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This review describes recent theoretical and experimental advances in the area of multimode solitons, focusing
primarily on multimode fibers. We begin by introducing the basic concepts such as the spatial modes supported
by a multimode fiber and the coupled mode equations for describing the different group delays and nonlinear
properties of these modes. We review several analytic approaches used to understand the formation of multimode
solitons, including those based on the 3D+1 spatiotemporal nonlinear Schrödinger equation (NLSE) and its
approximate 1D+1 representation that has been found to be highly efficient for studying the self-imaging phe-
nomena in graded-index multimode fibers. An innovative Gaussian quadrature approach is used for faster
numerical simulations of the 3D+1 NLSE. The impact of linear mode coupling is discussed in a separate section
using a generalized Jones formalism because of its relevance to space-division multiplexed optical communication
systems. The last section is devoted to the relevant experimental studies involving multimode solitons. © 2024
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1. INTRODUCTION

In the realm of nonlinear optics, the phenomenon of temporal
solitons has been a subject of fascination for over five decades
[1,2], ever since the first prediction of temporal solitons in
1973 [3] and their experimental observation in 1980 [4]. These
self-sustained wave packets exhibit remarkable properties,
propagating over long distances without distortion due to a
balance between chromatic dispersion and nonlinearity [see
Fig. 1(a)]. Extensive research efforts have been dedicated to
unraveling the mysteries of solitons [5] and harnessing them for
various applications, spanning from telecommunications [6]
to supercontinuum sources [7], ultrafast mode-locked fiber
laser sources [8], and cavity soliton frequency combs [9].
Similarly, spatial optical solitons, akin to their temporal coun-
terparts, are self-trapped light beams capable of maintaining
their transverse shape while propagating through nonlinear
media, avoiding the divergence associated with freely dif-
fracting beams [see Fig. 1(b)]. The presence of light alters the
properties of nonlinear materials, such as refractive index, re-
sembling the intensity profile of the beam and forming an op-
tical lens effect. The concept of self-trapped light beams was
initially introduced by Askaryan in 1962 [10], followed by
comprehensive investigations in both 1D and 2D diffractive
systems [11–14].

While traditional temporal or spatial solitons have primarily
been explored in one or two dimensions, recent advancements
have unveiled a fascinating realm of solitons involving both spa-
tial and temporal degrees of freedom, known as spatiotemporal
solitons [5,15,16], also called light bullets [17]. These solitons
represent multidimensional states, as they necessitate the bal-
ance among diffraction, dispersion, and nonlinearity across spa-
tial and temporal dimensions in the course of their propagation.
This complexity presents new challenges as well as interesting
opportunities in nonlinear dynamics. One significant challenge
is that these multidimensional states are highly susceptible
to perturbations [16]. A notable example of this fragility is
the spatiotemporal wave collapse, which is commonly observed
in multidimensional solitons within optical materials exhibiting
Kerr nonlinearity [16,18–20]. Nevertheless, spatiotemporal
solitons have been studied in various configurations [20–31].
Among them, multimode fibers (MMFs) provide a convenient
test-bed [32] and have garnered considerable interest in the
study of such solitons, owing to their cost-effectiveness and ease
of alignment. The interaction of diffraction and spatial confine-
ment in a multimode fiber leads to the formation of multiple
co-propagating spatial modes, each with distinct dispersive
properties, such as different phase and group velocities, second-
and higher-order dispersions. The dispersion of these spatial
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modes can be balanced by Kerr nonlinearity, causing the modes
to become locked together in time. As a result, the multimode
field propagates as a single, shape-preserving “ball” of energy in
both space and time. These equilibrium states are known as
multimode solitons (MMSs) [see Fig. 1(c)].

There are two major motivations for studying MMSs: 1) the
intrinsic scientific interest in propagation-invariant waves,
and 2) the potential to interpret complex phenomena, espe-
cially in more than one dimension, through soliton dynamics.
Interpreting instabilities, pulse formation, supercontinuum
generation, and other phenomena in one dimension using
the soliton concept in the frame of the 1D NLSE has proven
to be highly beneficial. Similarly, MMSs could provide a foun-
dation for understanding multidimensional nonlinear phenom-
ena. While the community has demonstrated several instances
where this approach is effective, further research is needed be-
fore we can definitively state that “a field can be described as a
superposition of solitons and dispersive waves,” as is often done
for one-dimensional systems.

Following early work [27,28,33–35], MMSs have gained
increasing attention, particularly in graded-index (GRIN) mul-
timode fibers (GIMFs), which minimize intermodal dispersion
and reduce modal walk-off time, thus facilitating the formation
of an MMS. Many experiments involving multimode solitons
in MMFs have explored phenomena such as soliton fission
[36], walk-off solitons [37], singlemode spatiotemporal soliton
attractors [38], collisions [39], dispersive radiation sideband
generation [40,41], and MMS formation in multimode step-
index fibers (SIMFs) [42,43]. The development of MMS in
conservative systems has spurred interest in the study of the
emergence of MMS in dissipative systems, such as spatiotem-
poral mode-locked lasers [44–46] and different multimode cav-
ity configurations [47,48]. Furthermore, GIMFs have emerged
as valuable testbeds for highly multimode systems [21], ena-
bling the observation of a variety of phenomena such as beam
self-cleaning [49], thermalization of optical waves [50–52], and
supercontinuum generation [53].

This review paper focuses on recent theoretical and exper-
imental advancements in MMSs in conservative systems, with
a primary focus on MMFs. We begin by introducing the
foundational concepts of MMF and MMS, elucidating the
phenomena associated with MMS in relation to the MMF

properties in Section 2. Many of these phenomena, such as
modal walk-off and MMS formation, can be effectively mod-
eled by the generalized coupled mode equation, with simple
examples provided in Section 3. Next, we review analytic ap-
proaches to MMS using the two-coupled mode equations in
Section 4, and discuss extensions to the 3D+1 spatiotemporal
nonlinear Schrödinger equation (NLSE) in Section 5. To en-
hance understanding, the comprehensive 3D+1 model is sim-
plified to a reduced 1D+1 NLSE representation in Section 6,
which is highly efficient for studying the self-imaging-effect-
induced phenomena in GIMFs. In Section 7, we introduce
an innovative Gaussian quadrature approach tailored for
numerical simulations of the generalized NLSE, potentially im-
proving computational efficiency. In Section 8, we examine the
propagation regime in space-division multiplexed (SDM) op-
tical communication systems designed with MMFs, discussing
the model using a generalized Jones formalism. This model
highlights the impact of linear coupling effects, primarily due
to manufacturing imperfections and environmental perturba-
tions. Finally, in Section 9, we focus on the relevant experimen-
tal studies involving the MMS phenomena.

In essence, this review endeavors to offer a comprehensive
overview of MMS, from MMF properties, their theoretical
analysis, innovative numerical approaches, the impact of ran-
dom linear coupling, and practical experiments. By exploring
these domains, the paper aims to enrich understanding and
acknowledgment of the significance of MMS, thus driving
progress in MMS research and technology.

2. MMF EIGENMODES AND MODAL
DISPERSIONS

In this section, we first focus on the spatial eigenmodes of
two types of MMFs: the step-index multimode fiber (SIMF)
and the GIMF. We discuss their key properties related to the
MMS, setting the stage for understanding their impact on sol-
iton formation. Subsequently, we introduce the generalized
multimode NLSE (GMMNLSE), which is relevant for describ-
ing a broad variety of MMFs with identifiable eigenmodes.
We provide concise examples, ranging from the propagation
of linear multimode pulse fields to the formation of MMS,
the Raman-induced MMS self-frequency shift, MMS fissions,
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Fig. 1. (a) Temporal solitons propagate within a singlemode fiber, forming due to the equilibrium between chromatic dispersion induced temporal
broadening and nonlinearity induced pulse compression. (b) Spatial solitons manifest in Kerr nonlinear media, shaping a beam with a consistent beam
waist as it travels, emerging from the interplay of spatial diffraction induced beam divergence and nonlinear self-focusing. (c) Spatiotemporal MMSs
propagate in graded-index multimode fibers, where the interaction between beam diffraction and fiber confinement creates spatial multimodal beams.
MMS formation is more complex, necessitating a balance not only between chromatic dispersion broadening and nonlinear pulse compression, but also
a balance between nonlinear beam trapping and modal walk-off due to the disparate group velocities of the fiber modes.
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and MMS collisions. These examples serve to effectively illus-
trate the discussed concepts, thereby laying a solid foundation
for analytical and experimental studies.

A. Overview of the Relationship between
MMF and MMS
MMFs are capable of supporting many guided modes simulta-
neously. To gain a comprehensive understanding of MMFs,
several key concepts must be grasped, as depicted in Fig. 2.

• Eigenmodes. Eigenmodes represent distinct transverse
profiles of the spatial modes that can propagate within an
MMF, illustrating how optical fields distribute across the fiber’s
cross-section. Calculation of the modal areas and their overlap
is necessary to define the modal nonlinear coefficients and the
strength of nonlinear mode coupling.

• Eigenvalues (neff ). The modal eigenvalues, denoted as
neff and representing a mode’s effective refractive index, quan-
tify the increase in the propagation constant β � neff k0 at a
specific wavelength, when compared with the vacuum wave
number k0. Since neff varies with frequency, for each mode
of index p the different derivatives β�p�n �ω� � ∂nβ�p�

∂ωn with respect
to frequency (or wavelength) directly affect the properties of
guided modes such as modal pulse broadening, modal group
velocity, and mode beating.

• χ �3� nonlinearity. The nonlinearity of an MMF results
from the complex third-order optical susceptibility of the fiber’s
material (typically silica). There are two main categories of cubic
nonlinear effects in fibers according to their response times: the
virtually instantaneous Kerr effect, and the delayed nonlinear
Raman and Brillouin scattering. As the light intensity increases,
the Kerr effect may compensate for both intramodal pulse broad-
ening and intermodal walk-off, leading to the MMS formation.

Subsequent subsections will discuss each of these concepts
in more detail, providing a comprehensive understanding of
MMF modes and their significance in MMS formation.

B. MMF Spatial Eigenmodes
Light travels longitudinally in fibers, while remaining confined
transversely to the core through total internal reflection result-
ing from the refractive index difference between the core
and the cladding. This confinement establishes boundary con-
ditions, leading to specific guided propagation modes that

depend on the fiber’s transverse refractive index profile. The
diversity of index profiles gives rise to various types of MMF,
each characterized by spatial modes with distinct transverse
beam profiles and eigenvalues. This subsection introduces
the eigenmodes by using the specific examples of the SIMF
and GIMF with identical core sizes.

In the case of a SIMF, the fiber’s core has a larger refractive
index nco and is surrounded by a cladding with the index ncl
such that Δn � nco − ncl > 0. The SIMF’s transverse refractive
index profile is given by

n�x, y, λ� �
�
ncl�λ� � Δn, if x2 � y2 < R2,
ncl�λ�, otherwise,

(1)

where R denotes the core’s radius. The refractive index of
the fiber not only varies with the wavelength λ but also with
the spatial coordinates �x, y�. In the context of silica fibers, the
wavelength dependence of ncl�λ� is commonly characterized us-
ing a Sellmeier equation [54], which can provide the refractive
index changes over a wide wavelength range. We use the follow-
ing values for the SIMF parameters: the core’s radius R � 25 μm
and a refractive index difference Δn � 0.0137 compared to the
cladding. The index profile n�x, y � 0, λ � 1.45 μm� is shown
by a black curve in Fig. 3(a).

Based on the fiber’s index profile, we calculate the first 15
eigenmodes F�x, y, λs�m,l at λs � 1.45 μm by employing the
semivectorial finite-difference method [55]. These modes
F �x, y, λs�m,l , designated as linearly polarized (LP) with indices
m (azimuthal) and l (radial), are displayed on the top in Fig. 3.
Degenerate modes sharing the same m, l values are denoted by
a, b. To simplify references to these modes, we assign a single-
mode index p. For instance, F 11a and F 11b correspond to
modes p � 2 and p � 3, respectively.

To illustrate the relationship among eigenmodes, eigenval-
ues, and refractive index distribution, we plot the mode profiles
Fp�x, y � 0� in Fig. 3(a) for three distinct radial modes
(p � 1, 6, 15), each shifted vertically by its corresponding
mode eigenvalue, using blue and green curves at wavelengths
of 1.55 μm and 1.70 μm, respectively. The corresponding
modal eigenvalues at three wavelengths are shown in Fig. 3(b).
These modes primarily reside within the core of the fiber.
Remarkably, higher-order modes, or those with longer
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Fig. 2. Overview of the relationships between the fundamental properties of MMFs and the key physical phenomena leading to the formation
of an MMS.
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wavelengths, have a smaller effective index, indicating reduced
confinement for them. As a result, the number of supported
modes varies with wavelength. While MMFs can accommodate
more modes at shorter wavelengths, they may support only a
single mode at much longer wavelengths, thereby classifying
them as singlemode fibers when the wavelength surpasses a cer-
tain threshold value (cutoff wavelength).

The shape of the refractive index profile of an MMF
influences its guided modes. This is illustrated in Fig. 3(c) using
the example of a GIMF with a core radius R � 25 μm. The
GIMF’s refractive index follows a parabolic distribution:

n�x, y, λ� �
8<
: ncl�λ� � Δn

�
1 − x2�y2

R2

�
, if x2 � y2 < R2

ncl�λ�, otherwise
:

(2)

This distribution leads to eigenmodes resembling Laguerre-
Gaussian (LG) modes. The refractive index n�x, y � 0,
λ � 1.45 μm� and LGmode profiles Fp�x, y � 0� are depicted
in Fig. 3(c) for modes p � 1, 6, 15 (the first three radial modes:
LG01, LG02, LG03) at wavelengths of 1.45 μm and 1.70 μm
using red and green curves. While mode profiles for GIMF and
SIMF fibers exhibit significant similarities, it is worth noting
that the mode areas of a GIMF are considerably smaller than
those of a SIMF. To rigorously characterize the influence of
mode profiles, it is essential to define the effective areas of
the MMF modes.

1. Effective Mode Areas
The mode’s area significantly influences MMF dynamics in the
nonlinear (high-power) regimes. This is due to the fact that, for
an identical optical power, modes with smaller spatial dimen-
sions lead to elevated field intensities (optical power per unit
area), thus inducing more pronounced refractive index changes
through the Kerr effect. In the presence of nonlinear effects, the
mode’s effective area (MEA) is introduced as follows [56]:

A�p�
eff �

�RR jFp�x, y�j2dxdy
�
2

RR jFp�x, y�j4dxdy
, (3)

where the mode profiles are both normalized and mutually
orthogonal: ZZ

∞

−∞
Fn�x, y�Fm�x, y�dxdy � δnm: (4)

2. Modal Nonlinear Coefficients
The modal effective area (MEA) is not enough to quantify the
strength of nonlinear effects in an MMF because the nonlinear
interaction among the modes also depends on the wavelength
of incident light and fiber material. Therefore, one needs to
introduce the modal nonlinear coefficient (MNC), which
can be calculated as

γ�p� � 2πn2
λA�p�

eff

, (5)

1 2 3 4 5 6 7 8 9
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Modes
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Modes

Index 10 11 12 13 14 15 
01 11a 11b 21a 21b 02 31a 31b 12a 12b 41a 41b 22a 22b 03(a) (b)

(c) (d)
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(g) (h)
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GIMF
SIMF
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Fig. 3. Refractive index profiles n�x, y � 0� (black solid line) of SIMF in (a), (b) and GIMF in (c), (d) and their corresponding eigenmode profiles
Fp�x, y � 0� (p � 1, 6, 15), modal effective indices neff ,p (p � 1,…; 15). (e)–(h) Mode dispersion comparison between the SIMF and the GIMF
with the same core radius of 50 μm at 1.45 μm, for (e) mode effective areas, (f ) relative zero-order mode dispersion δβ�p�0 � β�p�0 − β�1�0,SIMF, (g) relative
group velocity Δvg,n � 1∕β�p�1 − 1∕β�1�1,GIMF, (h) second-order dispersion β�p�2 . The fiber radius for the two fibers is R � 25 μm.
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where n2 is the nonlinear refractive index of the MMF that
produces a change in the refractive index, Δn � n2I , which
depends linearly on the local intensity I of light and has the
dimensions of m2∕W. Different effective mode areas in an
MMF lead to different MNCs for its various modes.

3. Modal Nonlinear Lengths
The modal nonlinear length (MNL) is the characteristic length
scale over which significant nonlinear optical effects occur in an
optical fiber. It provides a measure of the distance along the
fiber at which a light pulse is significantly affected by nonlinear
interactions. The nonlinear length of a mode is defined as [56]

L�p�N � �γ�p�P�p�
0 �−1, (6)

where P�p�
0 is the input peak power of mode p. This form in-

dicates that a higher input power or a larger MNC leads to a
shorter nonlinear length.

It is worth noting that the nonlinear length of a mode is
proportional to its MEA, indicating that the MEA is a key
parameter for each mode and serves as a critical parameter
for distinguishing nonlinear performance across various modes
of an MMF.

4. Nonlinear Responses
Optical pulses propagating inside an MMF with high peak
powers may be affected by several nonlinear effects. We briefly
introduce the effects associated with the third-order nonlinear
optical susceptibility (χ�3�) for which the nonlinear polarization
is proportional to the third power of the electric field. Effects
associated with the χ�3� nonlinearity can be grouped into two
main categories according to their response time, which can be
either very short or delayed in time (typically <1 ps). The for-
mer encompasses the well-known Kerr effect, which produces a
nearly instantaneous change in the refractive index proportional
to pulse intensity. This change alters the propagation constants
of all excited modes and gives rise to nonlinear phenomena
such as self-phase modulation (SPM), cross-phase modulation
(XPM), and four-wave mixing (FWM).

A delayed nonlinear response implies that the nonlinear
polarization not only depends on the electric field at the current
time, but also on the field values at earlier times. This delay is
attributed to light-induced molecular vibrations involving ei-
ther optical phonons (Raman scattering) or acoustic phonons
(Brillouin scattering). We refer to Ref. [56] for further details.
Only Raman scattering is relevant for short pulses that are of
interest in this review. As a result of Raman scattering, a longer-
wavelength pulse, known as the Stokes pulse, undergoes ampli-
fication in the presence of a shorter-wavelength (pump) pulse.
In silica fibers, maximum gain occurs for a relative frequency
shift of about 13 THz (or 100 nm) from the pump. As the
intensity of the Stokes pulse increases, it can serve as the pump
and generate another pulse at a longer wavelength through a
cascaded Raman process, thus potentially producing multiple
pulses from a single pump pulse.

5. Raman-Induced Self-Frequency Shift
The Raman gain affects ultrashort pulses (width <1 ps) in a
different way through a process called intrapulse Raman scat-
tering [56]. The spectrum of such pulses is so wide that its low-
frequency components can be amplified by the high-frequency

components of the same pulse. Consequently, the entire spec-
trum of a short pulse continuously shifts towards longer wave-
lengths as it propagates along the fiber. This effect is particularly
strong for solitons and is often referred to as the soliton self-
frequency shift (SSFS). As we discuss later, it also occurs for an
MMS forming inside an MMF.

C. Modal Dispersion
Let us introduce modal dispersion, a key property of MMFs,
which is associated with the eigenvalues corresponding to dif-
ferent guided modes. These eigenvalues are crucial, as they di-
rectly influence the propagation of optical pulses through
different guided modes. We initiate our discussion by focusing
on the frequency dependence of eigenvalues of the modes, and
obtain the associated modal dispersion properties. By consid-
ering different orders of modal dispersion for both GIMFs
and SIMFs, we are able to find several specific properties of
GIMFs. GIMFs exhibit a mode-beating distance that is nearly
wavelength independent, a reduced chromatic-dispersion-in-
duced pulse broadening, and a minimal intermodal walk-off.
Such attributes render GIMFs a fertile ground for observing
many intriguing phenomena, including periodic self-imaging
[57], formation of multimode solitons [37,38], and collisions
of such solitons [39].

The eigenvalues of MMF modes are the effective modal in-
dices np�λ�. They quantify the change in a mode’s propagation
constant induced by the fiber’s refractive index profile. As
shown in Figs. 3(b) and 3(d), np�λ� for SIMFs and GIMFs de-
creases with the mode order p and wavelength λ, indicating that
a weaker waveguide confinement occurs for HOMs or at longer
wavelengths.

To discuss modal dispersion, we consider the frequency
dependence of the propagation constant β�p��ω� for mode p:

β�p��ω� � ω

c
np�ω�: (7)

Different derivative orders of β�p� with respect to frequency
ω provide us with several dispersion parameters,

β�p�n �ω� � ∂nβ�p�

∂ωn , (8)

which play a crucial role when short pulses propagate inside an
MMF. Utilizing these coefficients, we can elucidate the influ-
ence of dispersion on various physical phenomena in MMFs.

1. Modal Propagation Constants
The propagation constant (zeroth-order dispersion) β�p�0 �ω� in
Eq. (8) quantifies the rate of phase change for mode p with
propagation. Figure 3(f ) compares for SIMF and GIMF the
phase difference, δβ�p�0 � β�p�0 − β�1�0,SIMF, between the propaga-
tion constant of mode p and that of the fundamental mode of
the SIMF. In the case of a GIMF, β�p�0 exhibits a distinct step-
wise decrease as the mode order p increases across different
degenerate mode groups.

Changes in the modal propagation constant β�p�0 with p play
a crucial role in MMFs and lead to phenomena such as multi-
mode interference or mode beating. This beating rate stems
from the difference of β0 for any two modes and can be used
to define the mode-beating length (MBL) as
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L�p,q�B � 2π∕jβ�p�0 − β
�q�
0 j: (9)

Mode beating is particularly pronounced in GIMFs, where
the phase-rate differences between adjacent mode groups are
nearly identical. For example, as shown in Fig. 3(f ), the modes
1, 6, and 15 satisfy the relation β�1�0 − β�6�0 � β�6�0 − β�15�0 . This
feature enhances the mode-beating process, which involves
multiple high-order modes. Whenever an optical beam excites
multiple modes of a GIMF, the total intensity, obtained by
adding the contributions of all modes [see Eq. (25)], exhibits
a periodic evolution (the self-imaging effect). The period of
mode beating is determined by the constant difference in
propagation constants between adjacent groups of modes.

Interestingly, for femtosecond pulses, the intensity at points
of maximum beam compression may become so high that it
induces multiphoton absorption or ionization [58]. In turn,
a visible photoluminescence is generated, which scatters out
of the fiber as a series of bright spots, providing an experimental
verification of the self-imaging phenomenon [57]. The self-im-
aging period does not depend on power and is equal to the
beating length of different radial modes:

Z SI � 2π∕jβ�6�0 − β�1�0 j: (10)

By using the data plotted in Fig. 3(f ), we calculate the self-
imaging distance to be Z SI ≈ 2π∕�11 × 10−3 m−1� ≈ 0.58 mm,
which closely matches the experimentally observed values [57].

A remarkable property of a GIMF is its near-constant MBL
for different wavelengths. To elucidate this feature, Fig. 4(a)
shows the wavelength dependence of L�1,6�B for modes p � 1
and p � 6 for both the GIMF and the SIMF. Remarkably,
as the wavelength shifts from 1.1 μm to 1.8 μm, LB in
SIMF varies from 2.8 mm to 1.7 mm but its value for the
GIMF remains fixed at 0.58 mm.

From a different perspective, the self-imaging period Z SI in
a GIMF depends on the core radius R and the refractive index
difference as Z SI ≈ πR∕

ffiffiffiffi
Δ

p
[57], where Δ � �n2co − n2cl�∕n2co is

the relative index difference between the core nco and the clad-
ding ncl. Typically, the refractive index varies with wavelength,
which is a common characteristic of optical materials. However,
if Δ undergoes minimal changes across a range of wavelengths,
the self-imaging period remains nearly constant. This feature
implies that the self-imaging phenomenon in GIMFs exhibits
a remarkable wavelength stability.

When non-radial modes are excited in a GIMF by launching
a beam off-set from the core’s center, the beam’s shape exhibits
transverse oscillations with distance. This process doubles the
spatial period of self-imaging, owing to the beating between
radial and non-radial modes. The resulting self-imaging period
results from the propagation constant difference between two
such modes and is given by Z 0

SI � 2π∕�β�2�0 − β�1�0 � �
1.16 mm [see the blue curve in Fig. 4(a)].

The evolution of periodic mode beating leads to collective
intensity oscillations, which in turn facilitates the emergence of
spectral sidebands. This phenomenon is associated with reso-
nant dispersive radiation in regions of anomalous dispersion
[41,59] and with a so-called geometric parametric instability
(GPI) in the region of normal dispersion [60]. The frequencies
of the GPI-induced resonant spectral peaks adjacent to the
pump frequency follow the relation

f h � �
ffiffiffi
h

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Z SIβ
�1�
2

s
, h � 1, 2, 3,…: (11)

2. Intermodal Dispersion
The group velocity of a multimode optical pulse depends not
only on the optical frequency (chromatic dispersion) but also
on its constituent modes. For mode p at wavelength λ, the first-
order term β�p�1 �λ� in Eq. (8) is inversely proportional to the
group velocity

v�p�g �λ� � 1∕β�p�1 �λ�: (12)

Figure 3(g) shows the relative group velocity
Δv�p�g � v�p�g − v�p�g,GIMF between a mode of order p of either a
GIMF or a SIMF, and the fundamental mode of a GIMF
at λ � 1450 nm. We may observe that, when compared to
SIMF, modes of GIMF propagate faster and exhibit smaller
group velocity differences. Additionally, for both fibers the
group velocity of LOMs is larger than that of HOMs.

It may appear surprising that LOMs have higher group
velocities than HOMs, since the effective index decreases as
the mode number grows larger [see Figs. 3(b) and 3(d)].
Therefore, the phase velocity of LOMs is smaller than that
of HOMs. However, the group velocity has an inverse depend-
ence on the modal group index, which includes the effects of
dispersion and is defined as

n�p�g �ω� � n�p�eff � ω
d

dω
n�p�eff : (13)

For a more detailed comparison, we illustrate in Fig. 5 the
wavelength dependence of both the modal effective index n�p�eff

GIMF

GIMF

SIMF

SIMFGIMF

SIMF

SIMF

(b)

(c) (d)

(1,6)

(1,6)

(1,6)

(a)

(1), (6)
(1)

(6)

(1,6)

(1,15)

(1,15)

(1,15)

(1,15)

SIMF (1,6)

GIMF (1,6)

GIMF(1,2)

Fig. 4. Characteristic lengths of GIMFs and SIMFs at different
wavelengths: (a) mode beating length L�p,q�B ; (b) modal walk-off length

L�p,q�W ; (c) dispersion length L�p�D . In (d) we show the differential mode

delay D�p,q�
MD for modes p and q, for an input pulse temporal duration

T 0 � 110 fs (FWHM: 184 fs). The significance of each length scale
in (a)–(c) becomes apparent when the pulse propagation distance ex-
ceeds these characteristic lengths, indicating that the corresponding
effect has a significant influence. D�p,q�

MD detailed in (d) quantifies
the temporal separation (ps) between two modes per unit of propaga-
tion distance (m).
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and the modal group index n�p�g for modes p � 1, 6, 15 for both
GIMF and SIMF. As can be seen, contrary to the effective in-
dex, the modal group index grows larger with mode number for
both types of fibers. Moreover, the modal effective index de-
creases monotonically with increasing wavelength. In contrast,
the modal group index reaches its minimum value near the
zero-dispersion wavelength, where the largest group velocity
is reached. In regions of anomalous dispersion, an increasing
neff for mode p means a decrease in the group velocity of that
mode as its wavelength grows larger.

The differential mode delay (DMD) quantifies the temporal
delay between modes per unit distance; it is defined as

D�p,q�
MD � β�p�1 − β

�q�
1 : (14)

In Fig. 4(d) we show the wavelength dependence of
D�p,q�

MD �λ�, for the mode pairs (1, 6) and (1, 15) for both
GIMF and SIMF. For both types of fiber, the DMD increases
with wavelength. In addition, an increase in the relative mode
number difference leads to larger values of D�p,q�

MD �λ�.
Consequently, the formation of MMS is much more difficult
for modes with large DMDs, when compared with MMS com-
posed of adjacent modes.

For GIMFs, the DMD values of <1 ps are an order of mag-
nitude smaller than those for SIMFs. For example, at a wave-
length of 1.45 μm the temporal delay associated with modal
dispersion is D�1,6�

MD ≈ 0.22 ps∕m for a GIMF but approxi-
mately 2.4 ps/m for a SIMF. Utilizing D�p,q�

MD �λ� allows for a
rough estimate of the propagation delay between modes in
the linear regime. For instance, when a pulse travels 5 km inside
a GIMF, its relative delay is approximately 1.1 ns for two neigh-
boring modes. This estimate agrees with experimental findings,
as found in Ref. [61].

