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Abstract

Low-code development platforms (LCDPs) are becoming increasingly common in the soft-
ware industry. By leveraging visual diagrams, dynamic graphical user interfaces, and
declarative languages, these platforms support the development of full-fledged applications
in the cloud. However, given the rapid evolution of these platforms, they encounter a fleet of
challenges and limitations. To address the challenges in Low-Code Development Platforms,
it’s essential to study their core concepts and technologies, primarily Model-Driven Engineer-
ing (MDE) and cloud computing. Despite MDE’s progress, its broader adoption is hindered
by challenges faced by practitioners. The first obstacle is efficient support for discovering
and reusing existing model artifacts. The development of similar tools and extensions leads
to resource wastage, undermining productivity and collaboration in model-based processes.
Additionally, local deployment of modeling environments causes scalability, extensibility,
collaboration, and performance challenges. Consequently, modelers are required to engage
in a process that involves downloading both artifacts and executables to their local ma-
chines. This is a prerequisite step before initiating a potentially intricate and lengthy setup of
Model-Driven Engineering (MDE) tools prior to their effective utilization.

Throughout this dissertation, we attempted to advance state-of-the-art toward understanding
and supporting cloud-based modeling in terms of LCDPs. Therefore, we aimed to enhance
the scalability and extensibility of modeling infrastructures by developing a cloud-based
low-code model repository. This approach goes beyond the typical implementation of
repositories with simple storage and query capabilities. We provide a large-scale repository
and services for low-code engineering (LCE). The implemented repository enables access,
persistence, discovery, and reuse of modeling artifacts via scalable and extensible approaches
and infrastructures. In the LCE context, core services are containerized, orchestrated, and
deployed as cloud services. The repository’s functionalities can be extended via its remote
API or by adding functionality in the form of extensions and services. Finally, an integrated
web-based search platform and various domain-specific languages are devised to support
various mechanisms for composing, discovering, and reusing persisted artifacts and model
management services.
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Chapter 1

Introduction

The history of computer science and computational thinking is marked by a continuous pursuit
of abstraction and automation to systematically solve complex problems and design intricate
systems [76, 53]. These approaches advanced software engineering, not necessarily resorting
to recurrent traditional programming paradigms [5]. However, despite gaining wide traction in
the 1990s thanks to rapid application development tools and fourth-generation programming
languages, they never achieved a dominant position in the software development space
until the current digital transformation [206, 53]. This digital transformation has rendered
software technologies prevalent staples in our daily life. As a result, traditional programming
paradigms can neither keep up the pace of change and complexity of modern applications nor
adapt or sustain the increasing demand for rapid development and deployment of software
systems [54, 42, 193].

The size and complexity of software artifacts and tools highlight that software development
can no longer be considered self-contained. As a matter of fact, as software systems become
more intricate, effective communication and collaboration become crucial at various levels of
abstraction [48]. This interaction and collaboration occurs between technical staff, customers,
and other stakeholders and bridges the gap in understanding throughout the application
development lifecycle [42]. Additionally, due to the ubiquity of software technologies in
today’s society, there is a constant need for updates and functional enhancements of existing
software artifacts and tools. However, there is a shortage of skilled software developers in
the labor market to meet this demand [43].

Today, a new breed of technologies that tackle this challenge head-on is emerging as one of
the industry’s significant new trends [191, 25]. Commonly known as low-code development
platforms (LCDPs), they sprung out from recent technological maturity seen in software
development, model-driven engineering (MDE), and cloud computing [76]. Particularly,
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advancements in visual programming, automatic code generation, and cloud infrastructures
have assisted LCDPs’ surge in popularity [186]. Furthermore, LCDPs promote greater access
to application development for a more extensive range of digital-savvy users from different
competence spectrums [76]. However, this increased utilization and adoption requires
maximizing efficiency through efficient resource management, discovery, and reuse of model
artifacts among the LCDP user community [137]. Hence, model repositories come into play
by enabling the persistence, organization, discovery, and reuse of model artifacts and tools
within and across LCDP applications. In doing so, model repositories facilitate collaborative
development among citizen developers and reduce upfront investment costs [206].

1.1 Motivation
Although LCDPs have increased usage in enterprises, their rapid evolution is fraught with
challenges hindering their widespread adoption across all software development domains.
Our work is motivated mainly by the following challenges [206, 19]:

• Scalability: The scalability of LCDPs is a crucial aspect of their evolution as they

expand beyond small applications into larger projects. To fully meet the needs of
large-scale and mission-critical enterprise applications, these platforms should acquire
technical capabilities to handle large amounts of data and computation while supporting
numerous collaborating users in a social network-style environment.

• Discovery and reuse of modeling artifacts and tools: The limited discovery and

reuse of model artifacts and tools within these platforms and MDE generally leads
to the wasteful recreation of similar artifacts and tools. The lack of adequate reuse
environments and mechanisms in these platforms further hinders the discovery and
reuse processes. This issue must be addressed to ensure optimal resource utilization
and effective collaboration to reach their full potential.

• Migrating local-based modeling environments to the cloud: LCDPs have the

potential to revolutionize modeling; however, their evolution is highly dependent
on their widespread adoption in the MDE community. Currently, modelers often
work in isolated local environments, which limits the flexibility and scalability of
resources and collaboration. In addition, complex, error-prone constant installations
and configurations hinder the reusability of model artifacts and tools. For modelers
and modeling engineers to fully embrace this paradigm shift, it is critical that cloud-
based modeling provide simplicity and improved functionality compared to current
local-based modeling methods. This includes seamless stakeholder collaboration and
increased flexibility and scalability regarding the resources involved.
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• Heterogeneity support: LCDPs have been fostered for citizen developers or non-

programmers with specialized knowledge in a particular engineering domain to create
applications specific to their field [206]. Modeling engineers, therefore, often expect
to easily incorporate their domain expertise into the application using standard for-
malisms and levels of abstraction. However, the current integration of heterogeneous
model artifacts and tools from different engineering disciplines requires more support,
potentially limiting the effectiveness of these platforms.

• Vendor lock-in: Although LCDPs are becoming more popular, LCDP vendors are

implementing their unique programming models and paradigms [186]. Unfortunately,
this leads to technological fragmentation and difficulties in cross-platform integration.
This phenomenon, known as vendor lock-in, can prove problematic for large-scale
projects requiring the reuse of multiple sources of functionalities and artifacts. In
addition, implementing existing languages in a cross-platform language would require
significant resources and rework, making integration economically unviable.

• Quality of artifacts:

Due to the burgeoning phase of LCDPs, advanced aspects such as quality control
are often overlooked. Therefore, reusability or sharing artifacts without adherence
to modeling standards often leads to quality degradation and the proliferation of
undesirable practices. Assessing artifacts’ quality prior to reuse can increase modeler
productivity, ultimately contributing to delivering high-quality systems through the
robustness and resilience of system performance.

• Intellectual property: As we promote the discovery and reuse of modeling artifacts

within these platforms, we must implement motivational measures to safeguard the
intellectual property rights of users and modelers. Active participation in a collaborat-
ing community can easily be maintained by nurturing a sense of trust and fairness. As
a result, a dynamic ecosystem is formed wherein the collective wisdom enriches the
experiences and benefits all stakeholders involved.

1.2 Research Objectives
The high-level overview of this work is shown in fig. 1.1. The figure can be interpreted from
top to bottom. The conceptual map has been organized into layers, each representing a specific
research activity to address challenges in section 1.1. The objective is to develop a scalable
and extensible cloud-based model repository, with the architectural design revolving around
scalability and extensibility. Hence, the API of the repository is designed to support remote
access and provide a scalable deployment model for integrating new tools and extensions. The
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primary role of the repository is to offer a scalable infrastructure for persisting model artifacts
and to facilitate the discovery and reuse of artifacts and tools both within the repository and
externally. The following research objectives guided our work:

Cloud-based low-code model repository

Understand LCDPs at their
conceptual level and technologies

Identify challenges  of cloud-based
modeling in data intensive apps

Low-code engineering repository
architecture specification

Ingestion, persistence and
management of model

artifacts

Advanced Discovery
mechanisms Reuse / MaaS

Collaboration

Architectural design

State-of-the-art

Implementation phase

Intellectual property

Governance policies and
guidelines

Research activity

Concept layer

Map Legend

Chapter 1,2,3

Chapter 4

Chapter 5,6

Chapter 6

Composition, discovery
and orchestration

Fig. 1.1 Conceptual map of the dissertation.

• State-of-the-art of LCDPs: The LCDP industry is relatively new and has yet to be
explored extensively, resulting in a lack of taxonomy and a shared understanding of
their state of the art. For LCDPs to be widely adopted in mainstream application devel-
opment, we must understand their challenges and opportunities in their engineering
workflow. While LCDPs have the potential to simplify and speed up application devel-
opment, they also come with certain limitations and potential security risks. Through
thorough investigation and comprehensive research into LCDPs, we can gather valu-
able insights and data to establish a solid foundation of best practices for their optimal
utilization when building mission-critical applications.
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• Open challenges and opportunities of cloud-based modeling: The increasing adop-
tion of LCDPs brings new challenges and opportunities for cloud-based modeling. As
a matter of fact, as modeling engineers are used to local environments, switching to
new gears can prove inconvenient. Nevertheless, these challenges and opportunities
provide valuable opportunities for further research in the modeling community. As
more resources are migrated to the cloud, these challenges provide valuable research
targets for the modeling community. Additionally, studying the opportunities presented
by cloud-based modeling paves the way for increased adoption and improved efficiency
of LCDPs.

• Scalabale and extensible cloud-based model repositories: At the heart of the work
done in this dissertation is addressing challenges related to the scalability and ex-
tensibility of modeling environments, especially model repositories. The intended
repository is not just a storage of model artifacts with simplistic retrieval mechanisms
but a complex system of services and tools involved in the persistence and management
of low-code model artifacts and tools. Users can easily access on-demand artifacts
and tools without downloading them or relying on third parties. Below we address
objectives directly related to this concept:

– Organization and persistence of heterogeneous artifacts: Ideally, model repos-
itories should enable effortless persistence, discovery, and retrieval of model
artifacts from various domains. Hence, proper reverse-engineering mechanisms
should be used to extract critical information from these artifacts to facilitate
their access and organization. In addition, these mechanisms should allow a
dynamic resolution of appropriate artifact extractors at runtime. Furthermore,
integrating artifacts from different technologies and domains should not lead to
fragmentation in the repository but instead provide a flexible and scalable unified
approach for efficient data storage, discovery, and retrieval.

– Scalability: As MDE is applied to larger and more complex systems, the infras-
tructures and approaches must scale simultaneously, respective to the workload.
Additionally, these infrastructures should exhibit resiliency, self-healing, and
high availability to support significant model artifacts, computationally expensive
operations, and a large user community.

– Extensibility: The ability to easily extend new functionality in a model repository
is still limited due to technological dependency, local-based modeling environ-
ments, and non-extensible architectures. These local environments often have
limited capacity and require time-consuming installations and configurations,
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making it difficult to add new features. Despite these challenges, extensibility is
crucial for promoting collaboration in the repository without sacrificing its core
functionalities.

• Architecture specifications of a scalable and extensible cloud-based model repos-
itory: The system’s architectural design should reflect the current breakthrough ap-
proaches and technologies to achieve these features. Hence, it is imperative to consider
the expectations of the MDE community during the design phase. Thus identifying
the challenges and opportunities of cloud-based modeling is the foundation for suc-
cessful architectural design to ensure that the needs of the MDE community are met.
Furthermore, the process should focus solely on the essential core functions of the
system to avoid a quagmire. Such a design paradigm ensures that system key features
are maintained and noticed from the onset.

• Discovery mechanisms: Discovery and reuse in the repository should be considered
from two points of view: model artifact discovery and service discovery. Model
artifact discovery involves establishing mechanisms that locate model artifacts based
on user-defined criteria. These criteria should not be limited to the internal properties
of the artifacts but also to the megamodel or other measures such as their quality or
the operations in which they were involved. Therefore, fast retrieval of model artifacts
requires scalable indexing mechanisms to support large models and many users. On
the other hand, service discovery requires a service registry to enable the discovery
of model management tools and extensions. In addition, users must be able to find
available services and how they can reuse them.

• Reusability: This concept is at the heart of model repository and software development.
It enables resource sparing hence reducing upfront efforts either in investments or
infrastructures. Reusability in LCDPs is vital to provide mature components tested
by different users and platforms, resulting in scalable and stable development. Model
artifacts can be manipulated with visual editors or through application programming
interfaces (API). Once manipulated, they can be reusable in model management
operations. This way, both model artifacts and model management tools and extensions
are mutually reused. Reusing them on the same platform where the artifacts were
discovered should be possible without downloading them locally or in a different
environment before their use.

• Composition of model management tools and extensions: They can be composed
into workflows by designating model management operations as participants in a
higher-level goal. This way, users can upload an artifact, validate it, and transform
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it into a component that serves them in later stages of application development in
LCDPs. Thus, an orchestrator is required to implement a cluster of services executed
on demand, with the user declaratively specifying the desired outcome, with no manual
intervention or oversight.

• Model management tools as-a-service (Maas): Since model management tools are
typically deployed locally as software packages on top of complex environments, it
is difficult for citizen developers to keep track of dependencies and frequent updates
in different technologies. By offloading modeling resources to the cloud, citizen
developers can engage only with application development that reflects their domain.
By deploying model management tools and extensions as services (MaaS) in the cloud,
these services are packaged into self-contained environments and consumed remotely
via APIs. In addition, API specifications that facilitate their use remotely should be
created and deployed online for developers to reuse.

• Artifact quality control: As repositories become more popular, incorporating quality
control measures during the reuse phase can foster a culture of reuse and improve
the overall efficiency of the repository. Without this type of quality assurance, the
overall integrity and utility of the repository may be compromised. Because the quality
requirements for different model artifacts may vary, these requirements must be clearly
defined for each type where possible.

• Access and reuse policy: Access control and reuse policies are part of the most
important aspects of a repository. These mechanisms allow users to manage the
distribution, terms of use, dissemination, and utilization of contents within and outside
a repository. Hence, by preserving the intellectual property rights of users, it is easier
to encourage collaboration and reuse among citizen developers.

1.3 Research Methodology
We tailored our research process to tackle the challenges highlighted in section 1.1. We
grounded our process in systematic strategies that advance the current frontiers of Low-Code
Development Platforms (LCDPs). Our methodology is anchored on two key tenets: iterative
refinement for consistent enhancement and adaptability to incorporate evolving insights
and developments with agility. Our research began when the LCDPs had relatively limited
research coverage. Hence our initial endeavor was to bridge this gap by contributing to the
foundational understanding of these platforms. We developed a comprehensive taxonomy
delineating their distinctive features.
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We continued our research by meticulously exploring the state-of-the-art of modeling and
cloud-based modeling. We conducted thorough literature reviews to glean valuable insights
into prevailing practices, identifying potential obstacles, opportunities, and research gaps
in the current landscape. The insights gathered during this stage set up the stage for the
subsequent steps of our research.

Transitioning from the exploratory stage, we embarked on the design of a cloud-based low-
code model repository. The design was iterative and incremental, allowing us to integrate
emerging solutions and thus bolster the repository’s architecture in terms of efficiency and
utility. The extensibility principle underpins the current architecture, allowing for expansion
without undermining the repository’s core foundations. The architecture also followed
peer-reviewed architecture in software engineering [131].

The implementation phase transformed the above architecture into a functional system.
Throughout this process, we maintained a strong focus on testing and refining new features,
primarily those addressing the challenges in section 1.1. This phase included ensuring quality
control of persisted model artifacts through peer-reviewed approaches that assess their quality
before their persistence.

The next phase involved testing the major implementation features of the repository with
other modeling systems. To this end, we considered Droid, an MDE recommender system
from Universidad Autónoma de Madrid (UAM), to help us assess the practicality and
feasibility of our implementations [7]. Lastly, the repository implemented features that
enforce safeguarding intellectual property rights. By enforcing intellectual property rights,
we foster a secure environment for information exchange, empowering a vibrant community
of modelers to collaborate and share their artifacts with other repository users without
compromising their safety. The following section outlines the structure of this thesis.

1.4 Thesis Structure
Figure 1.2 represents the structure of this thesis. The grey boxes represent the main activities,
which are organized into chapters. These are the activities that guided our research throughout
this thesis. The rounded boxes represent the main findings, contributions, and approaches
related to each activity. In a nutshell, the chapters are organized as follows:

Chapter 2 - Low-code development platforms: As the demand for software continues to
proliferate, so does the need for efficient development methods. This is where LCDPs
come into play, promising to revolutionize traditional software development. In this chapter,
we conducted a technical investigation of these platforms to understand their underlying
concepts and technologies and the challenges and opportunities they present. We studied
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eight representative platforms and identified their respective supported features to support
the state-of-the-art of these platforms. We created a feature taxonomy to facilitate selection
among current LCDPs. Our comparative framework allows us to analyze the functionalities
and services of each platform, ultimately leading to a better understanding of LCDPs as a
potential new paradigm for software development.

Chapter 3 - Cloud-based modeling: a survey, open challenges and opportunities: The
use of cloud-based modeling tools and platforms is becoming increasingly popular in the
development of data-intensive applications, particularly in the Internet of Things (IoT) field.
Through a comprehensive review of 625 articles, we investigated 22 different approaches
to cloud-based IoT system development. Our findings highlighted both the benefits and
challenges associated with this trend and helped inform the design of our repository for
cloud-based modeling infrastructure.

Chapter 4 - Low-code engineering repository architecture specification: In our ongoing
effort to address the issues of scalability and extensibility in LCDPs and model-driven engi-
neering in general, we have been exploring the potential of a cloud-based model repository.
This chapter presents the architectural design of the developed system, drawing inspiration
from the challenges highlighted in the previous chapter. The resulting architecture is designed
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to be highly decoupled and distributed, allowing for improved scalability and reuse of model
artifacts and tools across platforms such as LCDPs. This architecture aims to alleviate all
challenges mentioned in section 1.1

Chapter 5 - Composition, discovery, and orchestration of model management operations:
Developing complex systems often requires coordinating multiple model management ser-
vices and repositories. Although several service composition proposals have been made in
model-driven engineering, no satisfactory solution has yet been found. This chapter proposes
a low-code development environment and a domain-specific language for citizen developers
to plan, organize, specify, and execute model management workflows. Exposing model
management operations as services enables service composition and relieves developers
from managing low-level details. This includes managing the required model management
services’ discovery, orchestration, and integration. This is achieved through a modular and
distributed microservice architecture that facilitates the reuse and extensibility of services
within our cloud-based cluster.

Chapter 6 - Advanced discovery mechanisms in model repositories: This chapter presents a
novel approach to discovering heterogeneous model artifacts in MDEForge, a cloud-based
model repository. We have developed advanced mechanisms for contextually retrieving and
reusing these artifacts across model management services. We also developed a domain-
specific query specification in the form of a microsyntax that enables query formulation
using keywords, search tags, conditional operators, quality model assessment services, and
a transformation chain discoverer. Finally, the usability of our approach was assessed
in a recommender system modeling framework and a search facility application. Both
applications enjoy more than 5,000 model artifacts currently persisted in our cloud-based
model repository.

Chapter 7 - Conclusion: This chapter presents the summary contribution of this thesis. First,
we present the tools that have been developed during this research and the publications that
have been made. Finally, we describe the potential future work for this research.



Chapter 2

Low-code development platforms

The increasing growth of the internet use and ever-changing market demands are leading
to an unprecedented digitalization of the world [129, 203]. Companies can no longer rely
on creating large, monolithic applications tailored to the needs of their particular business
or industry. They are under increasing pressure to be responsive, resilient, and competitive
to meet today’s market demands for software systems [89]. As a result, software systems
are becoming steadily more complex, and their development is becoming more costly and
time-consuming [55, 90]. Furthermore, the demand for software applications is growing
at a rate that outpaces the available supply of skilled software engineers. In fact, market
research firm Gartner has already predicted that demand for software systems will not match
the delivery capacity of software companies [143, 210]. As a result, companies are looking
for faster, cheaper, and safer ways to meet market demand without compromising quality,
productivity, and ethics [90].

In light of the current technological landscape, low-code development platforms (LCDPs)
have shifted the paradigm of software development [8]. Aimed at addressing the current
challenges of digital transformation, LCDPs provide reliable means for enterprises to create
fully-operational applications with minimal effort [203]. Recent studies show that companies
are switching to LCDPs to streamline their operations [47]. In addition to reducing the strain
on IT resources, LCDPs allow fast product delivery to the market at a lower cost. These
platforms can also be used in the prototyping and design phases to effectively collaborate with
stakeholders and foster better communication and collaboration across the enterprise [177].

With LCDPs, programming expertise is no longer required to develop highly functional soft-
ware applications. With these platforms, citizen developers can build software applications
without needing a team of professional developers [218]. This allows citizen developers to
focus on the business aspects of the application and leave behind tedious details such as
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setting up infrastructure and maintaining the system. The use of high-level abstractions and
models also makes application debugging, scalability, and extensibility on these platforms
easy, fast, and maintainable [150]. In addition, when needed, custom code can be specified
to further customize the application to the preferences of the individual citizen developer.

This chapter provides a technical survey to distill the relevant functionalities provided by
different LCDPs and accurately organize them. In particular, eight major LCDPs have been
analyzed to provide potential decision-makers and adopters with objective elements that can
be considered to guide the selection and consideration of these platforms. The contribution
of the chapter is summarized as follows:

• Identification and organization of relevant features characterizing different low-code
development platforms;

• Comparison of relevant low-code development platforms based on the identified
features;

• Presentation of a short experience report on adopting low-code development platforms
for developing a simple benchmark application.

To the best of our knowledge, this was the first work to analyze different low-code platforms
and discuss them according to a set of elicited and organized features.

The remaining sections of this chapter are organized as follows: Section 2.1 presents the
background of the work by showing the main architectural aspects of low-code development
platforms. Section 2.2 introduces the eight LCDPs considered in this work. Section 2.3
presents the taxonomy, which has been conceived for comparing LCDPs as discussed in
Section 2.4. Section 2.5 presents a short experience report on adopting LCDPs to develop a
simple benchmark application. Section 2.6 presents the related works. Section 2.7 concludes
the chapter and discusses some perspective work.

2.1 Background
In the early days of computing, software development was more concerned with writing
functional code [111]. This was simple in concept but quickly became impractical as the
size and complexity of programs increased. In response, software engineers in the 1960s
began developing ways to abstract away from the underlying hardware and make higher-level
languages easier to work with [99]. These efforts paved the way for automating many tasks
that had previously been done by hand and significantly increased productivity. In the 1980s,
a number of new tools and methods were proposed under the term computer-aided software
engineering (CASE) to increase productivity, shorten time to market, and reduce human error
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in large software projects [76, 191]. The development of CASE tools laid the foundations
for new software paradigms such as visual programming and model-driven engineering
(MDE) [191].

With the advent of MDE in software development, the focus in the software engineering
research community shifted from the then-trending object technology to models as the central
point, bringing abstraction, separation of concerns, and automation of development processes
to the forefront [51, 47]. Meanwhile, in today’s world, digital transformation has made
software almost existential in our daily lives. We rely on complex systems we can hardly
operate without using software [8, 47]. However, as the demand for more and more software
increased, the complexity of software systems and the lack of enough skilled developers
to meet the demand became a challenge [76, 8]. As a result, a new approach, low-code
development platforms (LCDPs), began to gain a foothold. They enabled domain experts
with varying levels of expertise and technical know-how, known as citizen developers, to
develop fully functional, production-ready software applications [47].

LCDPs are software platforms that sit on the cloud [176]. They capitalize on recent de-
velopments in cloud computing technologies and modeling, such as Platform-as-a-service
(PaaS) and proven software design patterns and architectures, to ensure effective and efficient
development, deployment, and maintenance of the wanted application [206]. They operate in
model-driven facilities to abstract and automate each step of an application’s lifecycle [47].
With the primary goal of dealing with the shortage of highly-skilled professional software
developers, LCDPs allow end-users with no particular programming background (called
citizen developers in the LCDP jargon) to contribute to software development processes
without hindering the productivity of professional developers. They enable citizen developers
- from novices to professionals, as well as subject matter experts and seasonal developers,
even business stakeholders and decision-makers - to build value-driven enterprise appli-
cations in less time, without requiring a lot of resources and effort, as is the case with
traditional programming [206]. These applications take advantage of cloud infrastructures,
automatic code generation, declarative languages, and high-level and graphical abstractions
to develop entire functional software applications [211]. At the heart of LCDPs lies MDE
principles that mainly promote automation and abstraction enabled by adopting modeling
and metamodeling [206, 47].

Recent research has chronicled the expansion of these technologies with significant market
growth in revenue [47]. Forrester and Gartner documented the growth of LCDPs in their
reports [176, 184, 211], which forecasted significant market growth for LCDP companies in
the coming years. In fact, major PaaS vendors such as Google and Microsoft have already
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integrated LCDPs into their mainstream offerings (Google App Maker and Microsoft Power
Platform, respectively). Grand View Research forecasts that the market for LCDPs will
proliferate in the coming years, from $3.02 billion in 2016 to $86 billion in 2027 [174]. In
2019, these platforms accounted for a market value of $11.45 billion and were expected to
grow at a CAGR(Compound Annual Growth Rate) of 22.7% between 2020 and 2027 [173].
Gartner predicts that by 2023, 50% of medium enterprises will use LCDPs, and by 2024,
LCDPs will account for 65% of application development, with 75% of large enterprises using
these platforms to develop their software systems [209, 47].

A bird-eye view on low-code development platforms

From an architectural point of view, LCDPs consist of four main layers, as shown in fig. 2.1.
The top layer (see Application Layer) consists of the graphical environment that users
directly interact with to specify their applications. The toolboxes and widgets used to
build the user interface of the specified application are part of this layer. It also defines
authentication and authorization mechanisms applied to the specified artifacts. Through
the modeling constructs made available at this layer, users can specify the behavior of the
intended application. For instance, users can specify how to retrieve data from external data
sources (e.g., spreadsheets, calendars, sensors, and files stored in cloud services), how to
manipulate them by using platform facilities or utilizing external services, how to aggregate
such data according to defined rules, and how to analyze them. To this end, the Service

Integration Layer is explored to connect with different services using corresponding APIs
and authentication mechanisms.

A dedicated data integration layer allows data manipulation from heterogeneous sources.
To this end, the Data Integration Layer concerns data integration with different data
sources. Depending on the LCDP used, the developed application can be deployed on
dedicated cloud infrastructures or on-premise environments (Deployment Layer). Note that
the containerization and orchestration of applications are handled at this layer together with
other continuous integration and deployment facilities that collaborate with the Service

Integration Layer.
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Fig. 2.1 Layered architecture of low-code development platforms.

Main components of low-code development platforms

By expanding the layered architecture shown in fig. 2.1, the peculiar components building
any low-code development platform are depicted in fig. 2.2, and they can be grouped into
three tiers. The first tier comprises the application modeler; the second tier is concerned with
the server side and its various functionalities; and the third tier is concerned with external
services integrated with the platform. The arrows in fig. 2.2 represent possible interactions
occurring among entities belonging to different tiers. The lines in the middle tier represent
the main components building up the platform infrastructure. As previously mentioned,
modelers are provided with an application modeler enabling the specification of applications
through provided modeling constructs and abstractions. Once the application model has
been finalized, it can be sent to the platform back-end for further analysis and manipulations,
including the generation of the full-fledged application, which is tested and ready to be
deployed on the cloud.
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Fig. 2.2 Main components of low-code development platforms.

Figure 2.3 shows the application modeler of Mendix [151] at work. The right-hand side of
the environment contains the widgets that modelers can use to define applications, as shown
in the central part of the environment. The left-hand side of the figure shows an overview of
the modeled system, e.g., the elements in the domain model and the navigation model linking
all the specified pages. The application modeler also permits running the system locally
before deploying it. To this end, as shown in fig. 2.2, the middle tier takes the application
model received from the application modeler and performs model management operations,
including code generations and optimizations, by also considering the involved services,
including database systems, micro-services, APIs connectors, model repositories of reusable
artifacts, and collaboration means [161].

Concerning database servers, they can be both SQL and NoSQL. The application users and
developers are not concerned about the type of database employed or mechanisms ensuring
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Fig. 2.3 The application modeler of Mendix at work.

data integrity or query optimizations. Generally, the developer is not concerned about the
low-level architecture details of the developed application. All the needed micro-services are
created, orchestrated, and managed in the back-end without user intervention. Although the
developer is provided with the environment where she can interact with external APIs, specific
connectors are responsible for consuming these APIs in the back-end. Thus, developers
are relieved from manually managing technical aspects like authentication, load balance,
business logic consistency, data integrity, and security.

Low-code development platforms can also provide developers with repositories that can store
reusable model artifacts by taking care of version control tasks. To support collaborative
development activities, LCDPs include facilities supporting development methodologies like
agile, kanban, and scrum. Thus, modelers can easily visualize the application development
process, define tasks, and sprints deal with changes as soon as customers require them and
collaborate with other stakeholders.

Development process in LCDPs

The typical phases of developing applications utilizing LCDPs can be summarized as follows.

1. Data modeling - usually, this is the first step taken; users make use of a visual interface
to configure the data schema of the application being developed by creating entities,
establishing relationships, and defining constraints and dependencies generally through
drag-and-drop facilities. A simple data model defined in Mendix is shown in fig. 2.4.
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Fig. 2.4 A simple data model defined in Mendix.

2. User interface definition - secondly, the user configures forms and pages (c.f. fig. 2.3)
used to define the application views and later define and manage user roles and security
mechanisms across at least entities, components, forms, and pages. Here, drag-and-
drop capabilities play a significant role in speeding up development and rendering the
different views quickly.

3. Specification of business logic rules and workflows - Third, the user might need to
manage workflows amongst various forms or pages requiring different operations on
the interface components. Such operations can be implemented in terms of visual-
based workflows, and to this end, BPMN-like notations can be employed as shown in
fig. 2.5.

4. Integration of external services via third-party APIs - Fourth, LCDPs can provide
means to consume external services via integrating different APIs. Investigating the
documentation is necessary to understand the form and structure of the data that the
adopted platform can consume.

5. Application deployment - In most platforms, it is possible to quickly preview the
developed application and deploy it with a few clicks.

2.2 An overview of representative low-code development platforms
This section provides an overview of eight low-code development platforms (LCDPs) that are
considered leaders in their respective markets in Gartner [211] and Forrester [184] reports.
We assume that these eight LCDPs are representative of our analysis, which includes various
features listed in Tables 2.1 and 2.2.
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Fig. 2.5 A simple logic defined in Mendix.

OutSystems [161] enables enterprises to develop and deploy applications fast and efficiently
while keeping up with the pace of innovation. It ensures developed apps are secure, ready, and
scalable. OutSystems is a pioneer and industry leader in low-code application development
and is among few vendors regularly ranked as a leader in this domain.

OutSystems supports desktop and mobile applications that can run in the cloud as well as
on-premises infrastructures. It offers built-in capabilities that allow an application to be
published from a URL with a single click. In addition, OutSystems has an Intermediate
Studio for database connectivity via .NET or Java and a Service Studio to specify the behavior
of the application being developed. Lastly, it supports a wide range of applications, including
billing systems, CRMs, ERPs, extensions to existing ERP solutions, operational dashboards,
and business intelligence.

Mendix [151] provides an easy-to-use platform for developing applications with minimum
coding. This approach accelerates software development, streamlines deployment, and
speeds up application delivery. As a result, enterprises benefit from the platform through
features such as cloud deployment, intelligent automation, and data integration capabilities
that further streamline business operations.

The majority of Mendix’s features are accessible through drag-and-drop as users collaborate
in real-time. The visual development feature is very advanced and allows the reuse of various
components to speed up the development process, from creating user interfaces to building
the data model. With pre-built connectors, machine learning techniques, users can develop
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context-aware applications. Mendix’s Solution Gallery1 is an additional resource that permits
users to start from already developed solutions.

Zoho Creator [67] is an all-in-one platform that streamlines the digitization of business
processes without the overhead of traditional development. With its easy-to-use drag-
and-drop and user-friendly, users create forms, pages, and dashboards with a responsive
design that adapts to the resolution of any screen (mobile or desktop). With Zoho Creator,
organizations can manage their data and processes, gain insights from their database, and
easily integrate their current applications with other services such as Salesforce2 connectors.
Additionally, the platform’s scalability and flexibility make it easy to customize applications
to meet specific needs, regardless of the size of the organization. With the ability to create
prototypes and mockups quickly, Zoho creator lowers barriers to entry for web development.

Microsoft PowerApps [165] is a cloud-based tool that enables the creation of custom,
cross-platform mobile applications with little to no coding required. It is aimed at non-
technical users to allows them to design applications tailored to their unique needs thanks
to pre-built packages and components in the Microsoft suite. The platform allows users to
create apps using drag-and-drop capabilities and a library of pre-built templates. It enables
the reuse of artifacts, and the linking of PowerApps to a range of data sources including
Excel, SharePoint, SQL Server, OneDrive, and other products from their Microsoft tool
suite. PowerApps supports both model-based and canvas-based methods for application
development, depending on the project’s requirements. Alongside Power BI and Power Flow,
PowerApps is part of the Power Platform.

Google App Maker [73] this is a low-code development platform powered by G Suite 3. It
allows organizations to create and publish custom enterprise applications without having to
invest in expensive infrastructure or developers. Google App Maker provides a cloud-based
development environment with advanced features such as in-built templates, drag-and-drop
user interfaces, database editors, and file management facilities. The platform employs
standard languages such as HTML, Javascript, and CSS to create a rich user experience. As
a low-code development platform, App Maker enables users to quickly develop and deploy
business applications with no or less coding. In fact, users can configure or drag-and-drop
components to build their app. As part of google ecosystem, it integrates with G Suite, and
users can easily connect their app to google services, and provides access to a wide range of
resources including documentation, training materials, and community support forums. Both

1https://www.mendix.com/solutions/
2https://www.salesforce.com/it/
3https://gsuite.google.com/

https://www.mendix.com/solutions/
https://www.salesforce.com/it/
https://gsuite.google.com/
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small businesses and large enterprises can use this tool to speed up application development,
lower costs, and enhance agility and flexibility.

