of the mean Dissipation Function equals its autocorrelation function,
as expressed by Eq.(4.41). Therefore, Eq.(4.50) gives the value of this autocorrelation
function at t = 0, as shown in the right panel of Fig. 4.2.

Proof. Using (4.43), (4.44) and (4.46) we find that

d
dt

〈
Ω

f0,V
〉

t
=

d
dt

〈
Ω

f0,V ◦St
〉

0
= 2K2

〈
R2(St

θ)
N

∑
j=1

sin2
(

St
θ j−Φ

(
St

θ
))〉

0

. (4.51)

Thus, at t = 0, the integrand of (4.51) reads

R2(θ)
N

∑
j=1

sin2(Φ−θ j) =
1

N2

N

∑
j=1

(
N

∑
l=1

sin(θl−θ j)

)2

(4.52)

=
1

N2

N

∑
j=1

 N

∑
l=1

sin2(θ j−θl)+
N

∑
l=1

N

∑
k=1
k ̸=l

sin(θl−θ j)sin(θk−θ j)

 .

Furthermore, we have:

∫ 2π

0

∫ 2π

0
sin(θl−θ j)sin(θk−θ j)dθldθk

=
∫ 2π

0
sin(θl−θ j)dθl

∫ 2π

0
sin(θk−θ j)dθk = 0 . (4.53)

Therefore, considering (4.52) and (4.53) over (4.51) at time t = 0 we have:

d
dt
⟨Ω f0,V ⟩t

∣∣∣∣
t=0

= 2K2
∫
M

R2(θ)
N

∑
j=1

sin2(Φ−θ j) f0(θ)dθ

= 2
K2

N2
1

(2π)N

∫
M

N

∑
j=1

N

∑
l=1

sin2(θ j−θl)dθ

= 2
K2

(2π)2
N−1

N

∫ 2π

0

∫ 2π

0
sin2(θ1−θ2)dθ1dθ2

= K2 N−1
N

.

This completes the proof of (4.50).
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4.2.3 Comparison with linear response

In this part, we compare the foregoing exact response formalism with the standard linear
response. Our aim is, in fact, to highlight some remarkable differences between the two
formalisms, which can be elucidated in full analytical detail with the present model.

Vε(θ) =V0(θ)+ εVp(θ)

where the parameter ε expresses the strength of the perturbation. Following subsection 4.2.2,
we identify ε with K, and define:

V0(θ) = ω (4.54)

Vp, j(θ) = Rsin(Φ−θ j). j = 1, ...,N (4.55)

Correspondingly, we denote by St
ε and St

0 the perturbed and unperturbed flows, respectively.
From Eq. (4.3), we obtain:

Ω
f0
ε = Ω

f0
0 + εΩ

f0
p = εΩ

f0
p (4.56)

where Ω
f0
0 and Ω

f0
p denote the Dissipation Function (4.27) evaluated in terms of the vector

fields V0 and Vp, respectively. In particular, we have:

Ω
f0
p =

1
N

N

∑
i, j=1

cos(θ j−θi)−1 (4.57)

The last equality in Eq.(4.56) derives from the fact that Ω
f0
0 ≡ 0 if, as assumed, f0 is invariant

under the unperturbed dynamics, cf. Eq.(4.26). We may then write the exact response
Eq.(4.14) as:

⟨O⟩t,ε = ⟨O⟩0 + ε

∫ t

0
⟨(O ◦Sτ

ε) Ω
f0
p ⟩0 dτ , (4.58)

where O ◦ St
ε denotes the observable O composed with the perturbed flow. Because this

formula is exact, the parameter ε in it does not need to be small, and it appears both as a
factor multiplying the integral and as a subscript indicating the perturbed flow St

ε . Next,
using Eq. (4.8), we can write

ft(θ) = exp
{

ε

∫ 0

−t
Ω

f0
p (S

τ
ε θ) dτ

}
f0(θ) . (4.59)
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which can be expanded about ε = 0, and truncated to first order, to obtain the linear approxi-
mation of the evolving probability density:

f̄t(θ ;ε) = f0(θ)

(
1+ ε

d
dε

exp
{

ε

∫ 0

−t
Ω

f0
p (S

τ
ε θ) dτ

}∣∣∣∣
ε=0

)
(4.60)

= f0(θ)

(
1+ ε

∫ 0

−t
Ω

f0
p (S

τ
0θ) dτ

)
= f0(θ)

(
1+ ε

∫ t

0
Ω

f0
p (S

−τ

0 θ) dτ

)
. (4.61)

