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Abstract 

By leveraging monitoring data for the Gran Sasso carbonate aquifer during two significant 
seismic sequences that hit central Italy in recent years, this study investigates the possibility of 
using memory-enabled deep learning algorithms as meaningful tools for an enhanced 
modelling of the hydrological response of karst aquifers subject to earthquake phenomena. 
Meteorological, hydrological and seismic data are used to train and validate long short-term 
memory networks (LSTM) in one- and multiple-day ahead flow forecasting exercises, aimed 
at assessing model sensitivities to input variables and modelling choices (training data and 
parameters of the models). Results indicate that the models fairly reproduce the flow patterns 
for the considered spring in the Gran Sasso aquifer, thus supporting the potential use of these 
models for hydrological applications in similar areas, provided that sufficient data are available 
for the training of the network.  
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1. Introduction 

The groundwater flow in fractured karst aquifers is the result of the complex interplay between 
many components, involving hydrological processes (e.g., rainfall and snow accumulation, 
surface runoff, infiltration), geological and morphological features of the aquifer, as well as 
anthropogenic factors (Bonacci, 2004; Ding et al., 2020). All these elements affect recharge-
discharge mechanisms with overlapping effects, thus making the identification of individual 
contribution of each component to the final outflow very difficult (Duran et al., 2020). The 
quantitative modelling of karst hydrology typically relies on  physically-based or conceptual 
models, which are however inherently uncertain (Birk et al., 2006; Hartmann et al., 2014; Li et 
al., 2016; Zoghbi and Basha, 2019; Duran et al., 2020). 
In seismic areas the situation is even more complex, given that earthquakes are known to be 
responsible for significant alterations in the hydrological systems, as a consequence of dynamic 
strain modifications inducing formation of microcracks, fracture cleaning phenomena and 
temporary changes in permeability (Brodsky et al., 2003; Casini et al., 2006; Wang and Manga, 
2010; Adinolfi Falcone et al., 2012; Manga and Wang, 2015). These alterations cause short- 
and/or long-term impacts on spring and river flows (Rojstaczer et al., 1995; Manga et al., 2003; 
Montgomery and Manga, 2003; Manga and Wang, 2015; Mohr et al., 2017; Petitta et al., 2018; 
Di Matteo et al., 2020), water table (Roeloffs, 1998; Wang et al., 2004; Wang and Chia, 2008; 
Shi et al., 2015; Petitta et al., 2018) as well as chemical composition of water (Claesson et al., 
2004; Onda et al., 2008; Adinolfi Falcone et al., 2012; Barberio et al., 2017; Nakagawa et al., 
2020).  
In recent years, the aquifers in the Italian Apennines have been described in many studies to be 
prone to hydrological alterations following major seismic events, with a common observed 
increase in spring and streamflow discharge. For instance, Esposito et al. (2001) reported  
significant hydrogeological changes within 200 km from the epicentral zone for four 
earthquakes that struck central-southern Apennines in the last two centuries. Amoruso et al. 
(2011) and Adinolfi Falcone et al. (2012) analyzed the changes in the hydrogeology of the Gran 
Sasso carbonate aquifer after the 2009 L’Aquila earthquake. Increases in river and spring flows, 
as well as in water table, have been registered also for the most recent 2016-2017 seismic 
sequence in Central Italy, with effects observed up to a distance of 100 km from the epicentral 
area (De Luca et al., 2018; Petitta et al., 2018; Mastrorillo et al., 2020; Valigi et al., 2019; Di 
Matteo et al., 2020).  
Despite the relatively large amount of literature on the topic, none of these previous studies 
have tried to quantitatively interpret the relationship between fluctuations in groundwater flow, 
precipitation, snowmelt, etc. and the features of the seismic events (e.g., magnitude and 
distance between the observation site and the epicenter). In such contexts, when the underlying 
relationships cannot be fully explained in physical terms, machine learning, data-driven 
approaches may be considered useful tools for modelling the hydrological response of the 
aquifer (Dikshit et al., 2020). These methods, starting with simpler artificial neural networks 
(ANNs), have been proved to be effectively employed in many hydrological applications, from 
streamflow forecasting to groundwater and water management modelling (Sivakumar et al., 
2002; Hu et al., 2008; Wu et al., 2009; He et al., 2014; Zhang et al., 2015). In recent years, to 
overcome ANNs’ limitation in not properly accounting for the sequential order information of 
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input data, recurrent neural networks (RNNs) have been developed to selectively convey 
information across sequence steps (Kratzert et al., 2018; Dikshit et al., 2020). Among RNNs, 
long short-term memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1997) have 
gained increasing attention among hydrologists, due to their powerful capability in learning 
long-term dependencies in time series data (Kratzert et al., 2018; Le et al., 2019; An et al., 
2020; Cheng et al., 2020).    
The objective of the present paper is then to test the implementation of deep learning algorithms 
(LSTMs) to analyze the possible contribution of these approaches in supporting a quantitative 
modelling of the hydrological alterations in karst aquifers subject to seismic activity and, then, 
to assess their potential as meaningful tools for reliably predicting spring flows in such areas. 
The study region is represented by the northern part of the Gran Sasso carbonate aquifer, 
impacted by the 2009 and 2016-2017 seismic sequences in central Italy, which induced abrupt 
changes in the flow regime of monitored springs. Details on the available hydrometeorological 
and seismic variables, as well as on the methodological approach followed in this study, are 
provided in Section 2, while the results, presented and discussed in Section 3, form the basis 
for the conclusions reported in Section 4.    