Kissflow [140]: Kissflow is a cloud-based workflow software designed to help organizations
manage and automate their business processes hence increase productivity and streamline
operations. It features a visual drag-and-drop interface and a library of templates for common
business processes, as well as collaboration, task management, document management, and
reporting capabilities. Targeted towards small business applications, the platform provides a
simple and visual way to create and manage workflows. It integrates with third-party APIs,
such as Zapier4, Dropbox5, IFTTT6, and Office 3657. Kissflow is user-friendly and strives to
automates routine tasks while providing a clear visual representation of workflows.

Salesforce App Cloud [187] as a low-code development platform, Salesforce App Cloud
allows companies to easily create and deploy custom applications without programming
skills. Through a visual interface, users such as citizen developers can build apps by drag-
and-drop predefined components. Once created, the app is ready and it can be deployed to
the Salesforce App Cloud and later accessed via web browser or mobile device to manage
sales data, track leads, and generate reports. This platform offers a wide range of features
and integrations to meet the specific needs of any business, as well as providing secure and
scalable cloud-based applications. Professional developers can leverage the platform’s out-of-
the-box tools and operations for automation through integration with external services. It also
has an extensive AppExchange marketplace8 where users can find pre-built applications and
components, reusable objects, and elements, a drag-and-drop process builder, and built-in
Kanban boards.

Appian [11] is one of the oldest low-code development platforms. This platform allows
users to build personlized mobile and web apps where users can collaborate and manage
their tasks. Its decision engine is useful for complex modeling logic and enables enterprises
to build and deploy business applications quickly. Hence enterprises can automate complex
business processes and improve organizational agility in their applications. The platform
also offers comprehensive analytics and reporting capabilities to track performance and
make data-driven decisions, thus saving time and resources while delivering high-quality
applications.

4https://zapier.com
5https://www.dropbox.com/
6https://ifttt.com/
7https://products.office.com/it-it/home
8https://appexchange.salesforce.com/

https://zapier.com
https://www.dropbox.com/
https://ifttt.com/
https://products.office.com/it-it/home
https://appexchange.salesforce.com/
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Fig. 2.6 Feature diagram representing the top-level areas of variation for LCDPs.

2.3 Taxonomy
In this section, we introduce preparatory terms that can facilitate selecting and comparing
different LCDPs. The features are derived by examining the requirements in building an
application along with the capabilities that a low-code platform could provide in building
an application. Specifically, by analyzing the low-code development platforms described
in the previous section, we identified and modeled their differences and similarities. Our
results are documented using feature diagrams [70], which are a common notation in domain
analysis [71]. fig. 2.6 shows the top-level feature diagram, where each sub-node represents a
main variation point. Tables 2.1, 2.2 provide details of the taxonomy described below.

• Graphical user interface: This group of features represents the functionalities available
in the front-end of the platform under consideration to support customer interactions.
Examples of functionality included in this group are drag-and-drop tools, forms, and
advanced reporting capabilities.

• Interoperability support with external services and data sources: This group of fea-
tures refers to the ability to interact with external services such as Dropbox, Zapier,
Sharepoint, and Office 365. The ability to connect to various data sources to create
forms and reports is also included in this group

• Security support: The features in this group relate to the security aspects of the ap-
plications developed with the platform being used. Features in this group include
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authentication mechanisms, adopted security protocols, and user access control infras-
tructures.

• Collaborative development support: This group refers to the models of collaboration
(e.g., online and offline) that are established to support the collaborative specification
of applications between developers in different locations.

• Reusability support: it refers to the mechanisms used by each platform to enable the
reuse of previously developed artifacts. Examples of reusability mechanisms include
predefined templates, pre-built dashboards, and built-in forms or reports.

• Scalability support: Such a group of features enables developers to scale applications
according to various dimensions, such as the number of manageable active users,
traffic, and storage capacity that a particular application can handle.

• Business logic specification mechanisms: refers to the tools provided for specifying
the business logic of the modeled application. These tools include a business rules
engine, a graphical workflow editor, and API support for communication with other
applications. The business logic can be defined through one or multiple API calls.

• Application building mechanisms: refers to the way in which the specified application
is created, i.e., by using code generation techniques or by models at runtime. In the
first case, the source code of the modeled application is generated from the specified
models and then implemented. In the second case, the specified models are interpreted
at runtime and used to control and automate deployment.

• Deployment support: refers to deployment mechanisms supported. For example,
the generated application can be deployed to various app stores and local or cloud
infrastructures.

In addition to the information shown in fig. 2.6, top-level features are shown. LCDPs can
also be classified in terms of the type of applications they support. In particular, each LCDP
can support the development of one or more types of applications, including web portals,
business process automation systems, and quality management applications.
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Graphical user interface
Drag-and-drop facilities – This feature improves the user experience by allowing drag and drop of elements involved in the creation of an app, including

actions, responses, connections, etc.
Point and click approach – – – – – – – This is similar to the drag and drop feature, except that you must point to the object and edit some fields such as names
Pre-built forms/reports These are ready-made and usually reusable editable forms or reports that a user can use when developing an application.
Pre-built dashboards – – – These are the default dashboards used by the user while developing an application.
Forms – – – – – – This feature allows you to integrate forms in their applications. They are usually customizable and include custom forms,

surveys, checklists, etc.
Progress tracking This feature helps developers collaboratively track their progress while developing an application.
Advanced reporting – – – – – – – This feature provides graphical report capabilities where users can use graphs, tables, charts, etc.
Built-in workflows – – – – – some business logic workflows are identified and packaged in the platform for reuse. Hence users leverage these workflows

when building applications.
Configurable workflows – – – – In addition to built-in workflows, users can have customizable workflows.

Interoperability support
Interoperability with exter-
nal service

– This feature allows users to integrate parts of the artifacts developed in one application in other LCDPs.

Connection with data
sources

This feature connects the application to data sources such as Microsoft Excel, Access, and other relational databases such as
Microsoft SQL, Azure, and other non-relational databases such as MongoDB.

Security Support
Application security This feature enables the security mechanism of an application, such as access control, authentication, authorization, and so on.
Platform security these platforms usually provide security capabilities at the platform level where user can access their resources or configure

roles for other users.
Collaborative development support

Off-line collaboration some platforms enable distributed collaboration for users to synchronize their work using version control mechanisms.
On-line collaboration – – Different developers collaborate concurrently on a application. Conflicts are managed at run-time.

Reusability development support
Built-in workflows – – – – – This feature allows reusing features such as workflows when creating an application.
Pre-built forms/reports These are standard forms and the most common reusable, editable forms or reports that a user can integrate into an application.
Pre-built dashboards – – – These are customizable dashboards that users can directly reuse rather than starting from scratch when developing an

application.

Table 2.1 Taxonomy / Comparison for analyzed Low-Code Development Platforms.
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Scalability
Number of users The platform is configured to autoscale based on the workload imposed by the number currently using the platform.
Data traffic – The platform can scale up and down based on the volume of data being processed at a given time.
Data storage – The ability for the storage to autoscale based on the data volume that is needed to be persisted or processed.

Business logic specification mechanisms
Business logic engine This engine empowers the platform with the ability to execute business logic such as workflows.
Graphical workflow editor – – – – This feature allows users to define one or more business logic in a graphical manner.
AI-enabled business logic – – – – This is an important feature that uses artificial intelligence to learn the behavior of an attribute or object and replicate that

behavior using learning mechanisms.
Application building mechanisms

Code generation – – – – – – – This feature generates the source code of the modeled application, and the user takes responsibility for deploying the application.
Models at run-time – The model of the specified application is interpreted at run-time, automating deployment phase.

Deployment support
Deployment on cloud With this feature, users can deploy an application to a cloud infrastructure.
Local deployment – – – – This feature allows an application to be deployed locally, mainly for testing purposes.

Type of supported applications
Event monitoring This type of application is about collecting data, analyzing events that the data may cause, and reporting events that occur in

the data to the user.
Process automation – – This type of application focuses on automating complex processes, such as workflows, that can run with minimal human

intervention.
Approval process control – – – – – – – This type of application consists of processes for creating and managing work authorizations. For example, payment tasks can

be managed through the approval of authorized personnel.
Escalation management – – – – – – – these types of applications are common in customer service. They focus on automating and streamlining the process of

escalating issues and resolving problems efficiently and efficiently.
Inventory management This type of application is used to monitor the flow of goods, from procurement to delivery, and allow businesses to manage

stock levels. In addition, they can help to automate purchase and sales processes.
Quality management – This type of application is used to manage the quality of software projects, e.g., by focusing on the planning, assurance, control,

and improvements of quality factors.
Workflow management These types of applications manage sequences of tasks monitored during their execution.

Table 2.2 Taxonomy / Comparison for analyzed Low-Code Development Platforms(2).
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2.4 Comparison of relevant LCDPs
In this section, we use the taxonomy presented earlier to compare the eight low-code
development platforms overviewed in Section 2.2. Table 2.1 and 2.2 show the result of the
comparison performed by listing the corresponding supported features for each platform. The
data presented in these tables are mainly taken from the official resources of each platform
OutSystems [161], Mendix [151], Zoho Creator [67], Microsoft PowerApps [165], Google
App Maker [73], Kissflow [140], Salesforce App Cloud [187], Appian [11], and taking into
account the experience we had while developing a benchmark application described in the
next section.

2.4.1 Features and capabilities

The main features and capabilities of the analyzed LCDPs can be summarized as follows:
OutSystems provides developers with a fast mechanism allowing its users to publish their
applications with a single click. It provides the ability to connect to various services while
developing responsive mobile and web applications. This platform highlights security mech-
anisms and provides real-time dashboard capabilities. Mendix supports collaborative project
management and end-to-end development and provides pre-built templates with an app
stores. Mendix’s Interactive application analytics and rapid development make it suitable
for companies looking for efficient collaboration among developers and stakeholders. Zoho
Creator is known for a user-friendly form builder and a user-friendly, mobile-friendly inter-
face. The platform supports Salesforce and CRM application integration. For organization
seeking simple and adaptable application development, its pre-built templates and customized
procedures can prove handy in their workflow.

Microsoft PowerApp supports integration with Office 365, pre-built templates, easy con-
version of apps for cell phones and tablets. It can connect with third-party apps for basic
app development. Google App Maker has a drag-and-drop feature similar to most of the
LCDPs analyzed, app preview, reusable templates, deployment settings, means to set access
roles, built-in tutorials and Google Analytic integration. Kissflow supports progress tracking,
custom and pre-built reports, collaboration features and the ability to use third-party services
such as Google Doc and Dropbox documents. It also supports Zapier to integrate different
systems. Salesforce App Cloud has an extensive app marketplace for pre-built apps and
components, reusable objects and elements, built-in Kanban boards and a drag-and-drop
process builder. Appian supports native mobile apps, drag-and-drop tools, collaborative task
management and a decision engine with AI-powered complex logic.
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2.4.2 Additional aspects for comparing LCDPs

The taxonomy discussed in the previous section plays an important role when users need
to compare LCDP candidates and select one from possible alternatives. In addition to the
characteristics presented previously, we have identified additional aspects that are orthogonal
to the taxonomy presented, and that can be taken into account when decision-makers need to
decide whether and which low-code development platform to use.

Anticipated solution and outcome: Two main types of applications can be developed using
LCDPs, namely B2B (Business to Business) and B2C (Business to Customer solution).
B2B solutions provide users with business process management (BPM) capabilities, such as
creating, optimizing, and automating business process activities. Examples of B2B solutions
include hotel management, inventory management, and human resources management.
Multiple applications can be combined in a B2B solution. B2C solutions provide simpler
answers for end users. These solutions are used to develop individual applications such as
websites and customer relationship management applications. The interactivity aspect is
much more important in B2C than in B2B.

Organization size: Another dimension to consider when selecting LCDPs is the size of the
company/organization that will adopt the selected LCDP. Organizations fall under three
possible categories: small (with less than 50 employees), medium (when the number of
employees is between 50 and 1000), large (when the number of employees is higher than
1000). Thus, the decision-making must consider the size of the company in order to find the
optimal solution for its needs. Any organization looking to scale its Business at an optimal
cost must select an LCDP based on the strength of the Business. LCDPs such as Salesforce
App Cloud, Mendix, and OutSystems support large enterprises and are used to develop
large and scalable applications. On the other hand, Google App Cloud, Appian, and Zoho
Creator are mainly designed to support small and medium-sized businesses and are relatively
inexpensive.

Platform knowledge acquisition cost the time spent on the development, testing, and deploy-
ment of an application may vary from one low-code platform to another. To be proficient in
such processes, users must spend time learning all the related aspects of that platform. Also,
decision-makers have to consider potential training costs that have to be faced for learning
the concepts and processes of that particular low-code platform.

Price: It is one of the most critical criteria, especially for small or medium-scale companies.
The platform’s price can be estimated as the price of using the platform for one developer
per month. Moreover, the dimensions that contribute to the definition of the price include
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i) the number of applications that need to be deployed, and ii) where data are going to be
stored, i.e., in on-premise databases, in cloud environments, or hybrid configurations.

Increase in productivity: The adoption possibilities of low-code development platforms have
to be assessed by considering the potential number of developed applications with respect to
the time spent to learn the platform, the price incurred in training, and to buy the licenses to
use the considered platform.

2.5 Using LCDPs: an experience report
Building platforms that enable citizen developers to build full-fledged applications faster and
more efficiently comes at a cost. Key architectural decisions are made to ensure minimal
programming effort, speed, flexibility, reduced upfront investment, and faster deployment
of the application. However, the decisions that are typically made when developing these
platforms can lead to issues that surface later. To gain insight into LCDPs, we developed a
same benchmark application using different platforms, namely Google App Maker, Mendix,
Microsoft PowerApps, and OutSystems. The Benchmark application is a course management
system that allows faculty and students to manage their courses, schedules, registrations,
and attendance. Despite the simplicity of the application, it has common user requirements
that are common in the development of typical software applications such as managing,
retrieving, and visualizing data. We also had the opportunity to integrate external services
through third-party APIs. We were able to explore how reusable developed code and artifacts
can be integrated into other low-code platforms to pave the way for discovery and reuse of
already proven artifacts across different platforms.

The first activity to develop the benchmark application was identifying the relevant require-
ments. We identified the relevant use cases and, thus, the functional requirements for the
system. Experience has shown that software applications can be developed in LCDPs using
two main approaches:

• UI to Data - The developer begins the creation of the application by creating a user
interface and then linking it to the required data sources. Forms and pages are defined
first, followed by the specification of business logic rules and workflows, which then
lead to the integration of external services before the application is deployed. LCDPs
such as Mendix, Zoho Creator, Microsoft PowerApps, and Kissflow can take this
approach.

• Data to UI - This is a data-driven approach that starts with data modeling and then
builds the application user interface, followed by the specification of business logic
rules and workflows. Then, if necessary, external services are integrated before the
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application is deployed. LCDPs such as OutSystems, Mendix, Zoho Creator, Microsoft
PowerApps, Salesforce App Cloud, and Appian can take this approach.

The specification of rules for business logic, workflows, and integration of external services
can be interchanged in both of the above approaches, depending on the developer’s style.

Challenges in LCDPs

Traditional programming paradigms have long been plagued with a number of shortcomings
vis-a-vis the current digital transformation. Traditional programming requires specialized
skillsets from a current small talent pool. This paradigm is time-consuming and costly
and is easily flexible to the dynamic needs of customers [8]. For this reason, the resulting
applications, unless developed by highly skilled developers, are of inferior quality and
difficult to extend and scale [96]. As a matter of fact, apart from the shortage of highly
skilled developers compared to the demand available on the market, recent studies show
that a typical software project ranges from $434,000 to $2,322,000 from small enterprises
to larger companies, respectively. With 52% costing almost 90% of their initial estimates,
almost one-third canceled and only less than 17% completed on-time within the allocated
budget [90].

On the other hand, LCDPs offer several benefits to an organization that adopts them [143]. It
has been noted that LCDPs increase digital innovation and transformation because integrating
citizen development in the application development lifecycle positively impacts productivity.
Citizen developers participate in organizations’ internal processes and widen the horizon of
innovation and transformation [191]. They also have the potential to protect businesses from
technology churn while enhancing rapid business response to pressing matters. Empowering
citizen developers means that IT professionals earlier involved in technical aspects of the
business are reduced to the staff that is needed for critical existential of the organizations [96].
Compared to traditional programming, LCDPs enable quick product delivery, cost reduction,
complexity reduction, easy maintenance, business profiles’ participation in product develop-
ment, and minimization of varying customer requirements. In addition, apps developed on
these platforms are cross-platform and are cost-effective [203].

By developing the considered benchmark application, we identified various challenges
that users and developers may encounter during development. These challenges include
interoperability problems between different LCDPs, limitations in terms of extensibility,
steep learning curves, and scalability issues [160] [194] [211]. Below we discuss these
challenges that transcend most of the low-code development platforms. We will not discuss
potential challenges that occur concerning code optimization or security and compliance risks
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because we did not profoundly assess these features due to the lack or limited visibility of the
considered LCDPs. However, we acknowledge that such aspects should be investigated in
the future to give a more broad perspective on potential challenges that might affect LCDPs.

Low-code platforms’ interoperability: This characteristic ensures interaction and exchange
of information and artifacts among different LCDPs, e.g., to share architectural design,
implementation, or developed services. This feature is essential to mitigate issues related to
vendor lock-ins. Unfortunately, most LCDPs are proprietary and closed platforms. Hence, a
lack of standards in this domain hampers the development and collaboration among engineers
and developers. Consequently, modelers and developers do not collaborate and learn from
one another, impacting the reusability across these platforms.

Extensibility: Refers to its ability to accommodate new functionalities that are not already
offered by the platform. Unfortunately, this is often a difficult task because these platforms
tend to be proprietary. Due to lack of standards, some of them require extensive coding to
add new capabilities, which citizen developers do not necessarily possess. In addition, when
extending is required, developers must also adhere to the architectural and design limitations
of the platform, making the process inflexible.

Learning curve: The learning curve associated with most low-code development platforms
can be steep due to their less intuitive graphical interfaces. Some platforms have limited
drag-and-drop capabilities and a lack of teaching materials, such as sample applications and
online tutorials. This can impact the platform’s adoption and limit it to those who already
have knowledge in software development rather than the main target of these platforms:
citizen developers.

Pricing [143]: Despite LCDPs recent success, a substantial investment is necessary to fully
take advantage of these platforms’ offerings. Although the perks may seem worth the cost,
this financial requirement limits the number of potential users. As a result, enterprises are
the main beneficiaries of these platforms, while individual developers are limited in what
they can do with free or low-cost plans.

Limited customization [203, 143]: As organizations move to LCDPs to become more agile
and responsive to business needs, it is important that they consider the level of customizability,
flexibility, and control of the chosen platform. It has become apparent that a number of
platforms offer these features only to a limited extent, even though they are essential for
enterprises.
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Scalability: LCDPs have gained recognition for their efficiency in building simple, single-
function apps. However, they fall short when it comes to large-scale projects. For instance,
due to internal design limitations, creating an app with multiple screens and data sources
might not be feasible for many LCDPs. To truly excel, LCDPs must be designed to handle
huge load of computations and manage big data produced in high volumes, variety, and
speed [179].

Vendor lock-in: A potential downside of these platforms is that the source code of the
applications is often inaccessible to users due to reserved commercial rights. This can be
problematic when users want to migrate their applications elsewhere or make desired changes
without the intervention of the platform engineers’ support team. In most cases, this leads to
a vendor lock-in scenario, where an organization’s entire application portfolio is dependent
on a single vendor. This can lead to higher costs and less flexibility.

Debugging and maintenance [223, 96]: Because LCDPs are typically based on visual
drag-and-drop interfaces, it can be difficult to troubleshoot when something goes wrong.
In addition, LCDPs often rely on proprietary software and closed architectures, making it
difficult to find trained personnel who can support and maintain the applications. Therefore,
organizations should carefully weigh the benefits and risks of selected LCDPs prior to their
adoption.

Lack of standardization [182]: The lack of standardization in LCDPs leads to fragmentation
as each vendor develops her domain-specific languages and tools without reusing existing
resources within the LCDP ecosystem. As a result, valuable resources are wasted and
scattered, making it difficult for citizen developers to reuse components developed in other
LCDPs or even in different projects on the same platform. This ultimately leads to less
efficient use of resources and slower development overall. To solve this problem, vendors
must work together to create standards and encourage the reuse of core components. In
this way, they can help LCDPs remain an efficient and effective platform for software
development.

Overall, LCDPs are suitable for organizations that have limited IT resources and budgets.
They provide a fast and efficient way to create fully-featured products, such as CRM ap-
plications. However, the end result may be impacted by the functionalities offered by the
platform’s modules. Users might need to accommodate their initial requirements depending
on the options offered by the employed platform. Furthermore, integration with third-party
plugins may be limited depending on the selected platform.
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2.6 Related works
Guerrero et al. [119] highlight two phases of software development using MDE approaches.
The first stage involves the use of tools like Domain Specific Languages, model trans-
formation processes, and code generators. In contrast, the second stage focuses on non-
programmers utilizing the resulting artifacts and benefiting from the higher level of abstrac-
tion in creating the desired application. The paper also explores the challenges in using a
model-driven approach and identifies ways to overcome these obstacles.

The study by Braams [40] explores the best practices for testing Low-Code Model Driven
Development (LCMDD) Platforms. It employs the Behaviour Driven Development (BDD)
methodology and provides a comprehensive overview of it. Four leading LCDPs were tested
using a software quality framework, aiming to provide a holistic approach to software quality
based on BDD principles.

Acerbis et al. [3] propose a tool named WebRatio Mobile Platform for building mobile
applications using a model-driven development approach. The tool classifies the specification
of the domain and that of the interactive model for applications used in mobile by using OMG
standard language known as Interaction Flow Modeling Language (IFML). Also, the tool
checks the model and generates code that produces ready-to-publish inter-platform mobile
applications.

Waszkowski [218] express the utility of the LCDP Aurea BPM for automating business
processes in manufacturing. This application shows the critical usage of low-code solutions
in different industries.

Chang et al. [57] discuss the App development tool named Smart Maker Authoring Tool,
which is used to develop user-friendly apps for non-developers. The tools exhibit greater
software development productivity which is very useful for non-developer to customize their
needs for their business.

Bock et al. [37, 36] provided a balanced analysis of the current trend toward LCDP platforms.
They outlined the defining features that distinguish LCDP platforms and evaluated the tech-
nical advances of these platforms. They are built by combining and integrating conventional
system design components. They also highlighted potential research opportunities in this
area. Although they have not found revolutionary innovations in LCDPs, they underscored
potential productivity while using these platforms as long as the project criteria can be met
within their boundaries. They have also identified opportunities for areas such as conceptual
modeling from the LCDP wave.
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Alamin et al. [6] analyzed insights from Stack Overflow topics. Although LCDPs scored high
on data modeling, developers see external API integration and dynamic event handling as
their biggest challenges. They observed a deficiency of proper tutorial-based documentation,
which hinders the customization of applications developed on these platforms.

Luo et al. [143] cover the benefits and limitations of LCDPs from a practitioner’s standpoint.
According to Gartner and Forrester, the rapid expansion of these platforms points to a promis-
ing future. The authors examined Stack Overflow and Reddit to gain insight into LCDPs’
features, benefits (e.g., user-friendly graphical interface and out-of-the-box components),
limitations, problems, and application domains. The results show that users prefer LCDPs
when it comes to dealing with automated processes and workflows. This paper suggests that
researchers should clearly define terms when referring to LCDPs and that developers should
evaluate whether LCDP is suitable for their projects.

The study presented in [8] investigates the elements that draw developers and programmers
to LCDPs. It highlights some of the barriers to its adoption by developers and programmers.
The authors administered an online survey to professional developers in IT departments of
different companies and students in computing-related departments of Saudi institutions. The
results outlined the reasons for the popularity of LCDPs, including reduced app development
time, ease of use, automatic code generation, step-by-step instructions, and lower error rate.
On the other hand, the limitations were the low scalability of these platforms and the lack of
knowledge on how to work with them.

Sanchis et al. [191] delve into the current state of software development automation tools
and potential barriers. The aim was to pinpoint areas in LCDP platforms that deserve further
examination. The researchers conducted a thorough evaluation of existing information on
LCDPs to provide a current understanding of the landscape, including any potential hurdles
and promising solutions. The study compared the performance of LCDPs against the vf-OS
EU project. The results showed a shortage of open-standards based platforms, hindering the
possibility of automatic application building and deployment.

To demonstrate the advantages and drawbacks of LCDPs, in [203] the authors have developed
a user access auditing and control automation by making use of the Oracle APEX LCDP. In
addition, they have drawn our attention to the fact that LCDPs do not replace conventional
development skills but rather complement them, especially when it comes to maintenance or
troubleshooting.

Gomes et al. [96] investigate the gap between what developers envision and the actual needs
of the domain when it comes to adopting LCDPs. The paper aims to provide a clearer
understanding of these platforms by exploring their fundamental principles, current state
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of the art, key components, and key concepts. Through a descriptive analysis, the study
evaluates the limitations and benefits of LCDPs in-depth. Lastly, it showcases various use
cases of LCDPs that cab be utilized in different fields.

Bucaioni et al. [47] address the increasing popularity of LCDPs and their connection to
model-driven engineering that has been the subject of lively discussion in recent times.
This multi-vocal systematic study aims to explore the similarities and differences between
these two approaches. The findings suggest that while there are indeed parallels between
model-driven engineering and low-code, they are still distinct entities. LCDP is commonly
seen as a subset of MDE due to their shared focus on maximizing efficiency and simplifying
processes. This can bring mutual benefits, as MDE can benefit from the insights gleaned
from LCDP, and vice versa. Technology-wise, most LCDPs leverage MDE at their core
to facilitate rapid prototyping and ease of use – something which users have consistently
praised.

Rokis et al. [182] take a deep dive into the potential opportunities and challenges associated
with low-code software development (LCDP). The authors highlight advantages of this
approach, such as rapid development and improved software quality. Additionally, it outlines
that must be removed to optimize this strategy. Some of the challenges include empowering
citizen developers, managing minimum requirements for minimal viable products, and
establishing standardization frameworks. Strategies are suggested for eliminating these
hindrances and helping to propel low-code processes forward. The study concludes with
recommendations for mitigating these barriers and advancing low-code software development
processes.

2.7 Conclusion and future work
In recent years, interest in LCDPs has grown significantly in both academia and industry.
Understanding and comparing a great number of low-code development platforms [91]
can be a tedious and difficult task without a proper conceptual framework to support their
evaluation. In this chapter, we analyzed eight low-code development platforms that are
considered leaders in their respective markets to identify their commonalities and differences.
A set of distinguishing characteristics was defined and used to compare the platforms under
consideration. We also wrote about our experiences to discuss some key features of each
platform, limitations, and challenges we encountered while developing our benchmark
application.

The future of this research may refine the proposed taxonomy by considering additional
LCDPs to obtain a comprehensive and thoroughly validated set of characteristics. Such
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a refinement process could also involve the various LCDP vendors to further validate the
created taxonomy and share with them the challenges and lessons learned in developing the
discussed benchmark application.

In addition, a stronger focus on the reusability and interoperability that low-code development
platforms require can promote their adoption in both academia and industry.





Chapter 3

Cloud-based modeling in data-intensive applica-
tions

In recent years, there has been a growing interest in cloud-based modeling, which refers to
using modeling tools and techniques designed to run on cloud infrastructures [45]. This trend
is mainly due to the many benefits that cloud-based modeling can offer, such as the ability
to design, develop, deploy, and manage models and applications with less effort [45, 153].
Additionally, the proliferation of low-code development platforms (LCDPs) has also played
a role in the popularity of cloud-based modeling. LCDPs, as software platforms, allow users
to create applications with less or no need to write code. LCDPs run on cloud infrastructures,
further boosting the popularity of cloud-based modeling [189]. As industries and enterprises
move their modeling infrastructures to the cloud, this transition can be complex and expensive,
particularly in industrial contexts where infrastructure is often very intricate. Migration
costs can include everything from modifying existing models to account for the change in
infrastructure to retraining employees on how to use the new system. In addition, business
operations can be significant disruptions during the transition period [192].

The future of modeling will inevitably be cloud-based [49]. Several initiatives, including
Visual Studio Code1, Eclipse Che2, Theia3, and others, have shown the potential of moving
modeling environments from on-premises and monolithic installations to cloud-based plat-
forms, remove accidental complexity and expand the variety of available functionalities [49].
In particular, the cloud offers the ability to quickly provision and scale resources as needed,
essential for modeling applications requiring significant computational resources [45]. Addi-

1https://code.visualstudio.com
2https://www.eclipse.org/che/
3https://theia-ide.org

https://code.visualstudio.com
https://www.eclipse.org/che/
https://theia-ide.org
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tionally, the cloud provides access to various services integrated into modeling applications,
such as storage, databases, and machine learning services [153].

As data-intensive applications such as the Internet of Things (IoT) continue to grow in
popularity, there is an increasing need for tools that can help in modeling and simulating
the behavior and the implementation of such systems [114]. Cloud-based modeling tools
offer several advantages, including scalability and flexibility. However, they also come
with several challenges, including data privacy and security concerns [115]. These systems
require modeling and development infrastructures considering the heterogeneous aspects of
the system’s data, communication, and implementation layers. This chapter reviews recent
progress in developing cloud-based modeling approaches for data-intensive applications
in IoT systems. In particular, we conducted a thorough investigation to see where the IoT
community stands concerning the current trend of moving traditional modeling infrastructures
to the cloud. We examined 625 articles and identified 22 cloud-based IoT system development
tools and platforms. We then take a closer look at some options and discuss the research and
development opportunities that arise from adopting cloud-based modeling approaches in the
IoT domain.

The rest of this chapter is structured as follows: We delve into cloud-based modeling
techniques in Section 3.1, discussing the approaches and rationale for the need to model IoT
systems through cloud-based environments. Section 3.2 outlines the research methodology
we employed for the survey. The results of our analysis to answer three research questions
are presented in Sections 3.3, 3.4, and 3.5. We review related work in Section 3.6 and wrap
up the chapter with our conclusions in Section 3.7.

3.1 Background
Significant advances in computing power, data storage, and processing are revolutionizing
the development and research of complex systems in various fields, including the Internet
of Things (IoT) [147]. IoT systems enable the integration of intelligent features into daily
human activities by automating services. In particular, such systems enable the automation
of low-level services that were previously error-prone when performed by humans. They
also increase the efficiency of current technological solutions and connect various devices
that make our environment intelligent. According to recent reports, more than 100 billion
devices will be connected by 2025, reaching a global market capitalization of $11 trillion [83].
However, to realize the full potential of these systems, citizen developers must also participate
in developing customized IoT applications [189].
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Meanwhile, the development and consumption of IoT systems are becoming increasingly
complex, and end-user engagement is more challenging due to the heterogeneity of hardware
and expertise required [189]. There are several reasons for this complexity. IoT applications
are complex systems that use heterogeneous devices and data sources. In addition, IoT
systems require a tremendous amount of effort and investment in both implementation and
maintenance. Moreover, systems are implemented using code-centric approaches, making it
difficult to encourage participation from IoT domain experts and other stakeholders with less
IoT programming knowledge [189].

Due to the ever-changing requirements and shortage of technical experts who can develop
these systems robustly and securely [42], it is necessary to pave the way for domain experts
and other stakeholders to integrate IoT capabilities into their daily tasks [189]. Several
approaches have been discussed, although practical solutions have yet to find a way to make
the use and development of IoT applications more accessible. One practical solution is the
systematic use of models as the primary units of abstraction and automation in developing
these complex systems using model-driven engineering (MDE) [115]. Models in the context
of MDE are not sketches or drawings used only for design, but they prevail as machine-
readable and processable abstractions throughout the development cycle of such systems [26].
MDE favors collaboration between engineers and stakeholders, as both work together towards
the completion of the conceived products while promoting the integration of the different
engineering processes [42].

However, MDE faces challenges that have shifted the focus of developing such complex and
heterogeneous systems from on-premises environments to the cloud [75]. Modeling-as-a-
Service is gaining momentum as the MDE research community moves modeling tools and
services to the cloud. This migration is fueled by several benefits of cloud computing, such
as the ease of discovery and reuse of services and artifacts [115]. This new paradigm enables
efficient self-healing mechanisms to detect, diagnose, combat threats, and foster collaboration
among stakeholders and engineers [58]. In addition, migrating model artifacts and services
to the cloud can provide easy access to end users and support sustainable management and
disaster recovery of model artifacts and tools [104].

3.2 Study design
This section analyzes how the IoT domain is coping with the migration of existing modeling
and development infrastructures to the cloud. For this purpose, we followed the process
shown in fig. 3.1 according to the review methodology presented in [31].
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Specifically, the search and selection process was conducted in four main phases. In the first
phase, we formally and explicitly presented the problem to get a head start on the search.
Second, we defined a search term and selected known academic search databases. Third, we
conducted a search to collect papers that answered the clearly defined research questions.
Fourth, we narrowed down the potential papers and ranked them according to their similarity
and variability. Finally, we analyzed the collected papers and provided recommendations for
the identified difficulties.

Phase 1: Problem formalization - At this stage, the main goal was to formalize the problem
we were trying to solve by looking at the current trend toward model-driven engineering.
One of the sources of inspiration for this study was the work in [49], which deals with the
topic "What is the future of modeling?". This is how we came up with the formulation of the
following research questions:

• RQ1: What are the current cloud-based modeling approaches for IoT?

• RQ2: What challenges do researchers face when developing cloud-based IoT modeling
and development infrastructures?

• RQ3: What are the main potential opportunities laying ahead for future researchers
and developers in the IoT domain?

Problem formalization stage

Perform automatic
search

22 selected

611 Apply inclusion &
exclusion  method

"1st pass"

80

Manual search

Apply inclusion &
exclusion  method

"2nd pass"

33
Read through the

whole paper

14

Legend

Problem
formalization

Interim artifacts Stage flowFinal artifacts

Searches stage Inclusion & exclusion stage

Fig. 3.1 Publications’ search and selection process.
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Phase 2: Automatic & manual search: In this phase, we applied a search string to several
academic databases, i.e., Scopus (Elsevier) 4, IEEE Xplore 5, and ACM library 6, limiting
the search to the last 10 years. In addition, we also performed a manual search, mainly using
Google Scholar. The query string we used for the automated search was: ("MDE" OR "Model

Driven Engineering") AND ("IoT" OR "Internet of Things") AND ("Cloud" OR "Web").