Note that the expansion in the variable ε of the exponential in Eq.(4.59), requires computing
the derivatives with respect to ε of the time integral in it. This, in turn, requires the derivatives
of the Dissipation Function Ω

f0
p (Sτ

ε θ), and of the evolved trajectory points Sτ
ε θ . Because

both the Dissipation Function and the dynamics are smooth on a compact manifold, their
derivatives are bounded, and their integral up to any time t computed at ε = 0 is also bounded.
Multiplied by ε , this integral gives a vanishing contribution to the first derivative of the
exponential in Eq.(4.59). There only remain the exponential and the integral computed at
ε = 0, multiplied by the increment ε , which is the brackets in Eq.(4.61). We then define:

⟨O⟩t,ε =
∫
M

O(θ) f̄t(θ ;ε) dθ = ⟨O⟩0 + ε

∫ t

0

〈
O
(

Ω
f0
p ◦S−τ

0

)〉
0

dτ (4.62)

which is the linear response result. At the same time, the invariance of the correlation function
under time translations of the unperturbed dynamics, which is proven in Appendix A, yields:

⟨O⟩t,ε = ⟨O⟩0 + ε

∫ t

0

〈
(O ◦Sτ

0) Ω
f0
p

〉
0

dτ (4.63)

It is interesting to note that, unlike the Green-Kubo formulae, which are obtained from small
Hamiltonian perturbations, here the perturbation is not Hamiltonian. Therefore, we may call
(4.63) a generalized GK formula. It is worth comparing it with the exact response formula
(4.58), as follows:

⟨O⟩t,ε −⟨O⟩t,ε = ε

∫ t

0

〈[
(O ◦Sτ

ε)− (O ◦Sτ
0)
]
Ω

f0
p

〉
0

dτ (4.64)

which shows that the two formulae tend to be the same, in the small ε limit, as expected.
Thanks to the use of the Dissipation Function, their difference lies only in the use of the
perturbed rather than the unperturbed flow inside O .
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Let us dwell on the response of two relevant observables, in the case in which V0 = ω = 0,
hence St

0 is the identity operator, Id. First, taking O = Ω
f0
ε = εΩ

f0
p , we find

⟨Ω f0
ε ⟩t,ε −⟨Ω

f0
ε ⟩t,ε =

∫ t

0

〈[(
Ω

f0
ε ◦Sτ

ε

)
−
(

Ω
f0
ε ◦Sτ

0

)]
Ω

f0
ε

〉
0

dτ

=
∫ t

0

[〈(
Ω

f0
ε ◦Sτ

ε

)
Ω

f0
ε

〉
0
−
〈(

Ω
f0
ε

)2
〉

0

]
dτ (4.65)

where we used the identity
(

Ω
f0
ε ◦Sτ

0

)
= Ω

f0
ε , which derives from the fact that St

0 =Id, and
which yields, cf. Eq.(4.50): 〈(

Ω
f0
ε

)2
〉

0
= ε

2 N−1
N

(4.66)

For N = 2, we can also use the explicit expression (4.38) for the autocorrelation function:

〈(
Ω

f0
ε ◦Sτ

ε

)
Ω

f0
ε

〉
0
=

ε2

1+ cosh(ετ)
(4.67)

which leads to:

⟨Ω f0
ε ⟩t,ε = ε tanh

(
εt
2

)
, and ⟨Ω f0

ε ⟩t,ε =
ε2t
2

(4.68)

so that
⟨Ω f0

ε ⟩t,ε = ⟨Ω
f0
ε ⟩t,ε +o(ε2)t (4.69)

In other words, for any ε > 0, the difference of the two responses is small at small times, but
it diverges linearly as time passes.

As a second instance, let us take O = ψ = θ1−θ2. From (4.27) and (4.34) we have:

Ω
f0
ε = 2εR2(ψ)− ε =

2ε

tan2
(

ψ

2

)
+1
− ε = ε cos(ψ) (4.70)

Moreover, Eq.(4.33) yields:

(ψ ◦St
ε) = 2arctan

[
tan
(

ψ

2

)
e−εt

]
(4.71)

and we can write:

⟨ψ⟩t,ε −⟨ψ⟩t,ε =
∫ t

0

[〈
(ψ ◦Sτ

ε)Ω
f0
ε

〉
0
−
〈
(ψ ◦Sτ

0)Ω
f0
ε

〉
0

]
dτ
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=
∫ t

0

[〈
(ψ ◦Sτ

ε)Ω
f0
ε

〉
0
−
〈

ψ Ω
f0
ε

〉
0

]
dτ (4.72)

where we used St
0 =Id, which implies

(
ψ ◦Sτ

0
)
≡ ψ . Therefore, using (4.70) and (4.71) in

(4.72), we obtain:

