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Abstract

Intrinsically disordered proteins (IDPs) can be generally
described as a class of proteins that lack a well-defined or-
dered structure in isolation at physiological conditions. Upon
binding to their physiological ligands, IDPs typically undergo a
disorder-to-order transition, which may or may not lead to the
complete folding of the IDP. In this short review, we focus on
some of the key findings pertaining to the mechanisms of such
induced folding. In particular, first we describe the general
features of the reaction; then, we discuss some of the most
remarkable findings obtained from applying protein engineer-
ing in synergy with kinetic studies to induced folding; and
finally, we offer a critical view on some of the emerging themes
when considering the structural heterogeneity of IDPs vis-a-vis
to their inherent frustration.
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Introduction

“Chemistry is neither chess nor geometry, whatever x-
ray physics may be.” With this vitriolic statement, a
commentary entitled “Poor Common Salt!“, published
in Nature in 1927 [1], conveyed the criticism of x-ray
diffraction experiments by Sir. Lawrence Bragg on NaCl
[2]. Such initial skepticism was also present when x-ray
crystallography ~ was extended to  biological

macromolecules, highlighting concerns about both the
inherent difficulty of the method and possible artefacts
induced by trapping proteins in an artificial crystal-
line state.

Since its infancy, however, the rapid success of protein
crystallography overcame such technical doubts and the
invaluable information provided by this technique soon
established its pivotal role in science. Nevertheless,
from the moment in which the function of haecmoglobin
could be explained by comparing its R and T states [3],
it immediately became clear how proteins could be fully
understood only when their dynamic properties were
also taken into account. Indeed, research during the
following decades corroborated that the dynamics of
proteins are critical to understand their function.

Five decades after the first determination of an X-ray
protein structure [4], the discovery that up to 30% of
the human proteome is disordered in its functional state
has completely revolutionized the structure—function
dogma [5]. This finding originally led to the view that
disordered proteins were a sort of specific class of mol-
ecules “breaking the protein rules” [6] or displaying
"unusual biophysics" [7], calling therefore for a rigorous
description of their behaviour as well as in solving the
quest of the importance and value of disorder in the
protein world.

The collaborative efforts of experimentalists and theo-
reticians have recently tremendously contributed to our
understanding of the structural and functional properties
of intrinsically disordered proteins (IDPs). In fact, given
their abundance and importance in several critical
cellular processes, much effort has been devoted in the
rigorous study of this type of proteins [5,8—18]. In this
review, we attempt to offer a critical view on some of
these key findings, posing particular attention on the
information accumulated on the mechanisms of binding
and recognition of IDPs, as well as on their key differ-
ences and similarities as compared to globular proteins.

Folding upon binding of IDPs
To a first approximation, an IDP may be defined as a
protein, or a protein segment, which lacks a well-defined
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ordered structure in isolation at physiological conditions
[19]. In this context, it is worth noticing how the
complicated nature of the cellular environment poses
the definition of ‘physiological conditions’ as a complex
matter. In fact, whilst the cell is a crowded medium
comprising osmolytes, carbohydrates, nucleic acids and
proteins, there is sometimes the shallow tendency to
assume that a buffer solution at physiological pH and
ionic strength resembles the ‘physiological conditions’.
This issue has been often taken as an opportunity to
criticize the existence per se of IDPs, whose apparent
disorder has been suggested to arise from an experi-
mental artefact due to the in vitro conditions, which do
not sufficiently mimic the real cellular conditions.
Despite these skepticisms, a wealth of experimental
data accumulated over the past two decades pinpoints
how IDPs maintain their disordered state within the
crowded cellular environment [20], reinforcing the
importance to study and understand this class of pro-
teins as well as in highlighting the potential values of
being disordered.

When recognizing and binding a physiological partner,
an IDP may encounter conformational transitions [19].
In some cases, these structural changes might be so
pronounced that the IDP effectively undergoes a
disorder-to-order transition and folds upon binding to its
substrate. However, not all IDPs are capable of folding,
and in other cases, the resulting complex maintains a
considerable level of disorder. Notably, even the latter
cases, despite retaining disorder, might correspond to
very tight complexes, displaying nM affinities [21] and
indicating that the level of disorder found in a complex
is not related to the apparent affinity between the
interacting partners. Surveys of different complexes
involving IDPs suggest that there is a whole spectrum of
different behaviours ranging from foldable IDP to
extremely disordered, and unfoldable, systems [20].