Table 3.1 shows the number of papers we managed to collect in this phase.

Table 3.1 Database results’ table

Database Results

Scopus (Elsevier) 233

IEEE Xplore 263

ACM library 115

Manual search 14

Total 625

Phase 3: Inclusion & exclusion, 1st pass: Table 3.1 shows that 611 publications were
initially discovered from various sources, in addition to the 14 papers that were manually
found and considered relevant to the study. At this point, we reviewed the title, keyword, and
abstract of the paper to exclude papers that did not meet the following criteria:

• Studies published in a peer-reviewed journal, conference, or workshop.

• Studies written in the English language.

• Studies that explicitly focus on the topic of the Internet of Things (IoT).

• Studies that propose a cloud-based modeling approach, either explicitly or implicitly.

At the end of this step, we had 80 articles to add to the additional 14 documents we had
manually retrieved from Google Scholar.

Phase 4: Inclusion & exclusion, 2nd pass: At this stage, we read the introduction and
conclusion of the previously collected contributions. We also removed some duplicates.
Several documents were rejected in this phase for different reasons, e.g., because the presented
approach does not explicitly offer an IoT-based cloud development environment. At the end
of this phase, we had 33 documents.

Phase 5: Reading of the whole paper text: We reviewed the entire articles at this stage,
focusing on the proposed approaches and their evaluation sections. Several documents were

4https://www.elsevier.com/
5https://ieeexplore.ieee.org
6https://dl.acm.org/

https://www.elsevier.com/
https://ieeexplore.ieee.org
https://dl.acm.org/
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discarded for various reasons. For example, articles that presented hybrid solutions (e.g.,
local modeling with the ability to store models in remote repositories) were discarded. We
also discarded approaches that claimed to create Web-based IoT data wrangling platforms
by reusing existing IoT data storage platforms. Finally, we selected 22 papers that used a
cloud-based modeling environment to design, develop, or deploy IoT applications.

Fig. 3.2 Selected paper distribution.

Figure 3.2 shows the distribution of the selected approaches in relation to their corresponding
sources. As shown in fig. 3.2, part of the selected approaches (4 out of 22) were found
manually. This is due to our prior knowledge on this topic in terms of frameworks and tools

In the following, we answer the research questions presented in section 3.2 one by one by
analyzing the research papers collected as described before.

3.3 Cloud-based modeling approaches (RQ1)
This section focuses on different cloud-based modeling approaches targeting the IoT domain.
We have classified the studied approaches into three categories according to the focus of
their interest, namely modeling structural IoT aspects, service-oriented approaches, and
deployment orchestration. The goal is to answer the research question RQ1: What are the
current cloud-based modeling approaches for IoT?

Modeling IoT structural aspects: DSL-4-IoT [188] is a cloud-based modeling tool for the
IoT domain that includes a JavaScript-based front-end graphical programming language
and an "OpenHAB" runtime execution engine. DSL-4-IoT provides a multi-level model-
based approach to IoT application design that supports all phases of the lifecycle of these
systems. Automatic model transformations are provided to refine abstract model elements
into concrete elements. These transformation results, formatted as JSON arrays, are passed
to the OpenHAB runtime engine for execution.
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BIoTA [38] provides a cloud-based modeling approach for IoT architectures. Users can
perform syntax and semantic analysis using a graphical DSL and supporting tools. BIoTA
enables the computational formalization of a user-proposed software architecture using
formal automata techniques. Components and connectors are created according to specific
rules to meet IoT-specific scenarios, while the resulting software architecture is exported to a
Docker-based deployment infrastructure.

Node-RED [158] is a popular and extensible model-driven framework to homogeneously
connect IoT devices, APIs, and web services. It provides users with a web-based graphical
editor with drag-and-drop capabilities. In Node-RED, users can also create and deploy
dashboards in real-time.

AutoIoT [156] is a web-based platform with a graphical user interface (GUI) that allows
programmers to deploy and configure IoT systems quickly. The final artifact produced by the
system is a Flask project7 (a Python micro-framework) that can be run as is or extended to
meet the needs of developers who may require more complex functionality. The final system
can also connect to an MQTT broker, store and query data in a database, present data to
users, and exchange data with other systems. AutoIoT was later extended in [157] to allow
users to model their IoT systems in the form of JSON files.

In [125], a cloud-based text language and tool for event-based configuration of intelligent
environments (ECSE) was proposed. The tool allows end users, whether experts or not, to
configure a smart environment using an ontology-based model. In their approach, the authors
used the Resource Description Frameworks (RDF) to define the event action rules.

AtmosphericIoT [13] is a cloud-based domain-specific language and tool for building, con-
necting, and managing IoT systems. AtmosphericIoT Studio is a free online portal IDE
that lets users create all kinds of device firmware, mobile apps, and cloud dashboards. It
connects devices via Wi-Fi, Bluetooth, BLE, Sigfox, LoRa, ZigBee, NFC, satellite, and
cellular networks.

In [29], the authors propose a model-based approach for building responsive and configurable
user interfaces in the Web of Things. Models@Runtime are used to build runtime interfaces
based on a formal model called Thing Description (TD). This modeling language aims to
make attributes, actions, and events of the Web of Things (WT) accessible to the external
ecosystem. The modeling language was developed in JavaScript using the VueJS framework
and is publicly available8.

7https://flask.palletsprojects.com
8https://github.com/smar2t/td_interface_builder

https://flask.palletsprojects.com
https://github.com/smar2t/td_interface_builder
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In [2], the authors presented a model-driven approach for developing IoT system interfaces.
They proposed a design pattern and the necessary components for designing such interfaces
in their work. The authors implemented a platform for IoT mobile and web application
development based on WebRatio,9, a generic cloud-based framework for model-driven
development and code generation.

FloWare Core [65] is an open-source, model-driven toolchain for building and managing
IoT systems. FloWare supports the Software Product Line and Flow-Based Programming
paradigms to manage the complexity in the numerous phases of the IoT application develop-
ment process. The system configures the IoT application according to the IoT system model
the developer provided. A Node-RED engine [158] is integrated with FloWare.

Vitruvius [69] is an MDD platform that enables users with no programming skills to create
and deploy complex IoT web applications based on real-time data from connected vehicles
and sensors. Users can design their ViW applications directly from the web using a custom
Vitruvius XML domain-specific language. In addition, Vitruvius provides a variety of
recommendation and auto-completion features that help build applications by reducing the
amount of XML code that needs to be written.

Service-oriented approaches: This category includes approaches that provide users with
cloud-based modeling environments that target service-oriented architectures. In this way,
different services are interconnected to build the final IoT systems.

MIDGAR [97] is an IoT platform specifically designed for service generation of applications
that connect heterogeneous objects. This is achieved by using a graphical DSL where the
user can connect the different things and specify the execution flow. Once the desired
model is ready, it is processed by the service generation layer, which generates a tree-based
representation model. The model is then used to generate a Java application that can be
compiled and executed on the server.

IADev[168] is a model-driven development framework that orchestrates IoT services and
generates software implementation artifacts for heterogeneous IoT systems that support
multi-level modeling and transformation. This is achieved by transforming requirements
into a solution architecture using attribute-driven design. In addition, the components of the
generated application communicate via RESTful APIs.

LogicIoT [195] provides a text-based, web-based DSL that facilitates data access and se-
mantic processing in IoT and smart cities environments. LogicIoT is implemented as a

9https://www.webratio.com/

https://www.webratio.com/
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set of custom Jakarta Server Pages (JSP)10 in which various custom JSP tags have been
implemented to define modeling semantics. The language consists of seven constructs: Rela-
tionships, Triggers, Endpoints, Timers, Facts, Rules, and Modules. Using the custom tags,
the user can define the operations of the application required for communication between
process instances and sensors without having to deal with low-level programming details.

glue.things [126] provides a cloud-based mashup platform for wiring data from web-enabled
IoT devices and web services. glue.things handle both the provisioning and maintenance
of device data streams, apps, and their integration. In doing so, glue.things rely on estab-
lished real-time communication networks to facilitate device integration and data stream
management. The glue.things modeling tool combines device and real-time communications,
enabling users to describe element triggers and actions and deploy them in a distributed
manner.

In [201], the authors propose a framework for scalable and real-time modeling of cloud-based
IoT services in large-scale applications, such as smart cities. IoT services are modeled and
organized in a hierarchical manner.

In [208], a portable web-based graphical end-user programming environment for personal
applications is proposed. This tool allows users to discover smart things in their environment
and create personalized applications that meet their own needs. Each of the defined smart
objects can provide different functions that can be published through a well-defined API.
The graphical representation of the system is then generated from the constructed JavaScript
objects, in which the user can interact with the system on the fly.

E- SODA [225] is a cloud-based DSL under the Cloud-Edge-Beneath (CEB) architecture
ecosystem. In E- SODA, a cloud sensor comprises a set of event/condition/action (ECA)
rules that define the lifecycle of the sensor service. This allows the user to abstract and
simulate the behavior of the sensor in an event-based manner. This is achieved by having the
ECA rules wait for a predefined "event" to occur and responding by performing the "action"
when the rule’s "condition" is met. Finally, the generated cloud sensor application can be
used in any cloud-based application that requires sensor data.

In [149], the authors presented an integrated graphical programming tool based on a
goal-oriented approach, where end-users only need to specify their purpose in a machine-
understandable way rather than designing a service architecture that satisfies their goal. In
this way, the ultimate purpose of an intelligent environment can be represented graphically
while hiding the complexity of the underlying semantics. An inferential component uses the

10https://en.wikipedia.org/wiki/Jakarta_Server_Pages

https://en.wikipedia.org/wiki/Jakarta_Server_Pages
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provided goal and analyzes whether the goal can be achieved given the available services.
From this, it infers the user actions (i.e., requests involving REST resources) required to
achieve the goal.

InteroEvery [82] promotes a microservice-based architecture to solve interoperability prob-
lems in the IoT domain. An IoT system is configured via a web-based graphical interface
that displays the functions of each microservice. Then a universal broker connects a dedi-
cated interoperability microservice to different adaptation microservices depending on the
choreography patterns used.

Model-based deployment orchestration: Since IoT systems are deployed at different levels
of abstraction, this section presents the identified approaches that aim to orchestrate the
deployment mechanisms of IoT systems using cloud-based modeling environments.

DoS- IL [155, 154] is a textual domain scripting language for resource-constrained IoT
devices. It enables post-deployment modification of system behavior through a lightweight
script written using the DoS- IL language and stored in a ne-life gateway. The gateway hosts
an interpreter for executing DoS- IL scripts.

TOSCA (Topology and Orchestration Specification for Cloud Applications) [138] aims to im-
prove service management processes’ reusability and automate IoT applications’ deployment
in heterogeneous environments. In TOSCA, common IoT components such as gateways
and drivers can be modeled. In addition, gateway-specific artifacts required for application
deployment can be specified to facilitate deployment tasks.

GENESIS (Generation and Deployment of Smart IoT Systems) [84] is a textual, cloud-based,
domain-specific modeling language that supports the continuous orchestration and deploy-
ment of smart IoT systems on edge and cloud infrastructures. GENESIS uses component-
based approaches to facilitate the separation of concerns and reusability; therefore, deploy-
ment models can be viewed as a collection of components. The GENESIS execution engines
support three types of deployable artifacts, namely ThingML model [102], Node-RED con-
tainers [158], and arbitrary deployable black box artifacts (e.g., an executable jar). The
created deployment model is then passed to the GENESIS deployment execution engine,
which is responsible for deploying the software components, ensuring communication be-
tween them, provisioning the required cloud resources, and monitoring the deployment
status.

Discussion: As presented earlier, there are several approaches to support cloud-based model-
ing in the IoT domain. Table 3.2 shows an overview of the analyzed approaches; half of them
address structural issues, while only a few address deployment issues. The current state of
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Table 3.2 Analyzed approaches.

Tool name Category Language syntax Open-
source

Tool
availability

Underlying
infrastructure

Generated artifact

DSL-4-IoT Structure Graphical no no js, OpenHAB JSON config
BIoTA Structure Graphical no no Apache Tech.

GraphQL
YAML file

IADev Service Textual no no ASR,REST,ATL REST app
Node-RED Structure Graphical yes yes Node.js Node-RED app

AutoIoT Structure Graphical
textual

& no no Python, js Flask app

[125] Structure Textual no no Smart-M3 –
AtmosphereIoT Structure Graphical no yes Multi-platform Multi-platform

apps
[29] Structure Textual yes yes js,VueJS UI code
[2] Structure Graphical no no WebRatio, IFML UI code

FloWare Core Structure Graphical yes yes JavaScript Node-RED Config file
Vitruvius Structure Textual yes no XML,HTML,js HTML5 with

JavaScrit app
MIDGAR Service Graphical no no Ruby,js,HTML, Java Java app
LogicIoT Service Textual no no JSP -

glue.things Service Graphical yes no AngularJS,Meshblu
PubNub

NodeRED service

[201] Service Textual no no Firebase&Node.js –
TOSCA Deployment Textual yes yes Multi-platform Config files

[208] Service Graphical no no - -
E-SODA Service Textual yes no OSGI cloud OSGI java bundles

[149] Service Textual yes yes ClickScript,AJAX REST services
InteroEvery Service Graphical no no Spring Boot,Rest

RabbitMQ,Angular
–

DoS-IL Deployment Textual no no js,HTML,DOM Config files
GENESIS Deployment Textual no no multi-platform Genesis dep. agents

the art indicates that there is no predominant common language, although a graphical syntax
is preferred.

Most of the approaches analyzed are supported by tools that are not open source. This goes
hand in hand with the public availability of the methodologies. We can state that all tools
that are not open source are also not publicly available. In the industrial environment, this is
especially true for the internal, proprietary tools.

In analyzing each approach, we also examined the supporting infrastructures and their ability
to produce deployable artifacts. In this context, we found that JavaScript-based environments
such as Node.js and Angural.js are widely used for tool development. This could be due to
the fact that they are among the modern languages for implementing front-end technologies.
On the other hand, it seems that most of the techniques produce artifacts, even if few of
them are standalone deployable components. It is also worth noting that in most cases the
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deployable artifacts produced can only be deployed within the same original environment.
To ensure interoperability, scalability, and reusability of the tools, the generated artifacts
should generally be deployable anywhere.

3.4 Open challenges (RQ2)
The proliferation of connected, smart, and sensor-driven devices, as well as the increasing
use of cloud-based models, has created numerous problems [58]. Since a typical IoT system
consists of several complex subsystems, a fully cloud-based environment may become even
more complicated. On the other hand, overcoming these obstacles is worth the effort because
it opens up more possibilities. This section addresses the current challenges faced by IoT
systems in developing and integrating such tools in a cloud-based environment. Essentially,
we answer the research question RQ2: What challenges do researchers face in developing
cloud-based IoT modeling and development infrastructures?

Extensibility mechanisms: Extensible platforms allow new capabilities to be added without
having to restructure the entire ecosystem. Since IoT systems are distributed, it is usually
recommended to use a microservice architecture throughout the development process [147].
Apart from that, IoT systems may require additional interactions with third-party technologies.
As a result of the previous scenario, the development of tools to design and develop such
distributed applications in the cloud will require efficient tools that traditional domain
specialists may not have. Access mechanisms are presented by tools such as Node-RED [158]
and FloWare Core [65], but there is still much to be done. Currently, domain experts need to
provide cloud-based automation mechanisms and tools that enable citizen developers to add
new functionality without requiring sophisticated skills or changing existing architectures.

Heterogeneity: It is an important challenge in the IoT domain, where different players
are developing different applications running on different layers, namely Edge, Fog, and
Cloud [147]. In addition, the deployment options and data usage methods are very different,
which increases the complexity of traditional code-centric approaches [159]. Cloud-based
modeling in IoT brings even more sophistication to the environment in which the system
should be designed and developed. The typical cloud-based modeling platform should
promote the integration of heterogeneous technological implementations, support reusability,
and develop solutions close to the problem domain. Approaches such as [97, 168, 138] have
presented different strategies to address such problems, but there is much more to investigate

Scalability: IoT systems are expected to serve a large number of users, perform sophisticated
computations, and exchange enormous amounts of data between nodes. Therefore, supporting
cloud-based modeling approaches needs to be implemented in a way that mitigates scalability
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issues. One of the approaches to address such challenges is the use of container-based
orchestration tools such as Kubernetes. The use of such tools can provide out-of-box features
such as self-healing, fault tolerance, and elasticity of containerized resources [83]. This will
also help automate cognitive processes that can detect scalability needs and autonomously
adjust without human intervention.

Interoperability: Interoperability of different tools, services, and resources is critical in the
IoT domain. Interoperability of cloud-based modeling platforms, especially in the IoT
domain, is currently limited because different tools run in different environments and are of
different natures. A tool like [82] promotes micro-service architecture by allowing all parts
of the system to communicate with each other. Various regulations, such as standardization,
must be implemented to achieve interoperability between different cloud-based modeling
environments. To address interoperability issues, technologies such as [158, 188, 156, 65]
promote a common JSON-based format for encoding models. It is worth noting that adopting
Model-as-a-Service (MaaS) architectures could also promote interoperability of services and
artifacts.

Learning curve: Finding professionals who can master and combine the various sophisticated
technologies needed to develop and manage IoT systems is not easy. IoT professionals
may lack advanced programming skills, while experienced software programmers may
lack modeling expertise. For example, designing a cloud-based code generator requires
an understanding of various model transformation techniques and specific programming
skills. Implementing a visual mashup tool requires knowledge of modern languages such as
JavaScript, HTML, and CSS.

Security concerns: Current IoT systems suffer from security concerns as data is collected
from a variety of private and public nodes. In addition, data is transmitted through remote
IoT gateways, which could be compromised in the process. This heterogeneity of secured
and unsecured data could allow attackers to attack devices and compromise the integrity of
data and operations [62]. Therefore, appropriate abstractions and automation techniques
are needed to help users who may not have the required knowledge of applicable security
practices.

To identify the reported challenges, as mentioned in section 3.2, a systematic literature review
was conducted by defining research questions. This process involved searching academic
databases, applying inclusion and exclusion criteria, and analyzing the selected papers to
uncover gaps related to the challenges in the field.



50 Cloud-based modeling in data-intensive applications

3.5 Research and development opportunities (RQ3)
In this section, we explore several opportunities that we believe researchers and developers
can leverage to improve cloud-based development and management of IoT systems. There-
fore, we aim to answer the research question RQ3:What are the main potential opportunities
for future researchers and developers in the IoT field?

3.5.1 Tools and platforms

Many tools and platforms are being developed to address cloud-based modeling issues.
Therefore, now is the right time to propose powerful and extensible tools that the IoT
community can use to solve their domain-specific problems. In this section, we look at several
open-source and highly extensible platforms that are popular in the modeling community
and that we recommend for the IoT domain.

Cloud-based development tools based on Eclipse: We believe that a significant portion of
the MDE community, at least for research purposes, uses Eclipse-based technologies. This
is because most Eclipse projects and technologies are open-source, which makes them
more accessible and encourages individuals to participate. As of March 2021, the Eclipse
Foundation hosts over 400 open source projects, 1,675 committers, and more than 260 million
lines of code have been contributed to the Eclipse project repositories [86]. With Eclipse
Cloud Development (ECD)11, the Eclipse community has demonstrated its willingness to
move part of its ecosystem to the Web. Eclipse’s ECD Tools working group is committed
to defining and building a community of best-in-class, vendor-neutral, cloud-based, open-
source development tools and to promoting and accelerating their adoption. Some of the best
cloud-based technologies that the IoT community can benefit from are the following:

– EMF.cloud, GLSP, Theia - Independent of the Eclipse modeling framework (EMF), the
EMF.cloud community has recently expressed a strong desire to migrate the Eclipse-
based modeling infrastructure to the cloud. This project aims to develop a web-based
environment for creating modeling tools that can support the editing mechanisms
of EMF-based models. EMF.cloud allows users to interact with models through the
EMF.cloud model server, which coordinates the use of GLSP for graphical modeling
and LSP for textual modeling. Infrastructures for code generation based on Eclipse
Xtend are also included, while Eclipse Theia provides a web-based infrastructure for
code editing and debugging. Several resources are available in the community to
extend these tools, and we believe that IoT developers can leverage such technologies
to create cloud-based IoT DSLs.

11https://ecdtools.eclipse.org/

https://ecdtools.eclipse.org/
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– Sirius Web12 - It is an Eclipse Sirius-based modeling tool that provides a powerful and
extensible graphical modeling platform for developing and deploying modeling tools
on the web. In Sirius Web, the ability to create modeling workbench in a configuration
file is supported. In this case, no code generation is required as everything is interpreted
at runtime [24]. Since Sirus Web is open-source, it also provides better accessibility
and customizability than the desktop version, making it easier for the IoT community
to get started with their cloud-based solutions.

Another alternative, such as Eclipse Che13 makes Kubernetes development accessible to
development teams. Che is an in-browser IDE that allows you to develop, build, test, and
deploy applications from any machine. Finally, Epsilon playground14 was recently launched
to provide cloud-based tools for runtime modeling, metamodeling, and automated model
management.

Low-code development platforms: If we look at LCDPs, the only powerful cloud-based open-
source platform for the IoT that we would recommend is Node- RED [158]. Because of its
high extensibility and accessibility, Node-RED provides an excellent mashup environment
for IoT systems to be designed, developed, and deployed immediately. The Node-RED
platform is open, and IoT system developers can create, compile, test, and deploy their own
nodes in the Node-RED ecosystem. Several enhancements have been made, such as. [175],
which addresses reusability issues for cloud-based modeled components, [94] to address
the challenges of heterogeneity and complexity in fog-based development. Finally, in [78],
the authors presented SHEN to enable the self-healing capabilities of applications based on
Node-RED. As for interoperability, Node-RED models are represented as JSON objects that
all third-party tools can easily use. Some of the tools in this area, such as FloWare [65] and
GENESIS [84], already support the Node-RED models, which is a clear sign of their great
importance. Table 3.3 outlines the main features of the recommended platforms.

12https://www.eclipse.org/sirius/sirius-web.html
13https://www.eclipse.org/che/
14https://www.eclipse.org/epsilon/live/

https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/che/
https://www.eclipse.org/epsilon/live/
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Table 3.3 Recommended cloud-based platforms.

EMF.cloud GLSP Theia Che Node-RED

Open-source
Extensible
Scalable

IoT-specific — — — —
Application Web-based

EMF modeling
tools

Graphical
language-
server-
editor

Web-based
code editor

Kubernetes-
native IDE
for DSL
deployment

Flow-based
programming

3.5.2 Benefits of cloud-based modeling

Although adopting a cloud-based modeling approach in IoT is fraught with difficulties,
several opportunities arise, making the investment worthwhile. This section highlights
several opportunities that arise once cloud-based modeling is widely adopted in IoT.

• User communities: The adoption of cloud-based modeling in the IoT domain has
the potential to attract more citizen developers, and it will unravel many modeling
opportunities on various devices such as tablets and mobile devices [46, 208, 10].

• Collaborative Modeling: Once IoT modeling infrastructures are moved to the cloud, it
may be necessary to introduce collaborative modeling capabilities to facilitate inter-
action between developers and stakeholders. Unfortunately, none of the approaches
discussed provide features for collaborative modeling. However, collaborative model-
ing can take advantage of information sharing, artifact sharing, and service exchange.

• Productivity: Allowing users to develop their applications using cloud-based modeling
is an important step toward high productivity and shorter time to market [189]. Users
can create applications tailored to their problems, and engineers focus on developing
features that enable users to develop smoothly at an appropriate level of abstraction. In
addition, participants focus on problem-solving in their respective domains and avoid
wasting time and resources solving problems that are outside their domain of expertise.

• Maintenance: Traditional code-centric methodologies require a significant investment
in the ongoing maintenance of developed systems. In addition, systems require peri-
odic upgrades and installations that can be error-prone and time-consuming. System
downtime is sometimes required during upgrades or to fix system errors, which impacts
production. In addition, the growing demand for software systems in our daily lives
and the ever-changing needs of users require an agile approach to quickly resolve
these issues without impacting system availability or user access. In many cases, such
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challenges are handled by cloud providers, allowing developers and engineers to focus
on building applications that directly impact customer needs [72].

• Monitoring and debugging: Cloud-based modeling enables monitoring of activities
and their archiving by their cloud providers. This is a head start for troubleshooting
distributed applications, as developers can track down the microservices that are the
root cause of the problems detected. Without proper cloud infrastructures, it would
be challenging to troubleshoot these issues, even with features such as self-healing
and repair strategies. Current cloud-based solutions have monitoring tools that help
diagnose problems and monitor application usage.

• Improved efficiency and cost-effectiveness: Cloud-based modeling provides an efficient
and cost-effective way of modeling by enabling large-scale data processing. This is
because the cloud offers a wealth of capacity and processing power, as well as flexible
scaling options [170]. Moreover, these services can be accessed on demand, which
helps companies reduce overall costs. By hosting a cloud-based modeling platform,
companies can also save on hardware costs as well as other related expenses such as
maintenance and upgrades. In addition, using the cloud eliminates the need for upfront
investments in infrastructure or software licenses [198].

• Easier experimentation: Cloud-based modeling makes it easier to experiment with
different types of data sources quickly and accurately. This is because the cloud
provides access to efficient integration interfaces through which a range of tools and
services can be easily used for experimentation.

• Data integrity: The cloud provides an additional layer for sensitive data by offering
secure storage options and minimizing the risk of data breaches or data loss. Organiza-
tions can maintain control of their data at all times while benefiting from the computing
power of the cloud [226].

• Flexibility: With a cloud-based modeling platform, organizations have the flexibility
to expand or reduce their resources based on their data processing and analysis needs.
This allows them to quickly adjust their processing power as needed while providing
secure storage solutions for sensitive data [196]. This is especially beneficial for
organizations with limited budgets, as they can quickly adjust their resources to meet
demand [72].

• Faster development cycles: Because a cloud-based modeling platform eliminates the
need for local installations and updates, organizations can develop and optimize models
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faster than ever before [18]. This also makes it easier to track changes and evaluate the
impact of different models in real-time.

3.6 Related Works
We found several studies on MDE and DSL in IoT during our selection process. However,
very few of them explicitly focus on cloud-based MDE approaches ( [85, 189, 224, 204],
to name a few). In this work, we explore the possible approaches to move and adopt the
classical local-based MDE in IoT technologies to the cloud.

Our previous study [114] examined the current state of adoption of low-code engineering
(LCE) in IoT. LCE combines LCDPs, MDE, machine learning, and cloud computing to
facilitate the application development lifecycle, i.e., the design, development, deployment,
and monitoring phases of IoT applications. By examining sixteen platforms, we identified a
comparable set of characteristics to represent the functionalities and services that each of the
examined platforms could support. We found that only 7 of the 16 platforms can be deployed
in the cloud, with most of them being LCDPs, while classical MDE approaches rely on a
local-based design paradigm.

In [171], the authors conducted a comprehensive assessment of model-based visual program-
ming languages in general before narrowing their focus to 13 IoT-specific visual program-
ming languages. The investigation was based on their characteristics, such as programming
environment, licensing, project repository, and platform support. A comparison of these
characteristics revealed that 72% of open-source projects are cloud-based, while only 17% of
closed-source platforms are cloud-based, confirming a strong upward trend of cloud-based
systems in open-source IoT projects.

In [166], the authors discussed tools and methods for developing Web of Things services,
particularly mashup tools and model-driven engineering approaches. The techniques were
analyzed in terms of their expressiveness, suitability for the IoT domain, and their ease of use
and scalability. Although this study is related to the present work, it focuses exclusively on
mashup tools and includes only a few approaches. From the preceding discussion, it is clear
that few techniques have attempted to implicitly investigate cloud-based MDE approaches.
Accordingly, and to the best of our knowledge, this is the first study to analyze the status of
cloud-based modeling in the IoT domains.

3.7 Conclusion and future work
Data-intensive systems such as the Internet of Things (IoT) present unique challenges to de-
velopers as they build applications that overcome a variety of issues, including heterogeneity,
complexity, extensibility, and scalability. Fortunately, migrating to the cloud offers several
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benefits, including improved accessibility, productivity, maintenance, and monitoring. This
chapter presents the results of a systematic study of the current state of cloud-based modeling
methodologies in the IoT domain. After a comprehensive analysis of 22 papers proposing
cloud-based modeling environments in the IoT domain, we evaluated each approach based
on several characteristics, such as modeling focus, accessibility, openness, and artifact gener-
ation. In addition, we critically discussed the challenges that IoT developers may face when
using these tools and technologies. In addition, we explored several general-purpose tools
and technologies that may have similar applications in the IoT domain.





Chapter 4

Low-Code Engineering Repository Architecture
Specification

In today’s digital age, streamlining development, persistence, access, discovery, and reuse
of low-code artifacts is pivotal to the entire lifecycle of modern model-driven software
development. As mentioned earlier, low-code artifacts are based on MDE principles and
we refer to them as model artifacts in this dissertation. To achieve our goal ( a scalable
and extensible cloud-based low-code model repository), we established an architecture that
incorporates state-of-the-art MDE principles and tools. The repository architecture draws
on current cutting-edge research in MDE techniques and tools [42]. Despite the tantalizing
benefits associated with integrating MDE into mainstream software development, there are
several limiting factors that stand in the way of its wider adoption; these barriers include the
following:

• Although model-based processes have been shown to lead to productivity gains, they
still experience limited support for discovery and reuse of model artifacts and tools.
Consequently, significant upfront investments are wasted while reinventing the wheel.

• model management are highly dependent on complex development environments such
as Eclipse IDE. As a result, they must be downloaded, installed and configured along
with distributed software packages prior to their use.

• Limited integration mechanisms that allow developers to build reliable applications,
manage new artifacts and tools, add new features, and customize their environments.

The designed low-code engineering repository offers a foundation for efficient solutions
to the challenges related to managing model artifacts and tools in LCDPs and cloud-based
modeling in general. We designed the proposed architecture from onset with the fundamental
properties of a cloud-based infrastructures: scalability, robustness, and extensibility. Hence,
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to address issues posed by conventional modeling techniques, the repository enables its users
to remotely persist, access, manipulate, discover, and reuse various types of model artifacts
and tools. These operations can be performed through modern application programming
interfaces (APIs) to facilitate integration with the repository. By offering model management
capabilities as a service, the modeling process is streamlined and made more efficient. This
approach eliminates the need for local management and maintenance of inconsistent artifacts
and tools stored across various local solutions, leading to significant cost reductions and
faster delivery times.

The repository has the potential to serve as an essential resource for both professional and
citizen developers. Its design allows users to quickly and widely access valuable curated
datasets, boosting productivity and streamlining the discovery of model artifacts, and services.
It also ensures secure sharing of resources, protected by policies that prevent mismanagement
of intellectual property. These policies ensure safe and responsible usage of resources for
both educational and commercial purposes. The repository bridges the gap between industry
and academia by fostering collaboration while governing sharing of artifacts and tools. Each
artifact is bound by a policy that users must follow for reuse for educational and commercial
purposes. It is important to note that this architecture extends MDEForge [18] in order to
support a scalable and extensible cloud-based low-code model repository. The architecture is
also implemented and some aspects of its implementation are discussed in the next chapters.

4.1 Related Works
In this section, we review previous studies and works related model repositories.

AMOR - Adaptable Model Versioning [44]: The authors tailored their approach to use a
by-example recorder that enables generic model versioning. In doing so, they have increased
the effectiveness of the collaborative software development process. Since models are
graph-based, regular line-oriented version control systems are not suitable for model version-
ing. AMOR provides intelligent and semi-automatic detection of conflicts, development of
appropriate resolution strategies, and manual refactoring to correctly resolve potential issues.

Bizycle [133]: The BIZYCLE initiative is a platform that enables more efficient and auto-
mated software components and data integration using model-driven techniques and tools.
The platform comes with a repository that stores all the metadata of the artifacts related to the
integration process of model artifacts, user and role-based access rights, and generated code.
They have designed their repository to follow the strategy of model and metamodel-based
abstraction from platform-specific aspects to platform-independent and compute-independent
aspects.
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CDO1: CDO is an open-source solution for secure storage of EMF models and metamodels.
With compatibility with relational and NoSQL databases and various deployment options
such as replicated clusters, offline clones, and embedded repositories, CDO is a versatile
choice for applications that require model persistence. It is developed using Java and ensures
secure transactions for clients and applications using EMF protocols. In addition, this
repository is designed to protect users’ transactions with advanced security features.

EMFStore [128]: It is an open-source system for configuring model versioning and is
distributed under the Eclipse Public License. It uses an operations-based approach to
track and manage changes, detect conflicts and merge them accordingly. It consists of two
components: a server that stores models, including their versions, in a repository and provides
access control; and a client integrated into an application that tracks changes to the model
and allows users to commit, update, and merge them.

GME - Generic Modeling Environment [135]: It’s a configurable set of tools that enables
users to build personalized, code generation and domain-specific environments for modeling.
GME uses graphical models that can represent the application and the environment in which
it operates, including hardware resources and their relationships. To this end, they provide
a layer that persists these artifacts. This approach has also been successfully used for
integrating tools, structurally adaptive systems, and traditional signal processing problems.
They have a proprietary object-oriented binary file format that acts as a repository via a server
of MS SQL.

ModelBus [105]: ModelBus is a service-oriented architecture (SOA) based approach to
distributed model-driven development processes that enables the integration of custom and
commercial off-the-shelf tools (COTS) for sharing data across models and services. It
features a central communication infrastructure similar to a bus, a range of core services, and
model management tools. These tools include an integrated model repository with version
control, partial checkout capabilities, and the ability to merge model versions and fragments.
ModelBus was used in the EU Modelplex2 project to enable a distributed development
scenario with hundreds of developers in different locations. It was also used in an industrial
use case using Intalio Designer for Business Process Model and Notation (BPMN) modeling,
Rational Software Architect (RSA) for UML modeling and transformation from BPMN to
UML based on Atlas Transformation Language (ATL) and model verification with Object
Constraint Language (OCL). All models, artifacts, transformations and rules are stored in the
ModelBus repository.