⟨ψ⟩t,ε −⟨ψ⟩t,ε =
ε

(2π)2

∫ t

0

∫
M

2arctan
[

tan
(

θ1−θ2

2

)
e−ετ

]
cos(θ1−θ2)dθdτ

− ε

(2π)2

∫ t

0

∫
M

(θ1−θ2)cos(θ1−θ2)dθdτ = 0 (4.73)

The last equality follows from the fact that the integrands in Eq. (4.73) are odd continuous
and periodic functions, that are integrated over a whole period, so that in fact one has:

⟨ψ⟩t,ε = ⟨ψ⟩t,ε ≡ 0 , ∀ t > 0 . (4.74)

Clearly, there are observables for which the difference of responses is irrelevant, since they
do not evolve in time, and others for which the difference is substantial, even under small
perturbations. In any event, the exact response characterizes the synchronization transition,
while the linear response does not. This provides an example in which a successful theory in
providing expression to the phenomenological coefficients of a dynamic as it is the linear
response fails to describe the synchronization transition of a system.

4.3 Dissipation theory for coupled Kuramoto models

To continue the program started in [5], consider a system endowed with the AIC topology
(3.5)-(3.15). Therefore, let T = R/(2πZ), with N ≥ 1, and

X = [Θ,Ξ] ∈T 2N ,

where Θ and Ξ represent the two layers. As in Chapter 4.2, we introduce an equilibrium
vector field W , whose components are given by:

Wi :=

{
ω i ∈ {1,N}
ω̄ i ∈ {N +1,2N}

(4.75)



4.3 Dissipation theory for coupled Kuramoto models 87

where ω and ω̄ are the natural frequencies of the two layers. At time t = 0, the system is
assumed to be perturbed by a nonequilibrium vector field V (X) with components

Vi(X) =


K1

N

N

∑
j=1

sin(θ j−θi)+
ε

N

N

∑
j=1

sin(ξ j−θi), i = 1, . . . ,N

K2

N

N

∑
j=1

sin(ξ j−ξi)+
ε

N

N

∑
j=1

sin(θ j−ξi), i = N +1, . . . ,2N .

(4.76)

The dynamical system takes hence the form:

Ẋ(t) =

V−(X) =W t < 0

V+(X) =W +V (X) t > 0
(4.77)

Adapting the notation introduced in (3.8), we can rewrite the vector field V as follows:

Vi(θ) =


K1r1 sin(ϕ1−θi)+ εr2 sin(ϕ2−θi), i = 1, . . . ,N

K2r2 sin(ϕ2−ξi)+ εr1 sin(ϕ1−ξi), i = N +1, . . . ,2N .

In the following proposition we express the phase space volumes variation rate Λ(X) as a
function of the order parameters r1 and r2.

Proposition 4.3.1. The divergence of the vector field defined in Eq.(4.76), reads:

Λ = divXV = K1(1−Nr2
1)+K2(1−Nr2

2)−2εNr1r2 cos(ϕ1−ϕ2).

Proof. For i = 1, . . . ,N one has

∂θiVi =
K1

N
∂θi

(
N

∑
i̸= j=1

sin(θ j−θi)

)
+

ε

N
∂θi

(
N

∑
j=1

sin(ξ j−θi)

)

=−K1

N

(
N

∑
i̸= j=1

cos(θ j−θi)

)
− ε

N

(
N

∑
j=1

cos(ξ j−θi)

)

=−K1r1 cos(ϕ1−θi)+
K1

N
− εr2 cos(ϕ2−θi) .
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Analogously for i = N +1, . . . ,2N it holds:

∂ξiVi =−K2r2 cos(ϕ2−ξi)+
K2

N
− εr1 cos(ϕ1−ξi) .

Then

divXV =
N

∑
i=1

∂θiVi +
N

∑
i=1

∂ξiVN+i

= K1−K1r1

N

∑
i=1

cos(ϕ1−θi)− εr2

N

∑
i=1

cos(ϕ2−θi)

+K2−K2r2

N

∑
i=1

cos(ϕ2−ξi)− εr1

N

∑
i=1

cos(ϕ1−ξi)

= K1(1−Nr2
1)+K2(1−Nr2

2)−2Nεr1r2 cos(ϕ1−ϕ2) .