2. Material and methods 

2.1. Overview of the study area and available data 

The study area (Figure 1) is the Gran Sasso carbonate aquifer, located in the northern part of 
the Abruzzo region (Italy), which, as most of the central-southern Apennines, is a seismic area 
characterized by normal faulting earthquakes reaching maximum magnitudes close to 7.0 (De 
Luca et al., 2000, 2009; Bagh et al., 2007; Frepoli et al., 2017). This is a large fractured aquifer 
with well-defined boundaries, extending over an area of about 700 km2 (Petitta and Tallini, 
2002) and perennial groundwater reserves estimated in the order of 1010 m3 (Amoruso et al., 
2011). Due to its karst features, with joints, faults and intense fracturing of rock masses, 
recharge quantities are huge and characterized by a net infiltration of over 800 mm per year 
(Boni et al., 1986; Scozzafava and Tallini, 2001), on an annual average rainfall of about 1200 
mm (Curci et al., 2021). The Gran Sasso supplies a total discharge of more than 18 m3/s from 
its springs, with the major ones located at the discharge zones at its boundaries. Since the 1980s, 
after the construction of underground infrastructures, including highway tunnels and 
laboratories, a portion of the groundwater has been partially drained and exploited for drinking 
purposes (Adinolfi Falcone et al., 2008). This drainage system consists of two 5 km long 
channels conveying water to the south-western (Assergi site (AS), Figure 1) and north-eastern 
exists of the highway tunnels (Petitta and Tallini, 2002). As described in the Introduction, 
previous studies described significant short and mid-term changes in the hydrological 
characteristics of groundwater flow at the Assergi site after the 2009 earthquake in L’Aquila 
(with an epicentral distance of about 14 km from AS), as a possible consequence of changes in 
the pore pressure and increase in the equivalent hydraulic conductivity of the aquifer, induced 
by mechanisms of fracture unclogging (Amoruso et al., 2011; Adinolfi Falcone et al., 2012). 
Indeed, the available hydrological data measured on April 2009 indicated a sudden increase in 
the spring discharge, which remained higher than the historical flow registered before the 
mainshock for several months after the event, as typical in fractured aquifers, where recovery 
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to pre-earthquake conditions is governed by the time to reblock the fractures (Manga et al., 
2012; Mastrorillo et al., 2020; Vittecoq et al., 2020). Moreover, quick flow alterations, favored 
by the fractured carbonate nature of the aquifer, were also observed for the seismic sequence 
occurred in 2016-2017 in central Italy, with epicentral area located about 30 km away from the 
spring located at the end of the drainage tunnel in Assergi (Figure 1). This sequence started on 
August 24th 2016, near Amatrice (ML (local magnitude) 6.0), Lazio Region, and it continued in 
the following months with several events of magnitude greater than 5.0, culminating in the 
main shock on October 30th 2016, when a ML 6.5 earthquake occurred near Norcia in the 
Umbria Region, at a distance of about 50 km from the Assergi site.  