1https://www.eclipse.org/cdo/documentation/
2https://cordis.europa.eu/project/id/034081

https://www.eclipse.org/cdo/documentation/
https://cordis.europa.eu/project/id/034081


60 Low-Code Engineering Repository Architecture Specification

It features a central communication infrastructure similar to a bus, a range of core services,
and model management tools. These tools include an integrated model repository with
version control, partial checkout capabilities, and the ability to merge model versions and
fragments.

Morse - Model-Aware Repository and Service Environment [109]: This paper introduces
the concept of model-based services that are automatically generated and deployed using a
service environment known as MORSE. This approach uses Universally Unique Identifiers
(UUIDs) to support versioning of models so that different services can access the desired
version of elements or models at runtime. To facilitate this process, MORSE generates and
distributes appropriate service clients that allow components to monitor services associated
with models in each version. Its transparent versioning enables better monitoring, governance,
and self-adaptation in SOAs while reducing the manual effort required to develop services
based on runtime models. It also hides complexity from users while respecting UUIDs to
ensure that the correct versions are accessed when needed.

ReMoDD - Repository for Model-Driven Development [88]: It is a platform that provides
users with access to an array of resources related to model-driven development (MDD).
These resources include documented case studies, models, semantic models and metamod-
els, reference models, model and specification patterns, generic models, transformation
descriptions, and modeling experiences. ReMoDD’s user interface allows users to search
and browse resources and engage with other members in discussion groups or forums. As a
hub for knowledge sharing, collaboration, and research-based resource utilization, it acts as a
resource for the MDD community. This platform enables users to share their expertise and
increase productivity in academia and industry by improving MDD processes.

MDEForge: An Extensible Web-Based Modeling Platform [18]: This paper presents MDE-
Forge, an extensible platform for web-based modeling. It aims to foster a modeling com-
munity with a repository and enable software-as-a-service of model management tools via
REST API. By leveraging these services, it is possible to create extensions that add additional
functionality to the platform. MDEForge thus provides several essential features that are
missing in existing modeling platforms, reducing their adoption and relevance in an industrial
context. It allows users to search and reuse model artifacts without the need for complicated
and error-prone installation and configuration procedures.

According to Table 4.1, Although most existing approaches are limited to model persistence,
ReMoDD provides impressive support for other model artifacts, such as transformations
and metamodels. Rather than programmatically searching and retrieving existing artifacts,
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Managed Artifact Main purpose Typical deployment scenario
AMOR [44] Modeling artifacts Versioning of model arti-

facts
Desktop app

Bizycle [133] Modeling artifacts Software components inte-
gration

Desktop app

CDO Modeling artifacts Model persistence Client-Server app
EMFStore [128] Modeling artifacts Versioning of model arti-

facts
Client-Server app

GME [135] Modeling artifacts Model persistence Client-Server app
ModelBus [105] Modeling artifacts Versioning of model arti-

facts
Client-Server app

Morse [109] Modeling artifacts Versioning of model arti-
facts

Software-as-a-service

ReMoDD [88] MDD artifacts Documentation Web-based interaction
MDEForge [18] Model, Metamodel,

DSLs
Model persistence, Added
value services

Web-based interaction, Software-
as-a-service

Table 4.1 Overview of existing MDE tools providing storage features.

ReMoDD provides artifact documentation for its persisted artifacts to support learning.
Unfortunately, ReMoDD does not have search and reuse capabilities for existing model
artifacts and tools. It is worth noting that MORSE and ReMoDD are among the few
approaches that do not require downloading, configuring, or installing executables before
users can access the artifacts.

ReMoDD stands out by offering developers features such as web-based search and browsing
capabilities. In addition, Morse leverages the same capabilities by allowing developers to use
the service as an API. Interestingly, for those seeking a consolidated experience, MDEForge
goes a step further by allowing users to access the storage and management of multiple types
of artifacts, such as models, metamodels, and transformations, in one place. In addition,
it can be used through a web-based interface and allows programmatic use of the features
offered. The value-added services offered, such as automatic classification of metamodels,
remote execution of transformations, etc., can be used through the APIs provided. The
main drawback of MDEForge are the need for more support for storing and managing
relevant artifacts of interest in the context of the EU Lowcomote project, including DevOps
workflows, quality assurance artifacts, and advanced mechanisms for providing appropriate
recommendations to users.

4.2 System Views
This section presents the architecture of the developed low-code engineering repository. The
development followed an iterative and incremental approach, where the activities consisted
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of multiple sprints and functional deliveries, as shown in fig. reffig:sprint. The iterations
included analysis, design and implementation, testing, and deployment, which were organized
into sprints based on well-defined functions. We combined different methodologies such as
Scrum, Kanban, and Extreme Programming to manage the development. Scrum helped us
organize our workflow into sprints to ensure independent, fully functional features, while
Kanban helped us visualize the workflow and better organize the backlogs. We used Extreme
Programming to improve responsiveness and quickly update changes and requirements.

Fig. 4.1 Scrum iterative sprints

To describe the architecture of the proposed system, we used a modified version of the "4+1"
View model, a model for describing the architecture of software-intensive systems based on
the use of multiple concurrent views.” [35]. The modification to this model is the addition of
a sixth view, namely the data view (see fig. 4.2). Since the repository is intended to persist
and facilitate the discovery and reuse of model artifacts, we decided that an additional view
was appropriate to show the structure of the data. Thus, the six views used to describe the
repository architecture are as follows:

• Use Case View: This view is at the center of the "4 + 1" architectural view model
because the remaining views orbit around it. It represents the user requirements that
capture the system functionality by illustrating user interaction with system stakehold-
ers.

• Data view: This view describes the organization and type of data that the system uses
to exchange or transfer data during task execution. By identifying the types of data and
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their organizational structures, we can easily manage and coordinate tasks and enable
efficient task execution, risk mitigation, and improved productivity.

• Logical View: The logical architecture view of the system describes the system based
on the functional requirements that meet the needs of users and stakeholders. The
system is divided into key abstraction sections to better describe the design approach
and mechanisms that tackle the identified challenges.

• Development View: It is based on the static view and organization of the system. It
outlines all components integrated to provide the desired functionality. Hence, the
architecture is constructed with extensibility at its core to foster the system’s ability to
grow and accommodate new ideas without causing chaos through drastic changes. In
addition, the static structure can be kept flexible to facilitate maintenance.

• Process View: To describe the dynamic aspects and reveal the interdependencies of
the repository’s functionalities, we mapped different levels of abstraction to under-
stand their unique behavior better. Hence, during integration, developers can have an
insightful representation of the processes to allow them to create efficient solutions
that remain true to the fundamental architecture of the repository.

• Physical View: In this view, we focused on non-functional features (i.e., high availabil-
ity, performance, reliability, and performance) that emphasize the hardware environ-
ment for better component placement to maximize throughput and system efficiency,
such as reliability, scalability, performance, and availability. As a result, we strategi-

Data view

Logical view Development view

Process view Physical view

Use case view

Fig. 4.2 The extended "4+1" views of the Lowcomote repository architecture
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Fig. 4.3 High-level architecture view

cally balanced resource utilization between compute nodes to create an efficient and
optimal system architecture.

Understanding the various stakeholders involved in the management and interaction with our
repository is critical to its success. The views presented in fig. 4.2 outline the concerns of
each stakeholder group, including system administrators, citizen developers, and software
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engineers. The high-level diagram depicted in fig. 4.3 summarizes the system and its
relationship with key stakeholders. It provides a birds-eye view into the dynamics at play,
guides stakeholders’ interactions, and ensures optimal information flow governance.

The client layer within the system provides a straightforward way to interact via a web-based
interface with RESTful/GraphQL API specifications. In this context, the API specifications
encapsulate low-level functionalities and expose relevant system functionality externally. This
architecture strives to load balance server workloads to prevent overload and adverse effects
on performance. Immediately after the load balancer, a security layer is added to protect the
API from malicious activities. This way, we further improve the application’s security features
and ensure that resource access is managed correctly through proper authentication and
authorization of users and services. This combination of load balancing and robust security
measures helps ensure the performance and availability of the system while streamlining
low-level processes and operations.

The service layer of this system includes core repository services, external integrated ser-
vices, and third-party extensions. Examples of these third-party services and extensions
include Recommendation Engine [112], Model DevOps Operations [61], and Model Testing
Engine [123]. The persistence layer consists of cluster databases and file systems that
are orchestrated and deployed to be highly available, fast retrieval enabled, and scalable.
Together, the service and persistence layers provide our main building blocks for effective
system scalability and extensibility.

The high-level view of the system is described in detail in the following subsections according
to the extended 4+1 model mentioned earlier.

4.2.1 Use case View

From the user’s perspective, this view represents the functionalities of the repository. As
mentioned earlier, we envision three different stakeholders of the repository, as shown in
fig. 4.3, i.e., the software engineer, the system administrator, and the citizen developer. The
following paragraphs present the repository functionalities organized according to these
identified users.

Software engineer: Software engineers are supposed to be experts in model-driven en-
gineering and the development of low-code development platforms. They can extend the
repository by integrating new functionalities. In this respect, Figure 4.4 shows the two
prominent use cases involving software engineers as described below:
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Software	engineer

API standardization

API integration

Fig. 4.4 Software engineer use case view

• API integration: This integration allows software engineers to programmatically
customize and enhance the repository capabilities by either reusing built-in functionali-
ties or adding new capabilities without the overhead. API integration mechanisms on
our repository follow dedicated guidelines to ensure the best practices and maintain
high-quality standards.

• API standardization: Developing and maintaining a modern, extensible software
architecture is a challenging undertaking. Therefore, the system mitigates these risks
by providing dedicated extension points for software engineers while enforcing the
use of API specification services such as OpenAPI3 and GraphQL4. This approach
streamlines API documentation, encourages the usage of an API playground to explore
resources, and simplifies testing. Besides, it also streamlines development processes
and future maintenance.

System administrator: System administrators manage repository infrastructure and re-
source usage. They also administer access control of resources and user management. As
shown in fig. 4.5, system administrators have the following use cases in the repository:

Admin

Manage users

Manage CRUD operations of the repository

Manage project access

Manage resource usage

Fig. 4.5 System administrator use case view

• Manage users: The system administrator is responsible for managing user accounts
and their respective resources. She/he has complete access and administers activities

3https://swagger.io/specification/
4https://graphql.org/

https://swagger.io/specification/
https://graphql.org/
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such as adding and deleting users, resetting passwords, temporarily locking user
accounts, and controlling user access level of resources and APIs.

• Manage project access: The administrator ensures that users have correct permissions
for the artifacts and tools presented in a given repository’s project. She/he can revoke
or grant access to project resources at any time, depending on whether those resources
are being used in accordance with repository policies and regulations.

• Manage CRUD operations of the repository: The administrator has superior access
over the projects and tools managed by the repository. Hence she can perform CRUD
operations on projects and tools when needed. For instance, the administrator may
deactivate a specific service or other operations that she deems inappropriate.

• Manage resource usage: The repository admnistrator access level grants ability to
allocate the necessary resources for high-intensive operations. They can downscale
or upscale these resources based on demand is essential to ensure that operations
are responsive to changing conditions. With advances in automation, adminstrator
can maintain a steady level of performance and utilization without compromising
closure performance. Hence, she/he has a significant amount of flexibility and control,
allowing for minimal latency in service delivery and optimization of resources.

Citizen developer: Citizen developers are the main target of the system, and all the
provided functionalities have been defined by considering the potential needs that inexpert
developers expect from a low-code model repository. As shown in fig. 4.6, the functionalities
provided by the Low-Code repository are grouped under four main categories, i.e., Model
Repository, DevOps Model Framework [61], Model Recommendations [112], Model Mining
and Model testing framework [123] which are described in detail below.
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Fig. 4.6 Repository’s feature use case view

(i) Model Repository use cases: represent the core functionalities pertaining to managing
heterogeneous model artifacts in the repository. Below, we discuss model management use
cases and key features of the system:

• Model Manipulation Operations: The system implements several functionalities
that enable manipulations of model artifacts in the repository. The basic manipulation
functionalities are:

– The citizen developer can upload model artifacts to the repository.

– The citizen developer can edit/update model artifacts persisted in the repository
via provided user interfaces.

– The citizen developer can discover, view and explore selected model artifacts
using various interfaces.

– A citizen developer can delete model artifacts from the repository.
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These operations are modular and represent the smallest logically isolated functionali-
ties. Therefore, higher-level abstraction operations can be implemented by reusing or
extending them accordingly.

• Model / Service Discovery Mechanisms: This repository feature allows users to
find relevant domain models and model management services. It is intended to allow
developers to reuse existing domain models and thus avoid reinventing the wheel and
starting modeling processes from scratch ( c.f. chapter 6).

The repository’s discovery mechanisms target model artifacts mainly, but we have also
enabled the discovery of services available in the repository via service registry (cf.
chapter 5):

– Service Discovery: This feature allows the user to discover model management
services in the repository. A dedicated service registry is responsible for recording
available services, their status, and logs.

– Search Engine: This is an integrated, industry-standard engine that indexes a
variety of information from uploaded artifacts. This engine enables the retrieval
and reuse of artifacts in the repository in the shortest possible time.

– Microsyntax query specification: This is a domain-specific query specification
built upon the repository to enable extended and comprehensive queries of arti-
facts. The query specification can filter artifacts based on multiple criteria in a
query string, including their quality metrics and attributes.

– Artifact quality-based discovery: A quality assessment service has been integrated
into the discovery mechanisms at the repository to allow the user to retrieve
artifacts based on their quality metrics and attributes.

– Discovery based on transformation chain: The user can discover artifacts based
on the transformation chain in which the artifact of interest can be consumed.

• Extensible functionality: The architecture and design of functionalities at the reposi-
tory strive to facilitate the extensibility, reuse, and integration of services available at
the repository.

– API Specification: The APIs of the repository are provided externally as services.
Thus, they are executed and consumed on demand. To enable remote reuse and
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integration, API specifications are used to facilitate this endeavor through the use
of SWAGGER 2.0 OpenAPI5 and GraphQL6 API specifications.

– Modular API: Modularity is a technique of breaking down a system into smaller,
self-contained components. With a modular API, we have developed an API that
consists of self-contained components that are loosely coupled but highly cohe-
sive. This practice promotes the reuse and scalability of current implementations.

– Microservice oriented architecture: A microservice is a highly coherent, decen-
tralized single-purpose service. It should have only one purpose, be self-sufficient,
and communicate through a well-defined interface. We used this approach to
easily track down and fix bugs in isolation without affecting other services and
their performance. As a result, services are executed on demand, and adding new
services leaves other services in the cluster intact hence their holistic management
and maintenance.

• Scalable architecture and infrastructures: The repository is built on an architecture
that provides automatic scalability and resource management. The infrastructures are
cloud-based to facilitate remote service access and reusability.

– Clustered distributed microservices: By having microservices in a cluster, the
services are managed in a pool, and we benefit from load balancing, strategic
monitoring of resources and traffic split across multiple microservices. We can
also manage workloads by reserving nodes for some intensive workloads with
special requirements. Overall, service clustering is at the core of our architecture
to support our main objective: improving repository scalability and extensibility.

– Containerization: Containerization of services using Docker technology7 bolsters
decoupling applications from their dependencies from the host system. Hence, the
portability of the container is much more straightforward and can run consistently
and seamlessly across different environments. In addition, we can easily scale
and perform versioning of containers efficiently.

– Orchestration: We orchestrated services using Kubernetes. By orchestration, we
mean the organization of multiple clusters to function as a single unit. In this way,
the current implementation supports easy coordination of containerized services’
deployment, scaling, and management. Resources are cons more efficiently, and
tasks are automatically distributed to the most appropriate machines, depending

5https://swagger.io/specification/v2/
6https://graphql.org/
7https://www.docker.com/

https://swagger.io/specification/v2/
https://graphql.org/
https://www.docker.com/
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on the available load. High availability and load balancing are also enabled by
cluster orchestration.

• Model management services: We transformed model management operations that
query, validate, transform, compare, and merge model artifacts into services. This
allowed remote access to these services and their execution on demand. Based on
these services, we developed a task workflow domain-specific language that enables
the discovery and reuse of model management services. Hence, now services can be
executed based on user intended workflow.

The following use cases are part of the design of the lowcomote repository 8 to include
functionalites such as model recommendations, continuous integration, and a framework for
model testing.

(ii) Continuous Software Engineering use cases: DevOps is "[...] a development method-
ology aimed at bridging the gap between Development and Operations, emphasizing com-
munication and collaboration, continuous integration, quality assurance and delivery with
automated deployment utilizing a set of development practices." [118]. In this context,
Continuous Software Engineering (CSE) is a software engineering approach in which the
target system, or at least some of its components, is designed, developed, and deployed
in short, regular, iterative, and often (partially-)automated cycles. CSE is a broad term to
refer to many continuous-* activities like Continuous Development, Continuous Integration,
Continuous Deployment, and Continuous Delivery to form complete DevOps processes [92].
The repository supports model-driven CSE approaches by providing specific CRUD func-
tionalities for DevOps process and platform models [61]. In addition, it aims at supporting
the current, and future extension of the DevOpsML conceptual framework presented in [61].

(iii) Model Recommendations use cases: During the construction of new models, relevant
model artifacts that are stored in the repository can be reused to facilitate the modeling
process or to improve the state of an underdeveloped model. The possible reuse of model
artifacts are offered to the citizen developer in terms of recommendations [112].

(iv) Quality Assurance use cases: In any Low-Code development platform, citizen devel-
opers should be involved in all the phases of the application development process, including
testing. Therefore, the platform left room for specific functionalities to test the Low-Code
system under development. Testing operations are specified in terms of models [123].

8https://www.lowcomote.eu/

https://www.lowcomote.eu/
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4.2.2 Logical View

The logical view describes our repository by decomposing it into a set of collaborating
components. This view’s primary focus is to provide technical details of the system func-
tionality and services alongside their interaction. A component diagram, which shows the
aforementioned decomposition is illustrated in fig. 4.7 and described in the following.
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The repository design features core components in its central infrastructure, but also ac-
commodates other additional components that were developed in the parallel under the EU
project Lowcomote9. The following are the key components of the repository.

• Artifact View Control: This component belongs to the client layer and serves as the
cornerstone of the repository’s basic functionality by presenting its contents such as
model artifacts, tools and services. It gives users the ability to manipulate models by
uploading, deleting and updating model artifacts in the repository.

• Business Logic Controller: This component is critical as the main application logic,
providing a wrapper for backend functionality and an access point to the external world.
We maintain a consistent structure of publicly available APIs using OpenAPI 3.0 and
GraphQL specifications. Therefore, we manage and filter all interactions with the
server and external parties from a single access point to ensure optimal load balancing
and performance.

• Security Manager: This component provides secure access to the repository content.
It provides authentication and authorization and protects against unauthorized access
and potential security threats. As the gatekeeper of the system, it contains the necessary
logic for access control and includes functions for user session management and token-
based authorization.

• User Manager: It manages the system’s security interactions with users and services.
The component is responsible for keeping sensitive information, such as credentials,
secure while ensuring authorized access throughout the system. In addition, the User
Manager component provides user profiling to enhance the overall experience.

• Service Integration: This component aims to provide a platform for components to
interact via their APIs. It supports the Business Logic Controller for overall coordina-
tion of security, load balancing and individual services. We can use this component to
monitor and optimize the built-in operations across the system.

• CRUD Manager: It is responsible for uploading, deleting, updating, editing and
viewing model artifacts. It constantly synchronizes with the persistence layer to ensure
data integrity and information updating.

• Search Engine: This repository-integrated engine allows users to quickly and con-
veniently search, discover, and access relevant model artifacts. Advanced discovery
mechanisms built into the search engine give users the ability to narrow the search query
and navigate through the repository content. The current index can be expanded by

9https://www.lowcomote.eu/

https://www.lowcomote.eu/
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collecting artifacts from the Internet. However, guidelines for the automatic collection
of these artifacts must be documented and considered.

• Indexer: It ensures accurate indexing and synchronization of data in the index from
our cluster store to the search engine when artifacts are uploaded or updated. Since
some services, such as computing artifact metrics, are triggered on these events, this
component ensures that the data they generate is indexed along with the artifact
document and metadata.

• Persistence: This component combines multiple database APIs that store data from a
clustered repository and provides a single output of data from the repository. In addition,
we have implemented safeguards to ensure that properly authenticated requests are
fulfilled and that each data request from the repository database cluster is authenticated
and authorized with updated tokens.

• Repository DB: It is a central hub for processing, managing, and storing logs collected
throughout the system. It is a wrapper for additional data processing tasks that feed
metadata into the repository and advanced configurations. In this way, it is used when
additional scripts are required that directly manipulate and update persisted data.

Below are the integrated components from the EU Lowcomote project 10. They use the
repository data to build model recommendations, continuous integration, and a framework
for model testing.

• Model Artifact Recommender [112]: This component provides recommendations to
the user during the modeling process. The recommendations can be triggered proac-
tively (by the system) or reactively (by the user). For example, the recommendations
can suggest to the user the next modeling step, how to name a new model artifact, and
what type of relationship can be specified between newly created model artifacts. The
recommendations can also provide useful suggestions for improving the current state
of an underdeveloped model that has just been uploaded to the repository.

• Recommendation Engine [112]: For a given underdeveloped or under-construction
model, recommendations are realized by the query engine, which receives as input the
model details and queries the repository to obtain the same or similar models. The
models retrieved from the query result are compared with the model under construction.

• Model Transformer [112]: After the recommendation engine has retrieved similar
models and given the user the appropriate recommendations, the model transformer
component is busy applying the selected recommendation to the model being built.

10https://www.lowcomote.eu/

https://www.lowcomote.eu/
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• Continuous Software Engineering (DevOps) [61]: This component acts as a top-
level container for CSE-related services and serves as a facade for i) citizen developers
interacting directly with the low-code engineering repository and ii) external tools that
can be integrated into a dedicated low-code platform configuration (c.f. platform mod-
eling in [61]) that support specific DevOps processes (e.g.., continuous Delivery [61]
or test functionalities (c.f. Deliverable D4.3 [124]). In particular, a DevOps process
and platform configurator are responsible for two main activities: i) supporting the con-
figuration of DevOps processes and platforms [61] based on available libraries of tools
(with their interfaces), according to given requirements (e.g.., required capabilities to
address specific problems [61]), ii) collection of tool descriptions and the processes
they support in shared libraries (e.g., tool descriptions created by tool vendors [61]).
In addition, the DevOps Process and Platform Configurator are supported in the execu-
tion of its functions by dedicated manager components (Tool and Interface Manager,
Capability and Concern Manager) with specific functionalities for existing libraries
(c.f. fig. 4.6) (e.g., collection of predefined queries and recommendations for process
and platform models).

• Testing [123]: This service provides facilities for quality assurance of low-code
systems developed by the Low-Code Development Platforms (LCDP). Several com-
ponents are considered to support different phases of testing (including test design,
test generation, test execution, and test evaluation) for different LCDPs. The Test
Execution Engine component is a dedicated and configurable engine compliant with
the Test Description Language (TDL); it is a standardized language for abstract test
case definitions [145]. Citizen developers can design test cases using the TDL lan-
guage (i.e., create TDL models). TDL is not executable, but the engine makes TDL
models executable. It also handles automatic configuration, execution, and evaluation
of functional tests at the model level. The engine can be configured for different
domain-specific languages (DSLs) via the ’Test Engine Configurator’ component so
that the test service can be customized and reused by different LCDPs.
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4.2.3 Development View

The development view focuses on the actual software design of the repository. The static
structure of the system is illustrated in fig. 4.8, and the main elements are described in
Table 4.2.

Table 4.2 Description of the main Lowcomote repository static structure elements

Element Type Name Description
Class RepositoryMainController This class acts as system’s nucleus, allowing external entities to use inter-

nal functionalities. It streamlines and hides the complexities of internal
components and functions, offering a simple and modular approach to
handle external user requests.

Interface ServiceProvider This interface allows extending system’s functionality by defining new
features as contracts, thus ensuring a proper implementation. Hence,
we keep the codebase maintainable and extending does not compromise
system architecture or major restructuring.
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Class ServiceAdapter ServiceAdapter enables seamless interaction between different interfaces
without the need to alter the original source code. It provides a practical
solution for utilizing services that are incompatible, hence enabling
integration with legacy systems and external services.

Class SecurityHandler The Security Manager class oversees the security of the repository, pro-
viding access to security APIs. It acts as a middleware, shielding internal
security components and ensuring that API communication goes through
it before accessing system functionalities.

Interface Ilogger Ilogger interface ensures consistent logging throughout the system for
improved performance tracking and debugging. These logs provide
valuable insights for troubleshooting, maintenance and data analysis to
aid administrators in decision making.

Class User It implements user management operations such as deleting, creating
or modifying users. It can also manage the access level assigned to
each user. It is used by SecurityHandler as a parent class to include
authentication and validation processes to ensure that all actions are
performed securely.

Class SessionManager This class manages the creation and deletion of tokens and their validity
along a given period of time. All security techniques such as refreshed
tokens, OTP or two factor authentication are managed from this class.

Class PasswordManager This class manages the passwords of the users, hashing, and other pass-
word strengthening techniques are either implemented or reused in this
class.

Class ServiceManager This class manages internal services. All load balancing, logging, and
performance metrics will be calculated in this class. Services are orga-
nized and better defined security wise for a better consumption at this
point. It is inherited from the ServiceProvider abstract class.

Class ProjectController This class manages projects that are stored in the repository. A project
contains different artifacts and other user can be given access roles on
selected artifacts. It uses the SecurityHandler class.

Class Artifact This is the main entity class that manages the artifacts of the repository.
It captures the overall data context of incoming and stored artifacts.

Class CRUDManager This class manages the CRUD operations of the different kinds of arti-
facts stored or to be stored in the repository.

Class ArtifactStorageManager Implementation of CRUD operations are implemented in this class.
Class StorageAdapter provides access to CRUD operations, including the ServiceManager

class, serving as a gateway to other external classes. This adapter can
resolve incompatible operations before reaching the ArtifactStorageM-
anager
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Class DataProcessor Inherited from the CRUD manager, this class extracts needed metadata.
These metadata are organized into a predefined data structure for later
consumption by data analytics and machine learning tasks.

Class SearchManager This class coordinates the searching of artifacts and tools managed by
the repository. This class several utility classes that prepare the query
strings to be used for searching processes. The query is then sent to the
query engine for information retrieval.

Interface IndexProvider This interface exposes indices of artifacts stored in the repository to
services such as search and recommendations that use them. Thus,
anyone who wants to use indices internally from the codebase should
implement this interface.

Class IndexStorage This class implements operations that ensures indexing in external cus-
tom search engine. It can also be used to implement search capabilities
from scratch in the system. Hence, it has predefined data structure that
would be used while performing indexing and its management.

4.2.4 Process View

The process view provides an informative overview of the dynamic capabilities of the
repository. It clearly and concisely illustrates how each major functionality is performed
within the system. Four main processes are presented in this section: Model Management,
Continuous Software Engineering, Model Recommendation, and Quality Assurance Services.
Through these processes, the repository can be customized to meet the needs of the user by
focusing on essential activities along the software development pipeline.

Model Management Services: As explanatory services, we show the sequences of steps
performed when searching for model artifacts and uploading new artifacts. We have selected
two main use cases for demonstration below:

1. Search model artifacts: This use case retrieves model artifacts according to user requests.
Model artifacts are indexed along with their metadata to ensure fast searching. For each
use case, the process starts with authentication. Then, for each service, authorization is
performed against another service to validate sessions and tokens. As can be seen in fig. 4.9,
the service integration component acts as an access component since internal components
cannot be accessed directly from the implementation components. A single access point
helps us ensure and evaluate service performance and data integrity.
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Fig. 4.9 Search model artifact process view

Before executing the query, the data is indexed from the cluster storage or databases into the
search engine. The search engine component with the indexer takes care of synchronizing the
data in the index and in the cluster storage. We chose this architecture to avoid mixing and
instead delegate search activities to an entity specialized in the search domain. The database
remains intact to support efficient CRUD operations, and the data is indexed in its respective
entity to optimize artifact discovery.

2. Upload of model artifacts: Uploading model artifacts is a key feature of the repository.
The process starts with user authentication by checking their authorization access level before
availing resources. Once authenticated and authorized, the uploaded artifacts are stored and
organized in a cluster of databases. The service integration component acts as a facade for
the API, delegating the action to the relevant API. The persistence component performs
operations on the artifact, which is then crawled to extract information used in discovery
mechanisms. The Model Metrics Calculator evaluates the artifact and generates metadata
about its quality. The artifact metadata, such as name, size, source, extension, and type, are
extracted and stored in a clustered storage. Finally, the indexer component synchronizes the
data with the index.

Continuous Software Engineering services: The Low-Code Engineering Repository
provides the means for CRUD functionalities for the model-driven artifacts of the DevOpsML
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framework presented in [61], and a prototypical implementation of the DevOpsML framework
is available [32]. In [61], an informal activity-like workflow is presented that shows its main
four activities, namely, i) process modeling, ii) platform modeling, iii) library modeling
(to collect reusable model elements for Platform Modeling), and iv) process and platform
weaving.

Figures 4.11 and 4.12 provide a high-level view of possible interactions among the Low-Code
repository and external tools dealing with process and platform models, respectively.
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In both interaction scenarios, the citizen developer is performing modeling activities via
external tools, which, in turn, communicates with the Low-Code Engineering repository via
the dedicated Continuous Software Engineering (CSE) service to support CRUD operations
for models.

In DevOpsML [61], the process modeling activity is expected to be mostly supported by
existing DSL and functionalities provided by LCPDs [186]. In [61], the OMG SPEM
language and compliant modeling tools (e.g., SPEM plugin for MagicDraw UML11) have
been used.

A Platform Model artifact is obtained at the end of the interaction depicted in fig. 4.11, which
is editable by the citizen developer and stored in the repository.

11https://www.nomagic.com/product-addons/no-cost-add-ons/spem-plugin

https://www.nomagic.com/product-addons/no-cost-add-ons/spem-plugin
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Library and platform modeling activities are as well intended to be supported by external
modeling tools. In [61], preliminary dedicated metamodels have been presented for specify-
ing platform elements, i.e., i) tools with their interfaces, and ii) capabilities and concerns that
allow their collection in separate libraries.

Figure 4.12 depicts a high-level interaction scenario with a citizen developer that creates
a library of platform elements. According to the DevOpsML framework [61], D4.3 [124]
shows how the citizen developer can play different roles depending on her background. In
particular,

• Requirement engineers: she can express requirements by creating libraries of required
tools, interfaces, capabilities and concerns.

• Tool provider: she can store the model of her preferred/available tools as a collection
of provided interfaces and capabilities addressing given concerns12.

The Tool&Interface and Capability&Concern Manager components (as shown in fig. 4.7)
are in charge of providing repository-specific functionalities to support the DevOps Platform
Configuration use case (Figure 4.6), like collecting statistics and suggesting recommendations
of candidate platform elements for suitable configurations with respect to given requirements.
For this purpose, if applicable, data and process mining techniques are invoked on available
MDE artifacts (i.e., the data) and CSE processes.

12Feature models of LCDPs [186] and existing classification of DevOps tools [56] can be used for this task.
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Fig. 4.13 Model discovery and reuse

Model discovery and reuse services: As shown in fig. 4.13, after a citizen developer logs
into the repository, she can discover relevant domain models to reuse these models or at least
not start modeling from scratch. The discovery process is carried out by using an advanced
query facility from the repository. If the developer decides to reuse any given model, then
this model are loaded to the UI, and the user can customize it.

If the user starts modeling from scratch or customizing any uploaded model, recommenda-
tions are triggered from the repository to the user. For example, suppose the user selects to
use any given recommendation. In that case, the selected options are transformed into the
model under construction format and merged with the model in the respective context.

Quality Assurance services: Concerning the quality assurance services, we show the
processes that are related to the creation of links between test and SUT models (see fig. 4.14)
and to get notifications in case of changes occurring in the model of the SUT (see fig. 4.15).
In both cases, we focus on the interactions between an Actor (that is a citizen developer), a
Test modeler tool (which acts as a user interface for the actor to model test cases), a Testing
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service (that is described in Sec. 4.2.2), and the Low-Code repository (hereafter named
LowCodeER for convenience).

Make links between test and SUT models: When the citizen developer requests to link a
specific test model to its related SUT model (i.e., the system model being tested by that test
model), through the Test modeler tool, the tool asks the testing service for the path of the SUT
Model. The path should be retrieved from LowCodeER since all SUT Models are persisted
there. After returning the path to the modeler tool, it then requests the testing service to set
the reference to the SUT model in the intended test model, which consequently resulted in
an update request from the testing service to LowCodeER to make sure that the reference is
saved and can be used later on.
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getSUTModelpath(SUTModel)
getArtifactPath(SUTModel)

pathpath

SetSUTReference(path)

SetTestModelRefToSUT(path)
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Test Modeler:Tool
Citizen Developer

link test model to SUT

return

Fig. 4.14 Setting the links between test models and their related system models (SUT models)

Get notification of SUT model changes: The LowCodeER component notifies the testing
service of updates in the SUT Model. This notification triggers an operation in the testing
service which repeats the related test cases to avoid inconsistency between them and the
updated SUT model (this is identical to automatic regression testing). To this end, the testing
service requests the repository to retrieve related test models and then executes them. After
running tests, two states could happen:

1. all tests passed, meaning no updates in the test models is required.

2. at least one of the test models is failed, meaning that the citizen developer has to update
failed test models.

In both cases, appropriate notifications are sent to the citizen developer through the modeler
tool.
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Fig. 4.15 Getting notification of system model changes along with the related failed test
models

4.2.5 Data View

The data view captures the essentials of the data transfers that are exchanged between system
processes. We implemented services on the repository as remote services, which implies that
numerous round-trip calls between the client and the server are performed.