We take the uniform probability density (cf. Eq. (4.25)) as the probability density at time
t = 0:

f0(X) = (2π)−2N (4.78)

which is invariant under the equilibrium dynamics. We immediately find:

Ω
f0,V− = 0. (4.79)

and:

Ω
f0,V+

=−divXV −V ·∇ log f0

= K1(Nr2
1−1)+K2(Nr2

2−1)+2Nεr1r2 cos(ϕ1−ϕ2) . (4.80)

Using the identity 〈
Ω

f0,V+
〉

0
=
〈

Ω
f0,V−

〉
0
+
〈

Ω
f0,V
〉

0
,

and because 〈
r2

1
〉

0 =
1
N
,
〈
r2

2
〉

0 =
1
N
, ⟨r1r2 cos(ϕ1−ϕ2)⟩0 = 0
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we obtain:〈
Ω

f0,V
〉

0
= K1(N

〈
r2

1
〉

0−1)+K2(N
〈
r2

2
〉

0−1)+2Nε ⟨r1r2 cos(ϕ1−ϕ2)⟩0 = 0, (4.81)

and consequently 〈
Ω

f0,V+
〉

0
= 0

The foregoing result can be proved in greater generality. Let use define the vector field V
in Eq. (4.76) as follows:

Vi(X) =
N

∑
j=1

Ψi j sin(x j− xi), i = 1, . . . ,N,

where X = [x1, . . . ,xN ] ∈ T N ∈M and Ψi j a connectivity matrix such that Ψii ̸= 0 for
i = 1, . . . ,N. We find:

∂xiVi =−
N

∑
j=1

Ψi j cos(x j− xi)+Ψii

and hence:

divXV =−
N

∑
i, j=1

Ψi j cos(x j− xi)+
N

∑
i=1

Ψii

By taking the factorized uniform density (see (4.25)) as the initial probability density, we
have that

Ω
f0,V =−divXV −V ·∇ log f0

=
N

∑
i, j=1

Ψi j cos(x j− xi)−
N

∑
i=1

Ψii

=
N

∑
i̸= j=1

Ψi j cos(x j− xi). (4.82)

which yields:

〈
Ω

f0,V
〉

0
:=

1
(2π)N

[∫
M

N

∑
i, j=1

Ψi j cos(x j− xi)dx−
∫
M

N

∑
i=1

Ψiidx

]
= 0.
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We now aim at deriving an equation for the time evolution of
〈
Ω f0,V

〉
t . We note, first,

that the following relations hold:

d
dt

r2
1(θ) =

2K1

N
r2

1

N

∑
j=1

sin2(ϕ1−θ j)+
2ε

N
r2r1

N

∑
j=1

sin(ϕ1−θ j)sin(ϕ2−θ j), (4.83)

d
dt

r2
2(θ) =

2K2

N
r2

2

N

∑
j=1

sin2(ϕ2−ξ j)−
2ε

N
r1r2

N

∑
j=1

sin(ξ j−ϕ1)sin(ϕ2−ξ j) (4.84)

It is also possible to establish the following relation:

d
dt

z1z̄2 =
1

N2
d
dt

(
N

∑
j,k=1

ei(θ j−ξk)

)
, (4.85)

which can equivalently be written as:

d
dt

(r1r2 (cos(ϕ1−ϕ2)+ isin(ϕ1−ϕ2))) =
1

N2
d
dt

(
N

∑
j,k=1

cos(θ j−ξk)+ isin(θ j−ξk)

)

In particular, we have that

d
dt

(r1r2 cos(ϕ1−ϕ2)) =
d
dt

(
1

N2

N

∑
j,k=1

cos(θ j−ξk)

)

=− 1
N2

N

∑
j,k=1

sin(θ j−ξk)(θ̇ j− ξ̇k)

=− 1
N2

(
N

∑
j,k=1

sin(θ j−ξk)θ̇ j−
N

∑
j,k=1

sin(θ j−ξk)ξ̇k

)

=− 1
N

(
r2

N

∑
j=1

sin(θ j−ϕ2)θ̇ j− r1

N

∑
k=1

sin(ϕ1−ξk)ξ̇k

)
.
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Therefore, we find that the real part of z1z̄2 obeys the dynamics

dRe(z1z̄2)

dt
=− 1

N

[
r2

(
Nr1ω1 sin(ϕ1−ϕ2)+K1r1

N

∑
j=1

sin(ϕ1−θ j)sin(θ j−ϕ2)

−εr2

N

∑
j=1

sin2(ϕ2−θ j)

)
− r1 (Nr2ω2 sin(ϕ1−ϕ2)