 
Figure 1. a) Overview of the study area (northern part of the Gran Sasso aquifer in central Italy); b) 
location of the main seismic events during the 2009 and 2016-2017 sequences (indicated with the red 
bars in Figures 2 and 3); c) hydrogeological setting, with indication of the drainage tunnel and Assergi 
(AS) and Campo Imperatore sites: 1. aquitard (continental detrital units of intramontane basins, 
Quaternary); 2. aquiclude (terrigenous turbidites, Mio-Pliocene); 3. aquifer (calcareous sequences of 
platform – reef included – and slope to basin lithofacies, Meso-Cenozoic); 4. low permeability 
substratum (dolomite, upper Triassic); 5. thrust; 6. extensional fault; 7. presumed water table in m a.s.l. 
 
Within the mentioned seismic sequence, sub-hourly observed flow data were provided by the 
water supply company which manages the tapped spring. These measurements refer to 
monitoring sensors applied to derived discharge channels for the south-western drainage tunnel 
of the Gran Sasso aquifer (AS). The available discharge (Q) time series spans over September 
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2015 – January 2018, which was the maximum time window characterized by continuous 
records, without missing data and/or system malfunctioning. The fourth panel of Figure 2 
clearly highlights the abrupt flow increases observed in the spring discharge after the main 
earthquake events in central Italy during 2016-2017, as also described by Petitta et al. (2018) 
and Mastrorillo et al. (2020) in other neighboring springs.  
 

 

Figure 2. Hydrometeorological and seismic time series available for the study area in the 2015-2018 
period: maximum and minimum temperature (TX and TN), rainfall (P), spring discharge (Q), snow 
depth (Sd) and earthquake magnitude (ML). The red bars highlight the main events of the seismic 
sequence.   
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Complete seismic data, consisting of magnitude (ML≥2.0) and epicentral distance (de) from the 
examined spring site, were retrieved from Istituto Nazionale di Geofisica e Vulcanologia 
(INGV, http://cnt.rm.ingv.it/); the events outside a radius of 60 km from Assergi were excluded 
from the analysis, in agreement with the observations of Petitta et al. (2018), who qualitatively 
described alterations in the flow regimes at different locations in central Italy. 
In order to account for the effect of other meteorological factors on the hydrological response 
of the aquifer, rainfall (P), snow depth (Sd), minimum and maximum temperature (TN and TX) 
data over the considered period were obtained from the Hydrographic Office of the Abruzzo 
Region. Assergi (AS) was selected as the most representative site for rainfall and temperature 
measurements, while Campo Imperatore for snow depth data (Figure 1 and 2).  
The same kind of information were also retrieved for the period encompassing the 2009 seismic 
sequence, where reliable flow data ranged from January 2009 to October 2010 (Figure 3), while 
for other periods, the flow time series were discontinuous and not useful for the aim of this 
study. Because of the different data sources, the time series were characterized by sampling 
rates (Table 1) ranging from 15 minutes to 24 hours; to ensure uniformity, data were then 
aggregated and analyzed at daily scale. Regarding earthquake data, in case of multiple daily 
events, the one with the highest magnitude was retained for the analysis.  
Figure 4 shows the time-lagged cross-correlation between the spring flow and the other 
considered variables, obtained by incrementally shifting the different time series vectors and 
repeatedly calculating the Pearson correlation coefficient between these shifted signals and Q. 
It can be recognized the delayed recharge effect caused by snowmelt and driven by 
temperatures, while weaker appears the contribution of rainfall due to the storage capacity of 
the aquifer. As also visible from the time series (Figures 2 and 3), ML seems to be more related 
to daily variations of Q and then the peak correlations reported in Figure 4 at certain lags may 
be considered a spurious consequence of synchronous (lagged) flow seasonality and occurrence 
of intense seismic activity.  Moreover, the different correlation patterns shown in Figure 4 for 
the two considered periods are mostly due to the occurrence of the main earthquakes in 
different seasons of the year, which are late summer-autumn (recession phase) in 2015-2018 
and spring (rising limb) in 2009-2010.  
 