Figure 4.16 shows the data transfer object (DTO) that aggregates the data repeatedly trans-
ferred between processes by multiple calls into a single object. This object is stored, retrieved,
serialized for transfer, and deserialized for consumption. Manipulation of the DTO occurs
in the persistence component, which coordinates the persistence layer of the system. The
response consists of two concepts: the message and its content. A message is a JSON
object with metadata included, and the content can take any form depending on the service
involved.

4.2.6 Physical View

The physical view describes the multi-tier architecture of our cloud-based model repository
as shown in fig. 4.17. The system includes different physical components, according to
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the high-level architecture shown in fig. 4.3. The client exploits the core repository func-
tionalities but also integrated services from partners 13 that are working on other aspects
of low-code engineering. The services are made available in the Client Layer and include
model management services, recommendations [112], model testing workbench [123], and
continuous integration services [61]. Such services communicate with the Logic Layer by

13
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using the Service Integration API that plays the gateway role for all the other services, which
in turn can access the data layer providing storage facilities.

4.2.7 Implementation Overview

Throughout the program, we successfully implemented essential core services directly
associated with the model repository, as indicated in the use case view 4.6. As previously
mentioned, objective was to create a scalable and extensible cloud-based model repository.
We began by implementing a distributed microservices-oriented infrastructure on the cloud.
This involved creating an integrated cluster to house all services, implementing monitoring
and communication security mechanisms to ensure that our infrastructure is well-maintained
and easy to extend or scale. Building upon this orchestrated microservice infrastructure, we
proceeded to containerize, shipped and deploy model management services onto the cluster.
Subsequently, we developed model manipulation operations that go beyond CRUD (create,
read, update, delete) operations, which can be accessed remotely via APIs (REST API or
GraphQL). These operations can be remotely accessed through APIs, such as REST API or
GraphQL (c.f. chapter 5). Furthermore, we have implemented advanced discovery and reuse
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mechanisms within the repository, which are elaborated on in Chapter 6. All services on the
repository can be accessed remotely via API specifications mentioned above.

Initially, the architecture of the repository was designed to support various functionalities,
including model recommendations, a devops model framework, model mining capabilities,
and a model testing framework. Unfortunately, due to time constraints, our colleagues
responsible for these services were unable to deliver them on schedule. Nevertheless,
our architecture and current implementation have provisions and placeholders in place to
seamlessly integrate these services when they become available. We tested the repository’s
functionalities by integrating it with external systems, as in the case of the Droid recommender
framework [7]. As the repository continues to evolve, traditional evaluations can be conducted
to further assess its performance.

4.3 Conclusion
This chapter presented the architecture of a cloud-based model repository that was adopted
to support extensible and scalable mechanisms to discover, mine, and reuse heterogeneous
model artifacts. The repository architecture inherently enforces modeling as a service,
starting with management capabilities. Hence, modelers, especially citizen developers, are
enabled to access, manipulate, discover, reuse, and persist various model artifacts in an
easily accessible and user-friendly repository. In addition, this architecture enables easy
maintenance and organization of data regarding the low-code development process. This
allows developers to access a plethora of containerized services and enough data to process
the artifacts further. With this repository, citizen and professional developers can quickly
locate wanted artifacts without tedious searches and reuse them in services that have already
been deployed in the repository. In addition, these artifacts can be stored securely using
established conventions that allow for reuse in future applications with clear guidelines and
governing policies. Overall, this repository architecture aims to increase the productivity
of modelers, i.e., citizen and professional developers, by streamlining model management
operations to enable the discovery and seamless reuse of model artifacts.





Chapter 5

Composition, discovery, and orchestration of model
management operations

Model management services play an essential role while developing complex systems by
means of MDE practices. They carry out several model management operations (MMOs),
including model transformation, validation, comparison, and merging, which are exposed
as remotely consumable services. However, the adoption of MMOs on cloud-based model
repositories has raised issues related to their composition, discovery, and orchestration. No-
tably, it is an arduous and error-prone task to carry out the composition and execution of
complex workflows involving different model artifacts consumed by various model manage-
ment services. For instance, modelers must identify the proper atomic operations among
available services, connect to remote model repositories, and figure out their composition to
satisfy the final goal. Different composition proposals have been introduced in MDE, even
though a satisfactory solution has not yet settled.

The Modeling-as-a-Service (MaaS) [45] initiative promoted the adoption of model man-
agement operations as services over the internet. To this end, as presented in previous
chapters, several repositories have been proposed in recent years by academia and industry
to enable the reuse of model artifacts and their remote execution as services [18]. Thus,
the development of complex systems using the MaaS paradigm requires the composition of
multiple atomic services that must be properly discovered, containerized, and orchestrated.
However, currently available model management activities do not facilitate such operations,
as they must provide remote APIs [115] and provide the means to register and discover
the services to be composed. Therefore, developers must seek out the required modeling
tools and associated model management operations from locally provided infrastructures and
work out their composition to develop the desired system from scratch. The main challenges
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that make model management operations (MMOs) composition an arduous activity are the
following:

– Current composition tools mainly deal with locally available resources.

– Composition mechanisms like ANT tasks are specific for the particular ecosystem at
hand (e.g., Epsilon1).

– The development of complex engineering processes require technical expertise that
citizen developers (i.e., domain experts with limited programming skills) might not
necessarily have, though deemed to be aware of involved services.

– Local deployment of modeling infrastructure makes MMO composition error-prone
and time-consuming.

– Lack of access to APIs that facilitate on-demand remote execution of MMOs.

– Lack of mechanisms to discover and reuse MMOs over the internet.

In this chapter, we propose the use of a low-code development environment for the de-
velopment of complex model management processes. The context under consideration is
characterized by atomic model management operations provided as services by (potentially)
different providers. The envisioned environment supports the discovery and orchestration of
the services required to develop the desired composite process. The goal is to develop an
event-driven approach based on trigger-action programming as practiced by LCDPs. In these
scenario, users can connect different independent services, organize and customize them in a
certain flow to achieve their goal [169]. Similarly, the proposed platform supports high-level
abstraction and automation to compose model management services provided by different
repositories.

We also present MDEForgeWL, a textual DSL with a complete infrastructure to support the
execution of MMO workflows available remotely as dedicated services. MDEForgeWL en-
ables efficient composition and discovery of model management services and model artifacts
using a dedicated low-code development platform. In addition, a dedicated DSL allows the
user to specify complex workflows to orchestrate the underlying model management services.
The language is based on a trigger-action paradigm, where services can trigger the execution
of other services. Users can plan, organize, customize, and execute any model-driven task
workflow by incorporating independent model management services into a specific flow to
achieve their defined goals [115].

1https://www.eclipse.org/epsilon/doc/workflow/

https://www.eclipse.org/epsilon/doc/workflow/
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The MDEForgeWL engine is implemented in a microservice-oriented architecture that
leverages Kubernetes technology. Kubernetes 2 provides out-of-box benefits such as auto-
scalability, extensibility, and dynamic selection of services based on workload [115]. In
addition, Kubernetes enables model management services to be discovered and used via
remote APIs. The code repository of MDEForgeWL is available online.3 Thus, the main
contributions of this chapter are as follows:

– Support service and model artifacts’ discovery through the MDEForgeWL platform.

– Empower the user with a DSL to define custom workflows involving model manage-
ment services.

– Enable orchestration, abstraction and automation of model management services.

– Facilitate extensibility and scalability of model management services in a cloud-based
model repository.

The chapter is organized as follows: Section 5.1 discusses the background, and Section 5.2
provides an overview of related work and a comparison of existing approaches to compose
model management operations. Section 5.3 presents the architecture of MDEForgeWL and
the implementation processes of the platform at its different levels. We also present the
MDEForgeWL language in practice with an illustrative example, while section 5.4 concludes
the chapter.

5.1 Background
Traditional data-intensive systems are undergoing a digital revolution. This phenomenon
has significant implications for the variability of product types and customization possibil-
ities during their life cycle [227, 212]. Significant efforts and investments are required to
implement and maintain these complex systems, which limit their acquisition by small and
medium-sized enterprises (SMEs)[220]. The complexity of such systems is exacerbated by
reliance on code-centric approaches, which have proven to be daunting due to the amount of
effort required to program, customize, and integrate complex heterogeneous systems that
originate from different engineering domains and processes [60].

This complexity sparked the need for flexible approaches that adapt to system behavior in the
face of ever-changing requirements, structural changes, and unexpected conditions [212]. To
develop data-intensive systems, MDE promotes the adoption of models as machine-readable
and processable abstractions specified using dedicated languages such as System Modeling

2https://kubernetes.io
3https://github.com/Indamutsa/model-management-services.git
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Language (SysML)4. Dedicated tools are used to support development and analysis tasks,
to integrate technical processes and stakeholder perspectives, and to promote information
exchange during these processes [26].

To simplify the development of complex systems, trigger-action programming paradigms
can be used to facilitate automation and abstraction. For example, such a paradigm is being
used in the Internet of Things (IoT) field to develop applications in smart home management,
agriculture, e-health, industrial automation, and robotics [199]. Systems such as IFTTT and
Zapier are examples of LCDPs that facilitate business process automation by allowing users
to specify processes [169]. In particular, they allow the creation of new services, known as
recipes, from a user-defined concatenation of services based on conditional statements [215].
For example, a user can like a particular post on Facebook and automatically archive it to a
corresponding store in the cloud [162].

The remainder of this section discusses core concepts of this work related to aspects of
service-oriented architectures and to the development of domain-specific languages.

Service-oriented architecture: The current uptrend in service-oriented computing is
transforming traditional software systems and infrastructures. This digital transformation
involves a shift from a centralized architecture into dynamic and distributed systems that
support cloud-based services [163]. This new paradigm uses cloud computing to encapsulate
heterogeneous and autonomous services into a service pool that exhibits various functional
and non-functional features [120]. Cloud computing is defined by the National Institute
of Standards and Technology (NIST) as "a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., networks
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction." [120]

Migrating to the cloud facilitates affordable access to reliable and high-performance hardware
and software resources and cuts expenses related to system maintenance and security [120].
Moreover, such migration is a pillar in supporting features such as collaboration, remote
reuse, high availability, extensibility of model artifacts, and their management services [74].
In addition, cloud computing offers many benefits such as on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured service, multi-tenacity and
auditability, and certifiability [120]. Besides, it fosters inter-organizational interaction by
enabling service discovery, composition, and execution of their business logic [120]. Hence,
to achieve a fully operational complex service, atomic services are combined to process data
to achieve the user goal, often referred to as composition [136].

4https://sysml.org/

https://sysml.org/
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Generally, a service is defined as an invokable network, an independent high-abstracted
and self-contained remote operation that executes low-level functionalities and might return
some data [181]. In the MDE context, a model management service is a containerized
model management operation (e.g., transformation) along with its engine and auxiliary
operations that manipulate input model artifacts and ensure the return of output data. Service
discovery is finding and querying from a registry of services that exhibit given functional
and non-functional features. In this aspect, composition stands for the operation of discovery,
selecting, combining, and executing cloud-based services to achieve the user’s goal [148].
To enable these features, service preconditions, effects, inputs, and outputs are encoded in a
computer-interpretable form such as a DSL [163].

DSLs used in service composition are designed to support the specification of composite
processes, facilitate interoperability between service users and providers, and enable flexible
and dynamic invocation of ad-hoc external services [64]. The resulting complex composite
services from the complex invocation chain must scale with the number of composing
services. Service composition offers two significant benefits to the developer and the user.
For the developer, it advances service and artifacts reusability, and from the user’s perspective,
she has seamless access to a variety of complex services [197].

Domain-specific languages (DSLs): pave the way for domain experts to leverage their
knowledge in developing otherwise complex functionalities using intuitive text encoded with
instructions for machines to execute [216]. They are preferred for two main reasons: firstly,
they unclog a challenging bottleneck in software development: communications among
stakeholders and engineers; secondly, they increase productivity among developers [87].
Due to the arduous effort involved in developing a domain-specific language (DSL), MDE
techniques are wielded during their design and implementation [27].

MDE techniques express solutions at the same problem domain level in this context. Devel-
oping a DSL comprises several phases that result in a compiler capable of reading the text,
parsing it, and generating executable code. To realize a DSL, developers take advantage of
frameworks such as JetBrains MPS and Xtext [216]. The former offers projectional editing
that facilitates parsing the text, thus overcoming the limits of developing DSL editors [64].
As for Xtext5, it requires a grammar specification and generates the complete customizable
infrastructure needed to build a fully-fledged domain-specific language. Xtext provides
an out-of-box lexical analyzer, parser, and abstract syntax tree using the EMF model, type
checker, compiler, and editing support for the Eclipse modeling framework (EMF). Moreover,
it supports the Language Server Protocol (LSP) for client-server communications [27].

5https://www.eclipse.org/Xtext/



96 Composition, discovery, and orchestration of model management operations

5.2 Composition of model management tools
In this section, we make an overview of existing approaches to compose model management
tools (c.f. Sec. 5.2.1). Different criteria are also presented to elaborate a comparative table of
the analyzed approaches (c.f. Sec. 5.2.2).

5.2.1 Overview of related work

Berardinelli et al. [26] identified relevant challenges that hinder the adoption of model-driven
approaches for cyber-physical production systems engineering and discussed issues related
to integrating several modeling tools. An automated engineering toolchain has been proposed
to perform early design and validation. Vogel-Heuser et al. [212] presented an approach to
support the model-driven engineering of manufacturing systems. The SysML-AT language
(SysML for automation) has been proposed to specify both functional and non-functional
hardware components’ requirements.

Chen et al. [59] presented an approach for automatically translating natural language de-
scriptions into executable If-Then programs. Using neural networks, the system helps users
synthesize If-Then programs by proactively predicting triggers and actions related to their
descriptions. Dzulqornain et al. [81] also developed a real-time monitoring and controlling
smart aquaculture system based on IFTTT and cloud integration. The system facilitates
interoperability and integration of sensors, system controllers, client data visualizations, and
system monitors.

Quirk et al. [167] presented an approach to map natural language descriptions with If-Then
patterns to executable programs. They use semantic parser-learners that utilize already-
defined recipe descriptions to train semantic parsers that automatically map these descriptions
to executable programs.

Languages such as BPMN, which are general purposes business process languages, tend to
be complex due to the vast number of related specifications and notations. Consequently, they
sometimes lead to incorrect interpretations of its elements and semantics [66, 214]. Moreover,
although graphical specification languages such as BPMN present a solid boundary to achieve
defined operations, they tend to score down on flexibility, especially when implementing
complex ideas that step out of the fixed boundaries [107]

Build tools such as Gradle require an adequate understanding of their documentation to get
started. Moreover, they are not specifically conceived to run model management workflows,
requiring extension mechanisms to support MDE artifacts and tools [219]. As a result, they
can lead to tedious work that is abstracted by our DSL. If a task fails in Gradle, subsequent
tasks that depend on the failed one are not executed [219]. We intend to implement self-
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healing mechanisms within our DSL that does not necessarily halt the program’s execution
but report on the encountered problem to facilitate troubleshooting adequately. Gradle is a
very mature build tool, and we intend to use it to implement a part of our workflow engine to
facilitate the task execution process.

Alvarez et al. developed MTC Flow [9], a graphical DSL intended to design, develop, and
deploy model transformation chains. However, their tools are limited to the Eclipse platform
and support only model transformations and validations. In addition, their implementation
does not address cloud-based solutions and service discovery features.

Modelflow [190] is a more advanced language towards reactive model management work-
flows. Their implementation depends on events that can trigger a given workflow. Their
execution engine can react to the modification of resources, and a graph-based execution
plan strategy is provided to enable alternative execution paths. However, Modelflow does not
involve advanced query mechanisms, service discovery, and other features such as model
persistence to remote repositories or cloud deployment. Furthermore, Modelflow is based on
the Epsilon language family, and features related to cloud-based solutions were out of scope.

MoScript [127] is based on the Eclipse platform, and the supported model management
operations are not cloud-based. It does not support service discovery. Although it can
perform model queries within the DSL, they are limited to OCL and directly tied to inner
model properties.

Wires [178] is a graphical Eclipse-based tool supporting the orchestration of ATL model
transformations. However, it does not support the cloud-based orchestration of model
management services and their discovery as for the previously mentioned tools.

MMINT [77] is a tool assisting model management operations employing a graphical editor.
It provides an interactive user interface, and the user can choose input models and feed them
into a transformation, and the output can be used as input for subsequent transformations.

Moola [219] is a Groovy-based model operation orchestration language. It exhibits sev-
eral features even though it does not support cloud-based solutions, such as cloud-based
orchestration of services and advanced query mechanisms.

5.2.2 Comparison of model management composition approaches

This section compares the most recent tools addressing the problem of composing model
management operations. None of the existing approaches implements the model-as-a-service
(MaaS) [42] paradigm. Moreover, as shown in Table 5.1, existing approaches can be analyzed
concerning the features described in the following.
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Table 5.1 Comparison of service composition tools for model management operations.

Feature MDEForgeWL Moola MTC Flow Modelflow MoScript Wires MMINT
Concrete Syntax
Graphical
Textual
Target platform
Cloud-based (Web integration)
Local infrastructures (Eclipse,...)
Security Support
In-built security patterns
Security pattern
Collaborative development support
Artifact sharing capabilities
Sharing configuration
Reusability
Code reuse
artifacts’ reuse
Scalability support
Number of users
Data traffic
Data storage
Language features
Data holder
Condition
Iteration
Syntactical & semantic features
Auto-completion
Syntax highlighting
Warning & Error markers
Service heterogeneity
Model management
Non MMSs
Service features
Service-oriented (MaaS, SaaS, ...)
Service discovery
Service composition
Cloud-based orchestration
Third party service integration
Program execution
Sequential
Parallel
Alternative service execution
Knowledge base
Documentation
Query mechanisms
Advanced features
Advanced query mechanisms
Workflow pipelines’ specification
Persistence support
Cloud-based model repository
Local file system
Traceability
Debugging means
Service call logs
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• Concrete syntax: It refers to the language used to specify the composition of the
considered model management tools. The language syntax can be textual or graphical.

• Target platform: It concerns the platform providing the functionalities of the considered
approaches. With cloud-based deployment, the tool can be used on the web or through
RESTful APIs. However, most analyzed tools are based on the Eclipse Modeling
Framework (EMF). EMF is the leading open-source modeling framework, and it is no
surprise that most tools use it. Several initiatives have been migrating that infrastructure
to the cloud6 and enabling features such as collaborative modeling.

• Security support: With this feature, we are interested in understanding how the analyzed
tool manages the security layer, (e.g., employing security patterns like OAuth2.0).

• Collaborative development support: It concerns features that share developed artifacts
or enable collaboration between different stakeholders.

• Reusability: It concerns available means to reuse already specified artifacts.

• Scalability: This feature is related to the architecture used during tool implementation.
We evaluate if the system under analysis has some scalability support, e.g., concerning
concurrently connected users, data traffic, and data storage.

• Syntactical & semantic features: These are features provided by the language server.
Although there are several features in this context, we check if their DSLs support
auto-completion, syntax/semantic highlighting, and warning and error markers.

• Language features: We refer to the availability of language features such as data hold-
ers, iterations, and conditional statements. These features are essential in controlling
workflow specifications.

• Service heterogeneity: We aim to check if the analyzed approach can support services
developed and available from different technologies.

• Service features: We want to check if the analyzed approach implements the MaaS
paradigm. In particular, investigate if related operations are supported, such as service
discovery, cloud-based orchestration, and third-party service integration.

• Program execution: We check if there is optional execution of the program using
sequential or execution means. We also check if the user can specify the service to
execute the wanted model management operations. For instance, she might prefer

6https://www.eclipse.org/emfcloud/
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performing model transformations using ATL7 rather than ETL8 at run-time based on
some service outcome.

• Information point: This feature concerns service and information discovery. Although
one can query services based on their types to determine which one to use, the user can
still discover services using the documentation with illustrative and straightforward
demos.

• Advanced features: These are features facilitating the development of complex work-
flows, such as advanced query mechanisms and workflow pipelines specification.

• Persistence support: It concerns the technology employed to store developed specifica-
tions, which might be locally saved or pushed to a cloud-based repository.

• Traceability: Tracing events and problems that occur during the execution of a com-
posite service is an essential feature. We check the availability of debugging means
such as console view and the capability to gather the logs of the service calls.

Table 5.1 shows the result of the analysis we performed on the existing tools. In the next
section, we present the proposed MDEForgeWL approach to support all the previously
presented features.

5.3 The proposed MDEForgeWL platform
Figure 5.1 shows an overview of the proposed MDEForgeWL architecture designed to
support the definition and execution of scalable workflows consisting of cloud-based com-
positions of model management services. The architecture presented in chapter 4 evolves
from MDEForge [18]. In this chapter, we discuss the implementatin aspects regarding the
composition, discovery and orchestration mechanisms of model managemetn services on the
repository. These mechanisms are used to identify and execute model managment services’
workflows. The architecture is organized into four tiers: the front-end, the execution engine,
the cluster of model management services, and the persistence layer. The four tiers of the
proposed architecture are described in detail below.

5.3.1 The MDEForgeWL front-end: Low-code development environment

As seen in Figure 5.2, the proposed environment provides a visual and intuitive way for users
to create and automate workflows in cloud-based model repositories. With a user-friendly
interface that uses drag-and-drop features and custom scripts, user-defined workflows can
be created and automated in a domain-specific language ( c.f.fig. 5.4). Custom scripting

7https://www.eclipse.org/atl/
8https://www.eclipse.org/epsilon/doc/etl/
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Fig. 5.1 Overview of the MDEForgeWL architecture.

is enabled by an editor that allows the user to express complex workflow expressions
programmatically. Services and extensions on the repositories are organized in decoupled and
distributed microservices to emphasize separation of concerns and promote maintainability,
scalability, and extensibility of individual services [202].

According to the explanatory workflow shown in fig. 5.2, the citizen developer might want
to upload a PIMF (Performance Model Interchange Format) model [139] and generate a
corresponding SySML model from it. He can then validate the model, compute special
metrics, extract some metadata, and insert the obtained information into another SySML
model. The obtained model can be stored in the repository and the user can be notified along
with the complete execution logs. The services used in the above scenario are accessed
remotely through APIs, and the storage systems are distributed services consisting of multiple
network nodes.

Developing and executing model management workflows like the one shown in fig. 5.2
without proper support can be time and resource-consuming, laborious, hard to maintain,
and error-prone. The proposed approach aims at enabling citizen developers to create
and automate workflows based on selected model management services using a graphical
environment with drag-and-drop capabilities. The proposed environment is based on the
metamodel shown in fig. 5.3. According to the shown metamodel fragment, workflows
consist of nodes, which are an abstract representation of activities referred to as actions and
decisions. Several events can trigger activities, and the node can receive different types of
inputs, such as model artifacts and variables. Events of interest and their sources are defined
as shown in fig. 5.2, and they result from different providers that trigger specific actions as
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Fig. 5.2 Example mock-up of graphical task workflow environment.

instructed. Nodes represent decoupled and independent micro-services orchestrated when
the specified workflow is executed.

Figure 5.4 shows a logical view of the graphical front-end and the corresponding stakeholders,
notably two prominent actors involved, i.e., citizen developers and software engineers.
The former can specify task workflows through the provided environment, whereas the
latter can extend the repository services by adding new functionalities. The typical user
(citizen developer) can access the repository, select services to automate, configure triggers
and actions, and authorize task workflows. Interestingly, advanced support is provided to
recommend modeling elements while editing workflows, and analyze, test, and deploy models
by means of dedicated DevOps support. The workflow definition and analysis component
provide such support. The service integration component ensures seamless integration of
external and internal services. Once the modeled workflow is ready, the engine transforms
and executes the incoming model (task workflow), as presented in the following sections.

5.3.2 The MDEForgeWL front-end: DSL

The MDEForgeWL DSL can perform the necessary low-level functionalities in a program,
but also achieve complex functionalities with less user effort. To achieve this goal, the
language is declarative: you specify what you want, and we deliver the results according
to the given specification. As mentioned earlier, MDEForgeWL was developed in Xtext,
and a fragment of the corresponding metamodel is shown in fig. 5.5. Each specification
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Fig. 5.3 Fragment of the proposed workflow metamodel (graphical environment).

has WorkflowProgramModel as its root model element. Each workflow consists of several
elements, e.g. statements, workflow blocks, methods or functions. A statement contains
features such as variables or other callable statements, including method invocations. Within
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statements, we can use expressions, conditional statements, and loop statements that assist
the control flow during the execution of the specification composition. A workflow block
consists of steps that contain statements. The statement can also be a service, i.e., one of
the model management services managed by the cluster. Furthermore, a statement can be a
query to identify artifacts of interest.

In our language, services are an abstraction of model management operations (e.g., model
transformations, validations, model queries, and model comparison operations). These
are the functionalities that are grouped into containers and deployed individually in the
cluster. Performing model management operations such as model transformations using
traditional techniques can be complex, time-consuming, error-prone, and typically requires
local installation of specific frameworks. Instead, our approach allows specific services to be
invoked with appropriate arguments with no installation whatsoever, as shown below.

1// We perform the transformation, the etl script is retrieved by id

2call service _transfoModel(sourceModel, sourceMetamodel, targetMetamodel, id: 4)

Listing 5.1 Service call example

The argument can be a variable or the identifier of the artifact stored in the repository. As
shown in Listing 5.2, the user can use advanced query mechanisms to search and find a
metamodel based on several criteria, including parameters and properties set at the repository
level. This feature is convenient when the users want to specify query predicates to find
the artifacts satisfying given properties. In particular, as shown in line 2 of Listing 2 5.2,
the language permits the declaration of variables that can be used in their defined scope
throughout the script. For instance, the variable sourceModel can be queried using its id,
type, and extension type. This is a query that returns a single result if successful. The
returned results also carry other information, such as the execution status. The user can check
if an executed query succeeded before executing subsequent commands.

1 //Create variables : This part is improved by advanced query mechanisms. You can query

↪→ the type of models u want based on your defined criterias

2 var sourceModel = query artifact(id: 1, type: model, ext: xmi)

3 var sourceMetamodel = query artifact(

4 type: metamodel, ext: ecore, hasModel: sourceModel)

5
6 var targetMetamodel = query artifact(

7 user: "john", period: (03,2020 - 2021), hasAttribute: "person",

8 size: <500kb) -> retrieve( startsWith: "catalogue",

9 contains: "class book").first

10
11 var model1 = query artifact( name: "catalogue.xmi", conformsTo: "catalogues.ecore",
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Fig. 5.5 Fragment of the MDEForgeWL metamodel.
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12 sharedUsername: ["john"], sharedUserNumber: < 3 )

13 var emlscript = query artifact(id: "23")

14 var eclscript = query artifact(id: "44")

15 var eolscript = query artifact(id: "12")

16
17 Workflow workflow type:sequence{

18 step "Validate"{

19 // Let’s validate our model with the retrieved ecl script

20 global var eventValid = call service _validateModel(

21 sourceModel, sourceMetamodel, evlscript)

22 }

23 }

24 step "Compare Transform Merge Persist"{

25 // We will proceed if the validation passed

26 if(eventValid){

27 // We perform the transformation, the etl script is retrieved by id

28 var targetModel = call service _transfoModel(

29 sourceModel, sourceMetamodel, targetMetamodel, id: 4)

30 //If there is a matched trace, we can merge some model aspects

31 var matchedTrace = call service _compareModel(

32 model1, targetModel, eclscript)

33 if(matchedTrace){

34 // We merge the models, and persist the merged model and target model

35 var mergedModel = call service _mergeModels(

36 model1, model2, eclscript, emlscript)

37 call persistArtifact(targetModel, mergedModel)

38 }

39 }

40 }

41 Post{ // We can notify the user of the outcome of the workflow

42 call notify(email: "johndoe@email.net", message: "message")

43 }

44
45 Execute workflow()

Listing 5.2 An illustrative MDEForgeWL specification

The query at line 3 concerns a metamodel with the exact model to which the previous query
retrieved the model. The query in lines 6-9 is more complex and is used to search for an
artifact with a specific user and persisted on the repository in the specified period. We query
the model’s content to find if it has a certain attribute and if its size is larger than 500kb. Let
us suppose the query returns more than one result that meets the criteria specified. We can
pipe the returned results and specify additional criteria, such as the artifact name starting
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with a given text or the artifact containing a given text literally. On the returned collection,
we can retrieve the first result. It is possible to retrieve models according to their name, the
metamodel they conform to, the shared username, and the number of shared users (see line
11). Such properties and parameters are set on the repository level, and our DSL is aware of
information regarding the retrieved artifacts. In addition, the user can query the services and
choose which one to use based on its functionality, such as a transformation to be executed.

The information about service executions is displayed in a dedicated console. Control flow
statements such as conditions and loops are also supported. However, these functionalities
are deemed low-level; hence their use is discouraged since the user can still achieve the same
results by piping results for further query processing. We currently support basic data types
such as booleans, numbers, strings, conditional statements, loop constructs, and functions.
We intend to support also data structures such as objects and arrays.

MDEForgeWL specifications can have a single workflow code block. You can specify the
execution pattern, sequential or parallel (see the workflow definition on line 17). The user
can declare dependencies within steps and among different steps. Step blocks enable pipeline
and batch execution of code. For instance, the user might have a step where she wants to
validate the model (see lines 18-23) before performing a model transformation or perform
some model testing before the subsequent operations (see the step defined in lines 24-39).

In the second step of the explanatory workflow, we use conditional statements (see line 33) to
match the traces from the model comparison operation before merging the models (see line
35). The resulting model from the model merging operation is persisted using one line of
code (see line 37). The user can specify the models to be persisted by delimiting them with
a comma. Underneath, the engine saves models and ensures their relationships with other
artifacts, such as the metamodels they conform to. The user can specify pre and post code
blocks for workflows (e.g., see line 41). In this instance, we chose to perform a non-model
service regarding notifying the user about the results. Notifying the user using emails or
other notification services is not the only way to reflect the progress status of the considered
workflow; we can also use the console view to reflect exception logs captured by the platform.
In addition, we intend to embed visualization capabilities to reflect logs about the program
execution progress and eventual results in real-time to the user.

When the user cancels the workflow execution, the program preemptively forestalls the
subsequent executions of the workflow and returns the current status. Although it is out of the
scope of the present work, we plan to integrate abilities to pause and resume the execution
of the workflows by persisting the current state in the context object and passing it to the
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interpreter to resume the paused execution. The execution of the specified workflow has to
be triggered by the Execute statement as in line 45.

5.3.3 The MDEForgeWL engine

Our engine comprises a compiler, a workflow execution engine, an API integration com-
ponent, and the language server-side that supports the language editor. Our compiler, a
sub-process, consumes the text from the code editor. Next, the lexer lexically analyzes
the text, and the extracted tokens conform to the building blocks of our language, such as
keywords and statements. Finally, the parser takes the list of incoming tokens and generates
the abstract syntax tree (AST). The AST generated by Xtext is an EMF model, and the model
is traversed using the EMF API. Once the AST is available from the incoming DSL text, a
code generation process is triggered. Technically, code generation in Xtext traverses the AST
and translates the tree into executable code that conforms to the language of your choice, in
our case, JavaScript. Our language is statically typed, and the data structures we intend to
support are arrays and nested objects.

At last, the compiler returns a valid executable code that the execution engine can run. The
execution engine runs the provided executable code and uses the API integration component
to leverage services provided by the MDEForgeWL cluster. For instance, when a user-
defined workflow requires the definition of some available model management services, the
engine triggers the orchestration of the involved services at the cluster. They get executed
asynchronously (in parallel) or in sequence based on user preferences. Another sub-process,
the language server, is also running in the engine behind the scene to provide server-side
functionalities to the client code editor. It is important to remark that each service (e.g., a
service exposing model transformation functionalities) can have several engines (e.g., ATL
and ETL), and the user can choose which one should be used. With our discovery mechanism,
the user can find out which engines are available. The system selects the right engine based
on different criteria determined by the container orchestrator and API gateway. Moreover, the
workflow engine is entangled with logging and monitoring mechanisms that keep track of the
execution of workflows. For example, we keep track and visualize API calls using services
such as Prometheus9, Grafana10 and Zipkin11. We have also implemented distributed logging
mechanisms within the workflow engine to monitor the workflow executions’ progress and
facilitate troubleshooting.

9https://prometheus.io
10https://grafana.com
11https://zipkin.io
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5.3.4 The MDEForgeWL cluster

This DSL can be used as a plugin in the Eclipse platform, but our endeavors aim to migrate
model-driven development infrastructures from the environment to the cloud. In this aspect,
we can ensure our modeling infrastructures are more scalable and extensible than in traditional
modeling. The cluster is built using Kubernetes, an open-source container-orchestration
platform [12]. We use it to automate deployment, scale, and manage our containerized model
management services into logical units that facilitate their discovery. The Kubernetes cluster
offers several features: service discovery and load balancing, self-healing, horizontal scaling,
automatic bin packing, storage orchestration, secret and configuration management, and
batch execution. In addition, the Kubernetes cluster is designed to be extensible and loose-
coupled to facilitate feature updates without hardcore changes to mainstream code-base and
architecture [12]. We rely on the Kubernetes ingress controller to accept and load balance the
traffic to the microservices. It also manages egress traffic, representing communications from
internal to external services out of the cluster. In addition, the ingress controller monitors
running pods within the cluster and automatically updates load-balancing rules regarding
removed or added services.

The adoption of containerization technology to build cloud-native microservices accelerates
the development process. Containers are inherently portable and are built to ensure adequate
isolation and efficiency of resources [12]. Furthermore, self-healing mechanisms enable
containers to be advertised when they are ready to serve and can be killed, restarted, replaced,
or rescheduled to conform to the health check defined by the user. Containers are scaled
based on CPU usage to balance the application workload. This is enabled by assigning a
single DNS name for a set of pods referred to as a service; thus, all communications are
made through the service, and the service load-balance the workload among the bootstrapped
pods [12]. Since the MDEForgeWL cluster is deployed using Google Kubernetes Engine12,
the system administrator is allowed to set any resource limits, e.g., on storage, CPU, and
memory usage. Kubernetes auto-scales resources based on available maximum and minimum
ones or replicas set by the administrator. It has built-in vertical, horizontal, and cluster auto
scalers. Auto scalers dynamically adjust the number of running pods or replicas and manage
the CPU/memory utilization of machines in the cluster. They can also increase or decrease
the number of nodes to meet current usage, desired target, and user demands [132].