The walk-off distance for pulses carried by different modes
depends not only on the relative group velocities of these
modes but also on pulse duration. Longer pulses have less pro-
nounced walk-off compared to shorter pulses. For a pulse of
duration T 0, the walk-off distance between modes p and q
is defined as

L�p,q�W � T 0∕jβ�p�1 − β
�q�
1 j: (15)

Here L�p,q�W stands for the distance over which two pulses
separate in time by an amount equal to their temporal width.

A longer walk-off length implies more interaction time due to
their temporal overlap during propagation, while a shorter
length suggests significant temporal separation over a shorter
distance.

Low-order modes (LOMs) travel faster compared to high-
order modes (HOMs), e.g., β�1�1 �λ1� < β�6�1 �λ1� at any given
wavelength. Whenever an MMS is formed by trapping differ-
ent modes via the Kerr nonlinearity, the resulting group velocity
of the MMS will be intrinsically linked to its modal composi-
tion. Therefore, one may expect that an MMS composed of
HOMs will propagate more slowly than an MMS composed
of LOMs.

The binding mechanism for different modes composing
an MMS is that the Kerr nonlinearity induces a spectral blue
shift for HOMs and a red shift for LOMs. This is due to the
fact that modal group velocities decrease as wavelength in-
creases in the case of anomalous dispersion, i.e., β�p�1 �λ1� <
β�p�1 �λ2� for λ1 > λ2. Consequently, the red-shifted LOMs
decelerate while the blue-shifted HOMs accelerate, gradually
approaching an equilibrium point where group velocities be-
come balanced across all modes. An illustrative example of
this phenomenon can be found in Fig. 7, as detailed in
Section 2.B.1.

As previously mentioned, the Raman effect induces a
progressive red shift of the soliton, which decreases its group
velocity. In GIMFs, the Raman effect also contributes to the
MMS formation, since it reduces the speed mismatch between
the fast LOMs (which have higher nonlinear coefficients and
undergo the largest SSFS) and the slow HOMs. On the other
hand, when two multimode Raman solitons with distinct mo-
dal compositions are generated during the fission of a single
MMS, their different group velocities may lead to collisions
between them as outlined in Ref. [39]. This scenario is eluci-
dated by the example presented in Fig. 11(d) in Section 2.B.4.

3. Chromatic Dispersion
Chromatic or group-velocity dispersion (GVD) characterizes
the dispersive broadening of optical pulses within each mode
of an MMF. As a consequence of material and waveguide
dispersion, different frequency components within the pulse
in a given mode travel at different speeds, resulting in pulse
spreading in time upon its propagation. The GVD is governed
by the second-order term β�p�2 �ω� in Eq. (8). In standard silica
optical fibers, there is a zero-dispersion wavelength (ZDW),
close to 1.3 μm, such that β�p�2 �ω� � 0. Consequently, optical
pulses propagating near this wavelength are little affected by
GVD, but the impact of higher-order dispersions on the pulses
may become significant.

For a transform-limited (i.e., unchirped) Gaussian pulse
with initial temporal width T 0, propagating in either the
normal or anomalous dispersion regime, its temporal width
increases with distance z as [56] T �z� � T 0�1�
�zjβ�p�2 j∕T 2

0�2�1∕2. It is useful to introduce a characteristic
dispersion length for mode p as

L�p�D � T 2
0∕jβ�p�2 j: (16)

Consequently, for a pulse carried by mode p the pulse broad-
ening ratio, T∕T 0 � �1� z∕L�p�D �1∕2, becomes significant as it
travels a distance greater than LD.

(a) (b)

GIMF (1)
GIMF (6)
GIMF (15)
SIMF (1)
SIMF (6)
SIMF (15)

GIMF (1)
GIMF (6)
GIMF (15)
SIMF (1)
SIMF (6)
SIMF (15)

Fig. 5. Modal effective index n�p�eff �λ� in (a) and modal group index
n�p�g �λ� in (b) as functions of wavelength for mode p � 1, 6, 15 in both
GIMF and SIMF.
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In Fig. 4(c), we plot L�p�D �λ� as a function of wavelength for
both GIMF and SIMF. As can be seen, for wavelengths around
the ZDW of 1.26 μm, L�p�D �λ� tends towards infinity because
β�p�2 �ω� ≈ 0. The ZDW corresponds to an inflection point for
β�p�1 �ω�, and optical pulses propagate at their fastest speed at
this wavelength when compared with other wavelengths. In
the normal dispersion regime (λ < 1.3 μm), the group velocity
increases with wavelength; in the anomalous dispersion regime
(λ > 1.3 μm), the opposite happens.

The GVD is different for different guided modes in
MMFs. This is depicted in Fig. 3(h), where the value of
β�p�2 �ω� at 1.45 μm is shown for both SIMF and GIMF.
The GIMF has smaller GVD values and exhibits narrower
gaps across its mode groups compared to the SIMF, as further
illustrated by the dispersion lengths plotted in Fig. 4(c).
Consequently, GIMFs are expected to produce much less
temporal broadening compared to SIMFs, suggesting that a
smaller input power will be necessary to form multimode sol-
itons in GIMFs.

D. Soliton Formation Conditions
By comparing the relevant characteristic lengths, we can find
interesting conditions for the formation of solitons. For sim-
plicity, here we focus on a fundamental soliton involving only
one mode of an MMF. Similar to the case of singlemode fibers,
a soliton involving only the mode p will have a hyperbolic se-
cant profile:

Ap�t� �
ffiffiffiffiffiffiffiffi
P�p�
0

q
sech�t∕T 0�, (17)

where P�p�
0 and T 0 are the peak power and duration of the sol-

iton, respectively. From this, energy of this soliton is found
to be

E�p� �
Z

∞

−∞
jAp�t�j2dt � 2T 0P

�p�
0 : (18)

By comparing the nonlinear length [Eq. (6)] with the
dispersion length [Eq. (16)], we obtain the soliton order for
mode p [56]:

N �p� �

ffiffiffiffiffiffiffi
L�p�N

L�p�D

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn2P

�p�
0 T 2

0

λA�p�
eff jβ

�p�
2 j

vuut : (19)

For N �p� < 1, dispersive effects dominate over the nonlinear
effects, preventing the formation of a soliton. When N �p� > 1,
higher-order solitons may form, exhibiting a periodic evolu-
tion. A fundamental soliton is formed when N �p� � 1.
Given that both the effective mode area (A�p�

eff ) and dispersion
(β�p�2 ) are different for different modes for an MMF, a soliton’s
peak power will also depend on p. By setting N �p� � 1, we find
the following relations for the peak power P�p�

0 and the energy
of a soliton of duration T 0:

P�p�
0 � λA�p�

eff jβ
�p�
2 j

2πn2T 2
0

, (20)

E�p� � λA�p�
eff jβ

�p�
2 j

πn2T 0

: (21)

As the duration T 0 varies, P
�p�
0 and E�p� change as shown in

Fig. 6(b) for the two types of fibers for the formation of solitons

at λ � 1550 nm. For nanosecond pulses, the peak power
needed is in the milliwatt range (or picojoule energy). For pico-
second pulses, it reaches kilowatt levels (or nanojoule energy).
For femtosecond pulses, the soliton needs peak powers in the
megawatt range and energies reaching microjoule levels.

The dependence of the peak power on the mode number is
shown in Fig. 6(a) for T 0 � 105 fs. The evolution of the re-
quired peak power closely matches the effective mode area in
Fig. 3(e). Modes with larger effective mode areas require higher
peak power (or energy) to form a soliton. The GIMF requires
4.6 kW peak power for mode 1 and 12 kW for mode 15, while
the SIMF needs higher powers of around 22 kW for each mode.

The formation of an MMS inside an MMF requires com-
pensation of temporal walk-off associated with different mode
pairs. By equating the walk-off length L�p,q�W from Eq. (15) with
the dispersion length in Eq. (16) and the nonlinear length in
Eq. (6), we can determine the temporal duration of an MMS
involving any two specific modes:

T �p,q�
w � jβ�p�2 j

jβ�p�1 − β
�q�
1 j

: (22)

Based on the dispersion parameters of the two fibers in
Fig. 3, T �1,6�

w of the first two radial modes is found to be
115 fs for a GIMF and 12 fs for a SIMF. Therefore, based
on the walk-off compensation condition for forming an MMS,
the duration and peak power for GIMF should be around
115 fs and 3.8 kW (see Section 2.B.1 where we provide
numerical examples of MMS formation). Since β�p�1 and β�p�2

vary with wavelength [see Eqs. (7) and (8)], the values of
T �p,q�

w also change. As a result, the “walk-off” soliton duration
will also depend on wavelength (see Fig. 32 in Ref. [37]). For
a soliton with T 0 > T �1,6�

w , walk-off compensation becomes
more critical, but it may be compensated for higher-order
MMS with larger peak powers. For example, observing
MMS in a SIMF requires a peak power in the MW range
(or energy ∼100 nJ) [42].
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Fig. 6. (a) Peak power of a fundamental soliton carried by a mode
with index p in SIMF and GIMF, respectively, for a 105 fs pulse du-
ration. (b) Required peak powers and energies for forming a funda-
mental soliton of varying duration in mode p for SIMF and GIMF
when λ � 1550 nm. Fiber parameters are consistent with those
in Fig. 3.
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In the case of a soliton propagating in the fundamental
mode, by substituting the mode effective area A�p�

eff with the
beam area of the fundamental mode πR2

0 (R0 is the waist of
the fundamental mode), one may rewrite the relation
Eq. (21) between the soliton energy and duration as follows:

M 1 � E�p�T 0 �
λR2

0jβ�1�2 j
n2

: (23)

For MMSs, this relation can be approximated by replacing
the mode energy E�p� with the total energy E, the mode effective
area A�p�

eff with the beam area πR2
g (Rg is the beam waist) in an

MMF, and the second-order dispersion β�p�2 with that of the
fundamental mode β2 � β�1�2 (supposing that the difference be-
tween chromatic dispersion of different modes can be ne-
glected). Thus, the condition for the existence of an MMS
can be expressed in terms of the beam size, pulse energy,
and duration, as follows [62]:

M ≡ ET 0 �
λR2

g jβ2j
n2

> M 1: (24)

As we shall discuss in Section 9, the experimental results
have indeed demonstrated the validity of such a relationship
(see Fig. 31 in Section 9).

E. Insights into the Relationship between
MMS and MEA
Building on these foundational concepts, a thorough compari-
son of SIMF and GIMF can yield profound insights, facilitating
a deeper understanding of MMS dynamics in multimode
fibers.

An important consideration is that even when two pulses
have identical durations and energies (or peak powers), their
nonlinear lengths in the same MMF can differ vastly if their
modal compositions are not the same. This suggests that the
mode distribution of a pulse plays a crucial role in determining
the nonlinear dynamics inside MMFs. For the same power and
wavelength, the nonlinear length [Eq. (6)] of any mode is pro-
portional to its MEA [Eq. (3)]. This feature indicates that
modes with a smaller MEA have larger nonlinear coefficients
[Eq. (5)] and they can excite a larger nonlinearity for the same
given field power.

The MEA A�p�
eff in a GIMF increases with the mode order,

while the MEA in a SIMF decreases, as seen in Fig. 3(e). This
suggests that, for the same peak power, nonlinear effects may
preferentially affect LOMs in GIMFs and HOMs in SIMFs,
respectively. As an example, LOMs in a GIMF may initially
compensate for their dispersion-induced pulse broadening
via the Kerr effect, leading to the formation of an MMS com-
posed by these modes [38].

Conversely, SIMFs are more likely to favor the formation of
an MMS composed of HOMs, because of their smaller MEAs
[see Fig. 3(e)] and higher MNCs. This is the reason that HOM
Raman solitons are preferentially observed in SIMFs [42],
while the Raman-beam cleanup is typically observed in
GIMFs, rather than SIMFs [63]. With this insight, we can also
understand Ref. [43], where a lower input-energy threshold was
observed for generating a Raman MMS when the input beam
was offset from the core’s center to enhance the excitation of

HOMs of the fiber, compared to the case of on-center beam’s
coupling (see Fig. 36 in Section 9.F).

In general, linear LOMs propagate faster than HOMs at
the same wavelength, due to their larger group indices [see
Fig. 5(b)]. In GIMFs, the Raman effect can initially cause a
stronger red-shift for LOM components in individual pulses,
because of their relatively higher nonlinear coefficients com-
pared with HOMs. This red-shift decreases the speed of pulses
in the LOMs [see the explanation of β�p�1 �λ� in Section 2.C],
thereby minimizing the group-velocity mismatch between
LOMs and HOMs and facilitating the formation of an MMS.

Furthermore, for an MMS in GIMFs, the pulse in the fun-
damental mode is red-shifted the most, and HOMs with
shorter wavelengths serve as pumps, thus facilitating a substan-
tial energy transfer from HOMs to the fundamental mode via
the Raman effect. This explains why a significant Raman beam
clean-up is observed, as shown in Ref. [38]. This phenomenon
is harder to occur in SIMFs because their fundamental mode
does not have the largest nonlinear parameter.

The mode size increases in all MMFs as wavelength in-
creases, which in turn decreases the MNCs. This feature po-
tentially contributes to the observed decrease in the rate of
red shift (SSFS) of a Raman MMS as it propagates over longer
distances. Furthermore, at higher wavelengths the number
of modes within an MMF diminishes, especially affecting
HOMs, which lose their confinement as wavelength increases.

The nonlinear coupling among the modes of an MMF de-
pends on the overlap of their mode profiles. Generally speaking,
nonlinear coupling between two radial modes (l � 0) tends to
be stronger than that between a radial and a non-radial mode.
Furthermore, within the same degenerate group, nonlinear
coupling is stronger when compared with the coupling between
two non-degenerate modes.

During mode competition within an MMF, modes with a
larger MNC are more likely to dominate the nonlinear dynam-
ics. This may partially explain the occurrence of self-cleaning
observed in GIMFs [49]. It can also explain the observation of
speckled patterns in SIMFs, which is indicative of the domi-
nance of HOMs in SIMFs.

3. COUPLED MODE EQUATIONS

A. Coupled Multimode Nonlinear Schrödinger
Equations
Building upon the insights gained from the preceding section,
we discuss a widely used model for describing the evolution
of optical pulses inside MMFs. As usual, the optical field of
each pulse is written as the product of a rapidly evolving opti-
cal carrier exp�i�β�0�0 z − ω0t�� and a slowly varying envelope
E�x, y, z, t�, where ω0 denotes the frequency at which the
pulse’s spectrum peaks. The envelope E�x, y, z, t� is normalized
in a way that jE�x, y, z, t�j2 is expressed in units ofW∕m2. This
envelope can be expanded in terms of the eigenmodes of an
MMF as follows:

E�x, y, z, t� �
XN
p�1

Fp�x, y�Ap�z, t�, (25)

where Fp�x, y� are the previously introduced transverse mode
profiles and the mode amplitudes Ap have units of

ffiffiffiffiffi
W

p
.
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The evolution of each modal component Ap along the
propagation direction z is governed by the generalized multi-
mode nonlinear Schrödinger equations (GMMNLSE) [64,65]

∂Ap�z, t�
∂z

� DfAp�z, t�g �N fAp�z, t�g, (26)

where the dispersion operator is given by

D � i�β�p�0 − β�1�0 � − �β�p�1 − β�1�1 � ∂
∂t

� i
X4
q≥2

β�p�q

q!

�
i
∂
∂t

�
q
,

(27)

and the dispersion coefficients represent a Taylor-series expan-
sion of β�p��ω� in Eq. (7) evaluated at the frequency ω0:

β�p��ω� � β�p�0 � β�p�1 �ω − ω0� �
1

2
β�p�2 �ω − ω0�2

�
X∞
n≥3

1

n!
β�p�n �ω − ω0�n: (28)

It is assumed that the pulse evolves in a reference frame mov-
ing at the velocity of the fundamental mode 1∕β�1�1 . All phase
and group velocities are referenced to the corresponding values
for the fundamental mode, i.e., the first two terms in Eq. (27)
are relative to the fundamental mode.

The modes are coupled by the nonlinear effects such as
SPM, XPM, and FWM, whose impact in Eq. (26) is included
by the following nonlinear terms:

NA � i
n2ω0

c

�
1� f S

i
ω0

∂
∂t

� XN
l ,m, n

�
�1 − f R�SKplmnAlAmA	

n

� f RS
R
plmnAl

Z
t

−∞
hR�τ�Am�z, t − τ�A	

n�z, t − τ�dτ
	
,

(29)

where SKplmn and SRplmn are the nonlinear mode-coupling coef-
ficients for the Kerr and Raman effects, respectively [64]. The
values of SKplmn and SRplmn are in general different when the
modes’ polarization is taken into account, whereas they become
identical within the scalar description of the fiber modes that
we adopt in this section [66]. Therefore, we can drop the super-
scripts K and R and express the nonlinear coefficients as

Splmn �
RR

dxdyF pF lFmFnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
dxdyF 2

p
RR

dxdyF 2
l

RR
dxdyF 2

m
RR

dxdyF 2
n

q ,

(30)

where we made the further assumption of real-valued transverse
mode profiles. Equation (29) incorporates the effects of Kerr
nonlinearity, Raman scattering (associated with the coefficient
f R), and self-steepening (related to the coefficient f S). The
nonlinear index of silica is n2 � 2.7 × 10−20 m2∕W, and its
Raman fraction is f R � 0.18. The Raman response function,
which is crucial for capturing the nonlinear response of an
MMF to ultrashort pulses, can be approximated by

hR�t� � �τ−21 � τ−22 �τ1 exp�−t∕τ2� sin�t∕τ1�, (31)

where τ1 � 12.2 fs and τ2 � 32 fs are related to the frequency
and the damping time of the Raman response in silica [56].

B. Numerical Examples of MMS Formation in a GIMF
This subsection provides concise examples illustrating various
phenomena, such as the linear multimode walk off, formation
of multimode solitons, their fission and creation of Raman sol-
itons, and collision of two such solitons. These examples not
only serve to clarify the basic concepts but also provide a basis
for both analytical and experimental exploration.

We assume that the input conditions for all modes are the
same in the form of Gaussian pulse, centered at t0 with a du-
ration characterized by its full width at half maximum
(FWHM) T FWHM � 1.665T 0. More specifically,

Ap�z � 0, t� � Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E

T 0

ffiffiffi
π

p
s

e
−
�t−t0�2
2T 2

0 , (32)

where Cp represents the initial modal coupling coefficient, and
E is the input energy. They are found by projecting an input
Gaussian beam E in�x, y� onto the eigenmode basis, expressed
mathematically as

Cp �
ZZ

∞

−∞
E in�x, y� · Fp�x, y�dxdy: (33)

Input conditions are varied by adjusting the two width ratios
for the input beam. They are defined as

rw � w∕wmode,p�1, rs � x0∕wmode,p�1, (34)

where w is beam’s width, x0 is its lateral offset, and wmode,p�1 is
the width of the fundamental mode. The use of these dimension-
less parameters allows for describing diverse input conditions for
a given input pulse with parameters such as input energy E, tem-
poral duration T 0, and the parameter values rw and rs.

When an input beam is aligned with the center of the fiber’s
core, only a few radial modes are excited (specifically modes
p � 1, 6, 15,…, as depicted in Fig. 3). For simplicity, we only
take into account these three dominant radial modes corre-
sponding to p � 1, 6, 15 in the following examples.

1. Modal Walk-Off and the Formation of an MMS
In the linear regime, modal dispersion leads to temporal walk-
off of pulses carried by different modes in a multimode GIMF;
see Figs. 7(a) and 7(b). In this case, an input beam with rw � 3
can be decomposed into the first three radial modes (p � 1, 6,
and 15). The input pulse has a Gaussian shape with a duration
of T 0 � 110 fs (FWHM: 184 fs) and has an energy of E �
0.01 nJ. As the peak power of the input pulse is merely
27.5 W, nonlinear effects remain insignificant due to L�1�N ≈
52.2 m, but dispersion effects play a pivotal role. This can
be seen by noting that the dispersion length is L�1�D ≈
0.72 m. The walk-off lengths LW are 0.82 m and 0.40 m
for the mode pairs (1.6) and (1,15), which correspond to
DMDs of 0.224 ps/m and 0.464 ps/m, respectively. As seen
in Fig. 7(a), after propagating over a distance of 27.7LD �
20 m, the multimode pulse undergoes significant temporal
broadening. The peak delay between mode 1 and mode 6 is
approximately 4.8 ps and it increases to 9.3 ps for modes 1
and 15. Given that dispersion solely alters the spectral phase,
the spectral power distribution remains unaffected, as illus-
trated in Fig. 7(b).

However, when the input energy is increased to 0.7 nJ, cor-
responding to a peak power P0 � 3.58 kW, the peak powers of

2590 Vol. 12, No. 11 / November 2024 / Photonics Research Review



the three excited modes become 1.76 kW for mode 1, 1.10 kW
for mode 6, and 0.72 kW for mode 15, and result in different
nonlinear lengths for these modes: LN � 0.82 m for mode 1,
2.55 m for mode 6, and 5.62 m for mode 15. Although
N �1� � 0.94 < 1 without considering higher-order mode
powers, a qualitatively distinct phenomenon is observed, as
shown in Figs. 7(c) and (d). Mode 1 experiences significantly
less temporal broadening, facilitating the trapping of a substan-
tial portion of the energy from mode 6. This interaction leads
to the formation of an MMS that evolves as a single entity. The
group delay of the MMS in Fig. 7(c) falls in between that of
modes 1 and 6 in Fig. 7(a). This feature shows that an averaging
of the linear group velocities of the constituent modes occurs
when an MMS forms. In order to sustain this balanced group
velocity, the Kerr nonlinearity produces a red-shift for mode 1
(which decreases its speed) and a blue-shift for mode 6 (which
increases its speed) [see Fig. 7(d)]. Note also that the peak
power of mode 15 is not large enough to be trapped into
the MMS. As a result, the pulse in this mode spreads its energy
into a dispersive wave, without much change in its spectral
characteristics, as seen in Fig. 7(d).

By varying the input pulse energy, we can determine the
threshold for MMS formation. In Figs. 8(a)–8(c), we plot
the temporal power distribution (normalized to its maxi-
mum value) for modes 1, 6, and 15 at the fiber’s output as
a function of input pulse energy. In the quasi-linear regime
(0 < E < 0.5 nJ), three modes exhibit significant walk-off
and pulse broadening. However, owing to its large nonlinear
coefficient γ�1� and its high peak power, mode 1 begins to
exhibit less broadening as the input energy increases. To illus-
trate this feature quantitatively, we plot in Figs. 8(d)–8(f ) the
pulse peak temporal position, the peak power, and the pulse
duration. The temporal position of peak power for mode 1 ex-
hibits a large delay when an MMS forms by trapping mode 6
[see Fig. 8(d)], while the power of all modes keeps increasing
[see Fig. 8(e)].

However, only the duration of mode 1 is significantly re-
duced [see Fig. 8(f )]. At an energy of around 0.5 nJ, the peak
position of mode 6 aligns with mode 1 [see Fig. 8(d)], which
can be considered as the threshold for MMS generation. For
mode 15, even though a bit of energy is trapped, most of
its energy flows away as a dispersive wave [see Fig. 8(c)], until
0.8 nJ, which is also observed as the turning point of peak
power changes in Fig. 8(e). As the MMS forms, the durations
of pulses in all three modes become very close to each other, as
shown in Fig. 8(f ).

2. Influence of the Input Beam’s Size on MMS
Next, let us consider what is the influence of the input condi-
tions (specifically, the input modal composition) on the forma-
tion and propagation characteristics of an MMS, for a given
input energy. In Figs. 9(a)–9(c) we plot the output temporal
profiles of power (normalized to their maximum values) in
modes 1, 6, and 15, respectively, versus input beam waist width
rw. Here the input energy is fixed at E � 1 nJ. The corre-
sponding pulse peak temporal position, the pulse peak power,
and the pulse duration are depicted in Figs. 9(d)–9(f ), respec-
tively. At this energy level, the input pulse energy is effectively
redistributed among modes 1 and 6 in order to efficiently form
an MMS (see Fig. 8), whereas a portion of input energy
coupled to mode 15 only contributes to dispersive waves.

When rw � 1, only mode 1 is excited, since the input
beams have the same size as mode 1. A singlemode soliton
within mode 1 is formed, as indicated by the zero peak power
for modes 6 and 15. As rw increases, the group velocity of the
MMS decreases, which is reflected in the larger group delay at

(a) (c) (d)(b)

3.03.0

Fig. 7. Comparison of the time evolution of temporal and spectral
fields in the linear and soliton regimes, respectively: (a), (b) linear re-
gime, (c), (d) MMS regime; the input pulse has a beam size rw � 3
and a duration of T 0 � 110 fs (FWHM: 184 fs), corresponding to a
dispersion length LD ≈ 0.72 m. The normalized temporal and spectral
field profiles for modes 1, 6, and 15 are depicted using red, blue, and
green curves, respectively, in each panel. For (a), (b) the input pulse
energy is E � 0.01 nJ; for (c), (d) E � 0.7 nJ; here the Raman effect
is neglected, and we set f R � 0.
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Fig. 8. MMS within a GIMF: panels (a)–(c) illustrate the normal-
ized temporal power for modes 1, 6, and 15, respectively, at the output
of a 20 m long GIMF, versus input pulse energy. The input pulse has a
Gaussian shape with a duration of T 0 � 110 fs (FWHM: 184 fs), a
wavelength of 1.45 μm, and a beam width parameter rw � 3. Panels
(d)–(f ) detail corresponding temporal positions of peak power, peak
power, and pulse duration at the fiber output. Effects of higher-order
dispersion (β�p�n � 0, n > 2), Raman (f R � 0), and self-steepening
(f S � 0) are disregarded, in order to focus on MMS dynamics only.
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the output, as shown in Fig. 9(d). Moreover, with an increase in
rw, the high-order modal content of the MMS in modes 6 and
15 also increases, as can be seen in Fig. 9(e). The duration of
the MMS expands from 0.1 ps to 0.17 ps, wherein the duration
of the pulse in the fundamental mode is slightly shorter than
that of pulses in the higher-order modes, as demonstrated by
Fig. 9(f ).

3. Raman Multimode Solitons and Soliton Fission
In the previous examples, the Raman effect was not considered
(f R � 0) in the GMMNLSE model. Now, we aim to illustrate
how the Raman effect affects MMS. To achieve this, we intro-
duce the Raman effect by setting the delayed nonlinear re-
sponse coefficient to f R � 0.18 in Eq. (29). Once the
input energy exceeds 1 nJ, the Raman effect becomes notably
influential. Here, we provide two examples to showcase its im-
pact on MMS.

In Fig. 10 we illustrate the evolution of the MMS for an
input pulse with E � 3 nJ and a duration of T 0 � 110 fs
(FWHM: 184 fs), propagating through a 2 m GIMF. At this
energy level, nonlinear effects intensify, enhancing mode cou-
pling and inducing significant temporal and spectral changes.
The LOMs undergo a red-shift, whereas the HOMs experience
a blue-shift at z � 0.4 m [see Fig. 10(b)], in order to maintain
a GVD-induced balance of their different group velocities. As a
result, a Raman MMS forms, with a relatively narrower tem-
poral duration and a noticeably red-shifted spectrum, owing to
SSFS. At z � 2 m, the central spectrum of the Raman MMS
shifts to 1.52 μm. This is accompanied by a decrease in the

soliton group velocity. When comparing with the MMS group
delay in Fig. 7(c), where a 20 m propagation leads to approx-
imately 1.5 ns delay, the MMS in Fig. 10(a) only propagates
over 2 m.

When increasing the input energy up to 7 nJ, as depicted in
Figs. 10(c) and 10(d), there is sufficient nonlinearity to reor-
ganize the field around t � 0 into a second MMS. This sug-
gests that the initial high-order soliton undergoes fission,
resulting in two different MMSs. The first soliton, which car-
ries most of the energy, exhibits a greater delay (extending be-
yond the plotting window at 1.6 m and 2.0 m) and a larger
SSFS. The second MMS carries less energy; however, this is
sufficient to form another Raman MMS, featuring a reduced
delay and SSFS. Further energy increments can lead the second
MMS to gather more energy, resulting in larger group delays
(slower group velocities) and heightened SSFS, as detailed in
the subsequent subsection.

4. SSFS Control and Soliton Collisions
In previous subsections, we observed different dynamics of
multimode solitons in MMFs, including modal walk-off, for-
mation of an MMS, and its fission. We also discussed the
dependence of the MMS properties on physical parameters
such as the input pulse’s duration, its group velocity, and SSFS
upon varying its energy or modal content. Here, we discuss the
possibility of controlling the SSFS of an MMS by adjusting its
modal content. Under specific conditions, two Raman MMSs
with different group velocities may undergo inelastic collisions,
resulting in an energy exchange between them.