Table 1. Location and original sampling rates for the hydrometeorological variables considered in the 
study. 
 

Location Variable Original sampling rate 

Southwestern drainage of Gran Sasso aquifer (Assergi) Spring discharge 
15 min (2015-2018) 
daily (2009-2010) 

Assergi Rainfall 
15 min (2015-2018) 
daily (2009-2010) 

Assergi Temperature (max, min) daily 

Campo Imperatore Snow depth 15 min 
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Figure 3. Hydrometeorological and seismic time series available for the study area in the 2009-2010 
period: maximum and minimum temperature (TX and TN), rainfall (P), spring discharge (Q), snow 
depth (Sd) and earthquake magnitude (ML). The red bars highlight the main events of the seismic 
sequence.    
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Figure 4. Time-lagged cross-correlation between the spring flow and the hydrometeorological and 
seismic variables considered in this study: a) 2015-2018 period; b) 2009-2010 period (in this case, the 
correlation between Q and Sd is not calculated due to the limited length of the Sd series).   

2.2. Implemented machine-learning algorithms 

In this study, the flow forecasting at daily scale in the considered karst aquifer subject to 
earthquake phenomena was carried out by using memory-enabled machine learning 
algorithms.  
RNNs are a type of neural networks capable of learning order dependence in sequence data 
(Rumelhart et al., 1985), although to a limited extent (Bengio et al., 1994). Indeed, while their 
hidden state should be able to preserve the memory of past input data, they encounter vanishing 
and exploding gradient problems for network training that can hinder their capacity of learning 
long-term dependencies (Bengio et al., 1994). LSTMs have been then developed to overcome 
this issue, by including, in their recurrent structure, cell state and gating mechanisms which 
control the flow of information through the network (Hochreiter and Schmidhuber, 1997; 
Kratzert et al., 2018).   
While for the specific mathematical expressions of LSTMs the readers can refer to the original 
published literature (Rumelhart et al., 1985; Hochreiter and Schmidhuber, 1997; Kratzert et al., 
2018), hereinafter we focus on the methodological approach followed in this study to 
investigate the possibility of using a deep learning approach for simulating the flow patterns in 
karst aquifers subject to earthquake phenomena. In detail, as a consequence of the relatively 
short time series available for the study area, two scenarios were analyzed in order to obtain 
reliable insights on models’ predictive ability, trying to minimize the effect of the temporal 
limitation in the data. The first group of runs leveraged only on the most recent time series 
(2015-2018) for both (appropriate) training and validation as well as test of the neural networks 
for one-step ahead forecasting, while in a second multistep-ahead prediction exercise, the 2015-
2018 period was exclusively considered for training and validation and the 2009-2010 as a test 
set. As regards the first scenario, several tests were carried out to evaluate the sensitivity of the 
models to: (i) models’ hyperparameters; (ii) start date of the learning period (ID_train), 
necessary due to the relatively shorth length of the available time series; (iii) number and 
combination of the input features considered for model training (i.e., feature importance on the 
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predictive accuracy). Regarding the last point, for the sake of conciseness, only ten different 
combinations of model input parameters were selected in model training for the one-step-ahead 
flow forecasting (Figure 5). Starting from the most complete combination including all the 
parameters at stake (I), the others originate by excluding one or two related variables (as ML 
and de or TX and TN) at time (II-V), except for Q and P, which are instead always taken into 
account in the models. Runs VI and VII derive from a further simplification of the previous 
combinations, by considering only hydrometeorological variables, while runs VIII and IX 
exclude the possible influence of the epicentral distance de, in combination with temperature 
or snow depth data. The last run (X), similar to the first but without Q, is instead considered as 
a comparison mean for evaluating the impact of the information on the antecedent values of 
the spring flow on model accuracy.  
For each feature combination, training was repeated 200 times by randomly changing ID_train 
and models’ hyperparameters. Indeed, although it is widely acknowledged that 
hyperparameters are crucial for the predictive accuracy of black-box models, no established 
general instructions exist for setting them (Hutter et al., 2014; Reimers and Gurevych, 2017; 
Kratzert et al., 2018). In this study, the MATLAB’s deep learning toolbox was used to develop 
the LSTMs and therefore, after a preliminary assessment, most of the hyperparameters were 
kept at their default values, while the ones considered in the sensitivity analysis are described 
hereinafter.  
Adam optimizer (Kingma and Ba, 2014), based on stochastic gradient descent, was employed 
in all runs; in the optimization process, one iteration for the complete training dataset is referred 
to as an epoch and Nepochs defines the maximum number of iterations, which was randomly 
changed between 100 and 300. Other tested hyperparameters included: the number of hidden 
units (NHU, ranging from 40 to 100) in the LSTM layer and the batch size (BS, ranging from 
40 to 100), which defines the number of samples to be processed before updating internal 
parameters of the LSTM model.  
In the first scenario, the daily time series were split into training, validation and test datasets in 
the proportion of 55-20-25, with changing start date of the learning period (ID_train, up to the 
400th day in the time series, as shown in the scheme provided in Figure 6).  