Our model management services are self-contained and robust, thanks to their organization in
a distributed microservice architecture. This means they offer strong security, flexibility, and
scalability while being fault-tolerant, extensible, and loosely coupled. These microservices

12https://cloud.google.com/kubernetes-engine
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are referred to as a resource server. Moreover, other services such as automated clustering of
model artifacts, search engine integration, and model metrics calculator are integrated at this
level. We use the Nginx ingress controller to access our cluster to interact with underneath
microservices.

Our orchestration and discovery approach uses current trending containerization and orches-
tration technologies that automate the manual work related to service discovery activities.
Existing discovery approaches mainly rely on WSDL documents [217]. In particular, typi-
cally, clients are expected to read and process WSDL files to determine the services exposed
by the server of interest. Then, to call the services listed in the analyzed WSDL file, the user
employs SOAP over transfer protocols like HTTP [146].

The proposed microservice architecture also includes a service registry, a service API gateway,
authorization & authentication server (it implements the OAuth2.0 protocol13) and a resource
server as shown in fig. 5.6. When a user accesses the web browser via a service endpoint
published by the Nginx ingress controller to request the resource server, it goes through the
service API gateway. The service API gateway cross-checks the credentials to validate the
user authentication. If the user is not authenticated, the service API gateway redirects her to
the authorization & authentication server. The server asks the user to authenticate and issues
an access token which enables her to access the resource server. The resource server ensures
the access token is valid from the authorization server, and then it is set to execute the request.
All resource servers implement a client discovery feature to publish their service. The service
registry server keeps an open connection to discover and register all self-published services
from the resource servers. The service API gateway fetches all available services from the
service registry and acts as a proxy server to the resource server. Briefly, registering new
services with MDEForgeWL is done by implementing a client discovery that publishes the
implemented service. Our engine, by using the service registry server, will discover and
register it in our registry. Once the service is registered, it can be used by our API gateway as
MDEForgeWL services. Extending services in this manner does not require modifications of
the grammar of the DSL.

5.3.5 The MDEForgeWL persistence layer

The persistence layer of the proposed system is divided into three categories. The first
category stores structured data using SQL databases such as user management services or
other sensitive data. The second part stores in NoSQL databases unstructured data (such
as logs or data mined by data mining services from the MDEForgeWL cluster). The last
part persists artifacts such as models, metamodels, and transformations. MDEForge, our

13https://oauth.net/2/
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Fig. 5.6 Detailed view of the MDEForgeWL cluster.

cloud-based model repository, consists of model management services that allow persistence
and management of typical model artifacts and tools. Services are accessed and used through
RESTful Web APIs [18]. Our repository is built to handle big data with features such as
high velocity, volume, and variety and perform analytics and predictions on stored data. A
Hadoop cluster is the most pragmatic way to manage big data, break down big problems into
smaller elements and enable practical analysis and predictions on the stored data. As in the
case of Kubernetes, the Hadoop cluster is self-healing and supports dynamic addition and
removal of servers from the cluster [122].

5.4 Conclusion
In this chapter, we introduced MDEForgeWL, a novel approach to support the development
of complex model management operations. This platform aims to support the discovery
and composition of model management operations that can be consumed as remote services.
The goal of the proposed approach is to promote the use of model management service
orchestrations and provide modelers with access to a variety of composite services that satisfy
specific requirements. A prototype implementation of a workflow DSL MDEForgeWL has
been presented along with its architecture. In particular, a low-code development platform
similar to the functionalities of currently available LCDPs such as IFTTT and Zapier is
presented. Such platforms enable the development of complex processes by integrating
and executing different services. The proposed approach envisions a microservice-based
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architecture for the integration and execution of model management services orchestrated in
the cloud according to user specifications using a BPMN-like modeling language.

The proposed approach aims to overcome the current challenges faced by traditional modeling
environments that rely heavily on locally downloaded resources. Such environments are
limited in their scalability and extensibility, and their services exhibit strong coupling with
the local environment. In the next chapter, we present advanced discovery mechanisms that
leverage the architecture and implementation described in this chapter.



Chapter 6

Advanced discovery mechanisms in model
repositories

In recent decades, MDE has become increasingly popular due to its advocacy for abstraction,
automation, and reuse of artifacts, which significantly impact productivity and quality [42,
180, 16, 14]. Several initiatives in MDE have proposed a variety of technologies and facilities
to simplify and automate MDE processes [74, 152]. However, empirical studies still point
out barriers that hinder the broader adoption of MDE practices and processes. However,
despite significant efforts and progress in this field, achieving efficient advanced discovery
and reuse mechanisms to support model discovery, accessibility, retrieval, and reusability is
still a challenge [16, 18]. As a result, model artifacts and tools are developed from scratch
reinventing the wheel, inflicting unnecessary upfront investments and compromising the
productivity benefits of MDE-based processes [205, 186, 205, 221].

In the realm of model-driven engineering (MDE), modelers require techniques and tools
to effectively capitalize on existing modeling artifacts that can contribute to the solution
at hand. The practices of discovery and reuse play integral roles in this process. In MDE,
discovery involves identifying pertinent models, model elements, or transformations already
in existence that hold relevance to a specific problem or task. By leveraging existing resources,
the objective of discovery is to optimize time, effort, and overall efficiency in model-driven
development processes. On the other hand, reuse entails utilizing discovered models, model
elements, or transformations in the creation of new systems or the evolution of existing ones.

Reusability can take place either locally, where users set up the modeling environment
and handle all necessary software dependencies, or through cloud-based model operation
executions. In the latter, users interact with a cloud-based modeling platform, providing
it with the modeling artifacts to be manipulated remotely, without the need to install the
model-management platform locally. This practice enables modelers to effectively draw
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upon and adapt discovered artifacts, thereby enhancing efficiency, consistency, and quality
throughout the development and maintenance of systems within MDE.

Discovery and reuse require efficient mechanisms at different granular dimensions of model-
ing artifacts. In addition, the need for efficient persistence and retrieval of artifacts is primal
in this quest [18]. In this context, model repositories have been conceived to tackle the issues
related to the discovery and reuse of modeling artifacts and tools [20]. Because MDE can be
used at various stages of software development life-cycle, developed artifacts can be reused
and maintained during development employing a model repository. Hence, model reposito-
ries preserve the artifacts and enable their discovery, retrieval, and reuse. Furthermore, MDE
relies on model repositories to help collaborative modeling activities [74, 14].

Ideally, discovery techniques should start from basic queries and gradually get complex to
filter out the exact artifacts persisted in a distributed environment [200]. In addition, filters
should be allowed to model artifact characteristics, such as structural features or other internal
aspects that make up the artifacts. It should also consider mega-models, their contextual
relationships and the persistence environment of the model [103, 93]. Finally, discovery
facilities should facilitate reuse by availing model management operations (MMOs). In
this manner, retrieved artifacts can immediately participate in model management activities
without setting up new environments.

This chapter presents MDEForge-Search, a novel approach to discovering and reusing model
artifacts stored in cloud-based model repositories. Users can exploit pre-defined operators to
specify different requirements of the wanted artifacts. Query specifications range from simply
retrieving data based on metadata to more detailed and complex information, including quality
attributes and relationships within the ecosystem under consideration [116]. For instance,
the user can ask the system to search models i) that conform to a specific metamodel, ii)
which can be transformed towards a given target metamodel through direct or transformation
chains available in the repository, and iii) characterized by a complexity lower than a given
threshold. The user will be provided with efficient discovery mechanisms that are (i) generic,
(ii) sensitive to model structure and relationship with other artifacts, (iii) based on a dedicated
query formulation process, (iv) independent from the underlying technologies and data
models, and (v) able to rank and return the collections of most relevant artifacts that meet
specified predicates. In addition, retrieved artifacts can be reused on the same platform along
with the deployed MMOs.

The main contributions of this chapter are the following:

• Provide an overview of existing mechanisms to discover model artifacts in model
repositories;
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• Identify significant challenges to achieving the practical discovery of model artifacts;

• Design key features that enhance discovery in cloud-based model repositories;

• Present a novel approach to perform advanced search queries using a micro-syntax for
query specifications over cloud infrastructures.

This chapter is structured as follows: Section 6.1 describes the background of modeling and
the concept of model persistence in cloud-based infrastructures. Additionally, we introduce
the concepts of discovery and reuse regarding MDE artifacts. Finally, we conclude this
section with a motivating example. Section 6.2 introduces the state of the art of discovery
tools in MDE and identifies the main limitations and challenges of currently available model
discovery tools. Section 6.3 presents MDEForge-Search, the proposed approach providing
advanced model discovery features as presented in Section 6.4. Section 6.5 presents a
concrete integration of MDEForge-Search with an existing platform aiming at facilitating
the development of recommender systems. In Section 6.6, potential threats to validity are
discussed. Section 6.7 concludes the chapter and presents future works of MDEForge-
Search.

6.1 Background
Modern modeling techniques in data-intensive applications require the discovery and reuse
of relevant model artifacts [200]. In this context, there are two phases in the reuse process
of model artifacts (c.f. fig. 6.1). The first phase operates on the high-level of the model
repository and involves the discovery of relevant artifacts based on a megamodel-aware
predicate-oriented approach [50]. MDE offers the concept of a megamodel as a building block
for large-scale modeling [207, 50, 52]. A megamodel is used to create and leverage global
relationships and metadata on basic macroscopic entities as models and metamodels [207,
50, 52, 80]. A megamodel conceals fine-grained details that impede comprehension of the
system in its global perspective [207, 80]. The global picture includes consideration of
system architecture, interactions between model artifacts, relationships between artifacts,
results of model transformations, etc [80].

Retrieved artifacts are then manipulated through different operations including, merging,
comparison, queries and transformations using Model Management Operations (MMOs).

The following aspects characterize modern model repositories:

• Huge number of large inter-related heterogeneous model artifacts of models, transfor-
mations, data files, source code, file descriptors;
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Fig. 6.1 Discovery and reuse process of model artifacts.

• Stakeholders, developers, and business analysts who contribute to the development of
the system and hence to the evolution of produced artifacts on the repository;

• Heterogeneous model management tools that carry out MMOs include model transfor-
mation, model object query, model validation, model merging, and model comparison.

When the user is at repositories’ premises, the discovery processes should facilitate her,
for instance, to explore internal structure of the artifacts, such as metamodels containing
elements of specific types. Also, the user can compute a certain number of elements with a
specific size, e.g., bigger than a given threshold. In addition, the user should be able to specify
queries specifying the artifacts’ relations with other elements in the ecosystem. Retrieved
artifacts can be reused immediately on the same platform. For instance, the user can specify
queries like (in natural language):

I would like to get all the models that:

1. conform to metamodel MMi

2. contains elements named name1, . . . ,namen

3. can be transformed to target models conforming to metamodel MM j by means of
single or chained transformations

4. its quality attribute qa is valued greater than t
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Existing technologies permit the specification of queries that predicate the content of the
wanted artifacts (2). However, they do not support the specification in a homogeneous
manner of direct relationships (1), indirect relationships (3), or quality characteristics
that should be satisfied by the wanted elements (4). Moreover, queries like this should
be technologically agnostic. Unfortunately, most of the current solutions in this area are
still platform-dependent [48, 113]. Furthermore, query mechanisms should be easy-to-
use and intuitive but with powerful features such as supporting search tags, keywords and
conditional statements. Unfortunately, most existing technologies provide tools that allow
query specification at low-level granularity, requiring a high learning curve and technological
expertise [113, 48].

6.2 Overview of existing approaches
In this section, we discuss the investigation that has been performed to identify currently
available discovery and reuse tools in the field of MDE practices. We have highlighted salient
features that advanced discovery tools can provide to support the efficient discovery of model
artifacts (c.f. Section 6.2.1). We will also discuss existing tools and approaches in light of
the selected features (c.f. Section 6.2.1).

6.2.1 Methodology and scope

This study aims to understand the current state of discovery tools in the MDE environment.
We identify the rationale behind their mechanisms and characteristics. The following research
questions guided this investigation:
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• RQ1: Given the current digital revolution, what features should be supported by exist-
ing tools compared to those provided by traditional discovery and reuse mechanisms?

• RQ2: What are the gaps/challenges in discovery tools that hinder efficient discovery
and reuse of model artifacts?

We performed a systematic investigation to identify the main challenges of artifact discovery
on model repositories. Following accepted guidelines [164, 222], we conducted a search,
selection, and mapping process. We screened and identified relevant published literature as
shown in fig. 6.2 and Table 6.1.

Table 6.1 Database results’ table

Database Results

Scopus (Elsevier) 60

IEEE Xplore 57

ACM library 107

Web of Science 40

Snowballing 2

Total 266

Phase 1. Initial quest: We formulated a query string executed on Scopus1, IEEE Xplore2,
the ACM Digital Library3 and Web of Science4 (c.f. Table 6.1). Although each database has
its query string specifications and search fields, we tried to find publications that contained
keywords from each column of Table 6.2. These keywords should be found directly in the
title, abstract, or keywords.

We managed to retrieve 264 documents: ACM Digital Library3 responded to the query with
the highest number of 40.2% of the total documents retrieved, as shown in fig. 6.3. Followed
by Scopus (Elsevier)1 providing 22.6% of the total documents, IEEE Xplore2 with 21.4%
and Web of Science4 with a 15% of the total retrieved documents.

Phase 2. Cleaning phase: In the cleanup phase, we removed documents that were not in
English or were not directly related to model-driven engineering. In this phase, we also
merged and removed duplicates from all the documents we found. After the cleaning phase,
we got 63 papers.

Phase 3. Screening phase: In this phase, we looked for papers that directly incorporated
discovery, query, retrieval, and search techniques in their abstracts. We also excluded articles

1https://www.scopus.com/home.uri
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://dl.acm.org/
4https://clarivate.com/webofsciencegroup/solutions/web-of-science/

https://www.scopus.com/home.uri
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
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that were either beyond the scope or irrelevant to this study. Finally, we carefully read the
papers in their entirety and only considered documents that could show an implementation
of their discovery tool. In the end, 12 articles were selected. The tools are further analyzed
and compared in Table 2.1 and Table 2.2.

Phase 4. Snowballing: We performed a manual search using ad-hoc methods to find articles
that were not found by our query. As a result, we found two articles that were not covered by
the formulated queries.

We ended up with the following 14 papers: [141], [144], [200], [117], [104], [22], [142],
[127], [15], [95], [33], [108], [34], [130]. In the next section we reviewed the approaches
proposed in the selected papers.

Table 6.2 Terms used in the formal search query. Selected articles must contain at least one
term from each column in the title, abstract, or keywords.

Modelling / MDE
Search / Query /

Discovery

model-driven search mechanism(s)

model-driven engineering search technique(s)

model-based software engineering query technique(s)

model-driven development query mechanism(s)

model-driven architecture advanced search

collaborative modeling advanced query

cloud-based model repository model finding

model repository model discovery

model search

query by example

artifact discovery

Snowballin
0.8%
Web of 
15.0%

ACM Digital 
40.2%

Scopus
22.6%

IEEE 
21.4%

Selected papers' distribution

Fig. 6.3 Distribution of queried papers.
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Results

MAR [141] provides a generic search engine for heterogeneous model artifacts. Their
approach considers the model’s structure to enable query-by-examples. They also support
keyword-based search (c.f. Section 6.2.1). It uses HBase5 to create an index that is later used
to enable fast query response. Recent updates have integrated the Lucene search engine12 to
support indexing and keyword-based search [144]. In MAR, natural language processing
filters out irrelevant paths between model elements. The paths encode the model structure
and are stored in the inverted index. Indexed artifacts include ecore metamodels, UML and
BPMN diagrams that conform to the EMF metamodel. The results are ranked using a custom
scorer algorithm. MAR can be accessed through REST API via a web interface and as an
Eclipse plugin.

IncQuery [200, 117] is a proprietary distributed query framework that enables scalable model
queries. It is deployed on cloud infrastructures to ensure its scalability and uses incremental
graph search techniques. In addition to handling large models and model queries, it has a
dedicated indexer and query processor responsible for retrieving model artifacts. The reason
for its development was the lack of SQL-like queries, which are not supported by NoSQL
databases. Queries are based on a domain-specific language (DSL) called the Viatra query
DSL [104]. However, since IncQuery is proprietary, it is not easy to compare its features
with current solutions. Moreover, understanding the DSL used when performing queries
requires a significant learning curve. It depends on the Eclipse Modeling Framework (EMF)
ecosystem, and the reuse capabilities within the framework are not mentioned. Currently,
the framework supports scalable queries over collaborative model repositories using the
VIATRA query engine [104].

Basciani et al. [22] presents a cloud model search with search tags that enables automatic
exploration of model repositories. The tags allow modellers to find relevant artifacts without
needing low-level detail expertise. This facilitates the management and reuse of related
model artifacts and eliminates error-prone and time-consuming previously necessary pro-
cesses. Their platform-agnostic approach remains uncluttered even as searches become more
complex. It integrates a search engine based on Lucene. However, it could not formulate
advanced search mechanisms to enable complex searches. As a result, reusability and explo-
ration are limited, but it was enough to trigger our current research. The tool was used with a
dataset of 2,422 metamodels, 350 models, and 115 transformations.

5https://hbase.apache.org/

https://hbase.apache.org/
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Moogle [142] is a model search engine that uses metamodeling information to build richer
search indexes and enable complex queries over model artifacts. Moogle improves the
general-purpose search engine that performs artifact queries based on a text-based search,
ignoring the internal structure of the model. It also presents results in a human-readable
format. It is based on Apache Solr6. It has EMF parsers that read and parse EMF model
artifacts and index them later. Moogle can index different model artifacts as long as a
metamodel is provided. Within Moogle, the user can use logical operators to filter results.
The indexing processes are much slower, but the evaluation looks promising if a good set of
model artifacts is available. Moogle does not support the reusability of retrieved artifacts on
the same platform. Moreover, the model artifacts are automatically indexed and kept on local
storage, which could be extended to cloud storage.

Moscript [127] is a query DSL designed to handle platform-dependent ad-hoc approaches. It
supports complex queries based on internal structures and relationships to other artifacts. It
also allows the manipulation of retrieved results. Services can be invoked for model artifacts
and written back to the repository. Moscript aims to provide a homogeneous model-based
interface to heterogeneous models, considering the concept of mega-modeling. Moscript
queries are based on OCL, introducing a significant learning curve for citizen developers,
and environments are deployed locally. Since it is a workflow automation tool, it supports
the reuse of model artifacts.

Hawk [15] is a modular and scalable model indexing framework designed to enable efficient
queries over extensive collections of model artifacts. Model artifacts are fragmented to
facilitate their transmission over the network. Hawk is primarily designed to perform global
queries on artifacts stored in file-based version control systems. It has component parsers
that take input model artifacts (e.g. Ecore) and generate EMF resources. The tool takes
the EMF resource and file version number as input and persists them into the index. They
have a query API that connects the Hawk index and model management tools that query the
index. Although Hawk handles large model artifacts better, it is not designed to facilitate
the discovery and reuse of model artifacts. Therefore, it does not directly integrate model
management operations that reuse retrieved artifacts. Moreover, the query DSL requires
expertise to explore the tool efficiently [16].

In [95], the authors use a keyword-based ontology called WordNet7 to search and retrieve
relevant artifacts using cognitive approaches. The proposed environment enables the retrieval
of UML models by combining WordNet and Case-Based Reasoning. The search relies on

6https://solr.apache.org/
7https://wordnet.princeton.edu/

https://solr.apache.org/
https://wordnet.princeton.edu/
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similarity metrics to ensure that relationships between UML elements are considered. The
use of ontology in their approach allows for simple matching using synonyms. However, the
tool may not scale well when faced with large model artifacts.

Bislimovska et al. proposed MultiModGraph [33], an approach for indexing and searching
model repositories. MultiModGraph uses graphs to obtain metamodel information and model
structure. The efficient model search is enabled by the approximate mapping of model graph
vertices to points in space. The points are used to build and search the index, restricting the
search to similar vertices that correspond to the queried vertices. In addition, their approach
allows for pruning, which makes the search efficient. However, their methods lack reuse
capabilities and are not scalable for large model artifacts.

MORSE [108] is an environment that manages model-driven development (MDD) projects
and artifacts in a repository and a model-aware services that enable queries on persisted
model artifacts. It is designed to facilitate reflective artifact lookup in a service-oriented
application. It dynamically uses information generated from models at runtime to reflect
models after they have been created and deployed. These models are then persisted in the
repository using Universal Unique Identifier (UUID) to facilitate model identification. Their
query is based on a Java implementation for which they are developing an API. However, their
implementation does not support efficient search because the artifacts are not indexed and
using Java for search is error-prone and requires programming knowledge. The approach’s
scalability and extensibility are other drawbacks of their implementation.

Bislimovska et al. [34] proposed a content-based query approach (query-by-example) that
retrieves model artifacts or model fragments from UML repositories. Their approach in-
volves analyzing and indexing the textual content of the artifacts. They used segmentation
granularities and an indexing strategy to allow different configurations of the search engine.
The former divides the model into parts that are searched and returned in response to a
user query. The latter indexes the content in a search engine index. Their implementation
relies on the SMILA framework for content analysis and Apache Solr as the search engine.
Their approach lacks reusability and is deployed locally, which poses problems regarding its
scalability and extensibility.

Kotopoulos at al. [130] developed QML, a metamodel query language that uses OCL to query
UML model repositories. QML is used to formulate fuzzy queries using a Boolean model
approach. QML aims to provide efficient mechanisms for accessing metamodels available in
the four layers of OMG’s Meta Object Facility architecture. The query mechanisms provide
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generic access to all types of knowledge (e.g. models, metamodels). This tool is designed to
consider semantic information that relational databases cannot handle.
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Designed features for productive discovery mechanisms

To answer research question RQ1, we conducted a comprehensive investigation to identify
the crucial features that enhance model artifact and tool discovery. Our investigation included
a review of 15 existing model discovery tools, and we present a comparative analysis of these
tools in Tables 2.1 and 2.2. Our aim is to foster the comparison of the selected tools based on
the identified features. In subsequent sections, we explore each identified feature in-depth,
elucidating their roles, significance, and necessity in addressing the current limitations within
the context of a discovery facility. Features that were deemed important and identified as
part of the future work for one or more of the analyzed systems have been incorporated, as
they were not supported by any of the analyzed tools.

Through our systematic examination of existing discovery mechanisms and tools, it became
evident that limited support was available for crucial features in the analyzed systems. These
features include megamodel relations, model-as-a-service, quality assessment support, public
standardized API specifications, and scalability features such as service containerization,
orchestration, and cloud-based deployment of a service cluster. Furthermore, we observed
a lack of adequate attention given to the reusability of artifacts, APIs, and infrastructures
within the current systems.

Management of megamodel relations: Megamodeling [30] provides a way to define different
types of relationships between model artifacts. The model elements of a megamodel are
artifacts such as models, metamodels, and transformations. A megamodel also contains
(typed) relationships between artifacts, for example, conformance and transformation. Thus,
megamodeling offers the possibility to specify relationships between artifacts and to navigate
between them. We expect that the features mentioned below under megamodeling come into
play in the discovery of relevant artifacts.

◃Model conformance: Model conformance is the relationship between the model and the
metamodel with which it conforms. This relationship allows the metamodel to be reused in
the creation of subsequent models. Since metamodels can be extended while maintaining the
original conformance, this allows the metamodel to be extended and thus new models to be
created based on the same metamodel. Most of the tools examined exhibit this feature as
shown in Table 2.1 and Table 2.2.

◃ Transformation conformance: This feature allows logging mechanisms on the reposi-
tory to record traces of the execution of transformations, allowing discovery based on the
logs of MMO operations. The artifacts involved are recorded along with other metadata
about execution status, executors, timestamps, etc. Recording such traces is essential for
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creating a transformation dependency graph that can later be used to draw inferences about
transformation chain discovery. Unfortunately, the literature found do not reflect this feature.

◃ User relationships: To facilitate search, the data store can be designed to support a user-
centric architecture. This architecture seamlessly engages users and allows them to configure
access permissions and collaboration settings. Some tools built on repositories exhibit this
feature, such as MDEForge [18, 116]

Model-as-a-service (MaaS): This cloud computing model enables the provision of model
management operations in the form of services [183]. These services can be invoked
on persisted artifacts and executed on demand. MaaS is very important to make model
management services scalable and reusable within the ecosystem and externally. Enabling
MaaS on a discovery platform is important to populate the index with heterogeneous artifacts
from different sources and improve reusability.

◃ Model Management Services (MMS): This feature is intended for tools that use a data store
along with MMSs. This scheme facilitates the reuse of housed artifacts on the same platform
as the discovery mechanisms. Some of the MMS can help populate the index by extracting
derived knowledge such as quality metrics from artifacts.

◃ CRUD operations: This feature allows users to populate the data store and thus the index.
Thus, this feature enables persistence mechanisms that allow users to create, modify, remove,
or review artifacts.

◃ Service execution traces: Services such as MMS leave traces that should be logged along
with the parties involved such as model artifacts and tools. These logs can be used to retrieve
artifacts based on the activities they were involved in.

Model heterogeneity support: This feature reflects the support of different types of model

artifacts and tools by the discovery mechanisms. In addition, the discovery tool should
support model artifacts developed using different technologies.

◃ Technological independence: This feature is intended for tools that have a generic discovery
approach. Such approaches allow users to retrieve artifacts independent of the underlying
technology or data models. Model crawlers and extractors may be domain-specific, but
generic metadata should be generalized across persisted model artifacts.

◃ Artifact type: MDE frameworks such as EMF have different types of model artifacts.
Filtering these artifacts by their type, e.g., models, metamodels, or scripts, is essential for
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discovery mechanisms. Moreover, their relationships with each other are the basis of the
megamodel, which is also important for the discovery mechanisms of model artifacts.

Access interface: Access options that allow interaction between system and users. These
interfaces frame the manner and policy of data access.

◃ Cloud-based facility: This refers to tools with a user interface for cloud access, such as
a web, desktop, or mobile interface that retrieves data in the form of a remote API. While
the developer chooses the user of their tool, it is important to opt for facilities (e.g., web
facilities) that involve citizen developers in the discovery process of model artifacts.

◃ Local-based facility: This feature refers to model discovery tools used in a local environ-
ment. Normally, such tools must be set up in a dedicated environment. Discovery in this
type of environment is limited to the memory capacity of the local computers. Moreover,
the services associated with this type of discovery mechanisms require intensive resources,
making the use of such environments impractical.

◃ API-based facility: The discovery tool provides an API that allows you to search and
discover model artifacts. Typically, these are RESTful or GraphQL APIs that enable remote
search of model artifacts.

Quality assessment support: To facilitate quality-aware searching for artifacts. Search tools
should be able to retrieve artifacts based on their quality score to filter out low quality
artifacts.

◃ Automatic quality assessment: This refers to tools that have quality assessment mechanisms.
These services derive quality metrics from the persistence artifacts and can be used in search
or discovery.

◃ Quality persistence: To enable real-time discovery of quality metrics and attributes [21],
this feature allows tools to trigger the calculation of metrics based on emitted event. These
events are triggered when a specific artifact is created or updated. The derived metrics are
kept along with the metadata of the artifact.

Indexing support: This feature allows quick retrieval of discovered artifacts.

◃ Automatic Indexing: In a cloud-based architecture where discovery (search) mechanisms
are enabled, the artifact metadata, data file, file descriptors, and index are separated and
managed in their self-contained environments. Typically, a live pipeline is established
between the data store and the index. The live pipeline provides automatic indexing of newly
created artifacts or when they are updated or deleted. In this way, we can outsource reading,
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lookup, and other analysis to the search engine and keep the main data store as the single
source of truth. In this way, files are automatically indexed when they are persisted, without
the need to manually manage or perform indexing of specific artifacts.

◃ Full-text search support: This features ensures that the artifact can be retrieved based on its
entire content and contextual information such as megamodel related data.

◃ Integrated search engine: To enable fast look-up and retrieval of relevant artifacts by
discovery mechanisms, it is advisable to set up a search engine. Integrated search engines
can be a general purpose search engine such as Lucene8 [22] or a custom developed search
engine such as MAR [141].

Tool interoperability: Features in this aspect allows integration with other tools and facilitate
reuse in third-party applications.

◃ Generated REST API: This feature allows developers to convert queries made from the
frontend to REST API. The generated API can be used directly in the developer application.

◃ Public standardized API specifications This feature allows API reuse and extensibility
using API specifications such as OpenAPI 3.0 or GraphQL specifications. It is important to
develop APIs that are modular to facilitate extensibility of the search/retrieval API.

Query mechanism: Discovery mechanisms support several types of query mechanisms. We
have investigated and identified tools and related mechanisms supported as shown in fig. 2.1
and 2.2. Below are some of the key mechanisms used in the search/discovery of model
artifacts in these tools:

◃ Keyword-based query: This is the basic mechanism in the search and discovery tools.
Typically, the user enters a series of words separated by a space. These are extracted into
tokens and entered into the search engine for look up. If the search is successful and matches
the indexed keywords, the search engine returns the documents that contain the keywords of
the query. The retrieved collections are usually ranked based on the relevance score.

◃ Tag-based query: The tag-based search mechanism is an advanced feature that allows the
user to find a specific element in the artifact. Tags can be used to explore megamodel features
such as artifact size, name, persistence time frame, etc. Artifacts can be retrieved based on
their internal features such as class names or attributes.

8https://lucene.apache.org/

https://lucene.apache.org/
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◃ Query by-example query: This feature allows the user to search for and discover artifacts
using examples and a simple template. In the template, the user specifies an example model
for artifacts that describes the expected results.

◃ DSL-based: tools that use general purpose, domain specific query languages or extension
of existing languages.

◃ Conditional expressions: This feature allows the user to use conditional operators such
as AND, NOT, OR to filter out the artifacts. The query can also support grouping clauses to
condition the statement in the query.

◃ Advanced search: Advanced search allow the combinatorial use of several query mecha-
nisms to filter out artifacts.

◃ Advanced filters: Framing queries to return results that exactly match the query is an added
benefit. Filters can also include phrase matches, wildcards, and fuzzy searches.

◃ API: Tools that have an established API that you can use to filter out artifacts programmati-
cally.

◃ Browsing: Browsing is another feature where the user can browse model artifacts through
a list of artifacts organized by category. For some users, this is very convenient because it
visually displays the available artifacts. Usually, this feature is supported by CRUD, where
the user can view, edit, update or delete the selected artifact.

Scalability support: The integration of services into the discovery mechanisms of MDE
hasn’t been the focus yet. However, once this area is explored, the services involved and
their environment must be scalable and extensible to support the workload of a large user
community.

◃ Service orchestration: This feature allows the deployed services involved in advanced
discovery mechanisms to be managed according to the system load. Their execution is done
in a seamless way, so that unused resources can be put to sleep and activated only when
needed.

◃ Service containerization: This feature allows services to be fully packaged with all neces-
sary resources and dependencies to perform their task independently. Advanced discovery
mechanisms include a large number of services that need to be strongly decoupled to facilitate
their reusability.
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Table 6.3 Comparison table of various discovery tools (1/2).

Feature MAR [141] IncQuery [200] MDEForge [22] Bislimovska et al. [34] Gomes et al. [95]
Management of megamodel relations
Model conformance
Transformation conformance
User relationships
Model-as-a-service
Model transformation execution
Service execution traces
Model heterogeneity support
Technology Independence
Different kind of artifacts
User interface
Cloud-based
Local-based
Quality assessment support
Automatic quality assessment
Quality persistence
Indexing support
Automatic indexing
Full-text search support
Integrated search engine
Tools interoperability
Generated REST API
Public standardized API specs
REST/Graphical API support
Query mechanism
Keyword-based
Tag-based
Logical expressions
Advanced filters
API
DSL-based
Browsing
Query-by example
Scalability support
Service orchestration
Service containerization
Cloud-based deployment
Reusability
Artifact reusability

◃ Cloud deployment: We will evaluate tools that can be deployed in the cloud, enabling
execution over the Internet.

Comparing model search approaches

We selected works with supporting tools from the existing approaches identified in Section 6.1
and as shown in Table 6.3 and Table 6.4.

A search tool in a model-driven environment is expected to have features that allow the
user to find relevant artifacts based on complex criteria. For example, the search should
be megamodel-aware and locate artifacts based on their relationships to other artifacts in
the system. For example, the approach presented by Basciani et al. [22] is one of the
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Table 6.4 Comparison table of various discovery tools (2/2).

Feature Moscript [127] Hawk [15] MultiModGraph [33] MORSE [108] Kotopoulos et al. [130] Moogle [142]
Management of megamodel relations
Model conformance
Transformation conformance
User relationships
Model-as-a-service
Model transformation execution
Service execution traces
Model heterogeneity support
Technology Independence
Different kind of artifacts
User interface
Cloud-based
Local-based
Quality assessment support
Automatic quality assessment
Quality persistence
Indexing support
Automatic indexing
Full-text search support
Integrated search engine
Tools interoperability
Generated REST API
Public standardized API specs
REST/Graphical API support
Query mechanism
Keyword-based
Tag-based
Logical expressions
Advanced filters
API
DSL-based
Browsing
Query-by example
Scalability support
Service orchestration
Service containerization
Cloud-based deployment
Reusability
Artifact reusability

tools that can retrieve data based on model conformance. However, other relationships,
such as user relationships or transformation conformance, are not considered. Search
tools such as MAR [141], MDEForge [22], Hawk [15], Moogle [142], and Bislimovska at
al. [34] have managed to integrate a search engine into their mechanisms. Using a search
engine is important to ensure fast retrieval of relevant artifacts. Thanks to this feature, they
implemented tag-based, keyword-based, and query-by-example mechanisms.