As an example, we cite the result in Ref. [39]. In this study,
the input beam led to the excitation of the first 15 modes, and
the input pulse’s duration was 70 fs with a center wavelength of
1.4 μm. Figure 11(a) shows simulated output spectra for a 2 m
long GIMF as a function of input pulse energy using rw � 2
and rs � 0, corresponding to the excitation of only radial
modes. The SSFS of the first MMS (S1) at the output is visible
for input energies exceeding 1 nJ, while the SSFS of the second
MMS (S2) becomes pronounced beyond 5 nJ. The SSFS of
both Raman MMSs increases with growing input energy.

When the input beam is slightly shifted from the center of
the fiber axis, additional non-radial HOMs are introduced
(rw � 2.8, rs � 0.5). In this case, a similar spectral evolution

(a) (b) (c)

(d) (e) (f)
mode 1
mode 6
mode 15

mode 1 mode 6 mode 15

Peak Position (ps)

Fig. 9. Output mode evolution versus input beam size rw (input
modal content): the normalized temporal field powers of (a) mode
1, (b) mode 6, and (c) mode 15 at the output of a GIMF are plotted
as a function of the normalized input beam size rw , when the input
pulse energy is 1 nJ, and the pulse duration is T 0 � 110 fs (FWHM:
184 fs), corresponding to a dispersion length Ld ≈ 2 m. Panels
(d)–(f) detail the corresponding temporal positions of output peak
position, peak power, and pulse duration. Here we neglect the effects of
higher-order dispersion (β�p�n � 0,n > 2), Raman scattering (f R � 0),
and self-steepening (f S � 0).

2nd soliton

1st soliton

(a) (b) (c) (d)

Fig. 10. Temporal and spectral evolution of Raman MMS in a 2 m
GIMF, when the input pulse energy is (a), (b) 3 nJ and (c), (d) 7 nJ.
Here f R � 0.18; other parameters are the same as Fig. 7.
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occurs as seen in Fig. 11(b). However, at 15 nJ, S1 undergoes
less SSFS-induced red-shift and temporal delay when compared
with S2, owing to its reduced fundamental mode content. As
the input beam undergoes further energy increase and axial po-
sition shift (rw � 3.2, rs � 1.7), the special spectral evolution
of S1 seen in Fig. 11(c) becomes evident. The corresponding
experimental demonstration is shown in Fig. 40 of Section 9.H.
As seen in Fig. 11(c), a surprising spectral feature occurs for
input energies between 22.5 nJ and 26 nJ: the soliton spectra
exhibit large separations before merging again.

To understand these dynamics, we show the temporal and
spectral evolutions of the MMS in Figs. 11(d) and 11(e): here
the input energy is 22.7 nJ. Initially, the input pulse splits into
two solitons (S1 and S2), which collide and then separate due
to their inelastic energy exchange. Despite S2 having a smaller
peak power when compared with S1 before their collision [see
Fig. 11(f )], S2 gradually exhibits a larger delay (and larger
SSFS), eventually leading to its collision with S1.

The analysis of the modal contents reveals that S2 has a rel-
atively larger contribution from the fundamental mode (S2M1)
when compared with S1 (S1M1), as depicted in Fig. 11(g).
This occurs even though the sum of other mode contents in
S1 (S1M2-15) is larger than that of S2 (S2M2-15), as shown
in Fig. 11(h). Since the fundamental mode dominates the non-
linear strength, S2 experiences a larger SSFS and group delay,
resulting in its collision with S1. As a result of their inelastic
collision, the two MMSs exchange energy and separate, because
S1 gains more energy in the fundamental mode, thus exhibiting
a larger group delay. In Section 9, we shall describe observa-
tions giving experimental evidence of the spectral evolution
and associated dynamics of collisions between MMSs in multi-
mode GRIN fibers [39].

Furthermore, MMS interactions have been theoretically
studied in several papers. In Ref. [67], the interaction between
two MMSs in a GIMF, each carrying only the degenerate

modes LG11a and LG11b with consideration of their polariza-
tion states, was studied. In analogy with the case of single-mode
fibers, these MMSs exhibit an attraction or a repulsion behav-
ior, on the basis of their relative phase, despite belonging to
different fiber modes. However, unlike the single-mode sce-
nario, each soliton transfers some power to the other mode
via intermodal four-wave mixing. Despite this intermodal
power exchange, both MMSs maintain their bimodal nature,
and interact as if they were traveling in a single-mode fiber.

In Ref. [68], the interaction between fundamental solitons
in single-mode fibers under the influence of Raman scattering
was extensively investigated. The study reveals a net energy
transfer from the leading pulse to the trailing pulse, akin to
the behavior that we have described for the multimode scenar-
ios. Furthermore, the impact of different soliton amplitudes or
phases on the fraction of transferred energy was analyzed.

C. Discussion
In this section, we first introduced the eigenmodes and eigen-
values of MMFs, which are important for understanding the
nonlinear as well as linear properties of an MMF. By comparing
two specific MMFs, a SIMF and a GIMF, we found that the
GIMF has dominant nonlinear coefficients for LOMs, thus fa-
voring MMSs composed of low-order modes. Moreover, a
GIMF has much reduced modal dispersion, which greatly fa-
cilitates the MMS formation. In contrast, a SIMF favors the
generation of HOM solitons.

Second, by analyzing the modal eigenvalues, we obtain a
piece of key information about the propagation properties of
MMFs. For instance, equally-spaced propagation constants
in GIMFs enhance mode beating, giving rise to the self-imaging
effect. Thus, analyzing β1 for different modes and wavelengths
helps us to better understand a key property of the MMS in
GIMFs: LOMs propagate faster than HOMs in linear regimes.
Therefore, the overall group velocity of MMSs is influenced by
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Fig. 11. Output spectra are plotted as a function of input pulse energy for a 2 m GIMF under different input conditions: (a) rw � 2, rs � 0;
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Reprinted with permission from Ref. [39]. Copyright 2022, Optica.
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their modal content. Building on these fundamental notions,
we introduced the GMMNLSE, which is a relevant model for
describing ultrashort pulse propagation in a broad range of
MMFs with identifiable eigenmodes.

We elucidated a series of phenomena typical of GIMF:
MMS formation via compensation of modal walk-off,
MMS fission, mode-based SSFS control, and MMS colli-
sions. Specifically, we analyzed how the Raman effect inter-
acts with MMS: it increases the soliton’s wavelength, and
LOMs exhibit larger SSFS in GIMFs. This has two significant
impacts: first, it reduces the velocity of LOMs, thus dimin-
ishing their group velocity mismatch with HOMs and favor-
ing their nonlinear trapping. Second, LOMs with increased
red shifts are fed energy by the HOMs with a reduced red-
shift, resulting in significant energy transfer from HOMs to
LOMs, and eventually leading to Raman beam cleanup into
the fundamental mode: corresponding experiments are dis-
cussed in Section 9.

Lastly, we discussed the possibility of SSFS manipulation by
changing the input modal composition of an MMS. Under spe-
cific conditions, two MMSs resulting from the fission of an
input pulse and propagating with different modal contents
may collide at some point along the fiber, owing to their differ-
ent group velocities. This section lays the groundwork for
deeper explorations into MMS, by either analytical methods
or experiments, as discussed in subsequent sections.

4. ANALYTICAL APPROACHES FOR
MULTIMODE SOLITONS

In this section, we will review the theoretical framework,
leading to analytical results, for describing the dynamics of
MMSs. Most of these results rely on the variational formu-
lation of Eq. (26) and the derivation of effective theories for
describing an MMS by means of a reduced number of degrees
of freedom. In this context, most of the literature focuses on
two-mode (or bimodal) soliton formation [69–72].
The multimode case, whose treatment is much more com-
plex, has received much less attention [69]. In Section 4.A,
we introduce first the variational formulation for the two-
mode soliton case. The Kantarovitch, or average variational
approach, which is our main method in this section, is pre-
sented in Section 4.B. The effective variational theory ob-
tained with this method for the case of a two-mode bright
soliton is presented in Section 4.C. Later, in Section 4.D
we will present the virial, or moment method, reviewing
the results presented in Ref. [72]. Finally, in Section 4.E
we present a generalization of this analysis to a multimode
context, following Ref. [69].

A. Variational Formulation of Two-Mode Solitons
When just considering two modes, and neglecting high-order
effects (e.g., high-order dispersion, Raman effect), Eq. (26) can
be written as

∂zA1 � iΔβ�1�0 A1 − Δβ
�1�
1 ∂tA1

� iβ�1�2

2
∂2t A1−i�R11jA1j2 � 2R12jA2j2�A1, (35a)

∂zA2 � iΔβ�2�0 A2 − Δβ
�2�
1 ∂tA2

� iβ�2�2

2
∂2t A2−i�R22jA2j2 � 2R21jA1j2�A2, (35b)

where we have considered the tensor Rplmn � Splmnn2ω0∕c
symmetries [35]

Rmmnn � Rmnmn � Rmn: (36)

After a straightforward normalization (see, for example,
Ref. [73]), Eq. (35) reduces to

i�∂z � δ∂t�u� νuu�
βu
2
∂2t u� �juj2 � C jvj2�u � 0,

(37a)

i�∂z − δ∂t�v � νvv �
βv
2
∂2t v � �C juj2 � jvj2�v � 0, (37b)

with βu,v � 1 for anomalous and βu,v � −1 for normal GVD.
Note that, under the phase transformation

u → eiνuzu�z, t�, v → eiνvzv�z, t�, (38)

Eq. (37) reduces to

i�∂z � δ∂t�u�
βu
2
∂2t u� �juj2 � C jvj2�u � 0, (39a)

i�∂z − δ∂t�v �
βv
2
∂2t v � �C juj2 � jvj2�v � 0, (39b)

which is the starting point for most of the analytical research
that has been performed in this system (see, e.g., Refs. [70,71]).
A key parameter here is the cross-phase modulation (XPM) co-
efficient C , which couples fields u and v. With C � 1, Eq. (39)
is known as the Manakov equations [74]. Alternatively,
one can get rid of the walk-off terms by performing the
transformation

u�z, t� � U �z, t�eiδ2z∕2−iδt , V �z, t� � v�z, t�eiδ2z∕2�iδt ,

(40)

which yields the system

i∂zU � βu
2
∂2t U � �jU j2 � C jV j2�U � 0, (41a)

i∂zV � βv
2
∂2t V � �C jU j2 � jV j2�V � 0: (41b)

In this context, the effect of the walk-off can be reintroduced
as an initial splitting velocity between the modal components of
a pulse as it is injected into the fiber. Thus, the effect of tem-
poral walk-off owing to modal dispersion can be transferred to
an initial relative frequency shift among the two input pulse
components [75,76].

1. Lagrangian and Hamiltonian Formalisms
The set of Eq. (37) can be derived from the Lagrangian density

L ≡ Lu � Lv � Lint, (42)

with
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Lu ≡ i�u	∂zu − u∂zu	� � iδ�u	∂tu − u∂tu	� − βuj∂tuj2 � juj4,
Lv ≡ i�v	∂zv − v∂zv	� − iδ�v	∂t v − v∂t v	� − βvj∂t vj2 � jvj4,
and the interaction contribution

Lint ≡ 2 C juj2jvj2:
Then Eq. (39) can be retrieved through the Euler-Lagrange

equations

∂
∂z

�
∂L
∂u	z

�
� ∂

∂t

�
∂L
∂u	t

�
−
∂L
∂u	

� 0, (43a)

∂
∂z

�
∂L
∂v	z

�
� ∂

∂t

�
∂L
∂v	t

�
−
∂L
∂v	

� 0: (43b)

Similarly, the application of the transformation Eq. (40) to
the Lagrangian Eq. (42) leads to the new Lagrangian density

L ≡ LU � LV � Lint, (44)

with

LU ≡ i�U 	∂zU − U∂zU 	� − βuj∂tU j2 � jU j4, (45)

LV ≡ i�V 	∂zV − V ∂zV 	� − βvj∂tV j2 � jV j4, (46)

Lint � 2 C jU j2jV j2, (47)

from where Eq. (41) can be also derived.
By defining the generalized momenta

Pu ≡
∂L
∂U ∗

z
� iU∕2, Pv ≡

∂L
∂V ∗

z
� iV ∕2, (48)

this system can be alternatively described by Hamiltonian den-
sity obtained through the Legendre transform

H � PuU ∗
z � P∗

uU z � PvV ∗
z � P∗

vV z − L, (49)

which leads to

H � HU �HV �Hint, (50)

with

HU � βuj∂tU j2 − jU j4, HV � βvj∂tV j2 − jV j4, (51)

and

Hint � −2 C jU j2jV j2. (52)

2. Conservation Laws
From the momentum-energy tensor defined through our
Lagrangian [77], the following conservation laws can be
deduced.

• Conservation of power. The powers carried by each
mode are defined as

Pu ≡
Z

∞

−∞
juj2dt, Pv ≡

Z
∞

−∞
jvj2dt: (53)

These quantities satisfy

∂zPu � 0, ∂zPv � 0, (54)

which means that they are conserved individually along propa-
gation in z. This is a direct consequence of the fact that all
terms in Eq. (42) are real [72].

• Conservation of the total momentum. The momentum
for each field u, v is defined as

Ju ≡ i
Z

∞

−∞
�uu	t − u	ut�dt , Jv ≡ i

Z
∞

−∞
�vv	t − v	vt�dt :

(55)
The total momentum J � Ju � Jv is conserved along

propagation, i.e.,

∂zJ � ∂z�Ju � Jv� � 0: (56)

• Conservation of the total energy. The last quantity to be
conserved is the total energy or Hamiltonian function

H � Hu �Hv �H int �
Z

∞

−∞
�Hu �Hv �Hint�dt: (57)

The conservation law in this case reads

∂zH � ∂z�Hu �Hv �Hint� � 0: (58)

B. Average Variational Approach: Rayleigh-Ritz or
Kantarovitch Optimization
In this section, we introduce the averaged variational method,
which is widely used in order to compute soliton solutions in an
optical context [15]. Originally presented in an optical context
by Anderson et al. [78], this method is also known as the
Rayleigh-Ritz or Kantarovitch optimization approach and gen-
eralizes its stationary version: the Ritz approach [78–80]. This
method allows us to compute approximate analytical solutions
of a given nonlinear partial differential equation by applying the
principle of least action to a parameter-dependent solution an-
satz, based on either the Lagrangian or the Hamiltonian formal-
ism. In what follows, we describe the main steps in either the
Lagrangian or the Hamiltonian formalism.

1. Kantarovitch Method in the Lagrangian Formalism
The method consists of the following four main steps.

(1) First of all, we need to define an approximate ansatz
solution, or trial function, that captures the main features
and shape of the state that we want to compute. This ansatz
is a function of the form u � u�t; q�z��, which depends on
z through a number of parameters:

q�z� � fq1�z�,…, qn�z�g,
which are the generalized coordinates of the system.

(2) Given a Lagrangian density associated with a certain set
of partial differential equations [see, e.g., Eq. (42)], the next
step in this procedure is to compute the effective reduced
Lagrangian function of the system, which, in the context of
temporal MMSs studied here, is defined as

L�q�z�� ≡
Z

∞

−∞
L�u, u	,…; q�z��dt : (59)

(3) After that, we obtain the dynamical system for the
generalized coordinates by computing the Euler-Lagrange
equations

d

dz

�
∂L

∂�d zqm�

�
−
∂L
∂qm

� 0 (60)
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for each parameter qm with m � 1,…, n, where we have de-
fined d zqm ≡ dqm∕dz.

(4) Finally, in the last step, we study the dynamics of the
reduced system Eq. (60), and rebuild the behavior of the origi-
nal system by using the initial ansatz.

2. Kantarovitch Method in the Hamiltonian Formalism
Equivalently, one may consider the Hamiltonian formalism for
obtaining an effective reduced system. The process is equivalent
to that followed in the Lagrangian case, but now we use the
Hamiltonian

H �q�z�, p�z�� ≡
Z

∞

−∞
H�u, u	,…; q�z��dt , (61)

where p�z� � fp1�z�,…, pn�z�g are the generalized momenta
defined as

pm � ∂L
∂�d zqm�

:

Then, the effective dynamics of the system are captured by
the Hamiltonian equations of motion

dqm
dz

� ∂H
∂pm

,
dpm
dz

� −
∂H
∂qm

(62)

for each m � 1,…, n.

C. Effective Variational Theories for Bimodal Bright
Solitons: Escaping versus Bound-State Solitons
Once that variational machinery has been introduced, we will
try to answer the following question: which kind of initial con-
dition for Eq. (39) leads to the formation of a two-mode
soliton?

Most of the works dealing with two-mode soliton formation
focus on a regime where each mode in the fiber experiences
anomalous GVD [69–71,75]. In comparison with this case,
the mixed scenario has been much less studied [81].

In this section, we will mainly focus on the interaction of
bright solitons, where both modal components are propagating
in the anomalous dispersion regime. In what follows, we take
βu � βv � 1. In this context, two main behaviors are found:
either (i) the two solitons split and escape or (ii) they are
trapped, forming a bound state, i.e., a two-mode soliton.
These solitons, however, are not static upon propagation,
but they undergo oscillations in their separation and peak
powers [73]. An example of this regime is depicted in Fig. 12.

The threshold between these two regimes deeply depends
on two main factors: the strength of temporal walk-off, or
the initial relative frequency shift of the pulses, and the strength
C of the XPM. One of the first researchers who investigated
these phenomena was Menyuk in 1987. He found, by perform-
ing numerical simulations, that the splitting could be arrested
through XPM, and that the threshold for mutually trapped sol-
itons increases with increasing walk-off [73]. After that, many
theoretical works focused on understanding this phenomenon
and on the analytical determination of that threshold [69–72].

Instead of reviewing these results in chronological order, we
have decided to organize them in terms of the variational for-
malism that was applied.

1. Lagrangian Formalism
Let us first review some results based on a Lagrangian approach.
One of the first works to tackle this problem was that of Ueda
and Kath [70]. In the following, we will use these results as the
main guiding example for didactic purposes.

Their approach considered the Lagrangian Eq. (44), which
is more adequate for investigating soliton formation, in detri-
ment of the explicit appearance of the linear walk-off δ in the
results.

The general soliton ansatz they considered was

u � ηusech

�
t − τu
wu

�
eiΦu , v � ηvsech

�
t − τv
wv

�
eiΦv ,

(63)

with the phases

Φu ≡ V u�t − τu� �
θu
2wu

�t − τu�2 � ϕu,

Φv ≡ V v�t − τv� �
θv
2wv

�t − τv�2 � ϕv,

where ηu,v, wu,v, and τu,v are the amplitude, width, and central
position of the fields u and v, respectively. These parameters
correspond to the three lowest-order moments of the soliton
envelopes. V u,v, θu,v, and ϕu,v, represent the three lowest-order
moments of the phase Φu,v. These are the nonlinear velocity of
the soliton central position, the chirp of the soliton (related to
the change of the soliton temporal width), and the linear phase,
respectively.

By computing the Euler-Lagrange Eq. (60) with this ansatz,
the authors obtained an eight-dimensional reduced dynamical
system for describing the evolution of the corresponding ansatz
parameters. This effective theory allowed the study of both
symmetric and asymmetric soliton configurations. However,
due to the complexity of the former scenario, the authors

Fig. 12. Bound state, or trapped, oscillatory regime for C � 2∕7.
Adapted from Ref. [81].
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focused on the symmetric case, which is the one that we review
in the following paragraphs.

Let us consider two identical solitons that are symmetrically
located in time on opposite points around their mean position,
and that propagate in opposite directions (in a reference frame
propagating with the average group velocity). This implies:
wu � wv � w, ηu � ηv � η, θu � θv � θ, V u � −V v �
−V , and τu � −τv � −τ. With these considerations, the effec-
tive Lagrangian

L �
Z

∞

−∞
L�u, u	, ν, ν	�dt (64)

yields the Euler-Lagrange equations

dτ

dz
� V , (65a)

dV
dz

� CP
w2 ∂ΔF �Δ�, (65b)

dw
dz

� θ, (65c)

dθ

dz
� 4

π2w2

�
w−1 −

P
2
−
3

2
CP∂Δ�ΔF �Δ��



, (65d)

where

F �Δ� ≡ cosh Δ
sinh3Δ

�Δ − tanh Δ�, Δ ≡
2τ

w
, (66)

and P � Pu � Pv � 2η2w is the conserved mode power [see
Eq. (53)]. The fixed points of this system correspond to a
shape-preserving two-mode soliton, which is a center of the
dynamics; hence it is neutrally stable: any small fluctuation of
the system will drive it away from this point [82]. Interestingly,
around this point a continuous family of oscillatory states may
appear, which correspond to dynamical two-mode solitonic
states. We will come back to this in a few paragraphs.

A way to obtain more information about this bimodal sol-
iton system is by studying the effective Hamiltonian

H � Hu �Hv �H int �
Z

∞

−∞
�HU �HV �Hint�dt,

(67)

associated with our ansatz. After some algebra, the Hamiltonian
can be reorganized as H � HI �HK , where

HI ≡
1

6

�
P
2
−
1

w

�
2

� π2

24
θ2 (68a)

is a measure of the internal energy in each soliton, which is
taken up by pulse-width oscillations and

HK ≡
1

2
V 2 −

CP
2 w

F �Δ� (68b)

represents the kinetic and potential energy due to the coupling
between the u and ν solitons [70]. As we know from the con-
servation law Eq. (58), H � E � const, where E is the initial
energy of the system, that is, E ≡H �0�.

Depending on the sign of E, two behaviors are possible.

• E < 0: bound state regime. The two pulses attract each
other, and form a bound state, wherein the pulse central posi-
tion τ and width w undergo periodic oscillations in z [70,73].
This bound state corresponds to a dynamic two-mode soliton.

• E > 0: escaping or splitting regime. WhenH � E > 0,
however, the two pulses have enough initial velocities, or fre-
quency-shift (walk-off ) to overcome the XPM-induced attrac-
tion, yielding two well-separated independent solitons.

The condition H � E � 0 marks a separatrix, i.e., the
threshold between these two behaviors. This condition pro-
vides the escape velocity V e.

In the chirp-free case (θ � 0), the escape velocity for two
initially superimposed solitons �τ � 0� reads

V 2
e � μP2C

�
1� C

2

�
, μ ≡

1

6
: (69)

Thus, the formation of two-mode solitons depends on the
initial velocity, mode energy, and on the strength of the XPM
interaction C . In the phase plane defined by the parameters τ
and V [see Fig. 13(a)], the escape velocity is the separatrix be-
tween the bound state and the escaping soliton regime.

In the bound-state regime, there is a continuous family of
oscillatory states for continuous values of H � E < 0, which
correspond to oscillations of the bimodal soliton central posi-
tion [see closed orbit in Fig. 13(a)]. Such an oscillatory dynamic
can be described by combining Eq. (65a) with (65b). This leads
to the second-order ODE

d2Δ
dz2

−
2 CP
w3 ∂ΔF�Δ� � 0, (70)

where w is a constant [see Eq. (65c)].
In a strongly bound system, where Δ is small (Δ ≪ 1),

F�Δ� ≈ 1∕3 − 2Δ2∕15,

and one gets the simplified equation

d2Δ
dz2

� ω2
ΔΔ � 0, ω2

Δ ≡
8

15

CP
w3 , (71)

which describes the relatively small amplitude oscillations of the
soliton positions (Δ) with frequency ωΔ. Thus, in the chirp-free
case Δ experiences harmonic oscillations in z of the form

Δ ∝ 2 τ ∝ cos�ωΔz�:
An example of this oscillation is shown in Fig. 13(b) using a

dotted line. Note that the escape velocity can also be deter-
mined by transforming Eq. (70) into an energy conservation
equation, as discussed in Refs. [71,83].

Obviously, the previous analysis only provides a qualitative
description of the bimodal soliton system. A more realistic de-
scription requires the consideration of the chirp, and thus the
modification of w. Indeed, numerical results obtained with the
original Eq. (39) reveal the presence of oscillations in both the
pulse positions and widths (see Fig. 2 in Ref. [70]); moreover,
these two oscillations are not commensurate, i.e., non-periodic.

To better understand the reason for these disagreements, it
is necessary to consider the presence of pulse chirp (b ≠ 0), and
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study the full system of Eqs. (65a)–(65d), which now allows for
the variation of w and thus η. This extra degree of freedom
shows that the periodic orbits in phase space are not periodic
but quasiperiodic, and the pulse oscillations and width are not
commensurate. The reason for this is that the kinetic and in-
ternal oscillations of this model are now governed not just by
one frequency, but by the two frequencies

ω2
K � ωΔ, ω2

I �
P4

4π2
: (72)

The comparison between the previous analysis and the
numerical results is depicted in Fig. 13(b). The presence of this
new frequency, due to the extra degree of freedom (b ≠ 0),
shows that the orbits do not close and are quasiperiodic: the
pulse position and width are not commensurate.

These results were later revisited by Kaup et al. by consid-
ering a Gaussian ansatz [75]. Although quantitatively less ac-
curate, this ansatz provides a deeper qualitative insight and
analytical predictions not only for the symmetric, but for
the asymmetric configuration as well, something that was
not possible in previous works. In this context, a more general
expression for V e was found {see Eq. (19a) in Ref. [75]}. Near
the condition Pu � Pv, this velocity can be approximated also
by Eq. (69), but with μ ≡ 1∕�2π�.

In the bound-state regime, the linear stability analysis
around the fixed point of the reduced effective dynamical
system reveals the presence of not two, but three internal

modes of the two-mode soliton that oscillates with the
eigenfrequencies:

ω1 ≈
1

4
C1∕2�1� C�3∕2P2, (73a)

analogous to ωK in Eq. (72),

ω2 ≈
1

4
�1� C�2P2, (73b)

related to ωI , and

ω3 ≈
1

4
�1� C�3∕2�1� 4 C�P2, (73c)

a frequency that was not previously predicted, which is respon-
sible for the antisymmetric shape oscillations of the symmetric
two-mode soliton [75].

In 1990, Kivshar included explicitly the linear walk-off δ in
the system description [see Eq. (37)]. In this case, he used the
Lagrangian density Eq. (42) and a modified version of the an-
satz Eq. (63), where the chirp is neglected and ηu,v �
w−1
u,v�1� C�−1∕2 [71]. Similar to the work of Ueda and

Kath [70], the author only considered the symmetric solution
case (i.e., wu � wv � w � const:, V 1 � −V 2 � −V ). In this
context, the reduced Euler-Lagrange equations simplify to

dΔ
dz

� 2

w
�V � δ�, dV

dz
� −

w
2
∂ΔU int�Δ�, (74)

where Δ is the relative distance between the two modes’
maxima [same as in Eq. (66)], and

U int ≡
8C

�1� C�w4

�
1

3
− F�Δ�

	
� 4CP

w3

�
1

3
− F�Δ�

	
(75)

represents an effective interaction energy between the two
modes, where we have used that P � 2

w�1�C�.
In the strongly bound regime (Δ ≪ 1),

U int ≈
8CP
15w3 Δ

2, (76)

and the combination of Eq. (74) leads to the same Eq. (71),
where the oscillatory frequency now reads

ω2
Δ ≡

16

15

CP
w3 , (77)

which is twice the value predicted by Ueda and Kath [70].
By using the conservation of the total energy of the system, a

separatrix between the bound state and the escaping soliton re-
gimes was obtained in terms of the walk-off and width of the
pulses. Thus, two-mode bound states will form if

1

2

�
2δ

w

�
2

≤ Umax ≡
4CP
3w3 , (78)

which leads to the threshold walk-off

δ2th ≤
2

3

CP
w

� 4

3

C
�1� C�w2 : (79)

In terms of the amplitude of the input pulse A, this thresh-
old reads

Ath�δ,C� � Ag �
1

2

ffiffiffiffiffiffi
3

2C

r
δ, Ag�C� ≡

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1� C�

p ,

(80)

Fig. 13. (a) Regions of bound and escaping solitons in the �τ,V �
phase space for θ � 0. (b) Comparison of simulations carried out
using Eq. (39) (solid line), Eq. (65) for θ ≠ 0 (dashed line) and for
θ � 0 (dotted line). Adapted from Ref. [70].
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which shows a linear dependence with δ, in contrast to previous
results by Caglioti et al., where such a dependence is quadratic
[69]. Note that within this approach, the gap amplitude Ag
cannot be directly derived: it was obtained by using a result
from the inverse scattering method (see discussion in Ref. [72]).