+K2r2

N

∑
k=1

sin(ϕ1−ξk)sin(ϕ2−ξk)+ εr1

N

∑
k=1

sin2(ϕ1−ξk)

)]
,

which, due to Eqs. (3.10) to (3.13), leads to:

dRe(z1z̄2)

dt
= r1r2 sin(ϕ1−ϕ2)(ω2−ω1)+

K1

N
r1r2

N

∑
j=1

sin(ϕ1−θ j)sin(ϕ2−θ j) (4.86)

+
K2

N
r2r1

N

∑
k=1

sin(ϕ1−ξk)sin(ϕ2−ξk) (4.87)

+
ε

N

(
r2

2

N

∑
j=1

sin2(ϕ2−θ j)+ r2
1

N

∑
k=1

sin2(ϕ1−ξk)

)
(4.88)

Then, using (4.83), (4.84) and (4.88), we get

d
dt

Ω
f0,V = K1N

d
dt

r2
1 +K2N

d
dt

r2
2 +2Nε

d
dt

(r1r2 cos(ϕ1−ϕ2))

= K1N

(
2K1

N
r2

1

N

∑
j=1

sin2(ϕ1−θ j)+
2ε

N
r2r1

N

∑
j=1

sin(ϕ1−θ j)sin(ϕ2−θ j)

)

+K2N

(
2K2

N
r2

2

N

∑
j=1

sin2(ϕ2−ξ j)+
2ε

N
r1r2

N

∑
j=1

sin(ϕ1−ξ j)sin(ϕ2−ξ j)

)

+2Nε

[
r1r2 sin(ϕ1−ϕ2)(ω2−ω1)+

K1

N
r1r2

N

∑
j=1

sin(ϕ1−θ j)sin(ϕ2−θ j)

+
K2

N
r2r1

N

∑
k=1

sin(ϕ1−θ
2
k )sin(ϕ2−θ

2
k )+

ε

N

(
r2

2

N

∑
j=1

sin2(ϕ2−θ j)

+r2
1

N

∑
k=1

sin2(ϕ1−θ
2
k )

)]
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= 2Nr1r2ε (ω2−ω1)sin(ϕ1−ϕ2)+2K2
1 r2

1

N

∑
j=1

sin2(ϕ1−θ j)

+2K2
2 r2

2

N

∑
j=1

sin2(ϕ2−ξ j)+2ε
2

(
r2

2

N

∑
j=1

sin2(ϕ2−θ j)+ r2
1

N

∑
k=1

sin2(ϕ1−θ
2
k )

)

+4εr1r2

(
K1

N

∑
j=1

sin(ϕ1−θ j)sin(ϕ2−θ j)+K2

N

∑
j=1

sin(ϕ1−ξ j)sin(ϕ2−ξ j)

)
.

We hence arrive at the following time evolution equation for the Dissipation Function:

d
dt

Ω
f0,V = 2Nr1r2ε (ω2−ω1)sin(ϕ1−ϕ2)+2

N

∑
j=1

[
K1r1 sin(ϕ1−θ j)

+εr2 sin(ϕ2−θ j)
]2
+
[
K2r2 sin(ϕ2−ξ j)+ εr1 sin(ϕ1−ξ j)

]2 (4.89)

Fig. 4.3 Behavior of Ω f0,V/(2N) and ⟨Ω f0,V ⟩t/(2N) (blue and orange lines, respectively)
as functions of time, for N = 100, K1 = K2 = 1, ω1 = −ω2 = 1 and different values of
ε = {0,0.05,0.5,0.98,0.99,1,3}. The averages were taken over a set of 1000 trajectories
with initial data sampled from the uniform distribution on [0,2π) in a time t ∈ [0,120].

From the last equation we can see that if ω2 = ω1 then Ω̇ f0,V ≥ 0.
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Lemma 4.3.2. For every t > 0, and for every ε ≥ 0, if ω1 = ω2, then the time derivative of
the expectation of the Dissipation Function obeys:

d
dt

〈
Ω

f0,V
〉

t
≥ 0 . (4.90)

Proof. First we note that we may write〈
Ω

f0,V
〉

t
=
〈

Ω
f0,V ◦St

〉
0
, (4.91)

an identity coming from the exact response theory. Therefore, we also have:

d
dt

〈
Ω

f0,V ◦St
〉

0
=

d
dt

∫
M

Ω
f0,V (St

θ) f0(θ)dθ

=
∫
M

d
dt

(
Ω

f0,V (St
θ)
)

f0(θ)dθ =

〈
d
dt

(
Ω

f0,V (St
θ)
)〉

0
. (4.92)

Then, using Eq. (4.89), we find:

d
dt

〈
Ω

f0,V
〉

t
= 2

[
N

∑
j=1

〈(
K1r1(St

θ)sin(St
ϕ1−St

θ j)

+εr2(St
ξ )sin(St

ϕ2−St
θ j)
)2
〉

0
+

N

∑
j=1

〈(
K2r2(St

ξ )sin(St
ϕ2−St

ξ j)

+εr1(St
θ)sin(St

ϕ1−St
ξ j)
)2
〉

0

]
≥ 0.