 
Figure 5. Scheme for the developed one-day-ahead models: inputs are the available observed hydro-
meteorological and earthquake data at the previous time levels (t-1) and the target output is the discharge 
at the time level t. The different combinations of considered input data are shown in the table on the 
right.  
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Figure 6. Scheme for the splitting of the time series into training, validation and test sets, exemplified 
for the flow record over the 2015-2018 period. In the experiments, the training time window is variable 
with changing ID_train.  

 
The model inputs are the available observed hydrometeorological and earthquake data at the 
previous time levels (t-1), while the target output is the discharge at the time level t (Figure 5). 
The different data series were standardized by rescaling the observations to have a null mean 
and a standard deviation of 1.  
During training, the data input to the layers of the networks are converted by weights, which 
are the parameters of the layer; the simulated and observed discharges are compared using an 
objective function, here represented by the root mean square error (RMSE, Eq. (1)) and the 
weights are adjusted through the optimizer until the RMSE is minimized: 

RMSE = ඩ
1
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 (1) 

with 𝑄
and 𝑄

 respectively representing the standardized observed and predicted flow at the 

day i, while n is the length of the dataset.    
Eq. (1) was also used to measure the accuracy of the trained networks on the test datasets, in 
addition to the mean absolute error (MAE, Eq. (2)) and the coefficient of determination (r2), all 
calculated by always excluding the first 40 values of the time series, due to initialization issues 
of the implemented models (Zimmermann et al., 2012; Mehdipour Ghazi et al., 2019). 
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1
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Furthermore, to better understand the importance on the predictive accuracy of the different 
variables, and specifically of seismic events, for the best schemes of input combinations, a 
recursive strategy in the trained models was adopted to achieve a multi-step-ahead forecast 
(i.e., flow forecasting at several lead-times, up to 14 days, with respect to the known flow 
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values). For a given lead time, the procedure consisted in predicting Qt+1 at each time step t, 
using the time series of the input variables from 1 to t, with the last tlag−1 elements of the input 
Q series (Qt+1-tlag

,…,Qt-1,Qt) replaced by the last tlag−1 values of the predicted series. 