Figure 14 compares, for C � 2∕3, these results with those
of Menyuk [73] and Hasegawa [33], who using an analogy
based on quantum mechanics, derived a trapping condition
with an amplitude threshold which is also proportional to δ
(see the dashed line in Fig. 14). However, their theory does
not predict the amplitude gap Ag [33].

In our context, these results can be read as follows: when
Ag < A < Ath for δ fixed, the two modes interact slightly,
and the symmetric soliton configuration splits into two inde-
pendent solitons traveling in opposite directions; for A > Ag
the initial pulses form a bound state, i.e., a two-mode soliton,
owing to the intermodal coupling described by the effective
interaction energy U int.

Similar results were found by Karlsson et al. when investi-
gating two soliton collisions in singlemode fibers, owing to the
effect of XPM for C � 2 [83]. We recommend this work for its
completeness and clarity. A generalization of the Lagrangian
formalism for two-mode dynamics when consideringN param-
eters in the soliton ansatz was also proposed by Caglioti et al. in
1990 [84].

2. Hamiltonian Formalism
Approaching the problem from a different perspective, one may
also describe the dynamics of two-mode solitons in the context
of the Hamiltonian formalism. The first time that this formu-
lation was used to describe the dynamics of pulses in two-mode
fibers was in 1988 with the work of Caglioti et al. [69]. By
deriving an effective Hamiltonian for an arbitrary number of
fiber modes (see Section 4.E), they were able to describe the
interaction of a bimodal bright soliton complex in the presence

of linear walk-off. The authors found that the threshold ampli-
tude for two-mode soliton formation depends quadratically on
δ. However, they were not able to predict the gap that appears
when δ → 0, in contrast to Kivshar [71].

One year later, by applying similar approaches, Afanasyev
et al. found that the interaction of two bright solitons could
be described by the interaction Hamiltonian [81]

H int � h0F �Δ�, h0 ≡ −
8C

1� C
1

w3 : (81)

The equation of motion associated with this quantity pre-
dicts periodic soliton oscillations with a frequency [81]

ω2
Δ � 16

15

C
1� C

1

w2 �
8

15

CP
w

, (82)

which is proportional to 1∕w, and not to 1∕w3 as it was derived
in other works [70,71].

In 1992, Mesentev and Turitsyn found a way to characterize
the stability of two-mode solitons with equal amplitudes, by
deriving integral conditions describing the trapping [85]. By
applying Lyapunov stability theory, they were able to derive
an exact condition for mutual soliton trapping. Thus, for
any initial condition satisfying

H < −
δ2

2
�Pu � Pv� −

1

24
�P3

u � P3
v�, (83)

a two-mode soliton state will form. Note that this condition is
general and it applies to initial pulses with any kind of shape, in
contrast to other works that typically used a sech-type solution
ansatz.

D. Moment Approach for Two-Mode Solitons
In 1993, Cao and McKinstrie applied a different approach,
based on the virial theorem, for understanding Menyuk’s results
[72]. The general idea behind this method, known as the mo-
ment or virial approach, is to use the conservation laws of the
system (see Section 4.A.2) to obtain an expression of a suitable
average value of a physical quantity in terms of the conserved
quantities PT � Pu � Pv, H , and J [86]. In our problem, we
are interested in the separation distance between pulses
Δτ � 2τ, whose first and second moments are given by

hΔn
τ i � P−1

T

Z
Δn

τ �juj2 � jvj2�dt , (84)

with n � 1, 2, respectively. From the virial equation, describing
the evolution in z of the variance σ2 � hΔ2

τ i − hΔτi2, Cao and
McKinstrie found a sufficient condition for a bound, or trap-
ping state, to form: it reads as

H � δ2

2
PT � 1

4

�
P2
u

wu
� P2

v

wv

�
−
�J � δ�Pu − Pv��2

2PT
≤ 0: (85)

They considered a general situation where the widths of the
two pulses, wu and wv, can be different from each other. Note
that all terms in the previous expression are constants of the
motion. Therefore, one may analyze the two-mode behavior
by simply considering these invariants, no matter how the pulse
shape changes.

By considering a symmetric two-soliton input (i.e., Pu �
Pv � P, wu � wv � w), the authors were able to derive the
amplitude threshold condition

Fig. 14. The solid line corresponds to the analytical results of
Kivshar [71]. The dashed line shows the estimation of Hasegawa
[33]. The numerical results of Menyuk are plotted using filled circles
[73]. Here C � 2∕3. Adapted from Ref. [72].
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Ath �
�

1� 3δ2

1� C − 3∕w

�
2

, (86)

which is plotted in Fig. 14 for two different widths, namely,
w � 4 and 8.

Moreover, considering that pulses do not change their shape
during propagation, which is valid for δ small, and supposing
that their separation distance is also small (Δ ≪ 1), they ob-
tained a different value for the frequency at which Δ oscillates:

ω2
Δ � 4

5

1

�1� C�w4
� 2

15

P
w3 , (87)

which is also proportional to P, consistent with other works
(see, e.g., Refs. [70,71]).

E. Multimode Generalization
The generalization of the previous theoretical findings to the
case of a number of modes greater than two is practically ab-
sent. Only in the work by Caglioti et al. was an effective
Hamiltonian derived based on a general ansatz for the descrip-
tion of each mode [69]. However, the Hamiltonian system was
only utilized for the study of a single and two-mode scenario.

Neglecting high-order effects, the dimensional coupled-
mode equations that Caglioti et al. considered read as

�∂z � v−1m ∂t�Am � iβ�m�2

2
∂2t

− 2i
�
Rmm

2
jAmj2 �

XN
l�1

Rml jAmj2
�
Am

(88)

for m � 1,…,N .
By writing the general ansatz for the mth mode as

Am�z, t� � jAm�z, t�jeiψm�z, t�, (89)

and taking

jAm�z, t�j2 �
Pm

wm�z�
f
�
t − τm�z�
wm�z�

	
, m � 1,…,N ,

(90)

with

∂tψm�z, t� � −
2

Pm
fξm�z� � 2bm�z��t − τm�z��g,

m � 1,…,N ,

where f �x� is any positive-definite even function normalized to
one with unit variance, Pm, τm, andMm � w2

m are the zeroth-,
first-, and second-order moments of jAm�z, t�j2, namely,

Pm �
Z

∞

−∞
jAm�z, t�j2dt, (91a)

τm�z� � P−1
m

Z
∞

−∞
tjAm�z, t�j2dt , (91b)

Mm�z� � P−1
m

Z
∞

−∞
�t − τm�2jAm�z, t�j2dt, (91c)

and ξm, bm are the conjugate variables to τm and Mm [69,84],
the effective Hamiltonian associated to this system reads
H � K � V , with

K �
XN
m�1

�
ξm
vm

−
β�m�2

Pm
�ξ2m � 4Mmb2m� −

Pmc1β
�m�
2

4Mm

−
RmmP2

mc2
4

ffiffiffiffiffiffiffiffi
Mm

p
	
,

and

V � −
X
n

X
n≠m

1

2

RmnPmPnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMn

p
Z

∞

−∞
f
�
t − τmffiffiffiffiffiffiffiffi
Mm

p
�
f
�
t − τnffiffiffiffiffiffiffi
Mn

p
�
dt ,

c1 ≡
Z

∞

−∞
f −1

�
df
dx

�
2

dx,

c2 ≡
Z

∞

−∞
f �x�2dx: (92)

This Hamiltonian possesses 2 × N degrees of freedom, and
the Hamiltonian equations of motion,

dτm
dz

� ∂H
∂ξm

,
dξm
dz

� −
∂H
∂τm

,
dMm

dz
� ∂H

∂bm
,

dbm
dz

� −
∂H
∂Mm

,

become

dτm
dz

� 1

vm
−
2β�m�2 ξm
Pm

, (93a)

dξm
dz

� −
∂V
∂τm

, (93b)

dMm

dz
� −

8bmβ
�m�
2 Mm

Pm
, (93c)

dbm
dz

� 4b2mbm
Pm

−
Pmc1β

�m�
2

4M 2
m

−
RmmP2

mc2
8M 3∕2

m
−

∂V
∂Mm

: (93d)

This reduced Hamiltonian system could be used for inves-
tigating, at least qualitatively, the behavior of MMSs in MMFs.
However, in their original work, Caglioti et al. only focused
on the single and two-mode configurations [84]. As far as we
know, this effective theory has not been used yet for studying
the dynamics of MMS with N > 2.

Furthermore, to the best of our knowledge, the virial ap-
proach has not been systematically applied for studying MMS
formation and dynamics.

5. SPATIOTEMPORAL SOLITON FORMATION
IN THE 3D+1 NLSE DESCRIPTION

In this section, we will review the main theoretical results on
the formation and stability of spatiotemporal solitons, hereafter
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STSs, in GIMF. These states, also known as light bullets [17],
form due to a double balance between Kerr nonlinearity and
the simultaneous effect of spatial diffraction and chromatic
dispersion [5]. In the following, we will focus on the variational
formulation as the main tool for obtaining some analytical in-
sight into the properties of these states. Unless stated differently,
here we will focus on spatiotemporal spinningless solitons,
which bifurcate from the fundamental LG0 (i.e., Gaussian) spa-
tial mode, as done in the original works [20,27,28,31,87].

A. 3D+1 Nonlinear Schrödinger Equation
An alternative approach for characterizing the formation and
dynamics of MMS considers a 3D+1 NLSE:

∂zE � i
2k0

∇2
⊥E − i

k0Δn
R2 �x2 � y2�E − i

β2
2
∂2t E

� i
k0n2
nco

jE j2E , (94)

where k0 � ω0nco∕c, Δn ≡ �n2co − n2cl�∕�2n2co�, R is the core ra-
dius, E � E�x, y, t , z� is the electric field component of the
wave propagating along the z-direction, ∇2

⊥ ≡ ∂2x � ∂2y repre-
sents diffraction, ∂2t represents the group-velocity dispersion
with its strength β2, and x2 � x2 is the 2D parabolic potential
describing the transverse spatial profile of the linear refractive
index of the fiber [5].

By making the scaling transformations

E � ecu, t � tc t 0, �x, y� � wc�x 0, y 0�, z � zcz 0,

with

e2c ≡
ffiffiffiffiffiffiffiffiffiffiffi
2jΔnj

p
nco

Rk0jn2j
, t2c ≡ Rjβ2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∕jΔnj

p
,

w4
c ≡

R2

2k20jΔnj
, z2c ≡

R

2jΔnj ,

the previous equation becomes

∂zu � i
2
∇2

⊥u� i
d 2

2
∂2t u� i

ρ

2
�x2 � y2�u� iνjuj2u, (95)

where we have dropped the (′) from all the dimensionless var-
iables. Here d 2 ≡ sign�β2� � �1, for anomalous/normal
dispersion, ν ≡ sign�n2� � �1, and ρ ≡ sign�Δ�, with ρ � −1
(ρ � 1) being chosen for guiding (antiguiding) materials.

Note that this equation can also be used in the context of
BECs, in order to describe nearly 1D condensates, with a cigar-
shaped trapping potential (ρ < 0) if we exchange the z coor-
dinate with t. In this context, ν � 1 models a self-attractive
nonlinearity [15]. In the context of BECs, Eq. (95) is com-
monly referred to as the Gross-Pitaevskii equation [5].

Equation (95) possesses the Lagrangian density [20,28]

L � −
1

2
�juxj2 � juyj2� −

d 2

2
jut j2 �

ρ

2
�x2 � y2�juj2

� ν

2
juj4 � i

2
�u	uz − uu	z �, (96)

which contains all the relevant information about the system
dynamics, including its conservation laws [77]. Indeed, from
the Lagrangian density one recovers Eq. (95) from the
Euler-Lagrange equations [20]

∂
∂z

�
∂L
∂u	z

�
� ∂

∂t

�
∂L
∂u	t

�
� ∂

∂x

�
∂L
∂u	x

�
� ∂

∂y

�
∂L
∂u	y

�
−
∂L
∂u	

� 0:

(97)

Here, the Hamiltonian density reads

H � 1

2
�jux j2 � juyj2� �

d 2

2
jut j2 −

ν

2
juj4 − ρ

2
�x2 � y2�juj2:

(98)

Note that an alternative way for deriving Eq. (95) can rely
on this functional.

B. Shape-Preserving Spatiotemporal Spinningless
Solitons
Here we will focus on studying shape-preserving STSs in the
absence of vorticity [15]. Vortex solitons in the context of cigar-
shaped Bose–Einstein condensates, which is equivalent to our
case, have been investigated by Malomed et al. in Ref. [88].
Thus, we expect these vortex states will be present in our optical
scenario.

The shape preserving spatiotemporal states of Eq. (95) can
be written in the form u�x, y, z, t� � v�x, y, t�eiκz , where κ is
the propagation constant, and v�x, y, t� is a real-valued func-
tion, describing the steady-state field [5,15]. When applied
to Eq. (95), this transformation leads to the z-independent
(real) partial differential equation

1

2
∇2

⊥v �
d 2

2
vt �

ρ

2
�x2 � y2�v � νv3 − κv � 0: (99)

Similarly to the previous case, the z-independent Eq. (99)
can be derived from the steady-state Lagrangian density

Ls ≡ −
d 2

4
v2t −

1

4
�v2x � v2y � �

ρ

4
�x2 � y2�v2 � ν

4
v4 −

κ

2
v2,

(100)

which can also be derived from Eq. (96) by the application of
the previous scaling transformation. This new Lagrangian
[Eq. (100)] depends explicitly on κ, in contrast to the
Lagrangian density Eq. (96).

1. Ritz Optimization through the Variational Approach
At this stage, we will apply the Ritz-optimization method for
finding steady-state STS solutions of Eq. (99). This method,
extensively used in the soliton literature [15], is equivalent
to the Kantarovitch approach that we have described in
Section 5.B: the only difference is that now the solution ansatz
parameters do not depend on z, i.e., they remain constant upon
propagation.

An essential task before continuing is to define a proper an-
satz for capturing the main features of these states. The selec-
tion of an ansatz is not entirely arbitrary, but it is justified by
different preliminary observations, mostly related to the sym-
metries of the system. For example, in the absence of a 2D para-
bolic potential (ρ ≠ 0) or with radially symmetric potentials,
Eq. (95) may have radially symmetric 3D solitons, whose
shape can be captured by just considering the radius
r2 � t2 � x2 � y2 as the only independent variable of the sys-
tem [89,90]. However, in our current case, the potential is 2D,
and the r-dependent ansatz is not valid.
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Most of the analytical works on the formation of STSs based
on the variational approach have focused on spinningless sol-
itons whose spatial shape is mainly based on a single mode: the
fundamental LG mode (LG0), which has a Gaussian profile
[20,27,28,91].

An appropriate ansatz for the spinningless solitons that we
are considering has the form

v�x, y, t; w̄t ,ws,A� � A sech�w̄t t�G�x, y;ws�, (101)

with the Gaussian profile

G�x, y;ws� ≡ exp

�
−
x2 � y2

2w2
s

�

of width ws > 0, w̄t is the inverse of the temporal width wt > 0
(i.e., w̄t � 1∕wt ), and A > 0 is the amplitude of the pulse. The
justification of the temporal shape of this ansatz is based on the
observation that, in the absence of diffraction and spatial po-
tential, Eq. (95) possesses a sech-shape bright soliton solution
in the anomalous GVD regime [5]. Solitons with this shape
could also be analyzed by just considering a spatiotemporal
Gaussian ansatz, which makes the calculations simpler. This
approach was followed by Shtyrina et al. in Ref. [91].

By using the definition of the pulse energy

E ≡
ZZZ

∞

−∞
ju�x, y, t�j2dxdydt,

we obtain that

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2πwtw2

s

s
,

and we can make our ansatz [i.e., Eq. (101)] energy-dependent.
In this way, the pulse energy becomes the most important con-
trol parameter for the STS solutions. Thus, the main param-
eters of the system are fwt , w̄s, Eg.

With this ansatz, the static effective Lagrangian

Ls�w̄tws, E, κ� �
Z

R3

Ls�u�x, y, t; w̄tws, E, κ�; d 2, ν, ρ�dxdydt

reduces to

Ls �
E
12

�
1

w2
s

�
Eνw̄t

2π
− 3

�
− d 2w̄2

t − 6κ � 3ρw2
s

	
: (102)

Moreover, the effective Euler-Lagrange Eq. (60) becomes

∂Ls
∂w̄t

� 0,
∂Ls
∂ws

� 0,
∂Ls
∂E

� 0: (103)

By combining these expressions, we obtain that the shape-
preserving soliton parameters satisfy [20]

E � 2πws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6d 2�1� ρw4

s �
q

, (104)

w−1
t � w̄t �

Eν
4πd 2w2

s
� ν

2d 2ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6d 2�1� ρw4

s �
q

, (105)

whereas the propagation constant reads as

κ � 1

4

�
5 ρw2

s �
1

w2
s

�
: (106)

Note that all of the previous quantities are parameterized by
the spatial width coefficient ws.

Besides, the soliton parameters allow us to compute the peak
soliton intensity (i.e., the intensity at the center of the STS) as

I peak � jAj2 � Ew̄t

2πw2
s
� 3

νw2
s
�1� ρw4

s �: (107)

At this stage, we can already obtain some general insights
about our system. From Eqs. (104) and (105) we find that,
in order to obtain real solutions, it is required that
d 2�1� ρw4

s � > 0. Furthermore, from Eq. (105) we see that
d 2 and νmust have the same sign, in order for w̄t to be positive.
This last condition yields two regimes, which correspond to the
cases of anomalous-self-defocusing �d 2, ν� � �1, 1� regime,
and normal GVD-self-focusing �d 2, ν� � �−1, −1� regime, re-
spectively. Figure 15 shows the modifications of ws, w̄t
and I peak with E for the former (in red) and the latter (in blue)
scenarios.

Continuing with the examination of Eqs. (104) and (105),
we can also see that when 1� ρw4

s � 0 (i.e., if w4
s � −1∕ρ ), E

and w̄t become zero. This means that, with E → 0, the tem-
poral width of the state wt → ∞, and the STS becomes the
continuous-wave (CW) state of the system, which corresponds
to the fundamental Gaussian LG0 mode with ws � 1 (see black
horizontal line in Fig. 15). In other words, STSs in both re-
gimes bifurcate from the fundamental LG0 mode when
E � 0. This means that E → 0, STSs are basically singlemode
based. When increasing E, however, STSs separate from the
LG0 state and its multimode composition increases. In what
follows, we will consider guiding media, and therefore we shall
take ρ < 0.

Equation (104) can also be written in the form

ρw6
s � w2

s −
1

6d 2

�
E
2π

�
2

� 0, (108)

or in terms of w̄t as

Ew̄3
t − 6πw̄2

t −
3ρE2

8π
� 0, (109)

and they may have either one or two positive real roots, de-
pending on the signs of ν, d 2, and ρ. Unfortunately, this equa-
tion, in general, does not possess exact analytical solutions, and
we need to solve it either by using approximate analytical meth-
ods, or numerically. However, for E ≪ 1, i.e., very close to the
CW where the STS is basically singlemode, one can use the
approximation [28]

w̄t ≈
E
4π

, ws ≈ 1: (110)

Let us discuss briefly these two regimes.

• Anomalous GVD-self-focusing regime. This scenario
was initially analyzed by Yu et al. in Ref. [27]. In this regime,
Eq. (108) has, for a fixed value of E, two real solutions, which
correspond to the solution branches Bs (solid red line) and Bu
(dashed red line), respectively (see the red dot in Fig. 15).
While Bs is neutrally stable, Bu is unstable [20]. These two
solution branches coexist between E � E0 ≡ 0 and the fold,
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or turning point, taking place at E � Ef . The fold position can
be calculated analytically, by solving the equation dE∕dws � 0,
which leads to 1� 3ρw4

s � 0, providing that 1� ρw4
s > 0.

The solution of this equation yields the fold parameters

wf
s � �−3ρ�−1∕4, w̄f

t � �−3ρ�1∕4, (111)

Ef � 4πwf
s , I f � 2

�wf
s �2

: (112)

• Normal GVD-self-defocusing regime. This scenario was
partially analyzed by Raghavan and Agrawal in Ref. [28]. In this
regime, Eq. (108) has a single real solution, and the solution
ansatz parameters are single-valued in E. Thus, here there exists
just a single STS for any fixed value of E. In contrast with the
anomalous GVD/self-focusing case, we can see that for the
same energy interval, the STS is spatially wider, thinner in time
and possesses a lower peak intensity (see Fig. 15).

2. Vakhitov-Kolokolov Stability Criterion
The stability of STSs can be estimated by applying different
criteria to the reduced equations for the parameters [20].
With the information that we have so far, we may apply the
Vakhitov-Kolokolov stability (VKS) criterion [5,92], which re-
lies on the propagation constant κ dependence with E [see
Eq. (106)]. This dependence is graphically illustrated in
Fig. 16(a) for the anomalous dispersion regime. The VKS cri-
terion establishes that an STS state is linearly stable (i.e., with
respect to small perturbations), if the derivative of the energy

with respect to κ is a positive quantity (i.e., dE∕dκ > 0), and
unstable otherwise. The main idea behind this criterion is based
on the analysis of the properties of the linear operator associated
with Eq. (95), evaluated on the soliton solution. We recom-
mend the interested reader to consult Section 2.3 in Ref. [5]
for details.

The red curve in Fig. 16(a) corresponds to ρ � −1, the same
case that we have studied in the previous section [see red curves
in Figs. 15(a)–15(c)]. This criterion shows that Bs is stable (see
solid line), while Bu is unstable (see dashed line). The instabil-
ity threshold κc occurs whenever dE∕dκjκc � 0, which leads to

κc �
1

4

�
5ρffiffiffiffiffiffiffiffi
−3ρ

p �
ffiffiffiffiffiffiffiffi
−3ρ

p �
, Ec �

4π

�−3ρ�1∕4 : (113)

This point corresponds to the fold occurring at Ef : in the
following, we shall write �κc , Ec� � �κf , Ef �. This point is
marked by means of a red bullet in Fig. 16(a).

Let us briefly study how the STS stability is impacted by the
parabolic potential. To do so, in Fig. 16(a) we plot the modi-
fication κ for the other two characteristic values of ρ: specifi-
cally, ρ � −0.1 (in blue) and ρ � 0 (in black). By increasing ρ,
the region of existence of STSs broadens, as the critical point
�E, μ� � �Ec , κc� moves towards higher values of E. The
dependence of Ec upon ρ is shown in Fig. 16(b). Here, the
green shadowed area corresponds to the region of existence
of STSs. For ρ � 0, only the branch Bu survives, and STSs
are always unstable. These results show that the presence of
a non-vanishing parabolic potential is essential for the stabili-
zation of STSs. This description was already present in the
work of Shtyrina et al. [91].

Fig. 16. (a) Dependence of the energy E on κ for different values of
ρ in the anomalous GVD regime. Stable (unstable) branches are plot-
ted by using solid (dashed) lines. (b) Region of existence of STSs as a
function of ρ (see green shadowed area). The line limiting that area is
E � Ec . Vertical dashed lines correspond to the three cases plotted in
(a). Adapted from Ref. [20].

(a)

(b)

(c)

Fig. 15. Bifurcation diagrams for STS states as a function of E for
the anomalous (in red) and normal (in blue) GVD regimes. The green
line represents the CW state of the system. (a) shows the spatial width
ws of the STS as a function of E; (b) shows the inverse of the temporal
width w̄t � w−1

t ; (c) represents the STS peak intensity Ipeak. Unstable
states are represented with dashed lines, while neutrally stable by solid
lines. The horizontal black line corresponds to the fundamental LG0

mode. The right column shows an example of the STS solution by
using three isosurfaces at different intensities (top), and a cross-section
of the same state at constant t. Adapted from Ref. [20].
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C. Kantarovitch Optimization Method in the
Lagrangian and Hamiltonian Formalism
In the previous section, we have focused on the self-preserving
z-independent states. However, a description of the propaga-
tion of STSs can be also obtained by considering the
Kantarovitch approach, where the ansatz parameters are al-
lowed to depend on z. This was the approach originally used
by Yu et al. [27], and Raghavan and Agrawal [28].

Our new ansatz is a product of the static one [see Eq. (101)]
and a spacetime-dependent phase contribution, namely,

u�z, x, y, t� ≡ v · exp�iψ �x, y, t��, (114)

with

ψ �x, y, t� ≡ t2θ�z� � �x2 � y2�α�z� � ϕ�z�,
where α represents the spatial chirp, θ the temporal chirp, and
ϕ the phase. This ansatz leads to the effective z-dependent
Lagrangian

L�z� � −E
�
dϕ

dz
� π2

12w̄2
t

dθ

dz
� w2

s
dα

dz
� d 2

6
w̄2
t �

π2d 2θ
2

6w̄2
t

�

− E
�
�4α2 − ρ�w

2
s

2
� 1

2w2
s

�
1 −

νEw̄t

6π

�	
:

(115)

In this case, the Euler-Lagrange Eq. (60) becomes the 4D
dynamical system

dw̄t

dz
� f 1 ≡ −2d 2w̄tθ, (116a)

dws

dz
� f 2 ≡ 2wsα, (116b)

dθ

dz
� f 3 ≡ 2d 2

�
w̄4
t

π2
− θ2

�
−
Eνw̄3

t

2π3w2
s
, (116c)

dα

dz
� f 4 ≡

1

2w4
s

�
1 −

νw̄tE
6π

�
� ρ

2
− 2α2: (116d)

Note that the equilibria, or fixed points, of this system lead
to the same set of Eqs. (104)–(106). Besides, the system
Eq. (116) provides information about the propagation behavior
and spectral stability of the STS, which was not provided by the
shape-preserving analysis carried out in Section 5.B.1. The
transient and permanent dynamics of STSs by using this set
of equations were investigated in Refs. [20,27,28].

Alternatively, the Kantarovitch approach can be also applied
in the framework of the Hamiltonian formalism. In this regard,
the reduced Hamiltonian

H � E
�
d 2w̄2

t

6
� π2d 2θ

2

6w̄2
t

� w2
s

2
�4α2 − ρ�

� 1

2w2
s

�
1 −

Eνw̄t

6π

�	
,

can be retrieved from the density Eq. (98) and the chirp-
dependent ansatz Eq. (114), as discussed in Section 5.B.

The Hamiltonian Eq. (62) then yields the same system of
Eq. (116). A detailed study of our system by using this ap-
proach can be found in the work by Parra-Rivas et al. [31].

1. Spectral Linear Stability and Types of Equilibria
As previously mentioned, Eq. (116) provides information
about the STS spectral stability. For obtaining this information
we may perform a linear stability analysis of the system
Eq. (116) about the equilibria qe � �we

s , w̄e
t , 0, 0�. This analysis

allows us to determine how the equilibria of the system react
against perturbations of the form q � qe � ϵq̃, where ϵ ≪ 1
and q̃ ≡ � ˜̄wt , w̃s, θ̃, α̃�. This, moreover, allows for their classifi-
cation according to their behavior.

Very close to a fixed point qe , the dynamics of the system
Eq. (116) are captured by the linear dynamical system

dq̃
dz

� J �qe �q̃, (117)

where J �qe � is the Jacobian matrix of the vector field f [see
Eq. (116)], which is defined by its components as follows:

J �qe ��i,j� ≡Df �i,j��qe� �
�
∂f i

∂qi

�
�qe�: (118)

In our case, the Jacobian matrix becomes

J �qe � ≡

2
666664

0 0 −2d 2w̄e
t 0

0 0 0 2we
s

J 31
Eν�w̄e

t �3
π3�we

s �3 0 0

− νE
12π�we

s �4 J 42 0 0

3
777775, (119)

with

J 31 ≡
�
8d 2w̄e

t −
3

2

Eν
π�we

s �2
	 �w̄e

t �2
π2

, (120)

J 42 ≡
2

�we
s �5

�
νEw̄e

t

6π
− 1

�
: (121)

The stability of the steady STS can be evaluated by solving
the linear eigenvalue problem

Jw � λw, (122)

where λ and w are the eigenvalue and eigenvector associated
with J , respectively. The eigenvalues satisfy the bi-quadratic
characteristic polynomial

λ4 � c2λ2 � c0 � 0, (123)

with the coefficients c2 ≡ 2�d 2w̄e
tJ 31 − we

sJ 42�, and

c0 ≡ −d 2

�
4we

s w̄e
tJ 31J 42 �

E2w̄4
t

3π4�we
s �6

	
: (124)

Figure 17 shows the modification of the eigenspectrum as-
sociated with stable STSs on Bs and unstable STSs on Bs in the
E versus κ diagram in the anomalous GVD regime.