From a thermodynamic perspective, Fuxreiter, Tompa
and co-workers introduced a comprehensive concept,
named ‘fuzziness’, which successfully captures the
different behaviours recalled earlier [22—25]. A fuzzy
complex is characterized by a structural heterogeneity,
or multiplicity, which is critical in its function(s) [26].
Importantly, fuzziness should not be confused with the
dynamics associated to the thermal motions experi-
enced by a protein complex in a discrete thermody-
namic well; a fuzzy complex is in fact characterized by
the co-existence of several minima with similar free-
energy content (Figure 1). The physiological rele-
vance as well as the abundance and complexity of
fuzziness have been extensively reviewed elsewhere
[22,25,27,28] and will be briefly recalled later in the
article, in the context of the observed mechanisms of

binding-induced folding. In this context, however, it is
worth emphasizing how the fine depiction of these
structural ensembles under different conditions is
critical to establish structure—function relationships
using this formalism [29,30].

Binding kinetics and the order of events

As outlined earlier, the mechanism of recognition be-
tween IDPs and their physiological partners is expected
to be a complex reaction that involves the productive
encounter between the two partners, which is a bimo-
lecular step, and the folding of the IDP system, a
monomolecular reaction. In fact, as noted earlier, whilst
the level of disorder in different complexes may vary
considerably, it may be postulated that in all cases
binding results in changes in the dynamic and structural
behaviour of the IDP [20]. Therefore, a complete
analysis of the kinetics of binding of IDPs requires 1) to
define the order of events in the reaction, that is, if
folding precedes or follows binding, and ii) to provide a
structural depiction of the relevant states.

At variance with the expected theoretical complexity of
folding upon binding, the experimental characterization
of several IDPs reveals a striking simplicity of the
observed kinetics. In fact, several IDPs were found to
conform to a simple two-state behaviour, showing single-
exponential time courses and a linear dependence on
reactant concentrations, another typical signature of two
states [9,31—34]. Obviously, not all IDPs conform to a
two-state reaction and, in some cases, at least one in-
termediate could be identified [35,36]. Nevertheless,
experimental data collected so far suggest folding upon
binding to be highly cooperative and only a limited
number of highly elusive intermediates may be
observed, an observation that parallels what was found in
the case of folding of globular proteins. In fact, also in
these cases, small single-domain proteins tend to fold
via an all or none reaction.

Given these premises, it is of course extremely difficult
to characterize the different steps that take place during
induced folding. Furthermore, a particularly difficult
task is to define if folding precedes or follows binding.
One of the earlier studies addressing this question was
contributed by Wright and coworkers, who investigated
the coupled binding and folding mechanism of the IDP
pKID to a folded domain, the KIX domain [19,37]. By
employing NMR relaxation dispersion, it was observed
that pKID first forms an encounter complex, followed by
the accumulation of a partially folded complex, which is
then locked in place by the population of the fully
bound state [37]. This finding led the authors to put
forward an induced-fit type of mechanism, where
binding precedes folding. Aside from these
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Representative examples of different degrees of fuzziness in protein complexes. In magenta, Ribonuclease SA complex with Barstar (PDB code: 1ay7)
— The ligand possesses a well-defined three-dimensional structure which is retained upon binding and populates a single-energy minimum. Blue,
Complex of the central activation domain of Gen4 with Gal11/med15 (blue, PDB code: 2Ipb) — Gcn4 is an IDP that undergoes a disorder-to-order
transition upon binding. The presence of multiple energy minima due to protein frustration allows the protein to assume different conformations upon
binding. In green, AF4-AF9 complex (green, PDB code: 2Im0) — The protein complex is highly frustrated, with consequent formation of a fuzzy complex,
in which the IDP does not acquire a unique well-defined structure. The energetic profile is rough, with many energetic minima that allows the IDP to
assume different conformations and to be more sensitive to system perturbations.

sophisticated NMR approaches [38,39], the order of
events in binding-induced folding has been also
addressed on different protein systems using classical
kinetic approaches based on stopped-flow and temper-
ature jump techniques, in the case, for example, of
ACTR/NCBD [35,40], c-Myb/KIX [33,41,42], PUMA/
MCL-1 [9], HPV16 E7/Rb [43] and N /XD
[36,44—46]. In all cases, it appears that folding after
binding is a likely event in interactions involving IDPs.
However, more complex pictures have been drawn by
stabilizing selectively the ordered states of IDPs by
introducing cosolvents, as exemplified by the usage of
trifluoroethanol in the case of c-Myb and Nrapy, [36] or
TMAO in the case of ACTR/NCBD [47], or by site-
directed mutagenesis, as in the case of ACTR/NCBD
[8], the p53 trans-activation domain (TAD)/MDM2
[48] or in the case of c-Myb [38].