Upon our investigation, we noticed a lack of key features that are crucial for enhancing the
discovery of model artifacts and tools within the model-driven engineering domain. Features
such as transformation conformance, service execution traces, automatic quality assessment,
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quality persistence, and automatic indexing are imperative to ensure an effective and robust
model discovery process. Moreover, the incorporation of user relationships and the reusabil-
ity of artifacts, APIs, and infrastructure is instrumental in elevating user experience, fostering
collaboration, and promoting query customization capabilities. Furthermore, adopting mod-
ern cloud-based environments and service-oriented methodologies is crucial for bolstering
scalability, extensibility, and interoperability in model-driven engineering processes. This
facilitates seamless integration with a multitude of external and internal services, enabling
the reuse of artifacts and tools in distributed and decentralized environments.

Table 6.3 and Table 6.4 show that search/discovery tools have not yet attempted to integrate
third-party services that can enrich their index, for example, to compute derived data such as
quality metrics. In addition, we have not found tools that enable search based on collaborative
features, which are very important in current modeling environments where other users share
artifacts. Search tools such as Moscript [127], IncQuery [200], Hawk [15], Kotopoulos et
al. [130]. Although these DSLs have high granularity, they tend to be somewhat complex and
require a high learning curve. We also found that the indexing mechanisms are not dynamic
and do not allow for programmed automatic indexing of model artifacts. Some of the tools
that use a search engine in their discovery mechanisms do not consider the internal structure
of the models. Therefore, they perform only a text search, which is sometimes limited. In
most cases, tools that use MDE DSLs for their search/query take into account the model
structure. Although DSL-based queries are complex and pose a high learning curve, they
allow artifact exploration with low granularity.

According to the features mentioned in the previous section, Table 6.3 and Table 6.4 also
show model heterogeneity, extensibility, and interoperability of tools as some of the desirable
features of a model search tool. These features help ensure that various external and internal
services can use various models (e.g., model transformation and validation in different
languages). Moreover, they ensure artifact reuse by using REST or other API interfaces.
Search tools such as MDEForge [22], MAR [141], MORSE [108], Moogle [142], and
IncQuery [200] have an API to interact with the external world.

Finally, in a modern cloud-based environment, the operations used in a search tool for MDE
artifacts should be service-oriented and executed on demand. Therefore, to support the
scalability and extensibility of these services, they should be packaged in containers and
orchestrated across multiple nodes. This cloud computing layer, where model management
operations are treated as services, facilitates the reusability of artifacts and tools in a dis-
tributed and decentralized environment. For example, search tools such as MAR [141] and
IncQuery [200] are among the most popular tools that can be used as cloud-based services.
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These tools have implemented search/query mechanisms that enables users to execute their
query using web-based APIs.

MDEForge-Search elevates MDEForge by implementing all features presented in the tables
above apart from query-by-example mechanisms. MDEForge-Search is an extension of
MDEForge and built on earlier concepts developed by MDEForge project. MDEForge-
Search intends to enable scalable and extensible infrastructures and services in the context
of cloud-based model repositories. It also enables advanced discovery mechanisms that are
detailed in Section 6.3.

Limitations of current discovery mechanisms in MDE domain

In this subsection, we answer RQ2 and provide an overview of the main challenges identified
in the tools analyzed in the previous section. Since search/discovery mechanisms are at
the heart of model artifact and tool reuse, addressing these challenges could influence the
adoption of MDE practices in software development and enhance collaboration.

◃ The Big Data Wave: The advent of cloud computing and Big Data has led to a revolutionary
shift in how data is collected, processed, and consumed [228, 100]. Due to the amount of
data that both systems and users generate regularly, traditional data processing methods
have proven inadequate for the tasks expected [185, 172]. In addition to the amount of data
currently being received, data is coming in different varieties from different sources at an
unprecedented rate. This data needs to be stored, retrieved, and processed for further use
cases [39, 101]. Given the adoption of MDE practices in the industry, the MDE community
should consider Big Data (big models) in its discovery mechanisms to consolidate its adoption.
However, the tools and their architectures studied indicate that discovery-based architectures
and techniques for large model artifacts are either rarely considered or not considered at all.

◃ Local Infrastructures: The era of Big Data mentioned above requires a scalable and
extensible infrastructure to handle the data stream being processed [113]. The volume of data
received from systems and users is too large for traditional computing paradigms [134]. Local
infrastructures are not designed for Big Data, so cloud computing is chosen [106]. Although
many MDE infrastructures are local-based, the MDE community is looking to move their
infrastructures to the cloud to meet requirements such as collaborative modeling, scalability,
and extensibility of their infrastructure. It is challenging to persist, process, index, and query
large models with local resources. Although Mar [141], Moogle [142], MDEFoge [22]
and IncQuery [200] are deployed online, the reusability of discovered artifacts is neglected,
forcing the user to download retrieved artifacts for their further use.
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◃ Platform-dependent approaches: Current MDE discovery tools generally lack efficient
generic and technology-independent techniques for finding relevant artifacts. Most of the
tools shown in Table 2.1 and Table 2.2 are dependent on the Eclipse Modeling Framework
(EMF). This is not surprising since EMF is a predominant framework in the modeling
community. Nevertheless, the need for agnostic and technology-independent tools and
platforms is very important to democratize MDE practices for citizen developers and ensure
collaboration among stakeholders.

◃ Limited Query Mechanisms: Using query mechanisms such as keywords or object query
DSLs is no longer sufficient to find relevant artifacts in today’s complex modeling environ-
ment. Therefore, discovery tools need to adapt and provide the user with query mechanisms
that can be used to filter relevant artifacts. Furthermore, such mechanisms could aim to
combine a large portion of these mechanisms in a more scalable and efficient query. The
mechanisms include using keywords, tags, logical operators, advanced filters, API, DSL,
browsing, or query by example, as shown in Table 2.1 and Table 2.2.

◃ Expressiveness of query mechanisms: Current solutions are either too simple or too complex
to retrieve relevant artifacts in complex and large data stores. Typically, query tools use DSLs
to enable artifact discovery. Unfortunately, these query DSLs require a significant learning
curve, modeling, and programming expertise.

◃ Reusability: The goal of the discovery phase is to reuse discovered artifacts. Unfortunately,
current discovery tools focus only on discovery and ignore the reuse phase. As a result, users
download artifacts locally and upload them somewhere to reuse them, as shown in fig. 6.1.
Therefore, we lack a platform that enables the discovery of relevant model artifacts and the
reuse of the discovered artifacts in model management operations on the same platform.

◃ Third party integration: We also found that there is a lack of integration of third-party
services that can evaluate models and compute derived metadata that improve the discovery
of relevant artifacts. For example, such services could enrich the index with metadata such
as quality metrics of artifacts or other criteria that help users find relevant artifacts.

6.3 Proposed approach
This section introduces MDEForge-Search, a novel approach tailored to overcome the
limitations previously identified in Section 6.2.1. The proposed approach is specifically
devised to facilitate the discovery of model artifacts and tools. Subsequently, we outline the
architectural design and architectural layers underpinning the approach.
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Architectural design

This section provides an overview of the high-level architecture of MDEForge-Search,
a substantial extension of the MDEForge infrastructure [18, 116]. MDEForge serves as a
platform for storing modeling artifacts and executing model management operations remotely.
However, the indexing capabilities and query mechanisms of MDEForge are rudimentary.
To address these limitations, MDEForge-Search advances the MDEForge repository by
enhancing the scalability and extensibility of its underlying infrastructures and services while
concurrently facilitating advanced discovery and reusability mechanisms. MDEForge-Search
employs a distributed microservice architecture, leveraging Kubernetes9 [116]. Figure 6.4
provides a high-level view of the building blocks of the platform. The following sections
provide a detailed explanation of the architectural design, as depicted in Fig. 6.4.

Storage infrastructure

MDEForge-Search facilitates discovery and reuse phases by relying on a storage infras-
tructure consisting of a domain-agnostic repository and on a set of integrated services as
presented below.

Domain-agnostic repository This component deals directly with data acquisition and
indexing. It is designed to be domain agnostic; hence, it can persist and index data from
any modeling domain. Artifacts are stored with metadata such as name, size, type, and
so on. An asynchronous extraction module extracts these metadata. This module is also
responsible for extracting artifact structure to facilitate structural-based search. In this
fashion, the user can easily explore the internal elements of the artifact and retrieve artifacts
based on internal elements, cardinalities and relationships such as model conformance. The
metadata are stored using a cluster of MongoDB databases10. For a durable data store that
can handle highly intensive computational jobs and transactions, it is advantageous to have
MongoDB10 as the single primary source of truth for writing operations, rapid data ingestion,
and ultimately index data in Elasticsearch11 [41]. We thus offload search and analytics’
activities to Elasticsearch11. Elasticsearch11 is a distributed, open-source, and highly scalable
search and analytics engine. It is built on Apache Lucene12 and facilitates simplified data
management, reliability, and horizontal scalability. It offers a more powerful full-text search
engine and distributed multitenant capabilities than its competitors [79]. We establish a live
data pipeline between MongoDB and Elasticsearch clusters. MongoDB is maintained as
the source of truth, guaranteeing data integrity, enabling transactions, and facilitating data

9https://kubernetes.io/
10https://www.mongodb.com/
11https://www.elastic.co/
12https://lucene.apache.org/

https://kubernetes.io/
https://www.mongodb.com/
https://www.elastic.co/
https://lucene.apache.org/
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Fig. 6.4 MDEForge-Search high level architecture

backup [213] and Elasticsearch as our integrated search and analytics engine. It is important
to note that the document file of the artifacts is persisted in a separate cloud storage server.
Only links to actual files are persisted in the metadata data store. The domain-agnostic
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Fig. 6.5 MDEForge-Search Persistence API.

repository component manages integrated technologies such as Elasticsearch and MongoDB.
These technologies can be replaced or extended to improve performance without requiring
changes to the high-level architecture or code base.

Integrated services This is a wrapper that integrates the repository core domain agnostic
block with external services. In particular, it integrates the persistence API (c.f. fig. 6.5), and
model management services as shown in fig. 5.4. We have also integrated services that can
derive additional metadata from persisted artifacts, such as quality metrics or transformation
chains.

MDEForge-Search follows the model-as-a-service (MaaS) paradigm [116]. MaaS enables
developers to design and maintain modeling resources and tools that are subsequently
made available to end-users as software as a service (SaaS) templates [229]. In this cloud
computing tier, web services are the foundation for building distributed applications (c.f.
fig. 6.5). Business logic and underlying technology are abstracted into packages, and high-
level on-demand capabilities are outsourced via the Internet [229, 19]. Its usage enables
on-demand execution of services across the network [19, 183, 23]. Moreover, it facilitates
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collaboration among stakeholders, resource optimization and interoperability regardless
of underlying technologies [19]. With MaaS, local configuration and infrastructure setup
are replaced with cloud-based infrastructure, thus drastically lowering time-to-market [74].
Following this model, our services are containerized and deployed as services. They also
are orchestrated in a distributed micro-service environment using Kubernetes on the Google
cloud platform [116].

Search facility

The search facility comprises components enabling the discovery and reuse of the repository.
It is made of a query engine and its interface as discussed below.

Query engine This is the backbone of the search facility. It mainly consists of a search
module, a query processor module and the returned results’ object. However, it has other
low-level components that are discussed in the logical layers of the system in Section 6.3.

The Search module is comprised of a wrapper API that exposes the engine capabilities to
the search facility building block. The module is essentially responsible for receiving and
firing translated sub-queries from the query processor module to the search engine. It also
collates the search results and can handle errors in case the microsyntax query specification
has syntax errors.

The Query processor module is responsible of parsing microsyntax query specifications
and render its equivalent DSL format to the search engine (c.f. Section 6.4). If the query
specification exhibits a syntax error, the parser communicates the error to the search module,
and the search module renders the error. The query processor module is implemented
to retrieve data derived from third-party services such as quality assessment services (c.f.
Section 6.4).

The Search results component manages the output of the search module in the JSON format
and can be consumed via REST /GraphQL APIs. The returned data is annotated to facilitate its
use in, for example, machine learning frameworks, as in the case of the DROID framework [7]
(c.f. Section 6.5). In case of an error, the system renders its equivalent object with the
appropriate HTTP status to facilitate debugging.

Interface This component comprises facilities that facilitate searches from citizen and
MDE developers. They usually reuse or consume services or data using the application
programming interface as RESTful API. We have deployed OpenAPI 3.0 specification and
GraphQL specification to enable exploration of the search facility API. The citizen developer
(regular user) can search and discover artifact using the microsyntax query specification via a
web interface. The retrieved artifacts can be reused directly in model management services
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deployed on the same platform. She can also perform CRUD operations on the retrieved
artifacts.

Logical layers

Figure 6.6 presents a detailed view of MDEForge-Search logical layers, i.e., Data layer,
Service layer, Processing layer, and Access layer. In the remainder of this section, we present
in greater details each of them.

Data layer

The journey of data persistence in a cloud-based model repository begins with an API built
on the repository warehouse (MongoDB cluster). It is the part of the repository that houses
structured data pulled and pre-processed from the data lake. Before further processing,
unprocessed data are dumped in the data lake. The data lake is not organized (Google
cloud storage), and data is collected in their varied sets of raw data in their native format.
MongoDB databases are organized into a cluster. This cluster is our data warehouse where
data is processed and organized in the cluster. Elasticsearch is employed for indexing and
search operations while MongoDB cluster serves as the primary data repository. Collected
heterogeneous modeling artifacts are organized as models, meta-models, or DSL scripts. The
actual files, however, are stored at Google cloud storage, as shown in Fig. 6.4. The link to
the file is accessible from artifact’s metadata and is kept within our database cluster.

All metadata is automatically in sync with data indexed in Elasticsearch in real-time. Addi-
tionally, a persistence API was developed on top these tools to manage and provide smooth
interactions with the data stored. Heterogeneous artifacts are persisted according to a user-
oriented scheme. We gather all the necessary information from the user to ensure she can
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control access to her resources within workspaces. The workspace is made up of projects
created by the user. The user can share access to her projects. The user can share access, thus
granting permissions to the shared user based on her preferences. The projects are made of
artifacts.

Service layer

It is a cluster that provides a pool of model management services deployed natively in the
cloud-based environment [116]. Each service wraps a corresponding engine responsible
for carrying out model operations previously deployed on local infrastructure, as shown
in Fig. 6.5. Following the MaaS paradigm, these model operations are exposed externally
and can be executed on-demand over the Internet [45]. Their remote execution promotes
the reusability of model artifacts in the repository without further configurations necessary
before this deployment model.

Currently, this cloud-based model repository integrates model management services that carry
out model transformations, model object queries, model validations, model comparisons, and
model merging operations. In addition, new services were incorporated into the ecosystem to
support the proposed advanced search and query mechanism approach. These services are a
quality metrics calculator, a chain transformation discovery service, and a query engine.

Processing layer

It processes the query from the application layer (c.f. fig. 6.5). The layer is made up of a
query engine and an automatic indexer. The query engine comprises three components: a
Microsyntax query module, an artifact crawler and a service integrator. The service integrator
enables external service consumption in MDEForge-Search via APIs. The automatic indexer
ensures a live pipeline between MongoDB sharded cluster with Elasticsearch. The query
engine integrates together the search engine, a model artifact crawler, a service integrator,
and the microsyntax query module.

Access layer

It consists of graphical interfaces and APIs that are used to explore the repository via the
query engine (c.f. Fig. 6.4 and Fig. 6.5). The APIs are modular functionality that can be
further extended in a given application to deliver the full capability the query engine offers.
The graphical interface provides a Web interface to enable the visual exploration of the
repository. The user can easily navigate the repository content in the search box with an
easy-to-use microsyntax query specification. The main search is used by the microsyntax
query specification. The advanced search offers users more in depth screening of the artifacts
inside the repository. Users can browse by their types such as model, metamodel or DSL and
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Fig. 6.7 Data flow in MDEForge-Search.

can be screened alphabetically. Retrieved artifacts can be investigated by the means of an
editor.

The service playground reuses the artifacts in the service layer, notably model management
services. Other services such as the quality metrics calculator service and chain transforma-
tion service are already being reused by the microsyntax query specification while performing
lookup in the repositories. The search results are displayed based on the relevancy score
respectively [79]. By relevancy score, the user searches and queries are analyzed further to
return data that reflect the search or query context.

6.4 Enabling advanced reuse-driven discovery
In this section, we explain how we enabled advanced reuse-driven discovery mechanisms
on a cloud-based model repository using MDEForge-Search. MDEForge-Search supports
the data collection and preprocessing, discovery, and reuse mechanisms as described in the
following subsections.

Data ingestion and processing

In a cloud-based model repository with heterogeneous artifacts, ingesting and processing data
is critical. As shown in Fig. 6.7, this is the first step toward enabling the discovery and reuse
of persisted artifacts. The ingestion process must be reliable and efficient to support a large
user community and subsequent operations. As shown in Fig. 6.7, 1⃝ data is ingested into the
repository using APIs or a web user interface. Our repository is designed to handle a variety
of data formats used by different modeling tools. Therefore, incoming data are heterogeneous
model artifacts from different sources and technologies. Once data are uploaded to the
repository, there are several challenges to overcome to support their discovery and reuse
in later phases. First, adopted mechanisms should extract metadata and properly format
incoming data input before it is ingested into the repository. Second, modeling processes
are diverse and encompass a variety of technologies and data formats. Therefore, extraction
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approaches at this stage should be extensible to handle each incoming artifact according to
its domain 2⃝.

In our case, we managed to introduce an EMF data extractor. This extractor crawls the
file and extracts data of interest, such as class names, attributes, and references. The
implementation of this phase is extensible and allows adding more domain-specific extractors
from other technologies such as Simulink, UML, and Stateflow model artifacts.This phase
is asynchronous to allow tasks and processes to overlap and complete their execution in
the background rather than waiting for one task to finish before starting the next. Phase 3⃝
involves organizing the extracted data into structured data that facilitates discovery and reuse.
The extracted data are organized into megamodel-related data, including output generated
by services such as quality assessment or chain transformation discoverer, logs, or metadata
itself, such as artifact size and name. The final phase 4⃝ (c.f Fig. 6.7) involves indexing
structured data for rapid discovery and exploration.

As introduced in Section 6.3, Elasticsearch is a powerful distributed search and analytics
engine that organizes data within an indexed cluster of nodes that are replicated and sharded
for improved fault tolerance, high availability, and scalability [98]. It is recognized as one
of the best industry-grade open-source search and analytics engines [110]. At its core,
Elasticsearch leverages Apache Lucene, an efficient text search engine library, to index
data utilizing an inverted index — an advanced data structure that significantly accelerates
the retrieval of matched terms [ela, 98]. This inverted index facilitates full-text search
capabilities by mapping terms to their corresponding documents, enabling Elasticsearch to
rapidly identify relevant documents based on user queries.

In addition, Elasticsearch adopts the boolean model for locating matching documents. It
employs logical operators, such as AND, OR, and NOT, to refine search criteria. Furthermore,
Elasticsearch incorporates the practical scoring function [98] for determining the relevance
of retrieved artifacts. This scoring function considers factors, such as term frequency and
inverse document frequency. These factors contribute to a more precise ranking of search
results, thus enhancing the user experience and improving the overall efficiency of the search
process.

score(q,d) = 1
.queryNorm(q) 2
.coord(q,d) 3
. ∑ ( 4

tf(t in d) 5
. id f (t)2 6
. t.getBoost() 7
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. norm(t,d) 8
) (t in q) 9

The above function score(q,d) at line 1 returns the relevance score of a document d for query
q. At line 2, queryNorm(q) is the query normalization factor [ela] represented mathematically
as such:

queryNorm =
1√

∑
n
i=1[id f T (n− i)]2

(6.1)

where Ti,...,Tn are query terms and id f Ti2,..., id f T n2 are the squares of inverse-document-
frequencies of the terms or squared weights. Following query normalization, the results of
one query can be compared to the results of another query.

At line 3, coord(q,d) is coordination factor responsible of rewarding the document with a
higher percentage of the query terms. It is represented using this equation [ela]:

let P = the number of matching terms from query q in document d and

k = total number of terms in query q

(2)
coord(q,d) = (∑n

i=1[id f T (n− i)]2)× (P
k )

At line 9, the function sums the weight for each term t in query q at line 5, for document d.
At line 5. tf(t in d) assesses term frequency for term t in document d. idf(t) at line 6
calculates the inverse document frequency for term t. It responsible of punished repetitive
terms such as like, or, and, so, etc. Thus a lower weight is assigned to such terms making less
frequency terms relevant to zoom in the relevant document. At line 7, t.getBoost() applies
the boost to the query to make one query clause more important than the other. At line 8,
norm(t,d) is the field-length norm. The shorter the field, the higher the weight is assigned
because if a term appears in short field such as the title, it is likely that the content is about
the term. However, if it appears in the body field, it might not be very relevant [ela, 98].

Discovery mechanisms

Our cloud-based model repository supports three discovery mechanisms i.e., a microsyntax
query specification, advanced searches, and browsing facilities integrated in a web-based
search facility, as described in the following.

Microsyntax query specifications In computing environments, a domain-specific language
(DSL) is a computer language that has been tailored to a particular domain for a specific
purpose [28]. In contrast, a general-purpose language (GPL) strives to be suitable for writing
programs in any domain. The main objective behind DSLs is to simplify complex tasks and
problems in a specific domain [63]. In this regard, our domain-specific microsyntax query
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( size < 5000 ) NOT ( ext = "xmi" ) OR ( CMC == 2 AND AVGATTR <= 2 ) keyword1 AND conformsTo="unique_name" hasAttribute="name" AND isTransformable="artifactId" 
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Fig. 6.8 Microsyntax query-specification information flow.

specification is designed to facilitate the discovery and exploration of the repository using an
advanced query mechanism. fig. 6.8 shows the flow of information inside the infrastructures
that underpin the microsyntax-based query specification mechanism.

As shown in fig. 6.8, in 1⃝ the user formulates a query in the form of one query line of text.
Next, the text is consumed by a lexical analyzer that breaks down the text into tokens 2⃝.
This process involves scanning the input for defined patterns and dividing it into meaningful
units used by the parser later on [28]. Once the input has been tokenized, it is used to build
an abstract syntax tree (AST) 3⃝. The AST is a tree-like structure that represents the code
in a way that is easier for the machine to digest [28]. After the AST is constructed, the
AST is traversed and converted into machine code that is executed to produce the desired
results. This way, the computer interprets the query text to generate an executable artifact.
As shown in fig. 6.8, phase 4⃝ of this process considers essential constructs that compose
the microsyntax query specification. These constructs include tags, conditional statements,
keywords and advanced filters, discussed in the next paragraph. The final phase is the
document look-up in the repository index 5⃝, which we explained earlier in the previous
section 6.4.

The simplified metamodel given in Fig. 6.9 illustrates the main elements of the query
specification DSL. This language has been developed to enhance the efficiency of the
discovery process by leveraging two key entities: Full-text search and Contextual search.
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Fig. 6.9 Simplified metamodel of the query specification.

By employing these search categories, users are equipped with powerful tools to retrieve
relevant information from cloud-based model repositories.

Full-text search offers a comprehensive mechanism for searching through the content, associ-
ated logs, and metadata of stored artifacts. This approach is facilitated by search keywords,
tags, and logical expressions. To enable users to construct intricate queries, conditional
statements expressed as nested clauses are employed. The incorporation of logical and
comparison operators within these clauses (Fig. 6.9) allows for the combination of terms
using operators such as AND, OR, and NOT. Consequently, users can refine and filter results
more effectively. To optimize the search process, search keywords are tokenized and indexed
within an inverted index data structure using Elasticsearch11.

Tags play a crucial role in the query specification as they serve as navigational markers
to direct users towards relevant artifacts. These tags are derived from the organizational
structure of the repository and are designed to be user-oriented, hierarchical, and adaptable
to different contexts. They encompass users, workspaces, and projects, taking into account
access permissions and restrictions. By targeting artifacts based on specific properties or
metadata fields, tags allow users to locate models that adhere to a particular metamodel. This
enhances the precision of search results, ensuring that the retrieved models align with the
desired criteria. Additionally, tags support transformation conformance, enabling users to
retrieve artifacts involved in specified transformation operations.
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Contextual search is centered around the megamodel relations among artifacts and their
defined search space. It examines various aspects such as artifact relationships, involved
operations, hierarchical relations, creation timestamps, names, and types (refer to Fig. 6.13).
This search method serves as a complement to the full-text search, providing users with an
alternative approach to discovering relevant information within a specific context.

By amalgamating the methodologies of full-text and contextual search, a robust and versatile
query mechanism is established. As a result, users can efficiently navigate intricate cloud-
based model repositories by simply entering a single search text.

Figure 6.10 shows explanatory examples of queries specified by means of the proposed
discovery language. Queries are ordered to have a progression in terms of complexity, going
from simple tag searches to combining multiple tags, logical expressions, and metric criteria
with various boolean and comparison operators.

Q1: The first query selects model artifacts that have their access control set to public and
the size of the artifacts is less than 500kb or the extension of the artifacts is of json
format.

Q2: This query adds dates and quality metrics in the lookup scope. The query is targeting
model artifacts that are publicly accessible and either have a size greater than or equal
to 1000. The artifacts should have been created on or before January 2022 or they
should have a attr metric (number of attributes) greater than 5.

Q3: This query introduces the use of metrics (cflmc - concrete featureless meta class) in the
search and combines it with criteria on type, unique name, and license. It is looking for
model artifacts that are either of ’ecore’ type and have a unique name ’uniqueModel’,
or are licensed under ’Apache’ and have a ’cflmc’ metric equal to 2.

Q4: This query adds more depth by incorporating attribute, description, date, and metric
criteria. The query is for model artifacts that either have a ’color’ attribute and are
described as ’Complex Model’, or have an update timestamp later than 1st January
2024 and have the amc metric (number of abstract metaclasses) less than or equal to 3.

Q5: This query combines project, description, and type criteria with a mix of AND and
OR operators. It targets model artifacts whose description is ’Advanced Model’ or
model artifacts that belong to ’Project1’ and have ’xmi’ as their type.

Q6: In this query, there is an AND operator outside the brackets and inside, making it
more complex. It combines criteria on conformance, license, and name. It targets
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model artifacts conforming to a given ’metamodel_id’, and among those, ones that are
licensed under ’GPL’ and named ’ModelY’.

Q7: This query introduces involved operations criteria and combines it with unique name
and metric criteria. It looks for model artifacts with ’operation_id’ in their involved
operations, and specifically among those, ones with a unique name ’ModelX’ and have
the metric named mc (number of metaclasses) greater than 50.

Q8: This query increases the query complexity by including a NOT operator in the mix.
It combines date, extension, metric, keyword, license, project, and transformation
capability criteria. Models updated after 1st January 2023 and not in JSON format,
or models that have cmc metric (number of concrete metaclasses) greater than 5 and
sf metric (number of structural features) less than or equal to 2, with keyword5, are
being searched. They must be licensed under ’MIT’, belong to ’Project1’, and be
transformable to a given model artifact.

Fig. 6.10 Examples of queries

The Extended Backus-Naur Form (EBNF)[? ] shown in Fig. 6.11 defines the grammar of the
discover language and consists of the following constructs:

• searchQuery is the starting point of the grammar. It consists of a term followed by
the End Of File (EOF) marker. This ensures that the input is parsed in its entirety and
correctly.

• term is a sequence of one or more factor expressions connected by boolean operator
symbols. This allows the construction of complex queries by combining multiple
factors with boolean operators such as AND, OR, NOT, and SPACE.
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Fig. 6.11 Simplified EBNF of the proposed discovery language

• factor is the fundamental building block of the query language. It can be either text, a
tag, an expression, or a term enclosed in parentheses. The usage of parentheses allows
the grouping of terms and the alteration of the operation precedence. When a term is
within parentheses, it is resolved recursively.

• boolean_operator represents logical operators for connecting factors: AND, OR, NOT,

and SPACE. SPACE is interpreted as OR when used as a connecting factor.

• operator signifies comparison operators used in expressions for manipulating values.
It includes greater than (>), less than (<), equal to (==), and their variations with an
equal sign (>=,<=).

• text represents a keyword, a number or an exact text.

• exactText is a sequence of one or more keywords enclosed in single or double quotes,
indicating that the query is searching for an exact match of the given text.
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• tag comprises a tag identifier, which could be TAG_ID or NUMERICAL_TAG_ID, followed
by an equals sign and a tagValue. This rule allows querying artifacts based on user-
defined metadata fields or tags.

• tagValue can be a keyword, number, or exact text, offering flexibility in defining tag
values.

• expression can be a numericalExpr or a metricExpr. This is used for forming
complex expressions involving metrics or numerical tags.

• metricExpr includes a METRIC_ID followed by an operator and a number. This facili-
tates artifact queries based on specific metric values and their relationships.

• numericalExpr includes a NUMERICAL_TAG_ID followed by an operator and a number,
allowing comparison of numerical tag values.

• TAG_ID and NUMERICAL_TAG_ID are predefined identifiers for tags, while METRIC_ID is
for metrics. NUMERICAL_TAG_ID is made of metadata fields that are quantitative such
as the size and dates. The TAG_ID are simply the metadata fields of their artifacts such
as filenames, description, content, extension types,etc. On the other hand, METRIC_ID
is designed for metrics, representing identifiers that illustrate various quality metrics
and attributes.

• NUMBER is a terminal symbol denoting numbers. A number is defined as one or more
digits.

• KEYWORD is a nonQuoteSpace followed by zero or more nonQuoteSpaces. A non-
QuoteSpace is any character excluding single or double quotes and spaces.

• SPACE is a terminal symbol representing a space character, which servers a delimiter
across different components in the query but also can be interpreted as OR operator.

• QUOTE represents single or double quote characters used to encapsulate exact text.

• EOF is the symbol that denotes the end of input. This ensures that the parser processes
the entire input string, and no unprocessed input remains.

It is worth noting that Fig. 6.11 presents a simplified and explanatory version of the grammar
language. The tokens for tags and metrics are dynamically generated based on the currently
available metrics and indexes. This means that if new metrics are developed or new indexes
added to the platform, they automatically become accessible for query specification.

Figure 6.12 provides a use case where a user can enter keywords into the search box to find
relevant models. The user can also specify a microsyntax query specification to refine the
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Fig. 6.12 Search results.

search results. The results are displayed in a list. The user can click on each result to view the
details of the model. The details include information (c.f.fig. 6.7 (iv)) related to megamodel
data, data generated by the service, logs and artifact extracted metadata such as artifact name,
author, date, description, and a link to download the artifact. As an example, in fig. 6.12,
we are looking for artifacts with a size greater than five kilo-bytes that do not have the XMI
extension. Or the quality metric number of concrete classes (CMC) is equal to 2, and its
average attributes in a class are greater or equal to 2. We can check if it contains keyword1
and conforms to the metamodel specified by unique name or has an attribute name and can
be transformed to the metamodel specified by the ID.

The microsyntax query can get quite complex when nesting conditional statements, search
tags or keywords. Conditional clauses can be nested by wrapping the statement into paren-
thesis. This approach is generic to the technological format of the artifact. Conditional
statements can accept logical operators such as great than, greater or equal than, less than
and less or equal than (c.f. fig. 6.9). In this manner, the user can query artifacts by specifying
thresholds of a given quality metric or attribute. Although the microsyntax query specification
can be used to perform an exhaustive search, it can get quite complex when nesting many
statements. Hence, at this point, it might be easier to use the advanced search, as discussed in
the next section. More tips are provided on the web interface on retrieving exact matches and
special characters and how to escape them. We also instruct how to perform fuzzy searches
or the usage of wildcards.

Advanced searches Figure 6.13 depicts our advanced search integration in MDEForge-
Search to enable the user to perform exhaustive searches of documents based on a variety
of factors. This allows users to tailor their search contextually and find what they want
without having to wade through irrelevant results. The user can select several artifact
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to narrow the search scope. The fields and quality metrics can be added and removed
dynamically (c.f. fig. 6.13). In addition, results can be retrieved based on creation or update
timestamps. The advanced search integration employs a combination of the microsyntax
query specification, the quality assessment service [21], and the optimal transformation chain
of a given metamodel to find relevant artifacts [17], as detailed in Sec. 6.4. The microsyntax
query specification can be used against artifact fields as well. This allows users to target
specific fields that make up an artifact to retrieve documents based on metadata such as
model type, size, and complexity.

Fig. 6.13 Advanced search

Browsing facilities Another discovery mechanism provided by our repository is a listing
directory that contains all artifacts found in our repository. These artifacts can be browsed
alphabetically and filtered by date or type (c.f.fig. 6.14). The user can click on each artifact to
view its dedicated detail page. The selected artifact page contains information such as name,
description, access control, and download URL (c.f. fig. 6.15). For each selected artifact, the
user can explore and edit the content with a built-in editor or EMF.cloud before their reuse
(c.f. fig. 6.16).
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Fig. 6.14 Browsing page

Fig. 6.15 View page of artifact and its metadata
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The integrated editor allows the user to edit selected artifacts. The editor displays EMF
artifacts as document trees as shown inFigure 6.16.

Fig. 6.16 Artifact editor

Platform reuse mechanisms

MDEForge-Search incorporates model management operations (MMO) as services. Hence
as shown in fig. 6.17, we have deployed these MMO engines to facilitate the reuse of artifacts
persisted in the repository [116]. We developed a playground where the user can edit and
manipulate MMOs. The playground is pivotal in reusing artifacts from the repository and the
services and extensions deployed there. These operations include but are not limited to model
editing, consistency checking, object query, validation, comparison, and transformation.
Retrieved artifacts can be further explored and navigated using model object query languages
or participating in other MMO at the repository. These services consume artifacts by their
specific identifiers from the repository. Besides, the user can upload the file directly from her
local machine. We have put at the user’s disposal a console to log the execution results of
these services (c.f. fig. 6.17).

Integrated services in discovery mechanisms

In this subsection, we present two integrated services we have added atop the core services
of the platform and that have been successfully applied to include quality attributes and
megamodels relationships in the proposed query mechanism.



6.4 Enabling advanced reuse-driven discovery 153

Quality assessment service Software Quality Engineering [121] is a discipline that focuses
on improving the approach to software quality. In MDE, quality artifacts are beneficial to
identifying quality attributes of interest for specific stakeholders. To enhance the proposed
query mechanism with the support of quality measures, we proposed artifact-tailored micro-
services to compute the quality measurements defined in [21]. In particular, the authors
proposed a generic approach to define and compute quality scores. It includes a DSL to
define how quality attributes and metrics may be aggregated. In addition, they implemented
an operative environment to apply the defined quality attributes on actual model artifacts
enabling automated quality assessment. In our work, a quality assessment service for
each supported artifact is provided that takes in a modeling artifact and returns the list of
quality scores supported in the underlining quality model specification as output. It is worth
noting that once a new quality model has been updated on the quality service, the quality
measurements have to be recomputed to be indexed from the query engine.