In Bs, the spectrum consists of four pure imaginary eigen-
values σ � fλA, λBg � f�iωA, �iωBg, with ωA > ωB > 0.
A fixed point with these eigenvalues is known as a center
[20]. Center points are neutrally stable, in the sense that nearby
trajectories (i.e., soliton parameter perturbations) are neither
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repelled nor attracted to it, but they undergo permanent oscil-
lations. To the lowest order in E, these four eigenvalues can be
approximated by [28]

λA ≈�i
�
4� E2

2π2

�
1∕2

≡�iωA, (125a)

λB ≈�i
E2

4
ffiffiffi
2

p
π3

≡�iωB: (125b)

Further examination of the eigenvectors associated with
these frequencies shows that parameters ws and α oscillate at
the higher frequency ωA, while wt and θ oscillate according
to ωB. These two oscillations lead to quasiperiodic oscillations
[82], analogous to those predicted for the case of two-mode
solitons (see Section 4.C). A numerical study of Eq. (116) re-
garding this oscillatory regime can be found in Refs. [20,28].
The eigenspectra for STSs on Bu, in contrast, correspond to
two pure imaginary and two pure real eigenvalues, namely, with
σ � f�λC , � iλDg. In this case, the associated equilibria are
known as saddle-centers, and are unstable [20].

D. Numerical Confirmation through 3D+1
Simulations
Let us see how the effective theory developed in the previous
section matches with the results obtained by solving our origi-
nal Eq. (95). Here we will only review the results regarding the
anomalous GVD regime. We recommend the interested reader
to take a look at Ref. [20] for further details.

To solve this initial value problem, we consider as the initial
condition the approximate analytical STS solution of Eq. (101),
together with Eqs. (128a) and (128b). The z-evolution of the
initial stable chirp-free STS solution is shown in Figs. 18(a)–
18(c) for E � 6. In both cases, the top and middle panels com-
pare the z-evolution of the STS intensity at its center (blue
curve), with the analytically predicted intensity value. As we
can see, the evolution of the STS intensity is not constant,
but it fluctuates around a value that is slightly larger than what
is predicted by the analytical theory. We could understand this,
if we remember the STS is a center equilibrium: therefore, it is
neutrally stable, which means that even numerical noise may
perturb such equilibrium, leading to quasiperiodic oscillations.

Our simulations reveal the presence of fast, small amplitude
intensity fluctuations as shown in Figs. 18(a) and 18(b). This
behavior agrees with that obtained when studying the effective
reduced system Eq. (116) [20]. These intensity fluctuations are
depicted in more detail in Fig. 18(b) for the reduced interval
z ∈ �950,1000�. The shape evolution of the STS in such an
interval is illustrated in Fig. 18(c) by considering two isosurfa-
ces at intensities I1 � 0.5 and I2 � 0.1, respectively.

The discrepancy between the analytically-obtained stable
STS and numerical results becomes larger when we increase
STS energy. In Fig. 19(a) we compare the center intensity
of STS obtained from the effective theory (in orange) and from
numerical simulations in the interval z ∈ �0, 1000� (blue
circles). The blue circles and the error bars represent the
time-averaged intensity values and the corresponding standard
deviation for stable states. For low values of E, the agreement is
quite good, but it worsens with increasing E. Eventually, for
energy values above E ≈ 8.5 the system undergoes full wave
collapse. This region is illustrated by using a red-shaded
box. This collapse occurs much earlier than the analytical exist-
ence limit predicted by the theory at E � Ef .

An example of such destructive dynamics is illustrated in
Figs. 20(a) and 20(b) for E � 9. The theoretically stable
STS maintains its stability for a very short propagation length,
but eventually, at z ≈ 3.5, it undergoes wave collapse. This is
characterized by a very fast growth rate of the peak intensity.
This concentration of the field intensity at the center of the
state can also be observed in the STS shell evolution which
is shown in Fig. 20(b).

The disagreement between theory and numerical results,
which to our knowledge was not disclosed in earlier works,
might be corrected by considering higher-order self-defocusing

Fig. 17. Distribution of the eigenvalues associated with the dynami-
cal system Eq. (116) in the anomalous GVD regime. Adapted from
Ref. [20].

Fig. 18. Evolution with distance z of a stable STS for E � 6 [see
(a)–(c)]. Panel (a) shows the variation of the peak STS intensity versus
the propagation distance. Panel (b) shows a close-up view of (a) for the
interval z ∈ �950,1000�. Panel (c) shows the evolution of the STS
along the interval shown in (b), obtained by plotting two isosurfaces
at I 1 � 0.5 (red) and I 2 � 0.1 (blue). The dashed gray straight line in
(a) and (b) represents the theoretical value of the STS intensity.
Adapted from Ref. [20].
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nonlinearities (e.g., quintic-order nonlinear terms), or high-
order dispersive effects.

E. Stabilization through High-Order Dispersion
Effects
At this point, the interesting question arises about what poten-
tial mechanism could be exploited for arresting, fully or parti-
ally, the wave collapse that we discussed in the previous section.
It has been demonstrated before that high-order dispersion ef-
fects impact positively soliton stabilization in both conservative
and dissipative systems [93–100]. Inspired by these works,
Parra-Rivas et al. proposed pure quartic chromatic dispersion
as a main stabilization mechanism [87]. In this section we re-
view these results, by showing that pure quartic dispersion is
able to increase considerably the stability range of STSs, far be-
yond the limit that is obtained in the case of pure quadratic
dispersion, thus delaying the occurrence of wave collapse.

In the presence of pure quartic dispersion, the normalized
version of the 3D+1 NLSE reads

∂zu � i
2
∇2

⊥u� id 4∂4t u� i
ρ

2
�x2 � y2�u� iνjuj2u, (126)

with d 4 � sign�β4� � �1, with β4 being the quartic
dispersion coefficient [87]. All other parameters are defined
as in Eq. (95). In this case, the Lagrangian density reads as

L � −
1

2
�jux j2 � juyj2� − d 4jutt j2 �

ρ

2
�x2 � y2�juj2

� ν

2
juj4 � i

2
�u	uz − uu	z �: (127)

By applying the shape-preserving transformation
u�x, y, z, t� � v�x, y, t�eiκz and the STS ansatz Eq. (101),
one may compute the effective steady-state Lagrangian

Ls �
E
30

�
−14d 4w̄4

t − 30 κ � 5

w2
s

�
Ew̄tν

2π
− 3

�
� 15ρw2

s

	
,

which yields, through the Euler-Lagrange equation [see
Eq. (103)], the following parameter relations:

5νE
πw2

s
− 112d 4w̄3

t � 0, (128a)

w̄t �
6π�w4

s ρ� 1�
νE

, (128b)

κ � −
7

15
d 4w̄4

t −
1

2w2
s

�
1 −

Ew̄tν

3π

�
� ρw2

s

2
: (128c)

By combining Eqs. (128a) and (128b), we obtain

E4 � C1d 4π
4w2

s �w4
s ρ� 1�3, (129)

with C1 � 1008 × 24∕5, which relates E and ws. By inserting
Eqs. (129) into Eq. (128b), we find that w̄t is also completely
parameterized in terms of the spatial width ws.

In the guiding (ρ � −1) self-focusing regime (ν � 1) with
d 4 � 1, the system also presents two STSs branches Bu and Bs
which coexist within the same energy range, extending from
E � 0 up to the fold (f ) located at �E,ws� � �Ef ,wf

s �, where
in this case

wf
s � �−7 ρ�−1∕4, Ef �

�
C2

π4d 4ffiffiffiffiffiffiffiffiffi
−7 ρ

p
�

1∕4
, (130)

with C2 � C1�6∕7�3. This fold marks an upper energy limit,
or threshold, for the STS existence.

The modification of the STS peak intensity with energy E in
this case is illustrated in Fig. 19(b). The comparison between
Figs. 19(a) and 19(b) shows that the STS existence region for
pure quartic dispersion is ΔE ≈ 8.753 larger than in the quad-
ratic case. The stability of these states was confirmed by apply-
ing the VKS and Lyapunov stability [87] criteria.

In this case, the authors also compare the effective theory
and the full numerical simulations by using Eq. (126) [see
Fig. 19(b)]. This comparison shows that pure quartic

Fig. 19. Panels (a) and (b) show the evolution of peak intensity of
stable STS with energy E for the pure quadratic and pure quartic
dispersion scenarios, respectively. In (a), the green line shows the ana-
lytical values, while the blue circles and the error bars represent the
average intensity values and the standard deviation for stable states.
Adapted from Ref. [87].

Fig. 20. Wave collapse started from an STS for E � 9. Panel
(a) shows the evolution of the I peak , while panel (b) shows the modi-
fication of the STS with the propagation.
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dispersion significantly delays the appearance of wave collapse,
by increasing by more than twice the E-range of STS existence.
Although engineering an MMF with pure quartic dispersion
appears to be challenging, this is relatively straightforward to
do in a ring cavity configuration, by using a waveshaper [98].

6. REDUCED (1D + 1) NLSE AND GRIN
SOLITONS

We saw in Section 5.A that a multidimensional (3D+1) NLSE
must be used to study the evolution of short optical pulses in-
side a GIMF. As numerical solutions of this equation are time
consuming, one may ask whether the propagation problem
could be simplified in some specific situations. It turns out that
this is indeed possible in view of the self-imaging property of a
GRIN medium. We have seen in Section 2.C.1 that optical
beams in the form of CW evolve inside a GRIN fiber in a
periodic fashion with a relatively small period (∼1 mm).
This feature suggests that we may able to find multimode sol-
itons that maintain a constant temporal width, but whose spa-
tial width evolves periodically along the length of a GRIN
medium. It is important to stress that such temporal solitons
are quite different from the spatiotemporal solitons discussed in
Section 3 because they maintain a constant spatial width
as well.

A. Effective (1D+1) NLSE
To examine this possibility, we consider a Gaussian beam
launched into a GRIN fiber with a planar wavefront with
an electric field oscillating at the frequency ω0. In the CW case,
the propagation problem can be solved analytically [101], and
the electric field associated with the Gaussian beam can be writ-
ten in the form

Er�r, t� � RefA0F s�r� exp�iβ0z − iω0t�g, (131)

where A0 is the initial amplitude of the beam and
β0 � n�ω0�k0 is its propagation constant. The function
F s�r�, governing the spatial self-imaging of the Gaussian beam,
is given by

F s�r� � exp

�
−
x2 � y2

2w2�z� �
i
2
h�z��x2 � y2� � iψ�z�

	
, (132)

where the beam’s width w�z� varies in a periodic fashion as

w�z� � w0�cos2�bz� � C2
f sin

2�bz��1∕2: (133)

The parameter b, defined as b � ffiffiffiffiffiffiffiffiffi
2Δn

p
∕R, is a measure of

the index gradient, where Δn represents the refractive index
difference between core and cladding, and R is the core radius.
The parameter Cf is defined as

Cf � �wg∕w0�2
ffiffiffiffiffiffiffiffiffiffi
1 − p

p
, p � n2

2n0
�β0A0w0�2, (134)

where wg � �bβ0�−1∕2 represents the spot size of the funda-
mental mode of a GRIN fiber, with a typical value close to
5 μm, and n2 is the nonlinear index. The phase-front curvature
of the beam in Eq. (132) is obtained using h�z� �
d�ln w�∕dz. The phase ψ�z� also varies periodically but is

not of concern here. The parameter p includes the effects of
self-focusing. In practice, its value is such that p ≪ 1.
Notice that only the fundamental mode of the GRIN fiber
is excited when the spot size of the incoming Gaussian beam
is narrow enough that w0 ≈ wg . In this situation, the beam’s
width does not change with z because Cf is close to 1, resulting
in w�z� � w0.

To apply the CW solution given in Eq. (132) to a pulsed
Gaussian beam, we assume that the bandwidth of the pulse is
narrow enough that the spatial profile F s�r� of the beam is not
affected much by the nonlinear effects. This assumption is rea-
sonable because the periodic spatial pattern of the beam in
Eq. (133) maintains the same periodicity when n2 > 0, and
its amplitude is only affected through the Cf parameter given
in Eq. (134). As long as the peak power P0 of the pulse remains
below the self-focusing critical power Pc, i.e., one has p ≪ 1,
the pulsed beam should follow the same periodic self-imaging
pattern that a CW beam follows inside a linear GRIN medium.
With this approximation, we look for solutions of the (3D+1)
NLSE Eq. (94) in the form of Eq. (131) but allow the ampli-
tude A0 to depend on both z and t by using [102]

E�x, y, z, t� ≈ A�z, t�F s�r�, (135)

where A�z, t� describes temporal evolution of each pulse within
the beam, whose spatial evolution depends on the spatial co-
ordinates x and y through the known function F s�r� given in
Eq. (132). It is important to realize that F s�r� does not corre-
spond to any specific mode but can be thought of as a super-
position of many modes of a GRIN fiber that are excited by the
incident Gaussian beam.

To obtain an equation for A�z, t�, we follow a well-known
procedure [56]. When we substitute Eq. (135) in Eq. (94), we
obtain

F s

�
∂A
∂z

� iβ2
2

∂2A
∂t2

− i
β0n2
nco

jF sj2jAj2A
�
,

� A
�
∂F s

∂z
� ∇2

⊥F s

2 iβ0
� iβ0

2
b2�x2 � y2�F s

	
� 0: (136)

The expression in the second line vanishes because F s is its
solution. We multiply Eq. (136) with F	

s and integrate over
the transverse coordinates x and y. The final result can be writ-
ten as [102]

i
∂A
∂z

−
iβ2
2

∂2A
∂t2

� γ̄�z�jAj2A, (137)

where jAj2 has units of power and the effective nonlinear
parameter is defined as

γ̄�z� � k0n2
Aeff �z�

, Aeff �z� �

hRR
∞
−∞jF s�r�j2dxdy

i
2

RR
∞
−∞jF s�r�j4dxdy

:

(138)

Physically, Aeff �z� represents the local effective cross section
of the beam, which varies with z as the Gaussian beam under-
goes periodic focusing during each self-imaging cycle.

Equation (137) is remarkable because it has the form of a
1D NLSE with the only difference that its effective nonlinear
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parameter γ̄�z� varies with z. It shows that the evolution of
pulses inside a GRIN fiber can be studied under certain con-
ditions by solving a single 1D NLSE in the time domain, and
represents a drastic simplification of the original (3D+1) NLSE
given in Eq. (94). According to this equation, periodic oscilla-
tions of the spatial width of a pulsed Gaussian beam resulting
from self-imaging give rise to an effective nonlinear parameter
γ̄�z�, which is also periodic in z with the same period Lp [see
their typical values in Fig. 4(a)]. This is not surprising, because
the intensity at a given distance z depends on the beam’s width,
becoming larger when the beam compresses and smaller as it
expands. One can interpret this effect as the formation of a
Kerr-induced nonlinear index grating within the GRIN
medium. The local refractive index of the medium increases
in a periodic fashion only near the focal planes where the beam’s
intensity is enhanced.

The integrals in Eq. (138) can be carried out using F s�r�
from Eq. (132). The resulting effective mode area has the form
Aeff �z� � Aeff �0�f �z�, where the periodic function f �z� is
defined as

f �z� � cos2�bz� � C2
f sin

2�bz�: (139)

The functional form of f �z� becomes clear when we note
that Aeff �z� at any location scales with the spatial width as
w2�z�. We can use this relation to define γ̄�z� � γ∕f �z�,
where γ � k0n2∕Aeff �0� is its initial value at z � 0. This step
allows us to write Eq. (137) in the form

i
∂A
∂z

−
β2
2

∂2A
∂t2

� γ

f �z� jAj
2A � 0, (140)

which reduces to the standard NLSE when f �z� � 1. As seen
from Eq. (137), f �z� � 1 occurs when Cf � 1. It turns out
that this requirement is met when the width of the incident
Gaussian beam is matched to that of the fundamental mode
of a GRIN fiber, so that only this mode is excited by the in-
coming beam.

Similar to the case of singlemode fibers, Eq. (140) needs to
be modified for pulses shorter than a few picoseconds [56]. The
reason is related to the nature of the nonlinear response of the
fiber’s material to an electromagnetic field (see Fig. 2 and de-
tailed description in Section 2.B.4). In general, vibrations of
silica molecules also produce a nonlinear response, in addition
to that of electrons bound to each atom of the molecule. This
response, known as the Raman response, is delayed in time,
compared to the nearly instantaneous response of electrons,
and this delay becomes relevant for short optical pulses. In
the case of silica-based GRIN fibers, the Raman response is
included by replacing the Kerr-induced index change
�Δn�NL � n2jE j2 in Eq. (94) with

�Δn�NL � �1 − f R�n2jE j2

� f Rn2

Z
∞

0

hR�t 0�jE�r, t − t 0�j2dt 0, (141)

where f R represents the fractional contribution of the delayed
response and hR�t� is the Raman response function of silica
molecules, normalized such that

R
hR�t�dt � 1. Its use in

Eq. (94) leads to the following modified form of the effective
NLSE:

i
∂A
∂z

�
XM
n�2

inβn
n!

∂nA
∂tn

� γ

f �z� ��1 − f R�jAj2A

� f R

Z
∞

0

hR�t 0�jA�z, t − t 0�j2dt 0� � 0, (142)

where the sum includes the second and higher-order dispersion
terms in the Taylor expansion of β�ω�. The spectral width of
ultrashort pulses becomes large enough that the contribution of
the β3 term may not remain negligible. Often, it is sufficient to
consider the first two terms by choosingM � 3, but the β4 and
higher-order terms may also be needed, depending on the
situation.

The Raman response hR�t� in Eq. (142) affects short pulses
through the Raman gain, as detailed in Section 2.B.5. It is
worth noting that the functional form of the Raman response
hR�t� depends on the Raman gain spectrum that has been mea-
sured for silica fibers. It is useful in practice to have an approxi-
mate analytic form for hR�t�. Assuming a single vibrational
frequency of silica molecules is involved in the Raman process,
hR�t� can be approximated as Eq. (31) [103]. Although
Eq. (31) is used often in practice, its predictions do not always
agree with experiments. For this reason, a modified form of
hR�t� was proposed in 2006 [104]:

hnewR �t� � �1 − f b�hR�t� � f b��2τb − t�∕τ2b � exp�−t∕τb�,
(143)

where f b � 0.21 and τb � 96 fs. This form requires
f R � 0.245 and explains better the observed Raman-induced
frequency shifts of short optical pulses inside silica fibers.

In the following subsection, we use the 1D NLSE Eq. (140)
and its generalized form in Eq. (142) to investigate the forma-
tion of multimode solitons inside GRIN fibers. These NLSEs
involve only two variables (z and t) and can be solved numeri-
cally much faster than the full 3D problem for GRIN fibers
involving also the spatial variables x and y. They include the
effects of periodic self-imaging, occurring invariably inside a
GRIN fiber, through the function f �z� and the two parameters
C and zp appearing in its definition in Eq. (139). However,
they neglect the impact of temporal dynamics on the spatial
features of the beam and cannot be applied under all experi-
mental conditions. It is thus important to summarize the con-
ditions under which the effective 1D NLSE can be used in
practice.

• Weakly guiding approximation requiring Δn ≪ 1 must
hold. This approximation is often valid in practice as
Δn < 0.01 for most GRIN fibers.

• The core size of the GRIN fiber must be large enough for
it to support a large number of modes. As the core radius ex-
ceeds 20 μm for most GRIN fibers, this is often the case in
practice.

• The spatial width of the input beam must be smaller than
the core diameter but still large enough that many low-order
modes are excited simultaneously.

• The spectral bandwidth of pulses must be narrow enough,
so that the spatial cross section of the optical beam does not
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change much over its entire range at any point within the
GRIN fiber.

• The preceding situation is possible only for multicycle in-
put pulses. Even a femtosecond pulse should be wide enough to
contain ten or more optical cycles within its temporal envelope.

Under such conditions, spatial width variations of an optical
beam caused by the self-imaging phenomenon affect its tem-
poral evolution but the reverse does not occur, i.e., temporal
field profile changes have no effect on the spatial evolution
of the optical beam.

B. Temporal Solitons with Spatial Self-Imaging
The NLSE Eq. (140) differs from the standard NLSE because
the effective nonlinear parameter γ∕f �z� is not constant but
varies in a periodic fashion. The presence of f �z� in this equa-
tion indicates that it is not integrable by the inverse scattering
method. As a result, it is not expected that this equation would
have solutions in the form of ideal solitons that propagate with-
out any change in their shape, or evolve in a periodic fashion
while preserving their energy over long distances. Nevertheless,
it may support, under certain conditions, the soliton-like evo-
lution of an optical pulse such that its energy is nearly preserved
over considerable lengths of GRIN fibers. Indeed, an equation
similar to Eq. (140) also occurs in the context of singlemode
fiber links employing periodically spaced optical amplifiers for
compensating fiber’s losses. It was found in 1990 that a new
kind of soliton, called the guiding-center soliton, can form
in such fiber links [105]. It is also known as the loss-managed
soliton [106].

To find the conditions under which soliton formation is
possible inside a GRIN fiber, we solve Eq. (140) numerically
with the split-step Fourier method [56]. For this purpose, it is
useful to normalize this equation using the variables

τ � t∕T 0, ξ � z∕LD, U � A∕
ffiffiffiffiffi
P0

p
, (144)

where T 0 and P0 are the width and the peak power of input
pulses, and LD � T 2

0∕jβ2j is the dispersion length. The result-
ing equation takes the form

i
∂U
∂ξ

� 1

2

∂2U
∂τ2

� N 2

f �ξ� jU j2U � 0, (145)

where we assumed β2 < 0 and introduced the soliton order as
N � �γP0LD�1∕2. The periodically varying function f �z�
given in Eq. (139) can be written as

f �ξ� � cos2�2πqξ� � C2
f sin

2�2πqξ�, q � LD∕Lp,

(146)

where Lp � 2π∕b is the self-imaging period of a GRIN fiber
(about 1 mm for typical GRIN fibers). This NLSE reduces
to its standard form for Cf � 1 because f �ξ� � 1 for this
value of Cf . A sech-shaped pulse launched with a peak
power such that N � 1 forms a fundamental soliton in this
situation and propagates without any change in its shape
and spectrum. Clearly, this will not be the case when Cf
deviates from one.

As an example, Fig. 21 shows the evolution of such a pulse
with N � 1 over 10 dispersion lengths. These results were ob-
tained by solving Eq. (140) numerically using Cf � 0.2,

q � 100, and the initial field U �0, τ� � U 0sech�τ�, where
U 0 was chosen to ensure N � 1. As expected, both the shape
and spectrum change as the pulse propagates inside the GRIN
fiber. A nearly periodic evolution seen in Fig. 21 provides a clue
that the pulse is forming a higher-order soliton. This feature
suggests that the peak power of the input pulse is larger than
what is needed for a fundamental soliton, and it should be low-
ered by reducing N to below one. The reason for the behavior
seen in Fig. 21 can be understood by recalling the periodic spa-
tial focusing of the optical beam owing to its self-imaging. As
the beam is compressed during each self-imaging cycle, its peak
power P0 increases considerably, and the nonlinear effects are
enhanced.

The solitons evolve on a length scale provided by the fiber’s
dispersion length LD, whereas self-imaging occurs on a length
scale Lp related to the index gradient b of the GRIN fiber as
Lp � 2π∕b. The ratio of these two lengths, q � LD∕Lp, plays
an important role as is also evident from Eq. (146). Typically,
Lp is close to 1 mm, whereas the dispersion length LD exceeds
1 m even for T 0 > 0.1 ps if we use β2 � −20 ps2∕km, a typ-
ical value for silica fibers at wavelengths near 1550 nm. As a
result, q is a large number (q > 100) under typical experimen-
tal conditions. Physically, it represents the number of times self-
imaging of the input beam occurs inside a GRIN fiber over a
distance of one dispersion length.

Solitons cannot respond to beam-size changes taking place
on a scale of 1 mm or less when LD exceeds 1 m. This suggests
that we should average Eq. (145) over one self-imaging period.
If we write its solution as U � Ū � u, where Ū represents
average over one self-imaging period Lp, perturbations
ju�ξ, τ�j induced by spatial variations remain small enough that
they can be neglected (as long as q ≫ 1). In other words, the
dynamics of the soliton can be captured by solving the averaged
NLSE

i
∂Ū
∂ξ

� 1

2

∂2Ū
∂τ2

� N̄ 2jŪ j2Ū � 0, (147)

where N̄ is the effective soliton order defined as

Fig. 21. Temporal and spectral evolutions of an optical pulse,
launched into a GRIN fiber with a peak power such that N � 1 using
the parameter values Cf � 0.5 and q � 100.
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N̄ 2 � N 2hf −1�ξ�i � N 2∕Cf : (148)

As Eq. (147) has the form of the standard NLSE, it follows
that it has a solution in the form of a fundamental soliton when
N̄ � 1, or N � ffiffiffiffiffiffiffi

Cf
p

. Figure 22 shows the numerical results
obtained when we solved Eq. (145) with this value of N using
q � 100. As seen there, both the shape and spectrum of the
launched pulse do not change much over a distance of
10LD. This is also apparent from the bottom panels of
Fig. 22, where the shape and spectrum of the pulse at
z � 10LD are compared with their input shapes. The temporal
intensity profiles overlap almost perfectly. Perturbations caused
by the periodic self-imaging can be seen in the spectra but only
at a level of below 20 dB. We call such solitons GRIN solitons
because a GRIN medium is required for their formation. Note
also that GRIN solitons can form for a wide range of pulse
widths, as long as the peak power of pulses is adjusted to satisfy
the condition N � ffiffiffiffiffiffiffi

Cf
p

.
An important question is related to the stability of GRIN

solitons. They are not expected to remain stable over long dis-
tances simply because Eq. (140) is not integrable by the inverse
scattering method. Small perturbations caused by the periodic
spatial self-imaging of the solitonic beam build up over long
distances and eventually begin to lose energy through the emis-
sion of dispersive radiation. This feature is seen clearly in
Fig. 23, where the evolution of a GRIN soliton inside a

GRIN fiber is shown over 100 dispersion lengths using the
same parameter values used for Fig. 22. A comparison of these
two figures shows that the GRIN soliton begins to emit disper-
sive radiation after 80 dispersion lengths. A comparison of tem-
poral and spectral profiles of a fundamental GRIN soliton at
the input and output ends shows that noticeable changes in-
deed occur at a distance of 100LD.

Higher-order solitons for which both the spatial and tem-
poral widths evolve periodically can also form inside a GRIN
fiber [107]. The period of temporal oscillations is set by the
dispersion length and is much longer than the period of spa-
tial-width oscillations. This feature is seen clearly in Fig. 24,
where the evolution of a second-order GRIN soliton inside a
GRIN fiber is shown over 10 dispersion lengths using the
same parameter values used for Fig. 22. In contrast with
the fundamental soliton, a second-order soliton is perturbed
very strongly by the periodic spatial self-imaging of the optical
beam. This is apparent from the bottom panel in Fig. 24,
where the temporal and spectral profiles of the soliton are
compared to those of the input pulse at a distance of
10LD. Among other things, the pulse’s spectrum broadens
considerably and develops an oscillatory structure in its wings.
The temporal intensity profile also develops fluctuations out-
side of its central region whose magnitude exceeds 10% of the
peak level. Higher-order solitons also break up into multiple
fundamental solitons if third-order dispersion is included
in Eq. (140).
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Fig. 22. Temporal and spectral evolutions of a fundamental soliton,
launched into a GRIN fiber with a peak power such that N � ffiffiffiffiffiffiffi

Cf
p

using the parameter values Cf � 0.5 and q � 100. Corresponding
intensity profiles are compared at a distance of 0 and 10LD in the
bottom panel.
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Fig. 23. Temporal and spectral evolutions of a fundamental soliton
over a distance of 100LD using the same parameter values used for
Fig. 22. Corresponding intensity profiles are compared at a distance
of 0 and 100LD in the bottom panel.
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C. Impact of Higher-Order Effects
As we discussed earlier, higher-order effects that become impor-
tant for short pulses can be included through the generalized
NLSE given in Eq. (142). If we use dimensionless variables and
include both the third-order dispersion and intrapulse Raman
scattering, we can write this equation in the form

i
∂U
∂ξ

� 1

2

∂2U
∂t2

− iδ3
∂3U
∂t3

� N 2

Cf

�
�1 − f R�jU j2A

� f RU
Z

∞

0

hR�t 0�jU �z, t − t 0�j2dt 0
	
� 0, (149)

where δ3 � β3∕�6β2T 0�. This equation allows us to study the
Raman-induced spectral shift of pulses shorter than 1 ps. This
shift is enhanced in GRIN fibers, compared to step-index fi-
bers, because of the periodic self-imaging of a pulsed optical
beam inside such fibers [108].

The impact of higher-order effects is even more interesting
for higher-order solitons because of a fission process that breaks
them into multiple fundamental solitons of different widths.
We expect the fission of higher-order solitons to occur even
in the case of GRIN fibers because the underlying dynamics
remain the same, except for the enhancement of the nonlinear
effects when the spatial width of the beam shrinks in each self-
imaging period. An important question is whether the self-
imaging leads to new features in GRIN fibers during the fission
of a higher-order soliton.