On the basis of the different experimental and theo-
retical work [49—52], we feel it is worth emphasizing
that confining the mechanism of induced folding of IDPs
to the classical induced fit or conformational selection
scenarios might be simplistic. More likely, IDPs explore

more complex mechanisms with multiple alternative
pathways as suggested by the so-called dock and coa-
lesce model [53,54] (Figure 2). Furthermore, the width
of the conformational ensembles might depend on the
relative propensity of a given IDP to explore preformed
structure in the absence of its physiological binder. We
note that this hypothesis parallels the slide between the
so-called nucleation-condensation (highly cooperative
and two-state) to diffusion-collision (framework with
intermediates) mechanisms in globular protein folding,
which is also tuned by the inherent stability of secondary
structure elements within a given structure [55].

Protein engineering as a tool to understand IDPs

The most ambitious goal of the biophysicist is to provide
a structural depiction of the sequence of events of a
given reaction. In the case of binding-induced folding,
such an issue is complicated by the highly cooperative
nature of the reaction that, as recalled earlier, typically
implies the presence of a limited number of transient
intermediates. In this context, it has been proven very
useful to apply an experimental methodology, known as
the @ value analysis, which was originally developed to
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Dock and coalescence model as mechanism of IDPs binding proposed by Ou et al. [53]. The disordered region of WASP GBD folds upon binding and
interacts with CdC42 GTPase (PDB code: 1cee). Two sequential steps characterize the dock and coalescence mechanism. In the first step, the docking
region of the IDP WASP (in blue) interacts with CdC42 (in grey). In the second step, the rest of WASP protein (in cyan and purple) coalescences through
additional intermolecular and intramolecular interactions. This mechanism is compatible with both conformational selection and induced fit models, thus

enriching the frame of the events of the binding process of IDPs.

study the folding of globular proteins [56] and has been
subsequently extended to protein binding and induced
folding [57].

The ® value analysis is based on the assumption that a
small structural perturbation, induced, for example, by
conservative site-directed mutagenesis, has a little
effect on the main reaction pathway. Under such con-
ditions, by normalizing the effect of a given mutation
on the activation free energy versus the effect on the
ground state, it is possible to map out interaction pat-
terns in the transition state. In practice, a large number
of site-directed mutants, insisting on different posi-
tions of the probed protein, are produced and
expressed. Then, the kinetics of the reaction of each
mutant is compared to that observed in the wild-type
protein. The effect on binding kinetics is then
compared to the effect on the binding affinity by
following the formalism:

£
AAG]),]‘S = RT lnL”
/!}ﬂ
kon FI
AAGp_y = RT In=2 -2
1’0/7 :élgff
o AAGp 15
- AAGp_y

where 4., and £.¢ denote the association and dissociation
rate constants, respectively, and the symbol ‘ refers to a
mutant protein.

In the last decade, several IDP systems have been
subjected to a complete ® value analysis, providing
important information about the induced folding reac-
tion [8,44—46,58—61]. In particular, the analyses of
several different IDPs have demonstrated that the
transition state of induced folding resembles a distorted
version of the ordered state, a finding that parallels what
observed in the case of folding of globular domains. Of
additional interest, however, close studies on the
robustness of the reaction upon changes of experimental
conditions have suggested this class of proteins to display
malleable pathways that are directly influenced by their
physiological partner [42,44,60,62,63]. In particular,
since IDPs tend to fold via heterogeneous nucleation,
whereby the transition state is directly stabilized by the
interacting ligand, folding occurs via a ‘templated
folding’ mechanism, whereby the structure of the tran-
sition state is dictated by the nature of the interacting
partner [42,63]. Notably, the template folding mecha-
nism represents a general mechanism, whereby multiple
alternative partners can recognize the same IDP and
induce cooperative folding. Thus, templated folding
ensures the robustness of the cooperativity and at the
same time increases the repertoire of different interac-
tion partners, while minimizing aberrant interactions
with undesired ligands [42,63,64] (Figure 3).