3. Results and discussion 

3.1. One-day ahead flow forecasting exercise: model sensitivities 

Figure 7 summarizes the results for the one-day ahead forecast in terms of RMSE (similar 
patterns have been observed in terms of MAE and r2)  between the standardized observed and 
predicted flows, under the different combinations of input variables (runs I to X, as defined in 
Figure 5), model’s hyperparameters (Nepochs, BS and NHU) and start date of the training 
period (ID_train) over the 2015-2018 time series.  
The first evident and quite obvious result regards the influence of the antecedent daily flow 
values on the predictive performances of the developed LSTMs, with the RMSE registering an 
average threefold increase when Q is excluded from the input parameters (run X). In addition, 
while indicating an overall modest influence of the hyperparameters on model accuracy, 
especially for BS and NHU, Figure 7 highlights some apparently controversial results, which, 
however, can be explained and used to support general warnings about potential pitfalls that 
may be encountered when implementing black-box models for time series predictions (Kratzert 
et al., 2018; Cho and Kim, 2022). Indeed, the first panel of the figure shows that the most 
noticeable differences in the RMSE are a function of ID_train, with minimum errors (median 
values of about 0.15) identified when the training period starts later than June-July 2016 (i.e., 
ID_train>300) for most of the runs, thus suggesting the existence of a best training dataset, 
basically characterized by a significant consistency and similarity with the target dataset. This 
is a direct consequence of the short records available for implementing the learning process, 
which explains, besides the observed limited sensitivity of the LSTMs to the hyperparameters, 
some unexpected results among the different runs. In fact, Figure 7 clearly shows that not only 
the predictive accuracy does not improve with the number of considered predictors, but even 
worsens when potentially important factors for the Gran Sasso aquifer, as earthquake features 
or snow accumulation (e.g., Amoruso et al., 2011, 2013; Adinolfi Falcone et al., 2012), are 
included into the model. For instance, the most complete runs (I or II) provide slightly lower 
performances than those reported by run III, which excludes Sd from the set of predictors. Such 
pattern is even more evident when analyzing the results of run V, VI and VII, characterized by 
using only hydrometeorological variables as input features, but providing the minimum 
RMSEs. To a certain extent, by emphasizing the role of the learning period, these results then 
suggest that the length of the available records could be a limiting factor for deriving robust 
conclusions on the use of LSTMs for predicting spring flows in karst aquifers subject to seismic 
activity.  
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Figure 7. Results of the sensitivity test performed for the one-day ahead flow forecasting exercise: 
RMSE between the standardized observed and predicted flows as a function of the start date of the 
learning period (ID_train) and LSTM hyperparameters (number of epochs (Nepochs), batch size (BS) 
and number of hidden units (NHU)). The run numbers identify the input feature combinations (Figure 
4) considered for model training.  

 

3.2. Multiple-step ahead flow forecasting exercise 

In consideration of the discussed problems for deriving solid conclusions when relying only on 
the most recent 2015-2018 time series for both training and test, this section analyzes the results 
on the test for the 2009-2010 period in order to identify possible reliable insights on the ability 
of LSTMs in reproducing the flow features in seismic karst aquifers as the one under 
investigation 
To this aim, the LSTM models providing the best performances in the previous exercise for the 
different runs (Figure 7) were selected to be further applied for one- and multi-day ahead flow 
predictions over the 2009-2010 period. Since snow depth records started only on late 2009, 
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after L’Aquila earthquake (Figure 3), here we focus on the runs which do not include Sd among 
the input variables, namely the most complete III and IX, and the simpler VII, relying only on 
hydrometeorological parameters (Figure 5).     
This lag-exercise can be seen as a “stress test” for the predicting ability of the models, in 
consideration of the importance of antecedent flow discharge values: indeed, when increasing 
the lead times, such influence is partly reduced, thus allowing to recognize the possible 
influence of other factors. Furthermore, tests at longer lead times can be even more interesting 
for practical applications, such as predictions for what-if analysis or missing data filling.          
Table 2 summarizes the error metrics for the selected runs at different lead times (tlag), while 
Figure 8 shows, for exemplificatory purposes, the comparative plots of the 2009-2010 
forecasting results obtained from the application of the LSTMs for the feature combinations III 
and VII. If excluding the short initialization period, the figure depicts a relatively good 
agreement between the patterns of observed and predicted spring discharges, especially at 
smaller lead times, thus indicating a fair ability of the LSTM models in resembling the flow 
features for a test set completely taken out from the training process.  
Interestingly, while the differences between forecasts and observation become more evident 
with increasing tlag, more markedly for run VII (Figure 8b), the plots highlight the skill of the 
models in well predicting the sharp flow increase induced by the earthquake event occurred on 
April 2009 (~ day 100 of the time series). Such result suggests that the networks seem to have 
effectively learned the physical mechanisms leading to sudden flow changes after main seismic 
events in the karst aquifer, attributed in the literature, from a qualitative perspective, to fracture 
cleaning phenomena and consequent increase in the bulk hydraulic conductivity (Wang and 
Manga, 2010; Adinolfi Falcone et al., 2012; Manga and Wang, 2015; Petitta et al. 2018; Valigi 
et al., 2019). This is quantitatively confirmed by the results shown in Table 2, which indicates 
similar models’ performances at short lead times, with r2 ranging from 0.98 to 0.83 for tlag 
between 1 to 4 days for the three configurations.  
 