Figures 25 and 26 compare the evolution of a fourth-order
soliton (width 100 fs) over one dispersion length in the time
and spectral domains by solving Eq. (149) numerically using
N � 4, δ3 � 0.02, and q � 100. The parameter Cf has a
value of one in Fig. 25 and 0.5 in Fig. 26. Recall that only
the fundamental mode of a GRIN fiber is excited when
Cf � 1, and no periodic self-imaging or spatial focusing of
the beam occurs in this situation. In contrast, multiple modes
of a GRIN fiber are excited for Cf � 0.5, and the pulsed beam
undergoes spatial focusing during each self-imaging period.

A comparison of Figs. 25 and 26 shows that the fission of
the fourth-order soliton occurs near ξ � 0.3 in both cases. The
original soliton breaks into multiple fundamental solitons of
different widths. Intrapulse Raman scattering shifts their spec-
tra toward lower frequencies by different amounts and reduces
each soliton’s speed, resulting in a bent trajectory. The shortest
soliton with the largest spectral shift slows down the most, re-
sulting in a bent trajectory that shifts to the right most. The
spectrum becomes considerably broader at the output end of
the GRIN fiber and exhibits multiple peaks. A new feature
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Fig. 24. Temporal and spectral evolutions of a second-order soliton
over a distance of 10LD using the same parameter values used for
Fig. 22. Corresponding intensity profiles are compared at a distance
of 0 and 10LD in the bottom panel.

Fig. 25. Temporal and spectral evolutions of a fourth-order soliton
(N � 4) over one dispersion length inside a GRIN fiber with Cf � 1
and q � 100. Higher-order effects are included using f R � 0.245
and δ3 � 0.02. Periodic spatial focusing of the pulsed beam does
not occur for Cf � 1.

Fig. 26. Temporal and spectral evolution of a fourth-order soliton
(N � 4) over one dispersion length inside a GRIN fiber. Parameter
values are identical to those used in Fig. 25 except that the value of Cf
has been reduced to 0.5. Periodic spatial focusing of the pulsed beam
occurs when Cf < 1 because multiple modes of the GRIN fiber are
excited when Cf � 0.5.
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is the appearance of a blue-shifted peak just after the fission
occurs. This peak belongs to a dispersive wave, generated be-
cause solitons shed radiation when perturbed by third-order
dispersion, a well-known feature in single-mode fibers [56].

The spectral evolution seen in Fig. 26 develops considerably
more structures and has multiple sidebands that result from the
periodic spatial focusing of a pulsed beam inside a GRIN
medium for Cf � 0.5. The origin of the sidebands is related
to the phenomenon of resonant dispersive radiation [41,59]
and geometrical parametric instability [60], as discussed in
Section 2.C. In the time domain, one can see low-intensity dis-
persive waves emitted at the frequencies of these sidebands.

7. QUADRATURE NUMERICAL MODEL

In this section we describe a Gaussian quadrature approach for
the numerical simulation of the generalized nonlinear
Schrödinger equation (GNLSE). This approach is similar to
the split-step Fourier method that is ubiquitously used for sim-
ulation of the standard NLSE, but it uses a mode decomposi-
tion based on the natural eigenmodes of the fiber and performs
the transformation to this modal basis using an optimized
Gaussian quadrature scheme.

A mode decomposition is generally accomplished by projec-
ting the field inside the fiber onto an orthogonal set of linear
eigenmodes. These modes maintain a fixed transverse profile
and propagate with only a phase shift in the absence of any
nonlinearity. The projection is achieved by the evaluation of
an integral that can be approximated by a weighted sum of field
values that are sampled on a discrete grid of points. In Gaussian
quadrature [109] one selects both the weighting coefficients
and the location of the sample points (abscissas) to enable
an exact mode projection for the first N modes. The transfor-
mation to and from the modal basis, as well as the linear propa-
gation step, can then be carried out as a single multiplication
with a predetermined matrix.

A similar numerical quadrature approach to propagation in
nonlinear multimode waveguides was previously introduced by
Lægsaard; see Refs. [110,111]. This method has its starting
point in the coupled mode model and simulates the
GMMNLSE by using on-the-fly real-space Gaussian quadra-
ture integration of the nonlinear polarization. This alleviates
the scaling problem common to more conventional approaches
that compute the nonlinear polarization by the summation of
mode overlap integrals. In Ref. [110] Lægsaard considered a
multimode fiber with a step-index profile, and showed that
the numerical complexity of the Gaussian quadrature approach
scales linearly or at most quadratically with the number of
modes. In particular, it was found that this scheme enables
superior computational performance for the nonlinear propa-
gation in a step-index fiber having more than six guided modes,
when compared to the overlap integral approach. It was more-
over demonstrated that the Gaussian quadrature approach can
be extended to accurately account for mode profile dispersion
and the associated frequency dependence of the effective area.

A. Radially Symmetric Model
To illustrate the method, we first consider the non-dispersive
case where the beam dynamics is modeled by a radially

symmetric GNLSE with a parabolic refractive index
profile:

i
∂E
∂z

� 1

2k0r
∂
∂r

�
r
∂E
∂r

�
−
k0Δn
R2 r2E � k0n2

nco
jE j2E: (150)

In the linear limit when the power is sufficiently low or
when the nonlinear-index coefficient n2 → 0 one finds that
the last term can be neglected, and that the GNLSE has an
orthogonal set of Laguerre-Gaussian eigenmodes:

Em�r, z� � exp

�
−
β0k0
2

r2 � iβ0�2m� 1�z
	
Lm�β0k0r2�,

(151)

where β0 �
ffiffiffiffiffiffiffiffiffi
2Δn

p
∕R and Lm are Laguerre polynomials with

integer mode number m. These ring-shaped modes can be
found, e.g., by variable separation and have a constant normali-
zation factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0k0∕π

p
that has been omitted for clarity.

Because of the functional dependence of the Gauss-Laguerre
modes, it is convenient to rescale the radial distance and intro-
duce the dimensionless variable x � β0k0r2 and the nonlinear
coefficient Γ � k0n2∕nco, so that Eq. (150) becomes

i
∂E
∂z

� 2β0
∂
∂x

�
x
∂E
∂x

�
−
β0x
2

E � ΓjE j2E: (152)

The different eigenmodes can then be written more
compactly as

Em�x, z� � e−x∕2�iβmzLm�x�, (153)

with the propagation constant βm � β0�2m� 1�.
The Laguerre polynomials and the Gauss-Laguerre func-

tions lm�x� � e−x∕2Lm�x� form a complete basis for the linear
combination of guided modes that can propagate inside the
fiber and have the important property of being mutually
orthogonal with respect to the weight function W �x� � e−x .
This means that the scalar productZ

∞

0

Lm�x�Ln�x�e−xdx �
Z

∞

0

lm�x�l n�x�dx � δmn, (154)

where δmn is the Kronecker delta that vanishes unless the in-
dices of the two modes are equal. The orthogonality is used in
the Gaussian quadrature method to approximate the mode pro-
jection integral Z

∞

0

f �x�e−xdx ≈
XN
j�1

wjf �xj� (155)

by a finite N term sum with weighting coefficients wj that are
evaluated on a discrete grid of non-equidistantly spaced points
xj. This approximation can be shown to be exact when the field
is a linear superposition of modes in the form of weighted
orthogonal polynomials of degree 2N − 1 or less [109]. In
Gauss-Laguerre quadrature the abscissas are chosen as the N
different zeros of the Laguerre polynomial LN �x�, i.e., as the
roots of the equation

LN �xj� � 0, j � 1,…,N , (156)

with xj being the jth zero. The corresponding weighting coef-
ficients are given by [112]
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wj �
xj

�N � 1�2�LN�1�xj��2
: (157)

To apply the method we expand the spatially varying electric
field envelope using the eigenmode functions as

E�x, z� �
XN−1

k�0

ak�z�l k�x�, (158)

where the complex spectral coefficients ak determine the lon-
gitudinally evolving mode occupancy. These are obtained from
Eq. (155) by identifying the integrand f �x� � E�x�l k�x�ex
and approximating the projection operation using the orthog-
onality relation Eq. (154) with

ak �
Z

∞

0

E�x�l k�x�dx ≈
XN
j�1

wjexj l k�xj�E�xj�: (159)

This summation can be efficiently performed as a matrix
multiplication of the row vector E�xj� with the N 2 matrix
Akj � wjexj l k�xj�. Given the spectral coefficients ak we can
perform the inverse transformation and obtain the field values
E�xj, z� by simply evaluating the summation in Eq. (158) as
another multiplication with the matrix Bjk � l k�xj�. In par-
ticular, it is seen that the product of these two operations
AmjBjn � BmjAjn � δmn corresponds to the orthogonality rela-
tion given in Eq. (154).

The benefit of projecting the field onto the eigenmode basis
is that one directly can simulate radially symmetric fields, with-
out using a Cartesian coordinate system where the Laplacian
operator must be evaluated either in 2D or approximated by
the second derivative in 1D. The method can moreover be
extended to enable spatiotemporal simulations of modal
dispersion, as we will see in the next subsection. Because
the linear and nonlinear terms in the GNLSE Eq. (150) have
different natural bases where their solution is particularly easy,
we use operator splitting to separately determine the linear and
nonlinear evolution of the field in the same way as in the ordi-
nary split-step Fourier method. The equation governing the
linear propagation step for E�x, z�, viz.,

i
∂E
∂z

� 2β0
∂
∂x

�
x
∂E
∂x

�
−
β0x
2

E , (160)

has the solution given by a linear combination of Eq. (153) in
the eigenmode basis. Assuming a fixed propagation distance Δz
we can therefore evolve the field in the spectral domain by
multiplying each component with a simple phase factor that
may be written in the form of a diagonal matrix
Dkj � eiβ0�2k�1�Δzδkj. Each step of transforming to the eigen-
mode basis, applying the propagation operator, and performing
the inverse transformation is a linear operation that can be re-
duced to a single matrix multiplication:

E�x, z � Δz� � L̂�Δz�E�x, z�, (161)

where we have introduced the constant matrix operator
�L̂�kj � BklDliAij that is calculated beforehand. Note that this
also applies to methods using the equidistant Fourier basis
when the discrete Fourier transform is represented by the
N 2 matrix operator W kj � e−i2πkj∕N , but where the steps

are usually performed in sequence to take advantage of the
faster O�N log N � scaling of the FFT algorithm.

Conversely, the nonlinear propagation step is governed by
the equation

i
∂E
∂z

� ΓjE j2E , (162)

which describes self-phase modulation and which has the real
space solution

E�x, z � Δz� � E�x, z�e−iΓjE�x,z�j2Δz � N̂ �Δz�E�x, z�,
(163)

which can be represented by the nonlinear matrix operator
�N̂ �kj � e−iΓjE�xj , z�j

2Δzδkj. Here, we assume a simple dielectric
fiber material with an instantaneous Kerr nonlinearity, but
the method can easily be extended to handle Raman, self-
steepening, and other higher-order effects.

With the separate solutions for both the linear propagation
step Eq. (161) and the nonlinear step Eq. (163) determined, we
sample the field at the grid points xj and apply them alternately.
Specifically, we use the fact that the evolution equation

i
∂E
∂z

� �L̂� N̂�E , (164)

where L̂ and N̂ are linear differential and nonlinear operators,
respectively, has the formal solution E�x, z � Δz� �
e−i�L̂�N̂��Δz�E�x, z�, which can be approximated by the factor-
ized solution E�x, z�Δz� � L̂�Δz∕2�N̂ �Δz�L̂�Δz∕2�E�x, z�
with second-order accuracy for small Δz [56].

To apply the method it is necessary to have function values
for the Laguerre polynomials Lk�xj� at the grid points xj. These
values can be generated recursively from L0�x� � 1 and
L1�x� � 1 − x using the recurrence relation

�m� 1�Lm�1�x� � �2m� 1 − x�Lm�x� − mLm−1�x�: (165)

After selecting the number of modes N , we proceed with
these preprocessing steps:

• determine the abscissas xj by solving Eq. (156) nu-
merically;

• generate a matrix with the Laguerre polynomials
Lk�xj� � l k�xj�exj∕2 from the recurrence relation Eq. (165);

• calculate the quadrature weight coefficients wj from
Eq. (157);

• generate the forward and inverse transformation matrices
Akj � wjexj∕2Lk�xj� and Bjk � e−xj∕2Lk�xj�.

The results of these steps are saved, so that they can be
reused in multiple simulations. They need only be repeated
if the number of modes is changed in order to, e.g., adjust
the trade-off between numerical precision and computa-
tion time.

A disadvantage of the above Gauss-Laguerre quadrature is
that the endpoints of the radial interval are not included among
the sampling points. The lower endpoint at the origin can be
particularly important since the optical field will often have its
maximum intensity in the center of the fiber and the field
at this point will therefore experience a large nonlinear phase
shift. To include the origin we can employ an alternative
Radau-Laguerre quadrature scheme for the radially symmetric
l � 0 mode. Modes of higher angular order are not considered
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since they are identically zero on axis and have a singularity in
the corresponding quadrature scheme.

The modified Radau-Laguerre quadrature relation is given
by [113] Z

∞

0

f �x�dx ≈ 1

N
f �0� �

XN−1

j�1

wjf �xj�, (166)

where xj are now the zeros of the generalized Laguerre polyno-

mial L�1�N−1�x� � −L 0
N �x� and

wj �
1

N �LN−1�xj��2
: (167)

Expanding the field as before, we have the spectral
coefficients

ak �
Z

∞

0

E�x�l k�x�dx ≈
1

N
E�0� �

XN−1

j�1

wjexj l k�xj�E�xj�,

(168)

which again can be written as a matrix multiplication. In fact by
extending the set of abscissas with x0 � 0 one can use the same
numerical propagation code with either quadrature scheme by
simply changing the definition of the matrix operators.

When performing any type of numerical simulations, it is
important to consider issues of accuracy, numerical errors, and
convergence. The transformed GNLSE Eq. (152) conserves
two integral quantities corresponding to the power

P �
Z

jE j2dx (169)

and the Hamiltonian

H �
Z �

4β0x
���� ∂E∂x

����2 � β0xjE j2 − ΓjE j4
�
dx: (170)

These invariants are useful to check on the accuracy of the
numerical scheme by comparison of their values for the initial
and final fields. The derivatives may be evaluated from knowl-
edge of the expansion coefficients by using �∂∕∂x�E�x, z� �PN−1

k�0ak�z�l 0k�x� and the property that l 0m�x� � e−x∕2�−Lm�x�∕
2� L 0

m�x��, where L 0
m�x� � m�Lm�x� − Lm−1�x��∕x.

B. (3D+1) Quadrature Model
The field in a multimode fiber can generally have both angular
and temporal dependence. Here, we consider the spatiotempo-
ral dynamics in a parabolic GIMF with an instantaneous Kerr
nonlinearity that is governed by the (3D+1) GNLSE
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E , (171)

where D−1 is an operator for transformation from the linear
eigenmode basis, which denotes that the argument should
be applied individually to each mode p, and the longitudinally
evolving field E � E�r̄⊥, t, z� is a function of the two trans-
verse coordinates r̄⊥ � x 0x̂ � y 0ŷ with radius r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02 � y 02

p
and time t . The nonlinear term can be neglected in the linear
limit when the input power is sufficiently low, while the modal

dispersion term can be disregarded by considering a CW field
in the form of a single frequency beam. The remaining terms in
the model are then the diffractive transverse Laplacian operator
and the parabolic refractive index potential. In this limit, the
equation has an orthogonal set of separable Gauss-Hermite ei-
genmode solutions that in Cartesian coordinates are given by

El ,m�x, y, z� � Hl �x�Hm�y�
· exp��x2 � y2�∕2� iβ0�l � m� 1�z�,

(172)

where Hl �x� are Hermite polynomials of integer order l and
we have introduced the dimensionless scaled variables
x �

ffiffiffiffiffiffiffiffiffi
β0k0

p
x 0 and y �

ffiffiffiffiffiffiffiffiffi
β0k0

p
y 0. We note that the function

values of the Hermite polynomials can be generated from
H 0 � 1 and H 1 � 2x through the recurrence relation

Hj�1�x� � 2xHj�x� − 2jH j−1�x�: (173)

Alternatively, one can use polar coordinates and the gener-
alized Gauss-Laguerre eigenmode solutions

E �l�
m �r,φ,z�� xl∕2 exp

�
−
x
2
� ilφ� iβ0�2m� l�1�z

	
L�l�m �x�,

(174)

with x � β0k0r2 as in the previous subsection. However, these
are less suitable as a basis for implementing a Gaussian quad-
rature scheme, since the abscissa points x�l�j are not the same for
modes of different angular orders. Each order requires the use
of a separate sampling grid. This makes the numerical imple-
mentation inefficient: it is preferable to expand the field by us-
ing the Gauss-Hermite basis instead. The spectral expansion
coefficients for the Gauss-Hermite modes can be converted
for problems where it is desirable to work in the Gauss-
Laguerre basis; see Ref. [114].

Analogous to the radially symmetric model, the Gauss-
Hermite functions are mutually orthogonal for each compo-
nent and form a complete basis. They satisfy the orthogonality
relation
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�
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−∞
ϕm�x�ϕn�x�dx � δnm, (175)

with the basis functions

ϕl �x� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l l !
ffiffiffi
π

pp Hl �x�e−x2∕2: (176)

The quadrature relation for the Gauss-Hermite functions is
given by [112]Z

∞

−∞
e−x2f �x�dx ≈

XN
j�1

wjf �xj�, (177)

where the abscissas xj are the N different zeros of the Hermite
polynomial HN �x�, i.e., HN �xj� � 0, j � 1,…,N , and the
weight coefficients
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2N�1N !

ffiffiffi
π

p
�HN�1�xj��2

: (178)

Importantly, the Hermite basis functions are separable, and
the abscissas for the x- and y-directions are therefore indepen-
dent of each other. This permits the transverse field to be
sampled on a single two-dimensional grid in the form of a rec-
tangle. The abscissas are located symmetrically for positive and
negative values, and the origin can be included by simply
choosing an odd number of points.

Using the basis functions Eq. (176), the field envelope is
expanded as a double sum:

E�x, y, z� �
XN−1

l�0

XM−1

m�0

alm�z�ϕl �x�ϕm�y�, (179)

with a matrix of longitudinally evolving spectral coefficients
alm�z�. These are obtained from the quadrature relation
Eq. (177) with f �x, y� � E�x, y�ϕl �x�ϕm�y�ex2�y2 as

alm �
Z

∞

−∞

Z
∞

∞
E�x, y�ϕl �x�ϕm�y�dxdy

≈
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j�1
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k�1

wje
x2j ϕl �xj�E�xj, yk�wkey

2
kϕm�yk�

� AljE�xj, yk�Akm, (180)

which can be implemented by matrix multiplication with
Alj � wje

x2j ϕl �xj� and Akm � wmey
2
kϕm�yk� from the left

and right, respectively. Meanwhile, the inverse transformation
is given by

E�xj, yk, z� �
XN−1

l�0

XM−1

m�0

ϕl �xj�alm�z�ϕm�yk� � Bjl alm�z�Bmk,

(181)

where Bjl � ϕl �xj� and Bmk � ϕm�xk�. It is convenient to
consider a quadratic grid with the same number of sampling
points N � M for each transverse dimension. It is then pos-
sible to use the same abscissas xj and yk and the two A and B
matrices become the transpose of each other, i.e., Akm � �Alj�T
and Bmk � �Bjl �T .

The (3D+1) GNLSE includes modal dispersion that is taken
into account by storing the field in a three-dimensional array
where two dimensions are used for the transverse spatial coor-
dinates and one dimension is used for the temporal field varia-
tion. A major advantage of using Gaussian quadratures instead
of spatial Fourier transforms is that separate dispersive phase
shifts can be applied to each individual mode p. This is done
through another frequency-dependent matrix multiplication in
the linear step after transforming the field to the eigenmode
basis. The modal field is sampled on an equidistant grid in time
and is subsequently transformed to and from the frequency do-
main by applying FFTs along the temporal dimension of
the array.

The time-independent version of the evolution Eq. (171)
has three invariant integral quantities:

P �
ZZ

jE j2dx 0dy 0, (182)
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(183)
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(184)

with r 02 � x 02 � y 02, that corresponds to the conservation of
power, angular momentum, and Hamiltonian, respectively.
These can be evaluated from the spectral coefficients using
the relation ϕ 0

l �x� � −xϕl �x� �
ffiffiffiffiffiffi
2 l

p
ϕl−1�x�, which follows

from H 0
l �x� � 2 lH l−1�x�, and are useful for verifying the

numerical accuracy.

C. Simulation Results
To illustrate the use of quadrature models for the simulation of
spatiotemporal solitons, we numerically solve the GNLSE for a
GIMF with a parabolic refractive index profile using a radially
symmetric Radau-Laguerre split-step code with constant tem-
poral group-velocity dispersion. As initial conditions we con-
sider the stationary light bullet ansatz

E�x, y, t� � A sech�t∕wt� exp
�
−
x2 � y2

2w2
s

�
, (185)

where A is the peak amplitude on the radial axis at the center of
the bullet, wt is the temporal pulse duration, and ws is the beam
width. These parameters determine the pulse energy
E � 2πwtw2

s A2 (see Section 5.B.1) that can be used as a con-
trol parameter for specifying the soliton solution, as previously
shown in Section 5.B.

Working in normalized variables, we assume a pulse energy
E � 6 and set the initial soliton parameters using the semi-
analytical expressions from the variational approach. The sim-
ulations are performed with 50 radial modes and 1024 points
in time. The spatiotemporal intensity profile of the soliton ob-
tained after a normalized distance z � 100 is shown in Fig. 27.
The longitudinal evolution of the peak amplitude, spatial beam
width, and temporal pulse duration is meanwhile shown in
Fig. 28. Here, the beam width and pulse duration are extracted
as root-mean-square values from the two moments

w2
s �

1

E

ZZ
�x2 � y2�jE j2dxdydt , (186)

w2
t �

12

π2E

ZZ
t2jE j2dxdydt, (187)

respectively. The results show oscillations due to a mismatch of
the initial ansatz with the actual light bullet solution. These
consist both of radial self-imaging oscillations with spatial
period zSI � π and temporal breather oscillations, similar to
those that occur in the emission of radiation by conservative
solitons with a non-integer soliton number in the standard
(1D+1) NLSE.

The time required to simulate the light bullet evolution us-
ing the quadrature model was about 30 s on a laptop computer.
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8. MULTIMODE PROPAGATION IN THE
PRESENCE OF RANDOM MODE MIXING

In this section, we focus on the propagation regime that is en-
countered in the realm of space-division multiplexed (SDM)
optical communications in fibers supporting multiple modes
[115]. Space-division multiplexed transmission has been in
the spotlight of the optical communication research for more
than a decade, as it is considered the only viable solution to
scale the throughput of fiber-optic communication systems
in a sustainable way [116]. An important difference between
SDM and transmission in parallel singlemode systems is that
SDM entails some form of integration of the transceivers,
the optical amplifiers, the network elements, and, ultimately,
the lightpaths, as is the case when few-mode fibers (FMFs)
and multi-core fibers (MCFs) are utilized. Compared to the
propagation regimes discussed in the previous sections of this

paper, SDM transmission differs primarily in the targeted
reach, which extends from tens to thousands of kilometers,
and in the properties of the transmitted signals, whose average
power is of the order of mW, and whose bandwidth is of a few
tens of GHz, in typical wavelength-division multiplexed trans-
mission systems.

On the one hand, the significantly longer reach magnifies
the impact of linear propagation effects, primarily stemming
from manufacturing imperfections and environmental pertur-
bations, which are unavoidable in long fibers. These perturba-
tions are random in nature and therefore they are responsible
for inducing random linear coupling between the propagating
modes. On the other hand, the relatively small transmission
power reduces the impact of nonlinear propagation effects,
which are typically modeled within a perturbation approach.
Most importantly, nonlinear propagation effects are character-
ized by a much greater length scale than linear propagation ef-
fects, with the result that the nonlinear dynamics is influenced
by the random mode coupling. Specifically, the effect of linear
mode mixing is to average out the coherent terms in the
coupled NLSEs. These terms are responsible for nonlinear
power transfer between modes, while the remaining incoherent
terms produce cross-mode phase modulation, which is there-
fore the dominant nonlinear propagation effect in SDM fibers.

The modeling of linear coupling requires supplementing
Eq. (26) with additional terms that can be conveniently de-
scribed by using a generalized Jones formalism [117]. In the
frequency domain, neglecting mode-dependent loss [118], lin-
ear propagation is described by the following equation [note
that, in contrast to Eq. (26), here no moving reference frame
is assumed]:

∂ ~̃A
∂z

� iB ~̃A: (188)

Here ~̃A�z,ω� is the electric field’s generalized Jones vector,
whose 2N components Ãp�z,ω� are the Fourier transforms of
the complex envelopes Ap�z, t� describing the excitation of the
individual modes and polarizations. (In this section we account
for the two-fold polarization degeneracy of each spatial mode,
consistent with the need of addressing all space and polarization
modes in multiple-input-multiple-output SDM transmission.)
The vector ~A�z, t� collecting the complex envelopes Ap�z, t� is
sometimes referred to as the field hyper-polarization vector.
The term B�z,ω� is a 2N × 2N Hermitian matrix describing
frequency-dependent mode coupling. In all cases of practical
relevance, it is sufficient to expand B to the second-order
around the central frequency ω0:

B�z,ω� ≃ B0 � B1�ω − ω0� � B2

�ω − ω0�2
2

, (189)

where Bq�z� � ∂qB�z,ω�∕∂ωqjω�ω0
. In the absence of pertur-

bations to the ideal fiber structure, the matrices B0, B1, and B2

reduce to a diagonal form and their elements are the propaga-
tion constants, group delays per unit fiber length, and chro-
matic-dispersion coefficients of the individual modes,
respectively, with the modal dependence of the diagonal terms
of B1 being responsible for the phenomenon of modal
dispersion. In the presence of perturbations, off-diagonal terms
appear, along with additional traceless diagonal terms [117].

Fig. 27. Space-time plot, showing intensity of a light bullet with
normalized energy E � 6.

0 20 40 60 80 100
Distance z

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ar

am
et

er
s

A w
s w

t
-1

Fig. 28. Simulated evolution of peak amplitude, spatial beam
width, and temporal pulse duration, respectively, for a light bullet with
energy E � 6.
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The effect of the perturbations is most relevant on B0, and less
on B1, while it is typically negligible on B2. This is consistent
with the observation that perturbing the modes’ optical phases
requires less effort than perturbing their group velocities and
even less group-velocity dispersion. Therefore, in the following
we neglect the effect of perturbations on B2.

An important property of multimode propagation in SDM
fibers is the existence of groups of modes with very similar
propagation constants. Modes belonging to the same group
are referred to as degenerate or quasi-degenerate, and they
undergo strong random coupling during propagation. On
the other hand, modes belonging to different groups couple
weakly even over long propagation distances, and they are re-
ferred to as non-degenerate. This situation can be conven-
iently described in the field hyper-polarization vector by
grouping together quasi-degenerate modes, so that the
vector ~A results from stacking on top of other hyper-polari-
zation vectors with lower dimensions. Consistently, the matrix
B0 can be divided into blocks, each describing either intra-
group coupling or inter-group coupling, while the
matrices B1 and B2 are block-diagonal, as is clarified in the
following.

Moving to the modeling of the Kerr nonlinearity, here we
restrict the discussion to considering the instantaneous contri-
bution only, in which case the coupled propagation equation
can be recast in the following vector form:

∂~A
∂z

� iB0
~A − B1

∂~A
∂t

−
i
2
B2

∂2 ~A
∂t2

� ~N , (190)

with

~N � iγ
X2N
p�1

�X
l ,m, n

CplmnA	
l AmAn

�
êp, (191)

where, by êp, we denote a vector whose p-th element is equal to
one and all the others to zero, and γ � γ�1� is the nonlinearity
coefficient of the fundamental mode defined in Eq. (5) (in this
section we drop the superscript for ease of notation). The def-
inition of the nonlinearity coefficients Cplmn accounts for
polarization, and their expressions can be found in Eq. (17)
of Ref. [66].