Transformation chain service The service for model transformation chain addresses
challenges that arise in complex model-driven engineering scenarios where models need to
be transformed and manipulated across different representations [17]. The main goal of this
service is to identify and optimize the most suitable transformation chain for a given pair of
source and target models in a model repository. It is especially helpful when there are multiple
transformation options available between input and output models. By taking into account
factors such as transformation coverage, information loss, and the number of transformation

Fig. 6.17 Model management services available on the platform.
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hops [17], the service assists modelers in determining the optimal chain. Furthermore, it
optimizes the execution of the selected chain by efficiently rewriting transformation queries
and estimating dependencies between the meta-class and structural features of the involved
meta-models in the model transformation process, and then chaining them up [68].

This service proves to be valuable in various contexts of model-driven engineering, particu-
larly in model-based systems, where it facilitates the translation and integration of models
across diverse representations. In such systems, the composition of model transformations
enables developers to combine and reuse existing models and components, automating the
creation of new software systems, improving business processes, and aiding product design
across industries like software engineering, business process management, and product
design. The automation provided by this service enhances the efficiency and effective-
ness of model-driven development efforts. In our approach, this service is consumed as a
black box as part of the EU ITN Lowcomote project13, which is the same context where
MDEForge-Search has been devised.

6.5 Applications

Integration of MDEForge with the Droid recommender framework

This section shows the integration of MDEForge-Search into the DROID [7] framework.
DROID is a textual DSL that automates the configuration, evaluation and synthesis of
recommender systems(RS) for particular modeling languages. RSs are information filtering
systems that guides users in selecting items among a potentially large set [4]. DROID allows
the configuration of every aspect of an RS, such as the definition of target and items, their
corresponding identifiers, pre-processing techniques, recommendation methods, splitting
techniques and evaluation protocol. It is important to clarify that DROID is not a component
of MDEForge-Search; rather, it utilizes MDEForge-Search as a data source. Additionally,
DROID has been developed within the framework of the EU ITN Lowcomote project, similar
to MDEForge-Search and the transformation chain service discussed in the previous section.

The motivation behind the creation of DROID is to provide a model-driven solution that facil-
itates the creation and evaluation of RSs for modeling languages. Existing RSs for modeling
are often hardwired to specific modeling languages, which makes it difficult to reuse them for
different languages. DROID aims to overcome this limitation by allowing the configuration
of every aspect of an RS, such as the definition of target and items, their corresponding
identifiers, pre-processing techniques, recommendation methods, splitting techniques, and

13https://www.lowcomote.eu/

https://www.lowcomote.eu/
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evaluation protocol. This way, RSs can be easily created, evaluated, and reused for different
modeling languages without requiring deep knowledge of RSs or programming.

By integrating MDEForge-Search, DROID gains access to a robust search engine that can
effectively retrieve models and metamodels. This is particularly relevant since finding
relevant metamodels for a particular recommendation system creation case can be difficult.
MDEForge-Search allows users to retrieve relevant models and metamodels using a micro
syntax to query the search engine. Users can leverage the search capabilities of MDEForge-
Search to easily find and retrieve models and metamodels that fit their specific needs for
building recommendation systems. This integration enables DROID to improve the quality of
recommenders and facilitate the creation of recommendation systems for a broader range of
modeling languages.

To create a recommender system for a specific modeling language using DROID, the initial
step is to create a DROID project, which necessitates defining a set of information (c.f.
Fig. 6.18 part 1⃝). The recommender system developer must specify the name of the
recommender and the technology that the recommender system will serve. DROID supports
the creation of RSs for both meta-modeling (e.g. Ecore) and modeling (e.g. UML, XMI).
The developer can also opt to use the default recommendation settings or create a pre-filled
template with a customized set of recommendation settings. The default settings can be
particularly useful for those who lack experience in building RSs.

Additionally, in order to train and test the RSs, data must be provided (see Fig. 6.18 part
2⃝). DROID allows the extension of data collection sources via extension points. In this

integration, we extended DROID with advanced query mechanisms provided by MDEForge-
Search. With this integration, we can execute a query to search for relevant (meta-)models to
be used as training and testing data for a new RSs, providing an efficient and effective way to
gather the necessary data (see Fig. 6.18 part 3⃝).

This new project will finally require the definition of the target and items to be the subject of
the recommendations, in addition to identifiers for each element. The configuration related
to the pre-processing techniques, splitting settings, recommendation methods and evaluation
protocol can be left with the default configuration or can be modified as desired (c.f. Figure
6.18 part 4⃝). The DSL includes a textual editor with code compilation, a validator and
a code generator that synthesizes Java code (c.f. Figure 6.18 part 5⃝) from the project
specification. By using the recommendation methods, multiple RSs can be trained, evaluated,
and compared at the same time. These RSs can then be deployed on DroidREST, which is
a generic recommendation service that provides recommendations based on configuration
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files generated by DROID (see Figure 6.18, part 6⃝). This process ensures that the RSs are
optimized and provide the best possible recommendations for the given modeling language.

Once deployed, clients can obtain recommendations by sending a POST request to DroidREST,
with the recommender’s name and a JSON file that specifies the recommendation target and
context. Recommenders can be integrated with Eclipse Modeling Framework’s tree editors
to provide a pop-up menu for recommendations on objects and can also be added to other
external modeling tools.
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Fig. 6.18 Architecture of DROID with MDEForge-Search

Figure 6.19 shows an example of data collection using the advanced query mechanism engine
of MDEForge-Search. In the example, the recommender system developer is creating an
recommender system for Ecore meta-modeling. The micro-syntax to query the search engine
can be specified using keywords, boolean operators (e.g. AND, OR and NOT), meta-models
size and quality metrics to constrict or expand the search. A JSON request is sent to the
MDEForge-Search API by pressing the search button.
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Fig. 6.19 DROID wizard page for the advanced query mechanism.

The returning lists of artifacts are shown in the table viewer. The table presents each artefact’s
name, extension, size, and total hits. In this example, the query is automatically constrained
to Ecore meta-models extensions as the user specified this information on the main page of
the wizard. Afterwards, the user can select the desired meta-models and import them into the
project by pressing the import button. Finally, the recommender system developer can finish
the wizard, creating a DROID project with the collected data.

6.6 Discussion
As highlighted in our research protocol (c.f. Section 5.2.1), we made every effort to ensure
the accuracy and validity of our research. In addition, we followed established guidelines
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for systematic studies [164, 222], yet it is possible that certain external or internal factors
influenced our results. Below, we discuss potential threats to the validity of our research and
strategies adopted to mitigate them.

To avoid generalizing causal findings concerning the settings and tools considered, we
endeavoured to select all work that represents state of art to date in advanced discovery
mechanisms in model repositories in model-driven engineering. We mitigate these external
threats by searching five prominent computer science and software engineering databases with
comprehensive keywords to ensure broad coverage of related literature (c.f. Section 5.2.1).
We have tried to cover all keywords related to the modeling domain. In addition, we further
extended our search for relevant articles by manually snowballing. Finally, we took steps to
exclude literature not written in English.

Our research study had three main objectives: (1) to identify and evaluate existing tools
and approaches for MDE artifact discovery, (2) to identify gaps in current MDE discovery
tools and approaches, and (3) to develop an approach for comprehensive, next-generation
advanced discovery mechanisms for MDE artifacts that address the identified challenges
and gaps. We knew the need to maintain internal validity in designing our research study.
Therefore, during the selection process of the tools and approaches, we thoroughly analyzed
and considered the literature surrounding each tool and approach. However, one challenge
was that most of these tools were unavailable online or for local use. Nonetheless, we worked
toward developing a comprehensive discovery mechanism for MDE artifacts that would meet
the needs of today’s technologically advanced, Big Data-driven world.

6.7 Conclusion
This paper presented a service-oriented megamodel-aware approach to discovering and
reusing modeling artifacts stored in a cloud-based model repository. The approach is generic
to support the heterogeneous nature of the repository and artifacts. The platform introduces a
service-oriented discovery mechanism in the quest for relevant artifacts. This way, the user
can retrieve artifacts that meet quality thresholds or participate in a given optimal model
transformation chain. The user has at her disposal several query mechanisms to sift through
vast information and find exactly what she is looking for using intuitive and easy-to-use
methods. With our domain-specific microsyntax query specification, the user can retrieve
artifacts by search tags, search keywords, and conditional statements. Other discovery
mechanisms, such as advanced search and browsing, are also in place to aid in effective
model artifact lookup and filtering.
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Our approach supports full-text search of the artifacts that are automatically indexed and
persisted across multiple nodes to ensure high data availability, query speed, large data
load resilience, and query flexibility. In addition, we have provided a modular API that
can be accessed using OpenAPI 3.0 and GraphQL specifications to reuse or extend current
functionality in developers’ applications. For example, a model-driven recommender system
already uses the platform API to train and evaluate machine learning models. As future work,
we plan to apply the proposed approach in different integration scenarios other than that
performed with Droid.





Chapter 7

Conclusion

Providing reliable access, persistence, discovery, and reusability mechanisms is of crucial
importance in light of the rapid evolution and prevalence of low-code development platforms
and the challenges posed by the current digital revolution. Furthermore, as LCDPs stem
from model-driven engineering principles, current modeling prospects highlight the need
for an integrated platform with first-rate capabilities regarding significant data prospects
and a collaborative user community. To best respond to the numerous challenges described
in Chapter 1 and devise practical solutions, we aimed to develop a scalable and extensible
cloud-based low-code model repository. The repository was envisioned not only as a storage
fortress but a platform that harbors modeling approaches, provides efficient persistence,
discovery, and reuse, and finally enables model management as a service.

This chapter is organized as follows: Section 7.1 discusses the summary contribution of
the thesis. Section 7.2 presents the publications produced during the course of the program,
whereas Section 7.3 showcases the research supporting tools developed. The tools’ documen-
tation and installation processes are described in the appendices [A, B]. Finally, we conclude
the chapter in Section 7.4 highlighting the potential prospects of this research.

7.1 Contribution summary
This research aimed to address the challenges described in Chapter 1 by developing a reposi-
tory that facilitates the management of model artifacts and tools. As a result, the endeavor
produced a community-based model repository that supports the persistence, accessibility,
discovery, and reuse of heterogeneous model artifacts and tools. The repository now boasts
over 5,000 real-world model artifacts collected and organized for convenient access. In this
regard, we summarize the main contribution of this work below:

A Comprehensive Overview of Low-Code Development Platforms (LCDPs): In recent
years, the use of LCDPs has grown significantly in both academia and industry. Under-
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standing and comparing hundreds of LCDPs can be strenuous and challenging without an
appropriate conceptual framework underpinning their evaluation. Chapter 2 of this research
focused on eight leading LCDPs to identify their commonalities and differences. To compare
each platform, we performed a taxonomy where a set of distinguishing features was estab-
lished. We introduced the intricacies of internal LCDPS information flow. Furthermore, we
presented an experience report to discuss the essential features of each platform, limitations,
and challenges encountered during the development of a benchmark application. As far as
we are concerned, it was the first work that attempted to analyze different LCDPs according
to a set of organized features.

Identification of challenges and opportunities toward cloud-based modeling: To de-
velop data-intensive applications such as IoT, developers must overcome various challenges,
including heterogeneity, complexity, and scalability. Moving development infrastructure to
the cloud opens up opportunities regarding accessibility, productivity, maintenance, fault
tolerance, and monitoring. In chapter 3, we present a systematic study we conducted to
assess the current state of the art on cloud-based modeling approaches in the IoT domain.
After examining 625 articles, we focus on 22 papers proposing cloud-based modeling envi-
ronments in the IoT domain. The considered approaches have been analyzed to assess their
strengths and weaknesses concerning many characteristics, including their modeling focus,
accessibility, openness, and artifact generation. This chapter discussed many challenges
IoT developers encounter while adopting such tools. We also discussed various generic
technologies and tools which can be adopted in the IoT domain. These challenges were taken
into account while designing the architecture of the repository.

Architectural design of a scalable, extensible, and community-oriented model repository:
We designed the conceived repository using an extended "4 + 1" view model ( c.f.Chapter 4).
The objective was a well-thought-out architectural design that supports a set of extensible core
services and tools on a scalable infrastructure. The result was a community-oriented cloud-
based model repository that promotes access, discovery, and reuse of heterogeneous model
artifacts and tools. In addition, the repository has mechanisms to ensure intellectual and
technical exchange guided by policies and guidelines. By adopting a cloud-based deployment,
the architecture of this repository eliminates tedious installations and configurations that need
to be installed on complex modeling frameworks before their use. Now, users can leverage
model management tools and artifacts via an API or web-based tools that are highly available,
scalable, and easy to extend or integrate with other tools.

Scalable and extensible persistence of heterogeneous artifacts Using a clustered database
infrastructure, we designed, developed, and published mechanisms to persist heterogeneous
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model artifacts in a repository. This infrastructure was designed with scalability, high avail-
ability, and disaster recovery built in. The persistence API can be consumed using OpenAPI
and GraphQL API specifications. The current data organization could be easily leveraged
in prescriptive, descriptive, and predictive analytics, such as in the case of Droid [7]. Our
approach ensured that users could quickly retrieve data on demand and minimize downtime
by accommodating large workloads without compromising performance.

Model management operations as services Although model management operations are
essential when developing complex systems using MDE practices, their reuse is regularly
hindered by the numerous local configurations, installations, dependency downloads, and
expertise required. To alleviate these difficulties, these operations - namely model trans-
formations, validation, comparison, and merging - have been packaged into containerized
services to be remotely consumed over the Internet. Now users no longer have to concern
themselves with the minutiae as they can request these operations to be executed upon
providing the required inputs. Hence, we increased the reusability of both the artifacts and
their management operations by relieving the low-level details preoccupation from the user.

Composition, discovery, and orchestrations of model management services and tools
Adopting model management operations on cloud-based repositories poses several chal-
lenges regarding their composition, discovery, and orchestration. To address these issues,
we introduced a low-code development environment that facilitates the orchestration and
integration of various services required for complex workflows (c.f. 5). This approach lets
developers plan, organize, specify, compose, and execute model management workflows. In
addition, a complete cloud-based infrastructure is provided to support the composition and
execution of remotely available MMO services. These services are orchestrated and managed
in a self-healing, auto-scaling, highly available cloud-based cluster that is easy to manage
and monitor. This implementation provides an MDEForgeWL DSL and supporting engine
for defining and executing user-defined workflows of model management services. A service
registry registers new services and makes them discoverable for workflow definitions is also
provided.

Advanced discovery and reuse mechanisms for a cloud-based model repository: Our
service-oriented megamodel-aware approach for discovering and reusing model artifacts in a
cloud-based model repository is comprehensive. It provides multiple mechanisms that are
both intuitive and easy to use (c.f.chapter 6). For instance, our domain-specific microsyntax
query specification allows users to search for relevant artifacts using search tags, keywords,
conditional statements, and logical operators. Furthermore, advanced search and browsing
features enable effective filtering of persisted artifacts. Additionally, the platform supports
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full-text search with automatic indexing across multiple nodes to ensure data availability,
query speed, and resilience in the face of large data loads. Moreover, the API provided is
modular and can be leveraged via OpenAPI 3.0 and GraphQL specifications for reuse or
extension by developers. In this way, the dataset pre-processed and organized for remote
consumption can be used in data analytics - as demonstrated by an existing model-driven
recommender system already making use of the platform’s API capabilities [7] (c.f.Chapter
6.5).

7.2 Publications
The research has been widely disseminated in various academic channels, such as peer-
reviewed conferences, workshops, and journals. We have also produced several reports. This
program was conducted in the context of the EU Lowcomote project1, and disseminating the
results allowed practitioners to stay abreast of the latest developments. More importantly, the
findings have allowed us to evaluate and identify new opportunities for further research.

Below is the list of publications produced during this doctoral program:

• Supporting the understanding and comparison of low-code development platforms.
Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, Alfonso Pierantonio, 2020.
46th Euromicro Conference on Software Engineering and Advanced Applications
(SE2A 2020)

• A Low-Code Development Environment to Orchestrate Model Management Services.
Arsene Indamutsa, Davide Di Ruscio, Alfonso Pierantonio, Sep. 2021. IFIP Interna-
tional Conference on Advances in Production Management Systems

• Cloud-based modeling in IoT domain. A survey, open challenges, and opportunities.
Jean Felicien Ihirwe, Arsene Indamutsa, Davide Di Ruscio, Silvia Mazzini, Alfonso
Pierantonio, Oct. 2021. 2nd Low-code Workshop at the ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2021)

• MDEForgeWL. Towards cloud-based discovery and composition of model management
services. Arsene Indamutsa, Juri Di Rocco, Davide Di Ruscio, Alfonso Pierantonio,
Oct. 2021. MODELS 2021. ACM/IEEE 24th International Conference on Model-
Driven Engineering Languages and Systems

• Advanced discovery mechanisms in model repositories. Arsene Indamutsa, Juri Di
Rocco, Lissette Almonte, Davide Di Ruscio, Alfonso Pierantonio. Software: Practice
and Experience (2022) - Under Review, Manuscript ID: SPE-22-0516.

1https://www.lowcomote.eu/

https://www.lowcomote.eu/
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7.3 Developed tools
We produced the tools mentioned below while addressing issues tackled in this thesis:

• Persistence API: this API provides users with a suite of optimized functions for
creating, reading, updating, and deleting repository contents. This API is conveniently
configured to operate in conjunction with existing data sources and can be deployed
as a single unit onto the desired environment. Moreover, because it makes use of the
Swagger OpenAPI 3.02 and GraphQL3 API specifications, it can easily be exposed to
the public through these open-access standards.

Code repository: https://github.com/Indamutsa/model-management-services.git

• Search and discovery API: This API provides users with capabilities that allow them
to navigate the repository through advanced discovery mechanisms, such as the combi-
nations of high-level microsyntax query specifications to narrow down their search.
The API can be accessed using the open-access standards mentioned above.

Code repository: https://github.com/Indamutsa/advanced-query.git

• Model management operations remote APIs: Model management operations can now
be executed on demand remotely. These operations were containerized and deployed
in a cloud-based cluster to enable the reuse of these operations without exhausting
local configurations, dependency downloads, and installations.

Code repository: https://github.com/Indamutsa/model-management-services.git

• MDEForgeWL: this Domain Specific Language (DSL) leverages a cluster of model
management services(MMSs) APIs to enable users to discover, define and execute
task workflows composed of these services. Through this trigger-action paradigm,
users can plan, organize, customize, and execute an arbitrary model-driven task in a
workflow manner to achieve their desired goals.

Code repository: https://github.com/Indamutsa/model-management-services.git

• MDEForge Search: It is a platform that provides advanced discovery and reuse mecha-
nisms in our cloud-based model repository. A search engine is incorporated into the
ecosystem to enable indexing and fast retrieval of artifacts. This discovery is enhanced
by using a microsyntax query specification that allows us to use search keywords, tags,
conditional statements, and logical operators to navigate the repository and narrow our
search. The user can also browse by category of the artifacts. The platform also has a

2https://www.openapis.org/
3https://graphql.org/

https://github.com/Indamutsa/model-management-services.git
https://github.com/Indamutsa/advanced-query.git
https://github.com/Indamutsa/model-management-services.git
https://github.com/Indamutsa/model-management-services.git
https://www.openapis.org/
https://graphql.org/
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playground of model management services where the user can reuse retrieved artifacts
without needing local configurations or installation.

Code repository: https://github.com/Indamutsa/advanced-query.git

Their respective installations and demo highlights can be found in the appendices AB.

7.4 Future work
This thesis investigated the potential of fostering software development efficiency through a
cloud-based low-code model repository. This work conceptualized an approach for collecting
and managing heterogeneous artifacts and making them available for reuse throughout the
entire software development lifecycle. In addition, it provided insights into identifying a
set of features required for extracting newly acquired knowledge from models, discovering
relevant artifacts, and automating the implementation process, ultimately streamlining the
development process.

Below are some of the aspects that can be explored further:

• Machine learning: This repository can be leveraged by machine learning models to
enhance bug detection, model recommendations, and code completion. Besides, the
data and user behavior can also be leveraged to understand trends and guide innovation.

• Education and research: This tool can quickly become a potential resource for
students and researchers in model-driven engineering and low-code development
platforms. However, extending the repository with appropriate interfaces is needed to
enable a collaborative and engaging experience with artifacts and tools.

• Software development: developers can leverage the repository to enhance produc-
tivity and migrate their modeling infrastructure to the cloud. Thus, they can easily
collaborate and manage their versioned artifacts without manual local configuration
and installations. To achieve this goal, some tools must be developed on top of the cur-
rent implementation, such as a versioning server and additional interfaces, preferably
drag-and-drop features for citizen developers.

• Simulation and optimization: Complex systems such as physical systems, manufac-
turing processes, or supply chains can leverage the repository to store and manage their
models while simulating and optimizing their workflow. In this case, the repository is
a safe playground for engineers to understand and optimize these systems, leading to
improved efficiency and performance.

https://github.com/Indamutsa/advanced-query.git
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• Model transformation and refinement: The model management operations on the
repository can be used to derive low-level and reusable code that will integrate into the
software development lifecycle.

• Integration with external tools: We have made room for external services and tools
that perform recommendations, DevOps, and testing frameworks. However, having
these tools directly integrated into the system can prove handy. We can also fully
integrate EMF cloud 4 in the repository and leverage the artifacts already persisted.

• Big data: Although the repository has automated dataset curating mechanisms, it
can be extended to introduce adapters for various extract, transform, and load ETL
strategies that cover various domains. Our orchestrated storage can be leveraged to
ensure standardization, permission control, and comprehensive data examination.

4https://www.eclipse.org/emfcloud/

https://www.eclipse.org/emfcloud/
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Appendix A

MDEForge cluster

MDEForgeWL

API specifications

Versatile in its structure, the MDEForge Persistence API documentation 1.0.0 offers a variety
of options tailored to user needs. All resources are owned by a user, which means a user
must first be created before taking full advantage of the system. Henceforth user can create
workspaces. projects are contained in a workspace and artifacts are created within a project.
Furthermore, users can easily manage their artifacts through standard actions such as creating,
modifying, removing and viewing artifacts. The API has been designed to be flexible and
intuitive so that users can easily access the necessary tools to manage their resources within
MDEForge.

MDEForge Cluster Installation

Welcome to MDEForge microservices!This suite of services are developed using Java-based
Spring Boot framework 1 and Node.js 2. Some utilities might use python or bash scripts.

You can clone the repository and run it locally though it might be computationally expensive.
However, you can even deploy it using docker technologies and kubernetes as an orchestrator
for these microservices.

Running the cluster

We use helm to run the cluster.
1https://spring.io/
2https://nodejs.org/en/

https://spring.io/
https://nodejs.org/en/
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Fig. A.1 Screenshot of MDEForge OpenAPI 3.0 specification

– Run helm install lowcomote to install the chart – If you want to uninstall the charts helm
uninstall lowcomote – if you want to update the charts helm upgrade lowcomote . in the
current directory.

Before you can run these commands, make sure you have built and pushed on the cloud the
correct containers.

For instance, i already have a script that take the name of the container and version, build it
and push it to the registry – build.sh dsl-frontend v2.9

After pushing on the cloud, you have to upgrade the helm charts values, especially the version
of the container to retrieve the latest version.

Before you can upgrade the charts, it’s good to delete the current deployment you want to
update – kube delete deployment.apps/dsl-frontend-deployment service/dsl-frontend-server
For instance, here i would like to update the service and deployment above, so i removed
them.

Then, now i can update the charts: helm upgrade lowcomote helm-deployment/
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Fig. A.2 Screenshot of MDEForge GraphQL API specification

In case you want to forward a given container to localhost, use portforwarding – kube
port-forward service/dsl-frontend-server 9999:8080

To enter a container while you are running the cluster: – kubectl exec -it dsl-backend-server –
/bin/sh

To get the node where the cluster is deployed: – kube get node -o wide

To connect to GKE cluster – gcloud container clusters get-credentials cluster-name –zone
europe-west3-a –project project-name

To allow the cluster – gcloud compute firewall-rules create allowed-node-ports –allow
tcp:30100

To log a deployment – kube logs deployment.apps/dsl-backend-deployment

For more information please check the README file on the repository: https://github.com/
Indamutsa/model-management-services.git

MDEForgeWL Documentation

This domain specific language orchestrates and enables service composition of model man-
agement services.

These are the services supported:

• Persistence for model artifacts(CRUD)

 https://github.com/Indamutsa/model-management-services.git
 https://github.com/Indamutsa/model-management-services.git
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Fig. A.3 Screenshot of MDEForge cluster on Google Cloud

• Model transformation

• Model validation

• Model query

• Model Merging

• Model comparison

• Notifications

The language also provides some general programming language features such as conditional
statements, loops, variable assignments and functions.

These features can help you programmatically compose services and process output from
previously executed services.

Below is the syntax to get you started:
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Variables: Example:

var arsene = "Hello world"

Define var indamutsa = "Hello world"

———————————————————————-

Assignment:

// You can assign the variable in to another expression or variable

arsene = indamutsa + "Another hello world"

----------------------------------------------------------------------

If statement:

// You can define a statement.

Example:

var a = 2

if(a == 2){

print("Yes")

}else{

print("No")

}

----------------------------------------------------------------------

Loop statement:

// You can define a loop

Example

var i = 0

loop:if(i <= 0){

print("Inside the loop")

}

----------------------------------------------------------------------
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Method:

/** You can define a method, with empty or parameters */

Example:

function method(string: name){

print(name)

}

----------------------------------------------------------------------

Call method:

// You can call a method.

var hello = "The name"

call method(hello)

----------------------------------------------------------------------

Call model management services:

// For instance to call transformation service

call service _transfoModel("Tree.xmi", "Tree.ecore", "Tree.ecore", "Demo.etl")

// For instance to call validation service

call service _validateModel("Tree.xmi", "Tree.ecore", "Demo.evl")

// For instance to call compare service

call service _compareModel("catalogue1.xml", "catalogue2.xml", "Demo.ecl")

// For instance to call model object query service

call service _queryModel("Tree.xmi", "Tree.ecore", "Demo.eol")

// For instance to call model merging service

call service _mergeModels("catalogue1.xml", "catalogue2.xml", "catalogues.ecl",

"catalogues.eml")

----------------------------------------------------------------------
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Workflow:

// You can define a workflow

Workflow workflowName type: parallel{

step "Test" {

var name = "inside the workflow"

// You can call define the statements inside here,

// if statements, loops, functions, and services

print(name)

}

}

// You have to run the workflow name

Execute workflowName()

----------------------------------------------------------------------

DEMO PROGRAM: You can copy this program and paste it

in the editor for testing purposes

------------

// Press ctrl + space to trigger auto-completion

// Create variables : This part is improved by advanced query mechanisms.

// You can query the type of models u want based on your defined criterias

var sourceModel = "Tree.xmi"

var sourceMetamodel = "Tree.ecore"

var targetMetamodel = "Tree.ecore"

var model1 = "catalogue1.xml"

var model2 = "catalogue2.xml"
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var etlscript = "Demo.etl"

var evlscript = "Demo.evl"

var eclscript = "Demo.ecl"

var eolscript = "Demo.eol"

var mergeCompareScript = "catalogues.ecl"

var mergescript = "catalogues.eml"

function dummyFunc(string:name){

print("Executing inside the function")

return name

}

Workflow workflow type:sequence{

step "Test"{

var name = call dummyFunc("Hello world")

// Check conditional and loop conditional statements

if (name == "Hello world") {

print("Conditional statement testing passed")

var i = 0

loop: if(i < 5){

print("Looping: " + i)

i = i + 1

}

}

// For instance to call model object query service

call service _queryModel(sourceModel, sourceMetamodel, eolscript)
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// For instance to call validation service

call service _validateModel(sourceModel, sourceMetamodel, evlscript)

}

step "Compare and Merge"{

// For instance to call compare service

call service _compareModel(model1, model2, eclscript)

// For instance to call model merging service

call service _mergeModels(model1, model2, mergeCompareScript, mergescript)

}

step "Transform"{

// For instance to call transformation service

call service _transfoModel(sourceModel, sourceMetamodel,

targetMetamodel, etlscript)

}

}

Execute workflow()

For a Demo video, please check: https://tinyurl.com/mdeforgewl

https://tinyurl.com/mdeforgewl
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MDEForge search

Fig. B.1 Screenshot of MDEForge Search Interface

Discovery API
Using GraphQL API specification, the user can retrieve data using data entities such as
the user, workspace, project and artifact. However, it can also be combined using the
microsyntax query specification because it supports search keywords, tags, conditional
statement and logical operators. The repository can be found on : https://github.com/
Indamutsa/advanced-query.git

MDEForge Search Installation
The installation of the cluster can be easily done by run the bash script:

https://github.com/Indamutsa/advanced-query.git
https://github.com/Indamutsa/advanced-query.git
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Fig. B.2 Screenshot of MDEForge Search GraphQL API specification

bash run.sh

It will spin up the cluster including the query engine and its frontent. The query engine is
running on port 3300 and the frontend is running on port 3500. A cluster of databases is also
running on port 27019 with the search engine on port 5601.

Microsyntax Query Specification Documentation

The microsyntax query specification is an integral part of MDEForge Search. It provides
means for users to define query criteria to retrieve relevant artifacts by narrowing down
the search query by means of operators. The query specification typically consists of
multiple components, including a search keywords, conditional statements, search tags and
logical operators. The microsyntax query specification provides a powerful yet easy-to-use
way to access data persisted in the repository. By understanding the components of query
specification, users can take advantage of its power to harness their query specification and
effectrively retrieve relevant model artifacts from the repository.

Below are the constructs of the query specification:

• Search Keywords: These are single words or a number that are used as the basis for the
search query. The search engine uses this keyword for lookup in the index and return
exact match. The search keywords can be a single keyword or multiple keywords. For
example: student teacher class . These keywords can be used to compose a
complex query with the use of operators described below.
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• Boolean required operator "AND": The operator used to specify that all search terms
or keywords on the left and on the right of the operator must be present in the returned
results. Example: student AND teacher

• Boolean exclusion operator "NOT": This operator is used to exclude the next term,
keyword or condtional statement group on its left side. example: student NOT [teacher
AND class]

• Boolean logical operator "OR": This operator is used to specify that search results
may contain any of the specified search keywords on the right and left of the operator
respectively. Example: student OR teacher

• SPACE: this is an operator in our microsyntax operator. It is the same as OR operator.
Example: teacher OR student is the same as teacher student

• Left bracket group indicator "[": This operator is used to group keywords and operators.
It needs to be close by the right bracket group indicator. [student AND teacher]

OR class

• Right bracket group indicator "]": Same like above, This operator is used to group
keywords and operators. It needs to be close by the right bracket group indicator.
[student AND teacher] OR class

• Equality Operator "==": This operator is used to specify exact match of the value
specified. For instance to retrieve an artifact where its size is equal to 2 can be done as
size == 2. Especially using the metrics tags, we use it like cmc == 2. That artifact
should have a metric where cmc is equal to 2

For the operators below, they assess tags that represent numerical values.

• Less than operator "<": This operator is used to specify a value on right side that is is
less than a specified tag. For instance: cmc < 2

• Greater than operator ">": This operator is used to specify a value on right side that
is is greater than a specified tag. For instance: cmc > 2

• Less than or equal to operator "<=": TThis operator is used to specify a value on right
side that is is less or equal to a specified tag. For instance: cmc <= 2

• Greater than or equal to operator ">=": This operator is used to specify a value on
right side that is is greater or equal to a specified tag. For instance: cmc >= 2

• Exclusion operator "-": This operator can used to exclude a specific keyword or groups
of keywords from the search results.
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• Required keyword operator "+": This operator is used to indicate that a specific
keyword or groups of keywords from the search results are required in the search
results.

• Alternative keyword operator "|": This operator is used to indicate that the the search
results may contain a specific keyword or groups of keywords.

• Quotation marks "" or ” : using quotation marks around a keyword or phrase indicates
an exact match search. The search engine will only return results that exactly match
the enclosed keyword or phrase. For "teacher class student", an exact match is
sought.

• Wildcards: This is used to indicate that A wildcard is a special character that can be
used in a search query to match any sequence of characters. Wildcards are often used
to search for different variations of a word or to search for multiple words that have
the same root.

– Fuzzy search operator " ": This operator is used to specify a search that is not an
exact match for a specific search term or keyword. For instance teachjr will
return teacher.

– The asterisk *: this wildcard can match any sequence of characters. For example,
"mach*" would match "machine", "machinery", "machinist", etc.

– The question mark ?: this wildcard can match any single character. For example,
"mach?ne" would match "machine" and "machene", but not "machinery"

– The caret ˆ : this wildcard is used to boost the relevance of a search term.

• Search tags: [”accessControl”,”content”,”createdAt”,”description”,”ext”,
”involvedOperations”,”license”,”name”,”pro ject”,”size”,”storageUrl”,”type”,
”uniquename”,”updatedAt”,”con f ormsTo”,”hasAttribute”,”isTrans f ormable”]: These
are predefined tags that can be used to filter the model artifacts. For teacher

hasAttribute: name

• Metrics tags [”ac f mc”,”ai f lmc”,”amc”,
”attr”,”attrh”,”avgattr”,
”avgre f ”,”cc f mc”,”c f lmc”,
”ci f lmc”,”cmc”,”i f lmc”,
”lmc”,”maxhl”,”maxhs”,
”mc”,”mcwsp”,”mtnb”,
”reccont”,”re f ”,”re f cc”,



201

”re f eop”,”s f ”,”s f h”]: These are quality metrics of model artifacts especially meta-
models. They can be used to filter artifacts that reach some metrics in the search results.
name: simple* AND cmc == 2

Remember that if you want to perform a search containing these special operators
+−&&||!()[]” ∗? : /, you may need to skip them with a forward slash /.
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