Table 2. Results for the multiday-ahead forecast exercise on the 2009-2010 test set: error metrics for 
the three considered runs (run III and IX include seismic input parameters, while run VII relies only on 
hydrometeorological factors).     

Run Error metric 
tlag 

1 day 2 days 3 days 4 days 7 days 10 days 14 days 

III 
RMSE 0.39 0.49 0.60 0.73 1.10 1.39 1.48 

r2 0.97 0.95 0.93 0.89 0.74 0.51 0.53 
MAE 0.15 0.24 0.36 0.55 1.22 1.94 2.18 

VII 
RMSE 0.37 0.59 0.78 0.96 2.35 3.22 3.09 

r2 0.98 0.94 0.90 0.83 0.04 0.001 0.001 
MAE 0.14 0.34 0.61 0.93 5.54 10.34 9.55 

IX 
RMSE 0.44 0.56 0.66 0.77 1.06 1.32 1.46 

r2 0.96 0.93 0.90 0.86 0.75 0.63 0.56 
MAE 0.20 0.31 0.44 0.60 1.12 1.73 2.13 
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Figure 8. Results for the multiple-step ahead flow forecasting exercise: predicted versus observed flow 
time series for the 2009-2010 test period at several lead times for: a) model scheme of run III; b) model 
scheme of run VII. 
 

However, when tlag is further increased, the performances of run VII (the one trained with only 
hydrometeorological data for the 2015-2018 period) drop significantly (r2<0.05), while a more 
gradual and limited worsening (with r2 values of about 0.75-0.55 for tlag ≥ 7 days) can be 
observed for the other two combinations, thus proving the positive effect of the seismic 
parameters on models’ accuracy. 
It is worth noting that the good predictions provided by run VII at short lead times are mainly 
a consequence of the tendency of the model to “copy” the antecedent discharge values in the 
time series: indeed, as shown in the results reported in the previous section, the network heavily 
relies on antecedent flow rates and thus predictions do not deviate much from observations for 
small tlag, while, on the other hand, to capture the sudden increase in the flow rate for larger 
tlag, information on earthquake events certainly improves the quality of the forecasting (runs 
III and IX). 

4. Conclusions 

The characterization and investigation of karst aquifers is a complex task, which makes 
quantitative studies on their governing physical processes quite difficult. In recent years, 
because of the excellent performance of data-driven approaches in many scientific fields, 
hydrologists have been starting to implement such algorithms in place of (or combined with) 
physically based models in their applications. 
Given this trend, for the first time, to the best of our knowledge, the present study attempted to 
investigate the usability and reliability of memory-enhanced neural networks (LSTMs) for 
modelling the hydrological behavior of karst aquifers exposed to seismic hazard, which 
exacerbates the system complexity. Indeed, while plenty of literature has been published on 
the use of machine learning algorithms for purely hydrological applications (Ardabili et al., 
2019), no previous studies on the topic have dealt with the inclusion of earthquake impacts into 
the modelling. 
The results presented here, especially in the multiday-ahead forecasting exercise, demonstrated 
that, albeit machine learning approaches may suffer from limitations arising from insufficient 



15 
 

data for model training (which may lead to incorrect conclusions, as pointed out in the 
sensitivity analysis discussed in Section 3.1), they have potential for a successful use for flow 
forecasting in seismic karst areas by virtue of their ability in implicitly learning the complex 
geophysical mechanisms causing sudden alterations in the hydrological properties of the 
aquifers after main earthquake events.  
Clearly, the key point will be the possibility of relying on representative long 
hydrometeorological and seismic time series for a proper training of the networks. Therefore, 
we promote future studies aimed at corroborating our findings in regions experiencing similar 
geohydrological conditions.             
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