A. Single Group of Strongly Coupled Modes
A particularly relevant propagation regime in SDM systems is the
one where all the transmitted modes undergo strong and random
mixing along the fiber. This is the case in coupled-core MCFs
[119], where the fiber cores are spaced to the extent that the
supermodes have sufficiently similar propagation constants to be-
have almost as degenerate modes. In this regime, the matrix B0

can be expressed as B0 � β̄I� δB0, where β̄ is the mode-aver-
aged propagation constant, while δB0 accounts for the modes’
propagation-constant mismatch relative to β̄, as well as for
the effect of the perturbations. The matrix B1 can be expressed
as B1 � β̄1I� δB1, where β̄1 is the mode-averaged mode delay
per unit propagation length, while δB1 accounts for the differ-
ential mode delays relative to β̄1, as well as for the effect of
the perturbations. Finally, the matrix B2 is typically approxi-
mated as B2 ≃ β̄2I, where β̄2 is the mode-averaged chro-
matic-dispersion coefficient. Note that the terms involving β̄0

and β̄1 are responsible for a mode-independent phase and group
delay, respectively, and therefore they can be dropped from the
propagation equation with no consequences on the analysis.

As for the nonlinear term ~N , a dramatic simplification is
obtained by noting that the perturbations produce full ran-
domization of the propagating field hyper-polarization state
on a length-scale over which nonlinear effects are not appre-
ciable for typical transmission signal power levels. As a result

of this separation of length scales, ~N can be replaced with its
average, performed with respect to the isotropic distribution
of the field hyper-polarization in the generalized Jones space.

The only plausible form of ~N resulting from this procedure is
~N � iγ ¯̄κj~Aj2 ~A, where j~Aj2 � P

2N
k�1jAkj2 is the total optical

power carried by the multi-modal field, given by the sum of
the optical power in each mode. This follows from noting that
since the generalized Jones vector ~A is isotropically oriented in
its space, there can be no privileged direction other than its

own, and hence the nonlinear term ~N must be aligned with
~A. On the other hand, owing to the isotropic argument, the

magnitude of ~N can only depend on the magnitude of ~A.

Therefore, j~Aj2 ~A is the only form of ~N that at the same time
is compatible with the above requirements and with
Eq. (191). This argument indicates that the nonlinear inter-
action between strongly coupled spatial modes takes the
form of cross-phase modulation, similar to the nonlinear in-
teraction between polarization modes in singlemode fibers
[56].

The derivation of the expression for the nonlinearity coef-
ficient ¯̄κ is described in Refs. [66,120]. It is based on the ob-
servation that ¯̄κ should ensure that the average infinitesimal
phase shift over a length dz obtained with the averaged expres-
sion is preserved, that is,

~N · ~A	
dz � i ¯̄κj~Aj2 ~A · ~A	

dz, (192)
or equivalently, using Eq. (191),X

p, l ,m, n

CplmnA	
l AmAnA	

p � ¯̄κj~Aj4: (193)

The problem at hand is to find κ̄ such that Eq. (193) is valid
when averaged over an isotropic distribution, for a fixed ampli-
tude of the field vector j~Aj. The derivation starts by noting that
an isotropically distributed unit vector can be described as
~G∕j ~Gj, where ~G � P

2N
p�1Gpêp is a vector whose components

are 2N identically distributed, statistically independent zero-
mean complex variables with Gaussian distribution and corre-
lations hG	

pGqi � δp,q and hGpGqi � 0. The angular degrees

of freedom of ~G are independent of the intensity j ~Gj2, so that
they can be averaged separately. Being the angular distribution
of ~G equal to that of ~A, if we average Eq. (193) with ~A replaced
by ~G and divide both sides by the average of j ~Gj4, we remove
the dependence on the statistics of j ~Gj2 and obtain the same
result as if the averages were performed over the isotropic dis-
tribution of the unit modulus vector ~G∕j ~Gj.

The above discussion suggests that κ̄ can be derived by aver-
aging both sides of Eq. (193) with ~A replaced by ~G. In doing so,

Review Vol. 12, No. 11 / November 2024 / Photonics Research 2617



we utilize at the left-hand side the independence of the com-
ponents of ~G and the property of independent Gaussian var-
iables that allow us to average them pairwise, so that we get
for the average inside the sum hG	

l GmGnG	
p i � δl ,mδn,p�

δl ,nδm,p. In averaging the right-hand side, we exploit that the

distribution of j ~Gj2 is a chi-square with 4N degrees of freedom
(the real and imaginary parts of 2N modes), each one with vari-
ance 1/2, resulting in hj ~Gj4i � 4N �4N � 2��1∕2�2. Equating
the results of these two averages yields

κ̄ �
X
m, n

Cnmmn � Cmnmn

2N �2N � 1� : (194)

The propagation equation for ~A hence simplifies to [120]

∂~A
∂z

� iδB0
~A − δB1

∂~A
∂t

−
i
2
β̄2

∂2 ~A
∂t2

� iγκ̄j~Aj2 ~A: (195)

In the case of singlemode fibers, the nonlinearity coefficient
reduces to κ̄ � �8∕9��1 − f R� � f R , and to the familiar value
of 8/9 when the instantaneous Raman contribution is ignored
[121]. It is customary expressing Eq. (195) in a reference frame
that accounts for the random mode coupling, that is, by defin-
ing the field ~A 0 through ~A � U~A 0, with dU∕dz � iδB0U.
This results in the disappearance of the first term on the
right-hand side of Eq. (195), which, dropping the primes
for ease of notation, becomes

∂~A
∂z

� −D
∂~A
∂t

−
i
2
β̄2

∂2 ~A
∂t2

� iγκ̄j~Aj2 ~A, (196)

whereD � U†δB1U. This equation is the generalization to the
multi-dimensional case of the equation that describes nonlinear
propagation in single-mode fibers with polarization-mode
dispersion (PMD), also known as the PMD-Manakov equation
[121]. The first term on the right-hand side describes the phe-
nomenon of spatial mode dispersion (MD), which is the multi-
modal equivalent of PMD [122].

In the absence of MD, Eq. (196) reduces to the form of a
generalized multi-component Manakov equation [123], which
in the singlemode case coincides with the famous Manakov
equation [124], which was found to describe nonlinear propa-
gation in singlemode fibers in the presence of random polari-
zation-mode coupling [125]. In this limit, Eq. (196) is known
to be integrable by using the inverse-scattering transform
method, and to admit vector-soliton solutions. The existence
of this class of solutions was used in Ref. [120] to test the ac-
curacy of the multi-component Manakov equation in describ-
ing multimode propagation in the regime of strong mode
mixing.

Modal dispersion renders Eq. (196) non-integrable by intro-
ducing frequency-dependent random-mode coupling. In SDM
systems, this effect is one of the key factors that determine the
complexity of the multiple-input-multiple-output (MIMO)
digital-signal processing (DSP) that is required to equalize
the fiber-optic channel [126]. The magnitude of MD is typi-
cally quantified in terms of the duration of the fiber intensity
impulse response (IIR) [127], which grows proportionally to
the square-root of propagation distance as T IIR � κ̄MD

ffiffiffi
z

p
,

where the proportionality coefficient κ̄MD depends on the fiber
design and perturbation statistics [128]. As a result, MD

prevents the existence of soliton solutions. Its effect on the
propagation of an input waveform corresponding to the fun-
damental soliton of Eq. (196) in the absence of MD is illus-
trated in Fig. 29 in the case of a fiber with 2N � 4
strongly coupled modes. The three panels show the evolution
of j~Aj2 for the input field ~A�0, t� � A0 sech�t∕t0�ê1, with
A0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ̄2j∕γκ̄t20

p
and LD � t20∕jβ̄2j. The numerical values as-

sumed for the plot are t0 � 10 ps, γκ̄ ≃ 0.63 W−1 km−1, and
β̄2 � −25 ps2∕km [120], while the values of κ̄MD are displayed

Fig. 29. Evolution of an input hyperbolic-secant waveform
~A�0, t� � A0 sech�t∕t0�ê1, which in the absence of mode dispersion
would result in a fundamental soliton, in a fiber supporting 2N � 4
strongly coupled modes for the displayed values of the mode-
dispersion coefficient κ̄MD. Time and propagation distance are nor-
malized to the input-waveform width t0 and the fiber dispersion length
LD � t20∕jβ̄2j, respectively.
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in the individual panels. The plot shows that when MD is
sufficiently small, the evolving field preserves its input intensity
profile, whereas this is disrupted already after a few dispersion
lengths as MD increases.

B. Multiple Groups of Non-degenerate Modes
Amore general propagation regime in fibers for SDM is the one
in which multiple groups of non-degenerate modes propagate
with little-to-negligible inter-group local coupling. This is the
case of both SIMF and GIMF, where the two-fold degenerate
fundamental mode LP01 (with two degenerate polarization
modes) and the four-fold degenerate mode group LP11 (with
its two degenerate modes LP11a and LP11b) form a typical ex-
ample of non-degenerate mode groups.

Nonlinear propagation in this regime can be conveniently
described by organizing the elements of ~A into vectors of re-
duced dimensions, each describing a single-mode group.
Without loss of generality, in the following we consider the case
of two mode groups, which we denote by a and b (the gener-
alization to the more general case of an arbitrary number of
mode groups is straightforward). The propagation Eq. (190)
can therefore be expressed as

∂~Aa

∂z
� iBa,0

~Aa − Ba;1
∂~Aa

∂t
−
i
2
β̄a,2

∂2 ~Aa

∂t2
�iKab

~Ab � i ~N a,

(197)

∂~Ab

∂z
� iBb,0

~Ab − Bb;1
∂~Ab

∂t
−
i
2
β̄b,2

∂2 ~Ab

∂t2
�iK†

ab
~Aa � i ~N b:

(198)

Here ~Aa and ~Ab are vectors of dimensions 2Na and 2Nb,
respectively, with ~Aa collecting the first 2Na and ~Ab the last
2Nb elements of ~A. All the matrices are either 2Na × 2Na
or 2Nb × 2Nb dimensional, except for the matrix Kab describ-
ing instantaneous inter-group linear coupling, whose
dimension is 2Na × 2Nb. (Note that only instantaneous
inter-group coupling has been taken into account, whereas
high-order terms in the expansion of off-diagonal blocks are
neglected, as is appropriate in cases of practical relevance.)
The nonlinear terms have the following form:

~N a � iγ
X2Na

p�1

�X
l ,m, n

CplmnA	
l AmAn

�
êp, (199)

~N b � iγ
X2Na�2Nb

p�2Na�1

�X
l ,m, n

CplmnA	
l AmAn

�
êp: (200)

Owing to the strong intra-group mode mixing, similar argu-
ments used for the derivation of the multi-component MD-
Manakov Eq. (196) can be used to simplify the nonlinear terms
in Eqs. (199) and (200). To this end it is critical to assume
statistically independent random coupling processes in the
two mode groups. Under this assumption, the only plausible

forms for ~N a and ~N b are ~N a � iγ�κ̄aaj~Aaj2 � κ̄abj~Abj2�~Aa

and ~N b � iγ�κ̄bbj~Abj2 � κ̄baj~Aaj2�~Ab. This indicates that,
similar to the case of a single group of modes, inter-group non-
linear interaction takes the form of cross-phase modulation,

with each mode group imposing a phase modulation propor-
tional to its overall optical intensity onto each of the modes of
the other mode group.

The derivation of the expressions for κ̄aa, κ̄bb, κ̄ab, and κ̄ba is
described in Ref. [129]. In this case too, the derivation is based
on the observation that the average infinitesimal phase shift
over a length dz obtained with the averaged expression is pre-
served, that is, for ~N a,

~N a · ~A
	
adz � iγ�κ̄aaj~Aaj4 � κ̄abj~Abj2j~Aaj2�dz, (201)

or, using Eq. (191),X2Na

p�1

X
l ,m, n

CplmnA	
l AmAnA	

p � κ̄aaj~Aaj4 � κ̄abj~Abj2j~Aaj2:

(202)
The only terms whose average is nonzero are those for which

either m � p and l � n, or n � p and l � m. Moreover, all
terms for which l ,m, and n range between one and 2Na con-
tribute to κ̄aaj~Aaj4, with the same result obtained for the case of
a single group of modes, that is,

κ̄aa �
XNa

m, n�1

Cmnnm � Cmnmn

2Na�2Na � 1� : (203)

When m � p and l � n, with n > 2Na, the average of
jApj2jAnj2 splits into the product of the two averages of
jApj2 and jAnj2. Similarly, when n � p and l � m with
m > 2Na, the average of jApj2jAmj2 reduces to the product
of the two averages of jApj2 and jAmj2. These terms contribute
to κ̄abj~Abj2j~Aaj2, with the result

κ̄ab �
XNa

m�1

X2Na�2Nb

n�2Na�1

Cmnnm � Cmnmn

4NaN b
: (204)

Along the same lines, one may also find that

κ̄bb �
XNb

m, n�1

Cmnnm � Cmnmn

2Nb�2Nb � 1� , (205)

and κ̄ba � κ̄ab. Assuming a moving reference frame that ac-
counts for intra-group random-mode coupling in each mode
group, Eqs. (197) and (198) simplify to the following form:

∂~Aa

∂z
� −β̄a;1

∂~Aa

∂t
−Da

∂~Aa

∂t
−
i
2
β̄a;2

∂2 ~Aa

∂t2
�iKab

~Ab

� iγ�κ̄aaj~Aaj2 � κ̄abj~Abj2�~Aa, (206)

∂~Ab

∂z
� −β̄b;1

∂~Ab

∂t
−Db

∂~Ab

∂t
−
i
2
β̄b;2

∂2 ~Ab

∂t2
�iK†

ab
~Aa

� iγ�κ̄bbj~Abj2 � κ̄baj~Aaj2�~Ab, (207)

where the matrices Da and Db describe intra-group mode
dispersion, and β̄a;1 and β̄b;1 are the intra-group mode-averaged
group delays per unit propagation length. Note that when
Na � Nb � 1, Eqs. (206) and (207) may be used to describe
nonlinear propagation in weakly coupled core MCFs [130] or
in fibers guiding optical-angular momentum modes. It is also
interesting to note that in the absence of intra-group MD and
inter-group linear coupling, Eqs. (206) and (207) predict
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soliton trapping (see the previous Sections 3 and 4 for its de-
tailed discussion), the phenomenon where two solitary waves,
each propagating within distinct groups of modes, dynamically
adjust their center frequency to eliminate the group velocity
mismatch between the two groups of modes [120,131].

9. MMS EXPERIMENTS

A. Quasi-Single-Mode Regime
In spite of the widespread interest in soliton science, virtually
no experimental studies of MMS propagation in MMF have
been reported until 11 years ago, when Renninger and Wise
carried out the first systematic experimental study of MMSs
in GIMF [132]. In their experiments, 300 fs pulses at
1550 nm, with energies of up to a few nJ, were injected into
a standard GIMF with 62.5 μm core diameter. Since the input
beam came from a single-mode fiber, its diameter (11.5 μm)
was smaller than that of the fundamental mode of the
MMF (≃17.5 μm). Although three radially symmetric nonde-
generate modes were excited at the fiber input, more than 90%
of the input energy remained coupled into the fundamental
mode. Under these conditions, numerical simulations demon-
strated that the modes are trapped and propagate collectively in
the temporal domain. In other words, the group-velocity walk-
off between the fundamental and the HOMs was compensated
for by the presence of nonlinear cross-phase modulation, as
elaborated in the examples provided in Section 3.B.1.
Consequently, this leads to a blue shift of the HOMs, hence
a compensation of group-velocity mismatch via group-velocity
dispersion. The situation is analogous to the case observed for
solitons in birefringent optical fibers in the presence of polari-
zation mode dispersion [73,133].

Whenever one replaces the description based on the multi-
component or coupled NLSEs with the collective approach,
based on the 3D+1 NLSE or the Gross-Pitaevskii equation,
one may exploit the variational approach to find a stable
spatiotemporal soliton, or optical bullet (see methodology in
Section 5). In the conditions of the experiments in Ref. [132],
the MMS can be well approximated by a single-mode soliton
solution of the NLSE, with an effective area equal to that of the
fundamental mode of the GIMF. The quasi-single-mode
nature of the generated MMSs was confirmed by measure-
ments of their output temporal duration versus pulse energy,
as well as of the pulse energy dependence of the Raman-
induced SSFS (see Fig. 30). A red-shift of the MMS frequency
was observed that could be accurately fitted by single-mode sol-
iton perturbation theory, as well as a compression of the pulse
width T 0 as its energy E grows larger, according to Eq. (21)
in Section 2.D. The fundamental Raman soliton wavelength
shift, which grows larger with the fourth power of pulse energy
(theoretical dependence for single-mode solitons), is given by
the red solid curve in Fig. 30(c).

B. Fully Multimode Regime
The generation of highly multimode MMS, that is, by exciting
a relatively large number of HOMs at the fiber input, was ex-
perimentally investigated by Wright et al. in 2015 [62]. In that
study, the input pulse width at 1550 nm was 500 fs, and a
62.5 μm core diameter, 25 m long GRIN fiber was used.

The relatively larger input beam size leads to the generation
of MMSs comprising up to 8–13 modes. Under these condi-
tions, a relatively complex interplay of MMS fission and sub-
sequent SSFS was observed. Specifically, the process of SSFS is
accompanied by a transfer of energy from the HOMs towards
the fundamental mode of the fiber. This occurs because, as a
result of the previously described mechanism of nonlinear mo-
dal trapping leading to MMS formation, the fundamental
mode is slightly red-shifted with respect to the HOMs. Hence,
the fundamental mode is a Stokes wave for HOMs, which act
as Raman pumps (see detailed discussion in Section 2.B.5).
Moreover, the fundamental mode also exhibits the strongest
modal overlap with the dispersive waves that remain around
the input pump wavelength, so it preferentially drags energy
from them as well [63]. As a result, a Raman MMS beam am-
plification and spatial cleanup are observed, at the expense
of HOMs.

The generation of an MMS rests on the compensation of
intermodal dispersion (which is much stronger than intramo-
dal, or chromatic dispersion) by nonlinear phase shifts. As a
result, the cross-phase modulation among the different modal
components of an MMS should be much stronger than the self-
phase modulation for a singlemode soliton (which is only suf-
ficient to counteract chromatic dispersion). This condition was
confirmed in the experiments [62]: by measuring the relation
between the MMS pulse energy E and its temporal width T 0

for a variety of different spatial beam widths Rg . Wright et al.
have shown that, for a given temporal soliton duration, its en-
ergy is always significantly larger than that of a pure single-
mode soliton with the same beam width (see Fig. 31), in quali-
tative agreement with the early findings by Grudinin et al.
[135]. From a multimodal perspective, the nonlinear lengths
for HOMs in GIMF, as defined in Eq. (6), are longer when
compared to that of the fundamental mode, owing to their

Fig. 30. Experimental study of MMS versus input pulse energy.
(a) Output spectra. (b) Measured output pulse temporal duration.
(c) Measured peak wavelength. Reprinted with permission from
Ref. [134]. Copyright 2013, Nature Group.
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larger effective areas. Consequently, generating MMS with
HOMs requires a relatively higher field peak power. On the
other hand, because of their essential single-mode nature, the
energy of the first MMS that was studied in Ref. [132] was still
very close to that of single-mode fiber solitons. The experimen-
tal observation is that highly multimode MMSs are formed at
comparatively higher pulse energies than that of single-mode
solitons with the same pulse width. This is because stronger
nonlinear trapping forces are required to balance modal walk-
off [33–35]. The results of Fig. 31 imply that for highly multi-
mode MMSs the pulse duration can be continuously varied,
provided the pulse energy scales in inverse proportion, accord-
ing to Eq. (24).

C. Femtosecond Walk-Off Solitons
Multimode solitons result from a balance between (modal and
chromatic) dispersion and Kerr nonlinearity. This means that,
on the one hand, as discussed in the previous subsection, a
stronger nonlinearity, due to the larger mode area of HOMs,
is required for an MMS to form, compared with singlemode
fiber solitons. Simultaneously, the nonlinearity must counteract
not only chromatic dispersion-induced pulse broadening, but
also modal walk-off effects.

Typically (i.e., for pulses of picosecond duration or longer),
the walk-off length LW between fiber modes [Eq. (15)] is much
shorter than the chromatic dispersion length LD [Eq. (16)]
[see Figs. 4(b) and 4(c)]. On the other hand, as discussed
in Sections 3 and 4, the most favorable condition for the
formation of an MMS by nonlinear trapping of pulses carried
in different fiber modes occurs when modal (or walk-off )
and chromatic dispersion lengths are equal [see Eq. (22) in
Section 2.D]. In this case, one minimizes the amount of

nonlinearity, which is necessary for trapping a pulse via the
simultaneous nonlinear compensation of both intramodal
and intermodal dispersions. It turns out that the condition
LW ≃ LD can be achieved with femtosecond pulses, by taking
advantage of the different scalings with pulsewidth T 0 of LD
and LW [37]. In this case, the temporal duration, say, Tw, of
the MMS turns out to be fixed by the condition

T 0 � Tw � C
jβ2j
jΔβ 0

1j
, (208)

where C is a constant of the order of unity. An experimental
verification of Eq. (208) was carried out in Ref. [37]: in Fig. 32
we show that the MMS temporal duration is a constant at each
wavelength, irrespective of the initial femtosecond pulse dura-
tion. The variation of Tw with wavelength is due to the chro-
matic dispersion slope. The experimental points refer to: 1 m of
GRIN fiber, with input wavelength and pulse width 1300 nm
and 61 fs, or 1420 nm and 70 fs, respectively; or 6 m of GRIN
fiber, with input wavelength and pulse width 1550 nm and
67 fs, or 1680 nm and 96 fs, respectively.

D. Multimode Soliton Fission
For relatively large input pulse energies, so that multiple MMSs
are generated, the initial pulse gets temporally compressed at
first, and subsequently undergoes Raman-induced fission into
multiple fundamental solitons and dispersive waves [62]. As
shown in Fig. 33, an initial beam mostly composed of HOMs
is progressively cleaned into a bell-shaped beam composed of
LOMs, as the input pulse energy grows larger. Moreover, long-
pass filtering permits to leave out the Raman-shifted soliton: as
can be seen, the soliton emerges from the input high-order
MMS fission with a spatial bell shape, indicating that it is es-
sentially carried by the fundamental mode of the fiber [135].

The process of soliton fission has been extensively investi-
gated by using a short span (20 cm) of GRIN fiber and
input femtosecond pulses with up to megawatt peak power,
approaching the level for catastrophic self-focusing [36].
Figure 34 compares experimental data and numerical simula-
tions for the variation of the output pulse width as a function of

Fig. 31. Experimental demonstration that MMSs require more en-
ergy than single-mode solitons, for a given temporal duration. In the
vertical axis, the figure reports experimental and simulation results for
the slope of the linear relation between pulse energy and inverse tem-
poral duration, as a function of the average size of the beam waist Rg
(the waist of the fundamental mode is R0 � 6.5 μm). All data points
are higher than the curve for single-mode solitons [solid black curve
showsM 1 � ET 0 as given by Eq. (23)]; the green point indicates the
case of quasi-single-mode soliton observed in Ref. [134]. Reprinted
with permission from Ref. [62]. Copyright 2015, Optical Society
of America.

Fig. 32. Soliton pulse duration versus wavelength, compared with
measured (green diamonds), simulated (empty red circles and blue
squares, respectively), and with Eq. (208) (solid line). Reprinted with
permission from Ref. [37]. Copyright 2021, Nature Group.
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its energy for the first and the second Raman MMSs that are
generated by the fission. In Fig. 34, the black dashed line (black
crosses) is obtained from Eq. (24) with the nominal (experi-
mental) soliton parameters.

As can be seen, to the left of the vertical dashed line (here
called the “linear-loss” regime), for soliton energies E < 15 nJ,
although the trend is the same, for a given pulse duration T 0

the energy of Raman solitons is always much larger than the
value obtained from the single-mode relationship of Eq. (24).

On the other hand, Fig. 34 shows that to the right of the
vertical dashed line (here called the “nonlinear-loss” regime, be-
cause multiphoton absorption effects are present) the experi-
mentally observed soliton pulse durations remain nearly
constant as the pulse energy grows larger. This is confirmed by
the experimental soliton spectra (not shown here), showing that
all MM Raman-shifted solitons converge to nearly the same
and constant pulse width, between 50 fs and 60 fs.

E. Few-Mode Fiber Solitons
The intermediate case, i.e., between quasi-single-mode and
highly multimode solitons, was experimentally studied in a

so-called few-mode fiber (FMF) that supports the propagation
of LP01, LP11a, and LP11b modes only, for a total of three spatial
eigenmodes [136]. FMFs are of interest for optical communi-
cation links using the SDM technique [137]. For ultrashort
pulses, the Raman effect splits the input pulse into dispersive
waves, and temporally compressed red-shifting Raman solitons.
The dependence of the SSFS on input pulse energy, and the
modal composition of the generated MMS were investigated,
and found to be in qualitative agreement with numerical sim-
ulations based on coupled GNLSEs. Also in this case, the ex-
periments have shown that, for a given pulse width, the MMS
energy is typically found to be larger than that associated with a
single-mode soliton carried within individual modes. Again,
this result can be interpreted by considering that, for trapping
modes with different linear group velocities, i.e., for overcom-
ing intermodal dispersion, nonlinearity should be larger than
the value that is necessary for compensating for the much
weaker intramodal dispersion.

As can be seen in Fig. 35, these experiments have shown that
the spatial beam width increases with the soliton energy. At low
energies (1.5 < E < 2.5 nJ) the soliton beam has a Gaussian
shape. On the other hand, at higher pulse energies the soliton
is carried by a multimode superposition [136]. This can be ex-
plained by the fact that higher pulse energies permit to bind a
larger proportion of HOMs.

Those experiments [136] have also shown that the MMS
temporal duration remains inversely proportional to its energy,
as described by the 1D soliton formula Eq. (21). This behavior
is different from the case of (3D+1) spatiotemporal solitons in
bulk media under the combined action of chromatic dispersion
and diffraction: here the beam compresses both in time and in
space when its energy grows larger.

F. Solitons in Step-Index Fibers
The generation of MMS in SIMF has been a subject of different
experimental studies [42,43,138,139]. In experiments by
Zitelli et al. [43], ultrashort pulses of 70 fs duration at
1450 nm wavelength were introduced into a SIMF with a
50 μm core diameter. That experiment involved two distinct
input beam coupling conditions: axial and non-axial coupling.

Fig. 33. Experimental study of high-order soliton fission in GRIN
fiber. Left, autocorrelation of the output pulse versus input energy;
middle, corresponding output beam profiles; right, output spectrum.
Reprinted with permission from Ref. [62]. Copyright 2015, Optical
Society of America.

Fig. 34. Experimental data (empty squares and empty circles for
first and second Raman solitons, respectively) versus numerical sim-
ulations (solid curves) for the output soliton time width versus its en-
ergy; black crosses and black dashed line are obtained from Eq. (24) by
using experimental or simulation soliton parameters, respectively.
Reprinted with permission from Ref. [36]. Copyright 2020,
Optical Society of America.

Fig. 35. Experimental dependence of MMS beam area versus sol-
iton energy. Reprinted with permission from Ref. [136]. Copyright
2016, Optical Society of America.
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Clearly, non-axial coupling facilitates the excitation of a larger
amount of HOMs into the fiber. It was observed that non-axial
coupling in SIMF leads to a lower energy threshold for MMS
formation, when compared with axial coupling. An opposite
behavior was observed when using GIMF. The reason for this
difference lies in the fact that HOMs in SIMF (GIMF) have
relatively higher (lower) nonlinear coefficients, owing to their
smaller (larger) effective mode areas, as detailed in Section 2.E.
The evolution of the generated MMS temporal width with in-
creasing input energy is depicted in Fig. 36. As can be seen, the
initial trend of a decreasing pulse width is followed by an os-
cillation of the output pulse duration around a fixed value as the
pulse energy grows larger. Figure 36 also shows that a GIMF
has a much lower energy threshold for MMS generation when
compared with a SIMF. In any case, for both input coupling
conditions, fundamental mode-based Raman MMSs emerge at
the fiber output.

More recently, Wu et al. [42] have theoretically and exper-
imentally studied the emergence of highly multimodeMMSs in
SIMFs in a high input pulse energy regime. These MMSs are
characterized by superpositions of 5–10 temporally aligned
transverse modes, resulting in speckled beam profiles and com-
plex spatio-spectral variations across the MMS, as illustrated in
Fig. 37. In a representative experiment, a Gaussian pulse at
1550 nm wavelength with a 500 fs duration was launched into
a SIMF, requiring an input pulse energy reaching a maximum
of up to 720 nJ, in order to induce a sufficient nonlinearity: this
is a notably higher requirement when compared to the previous
study [43]. Remarkably, irrespective of the excitation condi-
tions that were employed, the resulting MMSs consistently
comprised superpositions of HOMs. Again, this phenomenon
can be understood by recognizing that HOMs exhibit a rela-
tively smaller effective mode area, as shown in Fig. 3(e) in
Section 2.E. Consequently, HOMs possess heightened nonlin-
earity compared to LOMs during mode competition, thereby
facilitating the formation of highly multimode MMSs.