The behavior of Ω f0,V and ⟨Ω f0,V ⟩ as functions of time, for different values of the coupling
constant ε , for the models with ω1 ̸= ω2 and ω1 = ω2, is illustrated in Figs. 4.3 and 4.4. The
behavior shown in Figs. 4.4 demonstrates the statement already made in Lemma 4.3.2 while
the behavior in Figs. 4.3 shows that this statement cannot be transferred to the case where
ω1 ̸= ω2.



94 Exact response theory for the Kuramoto model

Fig. 4.4 Dynamics of Ω f0,V/(2N) and ⟨Ω f0,V ⟩t/(2N) as functions of t blue and orange
lines, respectively, for N = 100, K1 = K2 = 1, ω1 = ω2 = 0 and different values of ε =
{0,0.05,0.5,0.98,0.99,1,3}. The averages were taken over a set of 1000 trajectories with
initial data sampled from the uniform distribution on [0,2π) in a time t ∈ [0,50].



Appendix A

Mathematical tools

In this Appendix, we recover some useful lemmas that we used for the analysis of our
dynamics.

A.1 Useful mathematical results

Lemma A.1.1. Suppose that θl , l ∈ {1, . . . ,N} satisfy θl ∈ [0,2π) and∣∣θi−θ j
∣∣< π, 1≤ i, j ≤ N. (A.1)

Then:

• For all i, j, l ∈ {1, . . . ,N} one has that

sin(θi−θ j)+ sin(θl−θi)− sin(θl−θ j) =Cl
i j sin(θi−θ j) (A.2)

where Cl
i j is given by the following:

Cl
i j := 1−

cos(θl−θi
2 +

θl−θ j
2 )

cos(θ j−θi
2 )

. (A.3)

• For all l = 1, . . . ,N one has that

sin(θM−θm)+ sin(θl−θM)+ sin(θm−θl)≤ 0 (A.4)
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where M,m are defined by

M = argmax
1≤l≤N

θl and m = argmin
1≤l≤N

θl (A.5)

Proof. To prove (A.2), we use the standard sum-to-product and double-angle formulae to
obtain

sin(θl−θi)− sin(θl−θ j) = 2sin
(

θ j−θi

2

)
cos(θl−

θi +θ j

2
)

=−
sin(θi−θ j)

cos
(

θ j−θi
2

) cos(θl−
θi +θ j

2
)

where, thanks to assumption (A.1), ∣∣∣∣θ j−θi

2

∣∣∣∣< π

2
(A.6)

and hence the cos(θ j−θi
2 ) ̸= 0. Therefore

sin(θi−θ j)+ sin(θl−θi)− sin(θl−θ j) = sin(θi−θ j)

[
1−

cos(θl−θi
2 +

θl−θ j
2 )

cos(θ j−θi
2 )

]
=Cl

i j sin(θi−θ j).

This completes the proof of (A.2). To prove (A.4), we apply (A.2) with i = M, j = m. The
right hand side of (A.2) becomes:

Cl
Mm sin(θM−θm). (A.7)

By assumption (A.1) we have
0≤ θM−θm < π (A.8)

and hence sin(θM−θm)≥ 0. Therefore, to prove (A.4), we need to prove that Cl
Mn ≤ 0, that

is,

cos
(

θM−θm

2

)
≤ cos

(
θl−θM

2
+

θl−θm

2

)
. (A.9)

For this, we use the elementary inequality∣∣∣∣x− a+b
2

∣∣∣∣≤ b−a
2

∀a < b, x ∈ [a,b] (A.10)
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to obtain that ∣∣∣∣θl−
θM +θm

2

∣∣∣∣≤ θM−θm

2
<

π

2
. (A.11)

Therefore,

1≥ cos
(

θl−θM

2
+

θl−θm

2

)
≥ cos

(
θM−θm

2

)
> 0, (A.12)

That implies Cl
Mm ≤ 0. In conclusion (A.7) is non negative and with that the proof of (A.4)

is complete.