Frustration and emerging themes

One of the most elegant theories to describe the folding
of globular proteins is founded on the principle of
minimal frustration [65]. In a physical system, frustra-
tion occurs when each of the energetic interactions
stabilizing the system cannot be simultaneously
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Representative example of alternative folding of TAD1 and TAD2 subdomains of p53 are highlighted in blue (PDB code: 2114), magenta (PDB code: 5hpd),
purple (PDB code: 5hou), lime green (PDB, code: 3 dab), cyan (PDB code: 1ycr) and in green (PDB code:2ruk). TAD domain of the p53 protein is a
prototypical IDP system that shows different folds upon binding with different partners. The folding pathway of TAD is thus consistent with a mechanism,

whereby folding is templated by the structure of its ligands.

minimized by a single conformation. By following
Wolynes, Onuchic and co-workers, the funnelled energy
landscape theory postulates the presence of a strong
energetic bias towards the native conformation [65].
Accordingly, the native state of globular proteins corre-
sponds to a well-defined energy minimum where frus-
trated conflicts are largely absent. Natural proteins have
been evolutionary sculpted by natural selection to be
minimally frustrated.

Because proteins are evolved not only to fold but also to
function, it was predicted that frustration patterns
within the native state might structurally superpose
with functional sites. Indeed, a survey of frustration in
the PDB database confirmed this prediction and found
frustration patterns to be located at the active site of
enzymes, at the binding site of proteins forming com-
plexes and even at allosteric sites of regulation [66,67].
Frustration could be calculated from the analysis of
native structures and sequences, using an algorithm
previously established [68].

By following these premises, we note that IDPs might
be therefore considered as highly frustrated systems,
where the contrasting demands between folding and
function lead to disordered states. In fact, increasing
frustration by suboptimal interactions also results in the
presence of several energy minima and, therefore, the
competition between several alternative structures
[69], that is, disorder (Figure 1). Notably if such frus-
tration is maintained in the bound state of an IDP, it may
display a fuzzy behaviour. The joint consideration of
fuzziness and frustration lead to a unifying framework,
which can account for the interactions from structured
to highly disordered proteins [26,64].

It might be of interest to consider some of the pre-
dictions arising from this view, on the light of the
experimental data recorded on the mechanisms of
binding-induced folding of IDPs. In fact, in the case of
globular proteins, the funnelling of the landscape im-
plies the sequence of the native state to be optimal for
the native structure. Consequently, it is generally
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observed that site-directed mutagenesis results much
more frequently in a destabilization, rather than stabi-
lization, of the protein.

But what is the effect of mutagenesis on the folding step
of an IDP? This question has been directly addressed on
the induced folding reaction of the measles protein
NTAIL, an IDP system, and XD, its physiological part-
ner. In fact, in this case, due to the complexity of the
observed Kkinetics, it was possible to analyze indepen-
dently the binding and folding steps. Remarkably, it was
observed that of the different variants considered, only
one destabilized the folding step of NTAIL, whereas the
others showed ecither an increase in stability or a negli-
gible change [44,45]. Hence, in line with predictions, it
appears that in the case of fuzzy complexes and rough-
ened energy landscape, the sequence is not necessarily
optimized for a given structure and, therefore, sequence
variations may induce a rearrangement of the confor-
mational ensemble, rather than a destabilization.
Moreover, it is also of particular interest to note that a
recent analysis of the complex between the ETV/PEA3
family of activators and the coactivator Med25 demon-
strated that small sequence variations within an activator
family significantly redistribute the conformational
ensemble of the complex while not affecting overall af-
finity [70]. These findings highlight the critical role of
structural plasticity in the molecular recognition events
mediated by IDPs and emphasize the need of additional
studies to capture these effects in the context of the
cellular environment.
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vators and the coactivator Med25 is characterized through stopped-

flow kinetic binding experiments. Data carried out by the authors

show that small sequence changes within ETV proteins resulted in

major changes in the distribution of the conformational ensembles

while not affecting the overall affinity of the complex, highlighting a key

role of protein plasticity in mediating protein recognition.
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