Utilizing SIMFs, it has been demonstrated both numerically
and experimentally that Raman gain can facilitate energy trans-
fer between single-mode solitons carried by different HOMs
[138,139]. This phenomenon is referred to as soliton self-mode
conversion (SSMC). In SIMFs, the group velocities of different
spatial modes exhibit a considerable variation. This allows spec-
trally separated pulses in different modes to co-propagate at the
same group velocity. By meticulously selecting the modes and
central frequencies of the pulses, it becomes possible to match
the frequency separation required for group velocity equaliza-
tion with the Raman gain peak, typically occurring near
13 THz. Under these optimized conditions, efficient energy
transfer from one mode to another can occur through inter-
modal Raman scattering when solitons are launched into
HOMs of a SIMF. The results of cutback experiments depicted
in Fig. 38 illustrate the process [139]. A soliton pulse, with a
duration of 100 fs and a wavelength of 1045 nm, is initially
launched into the LP0,19 mode of a SIMF with a core diameter
of 97 μm. This specific mode is excited in the fiber by encoding
the spatial phase onto a Gaussian beam using a spatial light
modulator. Upon propagation, the soliton formed in the
LP0,19 mode undergoes red-shifting via conventional SSFS
to 1141 nm after 33 cm. At this point, it becomes group-index
matched to the LP0,18 mode with a frequency separation of
16 THz. Consequently, power transfers from the LP0,19 pulse
to the LP0,18 mode pulse. After approximately 40 cm of propa-
gation, the mode and wavelength conversion process is com-
pleted. Subsequently, the new fundamental soliton in the
LP0,18 mode experiences further red-shifting to 1257 nm via
SSFS. At this wavelength, it becomes group-index matched
to the LP0,17 mode with a 14 THz frequency separation.
Again, through SSMC, full power transfer to the LP0,17 mode
is achieved with further propagation. These alternating SSFS
and SSMC processes repeat along the fiber, ultimately resulting

Fig. 36. Dependence of MMS temporal width on input pulse en-
ergy for GIMF (red curve), SIMF with axial (black curve) or non-axial
(blue curve) input beam. Insets show examples of autocorrelation
traces. Reprinted with permission from Ref. [43]. Copyright 2019,
Optical Society of America.

Fig. 37. (a) Total (black curve) and bandpass filtered (red curve)
output spectrum from a step-index MMF; output spatial intensity pro-
file before (b) and after (c) filtering; (d) spatially integrated pulse mea-
surement; (e) simulated half width at half maximum of the spatial
correlation function for randomly generated beam patterns from the
last six modes (red) and the last ten modes (green), with highest-order
mode indicated on x-axis; purple dashed line: half-width of the exper-
imental spatial correlation function. Reprinted with permission from
Ref. [42]. Copyright 2023, American Institute of Physics.
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in obtaining a pulse at 1587 nm in a pure LP0,15 mode at the
longest fiber length.

G. Emergence of Soliton Attractors from Long
Multimode Fibers
A pioneering experimental study of soliton generation in a
GIMF has shown that femtosecond Raman solitons emerge
from a relatively long length of fiber [135]. In their study,
Grudinin et al. launched into the fiber 150 ps pulses from a
Q-switched and mode-locked Nd:YAG laser: these pulses ex-
cite a multitude of modes at this wavelength. Surprisingly, the
experiments have shown that, as a result of the generation of
multiple Raman scattering Stokes sidebands, a supercontinuum
is formed in the anomalous dispersion region of the fiber. From
the supercontinuum a single Raman shifted soliton emerges,
with a nearly single-mode beam, whose waist is close to that
of the fundamental mode of the fiber. It was speculated that
such Raman soliton beam cleaning is a manifestation of a uni-
versal property of nonlinear multimode systems [140]. Namely,
energy redistribution among all fiber modes, or thermalization,
eventually gives way to confinement into the first few low-order
modes only.

To date, the properties of the original fascinating discovery
remain yet to be fully explained: they appear to be a combined
manifestation of Raman beam cleanup [63] and Kerr-induced
beam self-cleaning [49]. In those experiments, it was observed
that Raman solitons that are formed in GIMF have a peak
power (or energy) about six times larger than that of a single-
mode fiber soliton with the same pulse duration. Moreover, the
spatial field distribution of these multimode Raman solitons is
stable and quasi-single-mode, whenever the power of the input
pulses grows larger than a certain threshold value. Equivalently,
the same properties are observed whenever the GIMF length
increases from 10 m to 500 m [135].

The emergence of solitons in MMFs can be seen as a fun-
damental manifestation of the robustness of solitons as attrac-
tors in weakly nonlinear turbulent wave systems, as discussed
by Zakharov et al. [141,142]. This hypothesis has received a
recent interesting experimental confirmation in studies of fem-
tosecond soliton propagation of relatively long (up to 1 km)

spans of GIMF [38]. In those experiments, ultrashort
(70 fs) pulses at 1550 nm wavelength were injected in a 50/
125 standard GIMF. The input laser beam was focused at
the fiber end face with an approximately 15 μm waist.
Moreover, the beam was injected at different small angular tilts
with respect to the fiber axis for controlling the excitation of
higher-order modes besides the fundamental.

Figure 39 illustrates experimentally observed dependence on
input pulse peak power of the output beam waist after 1 km of
fiber [38]. For 0° input tilt, a nearly monomode soliton (with a
waist close to that of the fundamental mode) is formed at
15 kW. For initially tilted and highly multimode beams, the
monomode fundamental soliton still emerges, but at a compa-
ratively higher power, as shown by the beam compression ef-
fect, which occurs at about 80 kW. In all cases, the beam
quality parameter of the emerging soliton was M 2 ≃ 1.4.

H. Soliton-Soliton Collision Experiments
Understanding soliton interactions in optical fibers, particularly
how they evolve over propagation distance, poses a significant
experimental challenge due to the intricacies of cutback experi-
ments. Even slight adjustments in fiber positioning can yield
vastly different outcomes. To circumvent this issue, in Ref.
[39], researchers have turned to studying the interaction of
two MMSs, generated by Raman MMS fission, by varying
the input pulse energy. This approach, motivated by their sim-
ulations in Ref. [39], enables the examination of soliton inter-
actions by observing variations in output spectra and temporal
traces as the input energy changes. The positioning of soliton
interactions is manipulated by adjusting the input pulse energy
(see Fig. 11 in Section 3.B.2).

In their experimental investigation, Sun et al. [39] study the
dynamics of soliton collisions within GIMF by varying the en-
ergy of an input pulse with 70 fs duration at 1400 nm wave-
length. To capture high-resolution output spectrum evolution
with input energy, the experimental setup integrates motorized-
polarizer-based input power control with automated recording

Fig. 38. Cutback experiments. (a) Spectra as a function of
fiber length with input pulse at 1045 nm in the LP0,19 mode.
(b)–(f ) Output mode images from different bandpass filters.
Reprinted with permission from Ref. [139]. Copyright 2019,
Optical Society of America.

Fig. 39. Experimental study of MMS attractor in GIMF. Here we
show the output beam waist after 1 km of GRIN fiber, versus input
peak power, and 0°, 2.3°, and 4.6° input beam tilt angles; the dashed
horizontal line indicates the fundamental beam waist. Insets illustrate
the output beam shapes at selected powers. Reprinted with permission
from Ref. [38]. Copyright 2021, Optical Society of America.
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of output spectra and input power measurements using a spec-
trometer and power meter, respectively. These components are
seamlessly coordinated and controlled by a computer, ensuring
synchronization during data acquisition throughout the experi-
ment. By slightly offsetting the input beam to introduce more
HOMs, they obtained Fig. 40(a), illustrating the evolution of
measured output spectra concerning input pulse energy (E)
over a 10 m GRIN fiber length, which shows striking similar-
ities to simulation results in Fig. 11. For E > 6 nJ, the input
pulse’s fission produced MMSs S2 and S1. As the input energy
increases, two MMSs experience significant SSFS. Further in-
creasing E leads to the unconventional SSFS in S1, character-
ized by a relative “blue-shift” as depicted in Fig. 40(a),
due to the reduced LOM content in S1. Notably, the spectral
overlap with fringe shape occurred at a region of E ≃ 27 nJ,
indicating that collisions [e.g., Figs. 11(d)–11(h)] may appear
in the red dashed box. Finally, for E > 45 nJ, both solitons (S1
and S2) reemerged as distinct entities.

In order to further investigate the dynamics of MMS colli-
sions in both temporal and spectral domains, a similar experi-
ment was carried out by using an L1 � 2 m GRIN fiber.
Figures 40(b) and 40(c) report the measured output spectra
and their corresponding autocorrelation traces across various
input pulse energies. For E < 19 nJ, two MMSs are visible
in both spectral and temporal domains. As E increases, the
spectra of the two MMSs get progressively closer, until their
separation becomes indistinguishable. Fringe patterns within
the spectrum emerge for energies 20 nJ < E < 21 nJ, corre-
sponding to two MMSs with a temporal separation of less than
0.5 ps. For 21 nJ < E < 23 nJ, a dominant peak in the middle
of the autocorrelation trace and a weak peak at �4 ps are
observed, suggesting the presence of non-overlapping solitons
at the fiber output.

The temporal separation of two MMS peaks is plotted in
Fig. 40(d). As previously predicted in simulations, this tempo-
ral separation is due to a collision at a position Zc < L1 within
the fiber [e.g., Figs. 11(d)–11(h)]. As a result, at the fiber out-
put, the two MMSs emerge with a large temporal separation,
owing to energy transfer from the leading MMS S2 to the trail-
ing MMS S1 at the collision point, which enhances the red-
shift and group delay for S1. For input energies exceeding
the collision region (E > 23 nJ), Figs. 40(b) and 40(c) indicate
a clear separation between the MMSs at the fiber output.

I. Dispersive Wave Generation
Another fundamental mechanism that is known to play a key
role in supercontinuum in single-mode fibers is the process of
dispersive wave emission fromMMSs, which can be interpreted
in analogy with Cherenkov radiation in electrodynamics [143].
Experiments by Wright et al. revealed the formation of broad
multi-octave supercontinuum spectra, which are characterized
by the presence of an ultra-wideband series of sharp spectral
peaks extending from the visible into the mid-infrared regions
[59]. As the physical origin of these spectral peaks was not yet
clear, they were referred to as mystery peaks.

A subsequent study [41] revealed that the mechanism
underlying the formation of a series of spectral peaks (see
Fig. 41) in the anomalous dispersion regime of the MMF is
that of dispersive wave generation, resonantly phase-matched
by the spatiotemporal intensity oscillations, due to self-imag-
ing, of MMSs along the fiber. The mechanism is fully analo-
gous to the multiple dispersive wave resonances of single-mode
solitons that occur in fiber lasers or in periodically amplified
optical fiber links [144]. Figure 41 shows that the supercontin-
uum featuring a series of unequally spaced dispersive wave
peaks can be qualitatively well reproduced by using the gener-
alized multimode coupled NLSEs [145]. As a matter of fact, the
observed sideband peak positions can be well predicted by a
simple reduction of the Gross-Pitaevskii equation Eq. (126)
into a 1D NLSE with a periodically varying (because of
MMS intensity oscillations due to self-imaging) nonlinear co-
efficient [41], as discussed in Section 6.

This phenomenon is clearly illustrated through compa-
rable numerical examples presented in Figs. 25 and 26 in
Section 6.C. These figures demonstrate that distinct peaks
emerge as a result of the periodic evolution induced by the

Fig. 40. Soliton collision experiments. (a) Evolution of output spec-
trum versus input pulse energy for a 10 m GRIN fiber. (b) Output
spectrum, (c) autocorrelation, and (b) soliton temporal separation ver-
sus input energy for a 2 m GRIN fiber. Reprinted with permission
from Ref. [39]. Copyright 2022, Optical Society of America.

Fig. 41. Simulated (using the MM GNLSE or the 1D NLSE
model, respectively) and experimental generation of dispersive wave
peaks in multimode GRIN fiber. Reprinted with permission from
Ref. [41]. Copyright 2015, American Physical Society.
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self-imaging effect, and conversely, these peaks vanish upon its
removal. The resulting dynamics are essentially single-mode,
and the sideband frequencies are determined by the phase-
matching condition between the wave numbers of the soliton,
ksol, and that of the dispersive wave, kdis, which reads as

ksol − kdis � 2mπ∕Zc
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where Z c is the self-imaging period, Ω is the frequency shift
from the input pump pulse, and b3 is associated with third-
order dispersion [41].

J. Solitons in Hollow-Core and Capillary Multimode
Fibers
Another frontier for MMS and spatiotemporal soliton phenom-
ena is provided by intense optical pulse propagation in multi-
mode hollow-core, gas-filled fibers, and capillaries [146].
Figure 42 presents a chronological overview of the dramatic
(more than 10 orders of magnitude) peak power increase of
fiber solitons when moving from standard single-mode fibers
to specialty fibers such as bandgap, antiresonant hollow-core,
and capillary fibers [147].

In gas-filled hollow-core fibers (HCFs), preferential guiding
by the fundamental mode occurs at low powers, because of its
low loss. As the input light intensity grows larger, ionization
leads to plasma defocusing, which in turn excites HOMs.
The resulting nonlinear mode coupling enables pulse compres-
sion, and sustains spatiotemporal localization leading to MMS
propagation at powers below the self-focusing threshold
[148–150].

In an interesting work by Safaei et al. [151], a high-energy
(5 mJ) 700 fs laser pulse at 780 nm was coupled into the fun-
damental mode of a 3 m long HCF with a 500 μm core size,
filled with nitrogen. Because of self-focusing, the progressively
spatially compressed pulse within the HCF coupled its energy
away from the fundamental mode and into radially symmetric
HOMs. The resulting MMS (also called a “multi-dimensional
solitary state”) experienced a substantial Raman SSFS until a
wide supercontinuum was generated. The emitted pulses were
accompanied by a high spatial beam quality and exhibited a neg-
ative quadratic spectral phase, which permitted their subsequent

dispersive compression down to 10 fs, thus providing a compact
source for high-harmonic-generation applications.

When considering gas-filled hollow capillary fibers using the
lightest noble gas with the highest ionization potential, helium,
the MMS intensity is limited to about I th ≃ 3 × 1014 W∕cm2,
before excessive gas ionization takes place [152]. For higher
intensities, most of the input pulse energy is absorbed; more-
over, a huge amount of self-phase modulation is produced,
which, in association with complex spatial mode-coupling, ul-
timately breaks down the soliton dynamics. Nevertheless, sol-
iton generation in hollow-core optical fibers has enabled a new
class of light sources, with unique properties. These include:
extreme pulse compression; generation of tunable, few-cycle ul-
traviolet to visible pulses through resonant dispersive wave
emission; and the production of tunable visible and infrared
light via soliton frequency shifting. Light beams produced from
these soliton-based sources have distinctive characteristics that
are unachievable by other methods, with far-reaching potential
for both fundamental science and technological applica-
tions [147].

10. CONCLUSIONS AND PERSPECTIVES

The exploration of MMSs in MMFs has revealed a rich land-
scape of nonlinear optical phenomena, advancing the under-
standing of soliton dynamics in complex media. In this
review paper, we started with a tutorial on MMSs within
MMFs in Section 2. This includes an analysis of the linear ei-
genmode properties of the two main types of multimode fibers:
SIMFs and GIMFs. We highlight the key fiber properties that
influence the formation of multimode solitons, thereby setting
the groundwork for understanding their role in soliton gener-
ation. Of course, fiber types are not limited to SIMFs and
GIMFs; however, the framework to evaluate a fiber’s perfor-
mance remains consistent, as illustrated in Fig. 2. One can de-
sign a fiber based on the transverse refractive index geometry
and the nonlinear material response. Generally, dispersion
management strategies are crucial for optimizing system perfor-
mance. These strategies, including minimizing the modal walk-
off length LW and increasing nonlinear coefficients, may reduce
the power threshold for MMS formation. By carefully manag-
ing these parameters, the overall efficiency and effectiveness of
optical fiber systems can be significantly enhanced.

Fig. 42. Temporal evolution of soliton peak power in different fiber structures (in the insets, glass is depicted in gray, while white indicates empty
spaces). Reprinted with permission from Ref. [147]. Copyright 2024, Elsevier.
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After familiarizing with the fundamental concepts, we intro-
duced the GMMNLSE in Section 3, which is relevant to
describing a wide range of MMFs with distinguishable eigenm-
odes. We then provided succinct examples, ranging from linear
multimode pulse walk-off to the formation of an MMS, includ-
ing phenomena such as the SSFS, soliton fission, and soliton
collision processes. These examples effectively elucidate the
concepts discussed in Section 2, thereby establishing a robust
foundation for further analytical and experimental exploration.
These concepts and the model are not only applicable to study-
ing MMSs in MMFs but also prove valuable in the design of
spatiotemporal mode-locked lasers [44–46].

Understanding the impact of modal walk-off is particularly
crucial in the formation of MMSs. In Section 4, we provide
a comprehensive review of the theoretical framework under-
pinning the dynamics of MMSs with two modes, utilizing
a simplified coupled mode model. Much of these findings
can be derived from the variational formulation of the
GMMNLSE, which aids in the creation of effective theories
that describe an MMS with a reduced number of degrees of
freedom. Our primary focus is on the formation of two-mode
solitons, and we employ the variational formulation, the
Kantorovich approach, and the virial (or moment) method
to analyze these solitons. This analysis is further extended to
a multimode context, thereby generalizing the previously dis-
cussed theories. Nevertheless, theoretical investigations of
MMS with multiple modes present significant challenges
and opportunities.

Similar analytical approaches can be applied to study STS in
the 3D+1 NLSE within GIMFs. In Section 5, we review the
primary theoretical results concerning the formation and stabil-
ity of STSs in the 3D+1 dimensional framework for GIMFs.
Our focus is on the variational formulation as the main tool for
gaining analytical insights into the properties of these states.
This approach allows us to obtain analytical solutions for spa-
tiotemporal MMSs in regimes below the energy threshold.
High-order dispersion is found to stabilize these STS states.
Furthermore, these STSs primarily arise from solitons carrying
fundamental modes with a small amount of high-order mode
content, as we mainly consider ansatzes expressed in terms of
fundamental modes. Potential directions for studying higher-
order STS can be explored by considering ansatzes that include
high-order modes.

To reduce the complexity of high-dimensional systems and
enhance computational efficiency, in Section 6, we simplify the
3D+1 NLSE to a 1D+1 NLSE form by leveraging the periodic
evolution of short optical pulses within a GIMF. We discuss
the practical conditions under which the effective 1D NLSE
can be applied, and provide several examples of MMSs exhib-
iting self-imaging, including GRIN soliton formation, and the
influence of higher-order effects. This method is particularly
efficient numerically and simplifies the implementation of ana-
lytical analysis, making it a valuable tool for studying complex
multimode fiber dynamics.

The complexity of the coupling terms in the GMMNLSE
imposes significant computational challenges when considering
a large number of modes. One approach to mitigate this issue is
to simulate the full field in the temporal domain, rather than

dealing directly with the coupling terms of the mode ampli-
tudes. In Section 7, we present an innovative Gaussian quad-
rature approach for numerical simulations of the generalized
NLSE. This method employs a mode decomposition based
on the fiber’s natural eigenmodes, utilizing an optimized
quadrature scheme for weighted orthogonal polynomials to
enhance computational efficiency. We begin with a radially
symmetric model and then extend our approach to a 3D+1
quadrature model, providing illustrative examples of the re-
sults. A major advantage of using Gaussian quadratures, instead
of relying on spatial Fourier transforms, is that separate disper-
sive phase shifts can be efficiently handled for each mode
through frequency-dependent matrix multiplication during
the linear step.

When considering long-distance propagation in SDM opti-
cal communications within multimode fibers, perturbations
caused by fiber imperfections and environmental factors can
amplify the influence of linear propagation effects. These linear
perturbation effects can significantly impact the dynamics of
MMS via random mode coupling. To accurately model this
phenomenon, additional terms are required, which can be
effectively described using a generalized Jones formalism. In
Section 8, we review the model and illustrate its application
with examples demonstrating howmode-dispersion coefficients
degrade MMS propagation.

In Section 9, we overview recent experiments involving
MMS, spanning various regimes such as the quasi-single-mode
and fully multimode domains. These experiments encompass a
diverse array of phenomena, including femtosecond walk-off
solitons, MMS fission, and solitons in SIMF. Additionally,
we explore the emergence of soliton attractors from long
MMF, investigate soliton-soliton collision dynamics, and ex-
amine dispersive wave generation. We envisage that potentially
new research directions for MMSmay involve additional topics
such as single pulse mode decomposition techniques, high-
power fiber damage threshold, and high-order mode MMS
spatial beam shaping.

Despite evident advances in understanding MMSs, numer-
ous questions persist. For instance, how can we quantitatively
assess the formation conditions of MMSs for modal walk-off
compensation, considering varying mode orders and modal
group velocities, especially when there is a significant disparity
in mode order? Does mode beating degrade or enhance the sta-
bility of MMSs? Are there qualitatively distinct types of MMSs,
such as those featuring high-order modes with coherent beam
quality? Can optical frequency conversion be achieved by ex-
ploiting the self-imaging effect? What strategies can enhance
our ability to control MMSs interactions by manipulating their
propagation speed? How can we better manipulate the propa-
gation speed of MMSs to control their interaction? How do
MMSs propagate under conditions of weak mode coupling
or mode-dependent loss? How do MMSs evolve in environ-
ments with strong or weak disorder? What impact do plasma
interactions have on MMSs? These questions represent
intriguing areas for further exploration. Additionally, for mod-
eling very-high-energy soliton dynamics, particularly in hollow-
core fibers [153], the full vector polarization model [154,155]
demonstrates strong similarities between simulations and
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experiments even when the peak power reaches terawatt
levels [156].

To efficiently explore diverse soliton solutions within the
framework of the GMMNLSE, 3D+1 NLSE, and 1D+1
NLSE models, both analytical and numerical methods are
crucial. In this review, we combined analytical techniques
(e.g., the variational approach; see Sections 4 and 5) with direct
numerical solutions based on the familiar split-step method
(Sections 2, 3, and 6) or using newly developed techniques such
as the Gaussian quadrature approach (Section 7). Recently, the
strong data-fitting capabilities of machine learning (ML) have
gained popularity in ultrafast optics, based on the use of neural
networks [157,158]. These ML algorithms establish relation-
ships between the input conditions and the output variables
within a constrained dynamical space, based on output data
from physical models, which may not adhere to the system
dynamics beyond this limited space. Since 2019, physics-
informed neural networks (PINNs) have garnered significant
attention for solving partial differential equations (PDEs)
[159–161]. PINNs integrate model equations, like PDEs, di-
rectly into the neural network architecture, resulting in physics-
supervised neural networks. Substantial research has focused on
nonlinear optics within the NLSE framework [162–168], in-
vestigating vector solitons in birefringent fibers [162–164],
higher-order terms [168], GMMNLSE [165], and three-
component coupled NLSE [167]. Future research could fur-
ther benefit from applying PINNs to 3D+1, 1D+1, and
GMMNLSE models for MMS studies.

We would like to dedicate this review to Bruno Crosignani,
a pioneer in multimode fiber solitons, who recently passed
away. To some of us, he has been a mentor in soliton research,
a dear friend, and a precious source of inspiration in science.
We are deeply grateful to all of our many collaborators in the
field of multimode optical solitons. We also thank the anony-
mous reviewers for their constructive remarks.

APPENDIX A: ABBREVIATION

Here we list the abbreviations in Table 1.

APPENDIX B: MODE DECOMPOSITION OF AN
INPUT GAUSSIAN PULSE

In this appendix, we detail the procedure for computing the
input mode distribution, when taking into account the speci-
fic input beam coupling conditions, which are encountered
experimentally.

In order to determine the input mode distribution, it is cru-
cial to know the waist of the input laser beam (supposed to be
Gaussian) and its displacement relative to the central axis of the
fiber. Let us first focus on the specific case of a Gaussian beam
that is injected into the fiber core, with an offset (x0, y0) from
the fiber axis. Hence, the beam at the fiber input facet is
described by

E in�x, y� �
1

σ
ffiffiffi
π

p e−
�x−x0�2��y−y0�2

2σ2 , (B1)

where σ is related to the beam full width at half maximum
(FWHM) of its intensity jE in�x, y�j2, or beam size
w � σ∕1.665, under the normalization condition

Z
∞

−∞

Z
∞

−∞
jE in�x, y�j2dxdy � 1: (B2)

Projecting this input beam onto the eigenmode basis, we
obtain the input modal coefficients

Cp �
Z

∞

−∞

Z
∞

−∞
E in�x, y� · Fp�x, y�dxdy: (B3)

Given that the eigenmodes Fp�x, y� are normalized, the co-
efficients jCpj2 quantify the power fraction of mode p, ensuring
energy conservation: XN

p�1

jCpj2 � 1: (B4)

For a nuanced analysis of the input beam size and displace-
ment, we normalize both parameters against the FWHM or
waist wmode,p�1 of the fundamental mode, by introducing
the two parameters rw and rs:

rw � w∕wmode, p�1 (B5)

rs � x0∕wmode, p�1: (B6)

By manipulating rw and rs, we may explore the variation of
the input mode content E in�x, y� for different Gaussian beam
profiles. In Fig. 43, we illustrate how the input mode content

Table 1. List of Abbreviations

Abbreviations Definitions

CW Continuous wave
DMD Differential mode delay
FMF Few-mode fiber
FWHM Full width at half maximum
FWM Four-wave mixing
GIMF Graded-index multimode fiber
GMMNLSE Generalized multimode NLSE
GNLSE Generalized NLSE
GPI Geometric parametric instability
GRIN Graded index
GVD Group-velocity dispersion
HOM High-order mode
IIR Fiber intensity impulse response
LG modes Laguerre-Gaussian modes
LOM Low-order mode
MCF Multi-core fiber
MD Spatial mode dispersion
MEA Mode’s effective area
MIMO Multiple-input-multiple-output
MMF Multimode fiber
MMS Multimode soliton
MNC Modal nonlinear coefficient
MNL Modal nonlinear length
NLSE Nonlinear Schrödinger equation
PDE Partial differential equation
PINN Physics-informed neural network
PMD Polarization-mode dispersion
SDM Space-division multiplexing
SIMF Step-index multimode fiber
SPM Self-phase modulation
STS Spatiotemporal soliton
VKS Vakhitov-Kolokolov stability
XPM Cross-phase modulation
ZDW Zero-dispersion wavelength
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shifts with rs across four distinct rw values, when considering
up toN � 30modes. Notably, when the Gaussian beam width
matches that of the fundamental mode (rw � 1 and rs � 0),
the mode content simplifies to jC1j2 � 1 with jCpj2 � 0
for p > 1, indicating a pure fundamental mode excitation.
Note that radial modes, specifically those indexed as p � 1,
6, 15, 28, are predominantly excited when the beam is precisely
centered at the fiber axis, providing that there is no lateral shift,
i.e., rs ≠ 0. Conversely, deviations in either rw or rs from unity
yield a more complex input mode distribution.

The blue lines in Fig. 43 depict the variation of the quantityPN
p�1jCpj2 as a function of the beam lateral offset rs from the

fiber axis. A decline in the blue curve values occurs because
beams characterized by relatively large values of rw or rs cannot
be fully represented by merely N � 30 modes. Naturally,
enhancing the number of modes considered in the decomposi-
tion analysis improves its precision, thereby enabling the accurate
decomposition of beams with larger rw and rs dimensions, albeit
at the cost of an increased computational time.

For numerical implementations, if a beam cannot be fully
represented by the limited number of total modes N , indicated
by

PN
p�1jCpj2 < 1, it becomes necessary to adjust the mode

coefficients to C 0
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp∕

PN
p�1jCpj2

q
for all modes. This ad-

justment ensures that the ratio of mode energies remains a con-
stant, while the corrected coefficients satisfy

PN
p�1jC 0

pj2 � 1,
thus preserving the total energy distribution among the modes.

To express the temporal input profile of the field, we assume
that at the fiber input (z � 0), all modes share identical tem-
poral shapes. Specifically, a Gaussian temporal profile is pre-
sumed, centered at t0 and characterized by a duration
T FWHM � T 0∕1.665, outlined as

Ap�z � 0, t� � Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E

T 0

ffiffiffi
π

p
s

e
−
�t−t0�2
2T 2

0 : (B7)

Thus, we may obtain the input condition for all modal am-
plitudes Ap for a given pulse with input energy E and beam
values rw and rs. Given that the mode field power is defined
by jAp�z, t�j2, the total energy of the input pulse satisfies
E � PN

p�1

R
∞
−∞jAn�z � 0, t�j2dt, ensuring the conservation

of the total input energy across all modes.
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