Lemma A.1.2. Let f be a C1 function f : [0,∞)→ R, with ∥ f ′(t)∥ ≤C. If the integral∫
∞

0
f (s)ds, (A.13)

exist finite, then f (t)−→
t→∞

0.

Lemma A.1.3. If f and g are real analytic functions on an open interval U and there is an
open set W ⊂U such that

f (x) = g(x), for all x ∈W

then
f (x) = g(x), for all x ∈U

Proof. See [76], p. 13.

Theorem A.1.4. Let U ⊂ Rd be open, f : U → R be real analytic, and a ∈U. Then there
exist constants γ ∈ (0, 1

2 ], c, λ > 0 such that for every z ∈U, ∥z−a∥ ≤ λ ,

| f (z)− f (a)|1−γ ≤ c∥∇ f (z)∥. (A.14)

Proof. See Theorem 17, [82].

The above inequality is called Łojasiewicz inequality and thanks to that Łojasiewicz
obtained:

Theorem A.1.5. Consider the gradient system

ẋ(t) =−∇ f (x) (A.15)
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where x(t) ∈ Rn and f : Rn → R is real analytic function. If x(t) has a limit point x0,
i.e., x(tn)→ x0 for some sequence tn → ∞, then we have x(t)→ x0 as t → ∞. Moreover,
x0 ∈M = {x : ∇ f (x) = 0}, and therefore dx

dt → 0 as t→ ∞.

A.2 Stationary correlation functions

Given a vector field V0, let f0 be an invariant probability density under the flow St
0 generated

by V0. With the notation set by Eq.(4.7), let Λ0
0,t be the time integral over a trajectory segment,

from time 0 to time t, of the phase space volume variation rate Λ0, which is the divergence
of the vector field V0. Two-time correlation functions between two generic observables
A ,B : M → R, evaluated with the density f0, are invariant under the time translations
determined by St

0. This can be shown as follows. First we note that, proceeding as in Eq.
(4.9), one finds

Ω
fs,V0
−t,0 =

∫ 0

−t
Ω

fs,V0(Sτ
0θ)dτ =−Λ

0
−t,0−

∫ 0

−t

d
dτ

(log fs(Sτ
0θ))dτ

= −Λ
0
−t,0− log

fs(θ)

fs(S−t
0 θ)

. (A.16)

Upon setting s = 0 in (A.16) and using Eq.(4.12), we find
(
Ω f0,V0

)
−t,0 ≡ 0, from which we

obtain the following useful relation

f0(θ) = exp
{
−Λ

0
−t,0(θ)

}
f0(S−t

0 θ) (A.17)

where the exponential term is related to the Jacobian determinant of the dynamics as [66]:∣∣∣∣∣∂
(
S−t

0 θ
)

∂θ

∣∣∣∣∣= exp
{
−Λ

0
−t,0(θ)

}
. (A.18)

Let us look, next, at time correlation functions of the form

⟨
(
A ◦Ss+τ

0
) (

B ◦St
0
)
⟩0 =

∫
M

A (Ss+τ

0 θ) B(St
0θ) f0(θ)dθ
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for any s, t,τ ∈ R. By a change of variables, one finds

⟨
(
A ◦Ss+τ

0
) (

B ◦St
0
)
⟩0 =

∫
M

A (Ss
0θ) B(St−τ

0 θ) f0(S−τ

0 θ)d
(
S−τ

0 θ
)

=
∫
M

A (Ss
0θ) B(St−τ

0 θ) f0(S−τ

0 θ)

∣∣∣∣∣∂
(
S−τ

0 θ
)

∂θ

∣∣∣∣∣dθ

=
∫
M

A (Ss
0θ) B(St−τ

0 θ)exp
{
−Λ

0
−τ,0

}
f0(S−τ

0 θ)dθ

=
∫
M

A (Ss
0θ) B(St−τ

0 θ) f0(θ)dθ

= ⟨(A ◦Ss
0)
(
B ◦St−τ

0
)
⟩0 (A.19)

where we used (A.18) and, in the last line, the formula (A.17).



Appendix B

Stuart-Landau oscillators on 2-layer
models

The Stuart-Landau oscillators is an equation in normal form, which means that the limit cycle
dynamics of many other oscillators can be transformed onto or can be approximated by the
dynamics given by equation [100]:

ż =
(
1−|z|2 + iΩ

)
z, (B.1)

where z ∈ C denotes the position of the Stuart-Landau oscillator and Ω ∈ R is the natural
frequency of the Stuart-Landau oscillator. We set z = reiθ , then the equatio above can be
retritten as follows

ṙ = r(1− r2), θ̇ = Ω. (B.2)

Then, it is easy to see that Stuart-Landau oscillator has a stable limit cycle r = 1, on
which it moves at its natural frequency Ω. Now, let’s consider a weakly coupled system of 2
layers with N Stuart-Landau oscillators in each layer and a SIC linear coupling:


dz j
dt =

(
1−|z j|2 + iΩ j

)
z j +

K1
N ∑i=1(zi− z j)+ ε(z̄ j− z j)

dz̄ j
dt =

(
1−|z̄ j|2 + iΩ j

)
z̄ j +

K2
N ∑i=1(z̄i− z̄ j)+ ε(z j− z̄ j)

(B.3)
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where K1, K2 are the positive coupling strength between oscillators from the same layer and ε

is the positive coupling strength between a pair of oscillators from different layers. A similar
result was give it by [49]. We set zc and z̄c the centroid of the oscillators:

zc :=
1
N

N

∑
j=1

z j z̄c :=
1
N

N

∑
j=1

z̄ j. (B.4)

Then, the system (B.3) can be rewritten as
dz j
dt =

(
1−|z j|2 + iΩ j

)
z j +K1(zc− z j)+ ε(z̄ j− z j)

dz̄ j
dt =

(
1−|z̄ j|2 + iΩ̄ j

)
z̄ j +K2(z̄c− z̄ j)+ ε(z j− z̄ j)

(B.5)

we now introduce polar forms for z j, z̄ j,zc and z̄c:

z j = r jeiθ j , z̄ j = r̄ jeiξ j zc = r1eiφ1 z̄c = r2eiφ2 (B.6)

Thus, system (B.5) is equivalent to

˙



r j =
(
1− r2

j
)

r j +K1
(
r1 cos(φ1−θ j)− r j

)
+ ε
(
r̄ j cos(ξ j−θ j)− r j

)
(B.7a)

θ̇ j = Ω j +K1
r1

r j
sin(ϕ1−θ j)+ ε

r̄ j

r j
sin(ξ j−θ j) (B.7b)

˙̄r j =
(
1− r̄2

j
)

r̄ j +K2
(
r̄1 cos(φ2−ξ j)− r̄ j

)
+ ε
(
r j cos(θ j−ξ j)− r̄ j

)
(B.7c)

ξ̇ j = Ω̄ j +K2
r2

r̄ j
sin(ϕ2−ξ j)+ ε

r j

r̄ j
sin(θ j−ξ j) (B.7d)

For the limit-cycle oscillators where r j = 1 and r̄ j = 1, the equations (B.7b) and (B.7d)
becomes our AIC system in terms of r1, r2 ϕ1 and ϕ2:

 θ̇ j = Ω j +K1r1 sin(ϕ1−θ j)+ ε sin(ξ j−θ j)

ξ̇ j = Ω̄ j +K2r2 sin(ϕ2−ξ j)+ ε sin(θ j− xi j)
(B.8)
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The case of oscillators with an AIC linear coupling is analogous to SIC, we have the
dynamic


dz j
dt =

(
1−|z j|2 + iΩ j

)
z j +

K1
N ∑i=1(zi− z j)+ ε ∑

N
i=1(z̄i− z j)

dz̄ j
dt =

(
1−|z̄ j|2 + iΩ j

)
z̄ j +

K2
N ∑i=1(z̄i− z̄ j)+ ε ∑

N
i=1(zi− z̄ j)

(B.9)

considering the centroid of the oscillators defined in (B.4) and the polar forms in (B.6)
the system can be rewritten as

˙



r j =
(
1− r2

j
)

r j +K1
(
r1 cos(φ1−θ j)− r j

)
+ ε
(
r2 cos(ϕ2−θ j)− r j

)
(B.10a)

θ̇ j = Ω j +K1
r1

r j
sin(ϕ1−θ j)+ ε

r2

r j
sin(ϕ2−θ j) (B.10b)

˙̄r j =
(
1− r̄2

j
)

r̄ j +K2
(
r̄1 cos(φ2−ξ j)− r̄ j

)
+ ε
(
r1 cos(ϕ1−ξ j)− r̄ j

)
(B.10c)

ξ̇ j = Ω̄ j +K2
r2

r̄ j
sin(ϕ2−ξ j)+ ε

r1

r̄ j
sin(ϕ1−ξ j) (B.10d)

which also reach the form of the SIC equation when r j = 1 and r̄ j = 1.
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