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a b s t r a c t

The Mutual Visibility is a well-known problem in the context of mobile robots. For a
set of n robots disposed in the Euclidean plane, it asks for moving the robots without
collisions so as to achieve a placement ensuring that no three robots are collinear. For
robots moving on graphs, we consider the Geodesic Mutual Visibility (GMV) problem.
Robots move along the edges of the graph, without collisions, so as to occupy some
vertices that guarantee they become pairwise geodesic mutually visible. This means that
there is a shortest path (i.e., a ‘‘geodesic’’) between each pair of robots along which no
other robots reside. We study this problem in the context of trees and (finite or infinite)
square grids, for robots operating under the standard Look–Compute–Move model. In
both scenarios, we provide resolution algorithms along with formal correctness proofs,
highlighting the most relevant peculiarities arising within the different contexts, while
optimizing the time complexity.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider swarm robotics concerning autonomous, identical and homogeneous robots operating in cyclic operations.
obots are equipped with sensors and motion actuators and operate in standard Look–Compute–Move cycles (see, e.g., [3–

5]). When activated, in one cycle a robot takes a snapshot of the current global configuration (Look) in terms of relative
robots’ positions, according to its own local coordinate system. Successively, in the Compute phase, it decides whether
to move toward a specific direction or not and in the positive case it moves (Move). A Look–Compute–Move cycle forms
a computational cycle of a robot. What is computable by such entities has been the object of extensive research within
distributed computing, see, e.g., [4,6–12].

One of the basic tasks for mobile robots, intended as points in the plane, is certainly the requirement to achieve a
placement so as no three of them are collinear. Furthermore, during the whole process, no two robots must occupy the

✩ Preliminary results appear in the proceedings of the 24th International Conference on Distributed Computing and Networking (ICDCN) 2023
(Cicerone et al., 2023, [1]), and in the proceedings of the 25th International Symposium on Stabilization, Safety, and Security of Distributed System
(SSS) 2023 (Cicerone et al., 2023, [2]).
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same position concurrently, i.e., collisions must be avoided. This is known as the Mutual Visibility problem. The idea is
hat, if three robots are collinear, the one in the middle may obstruct the reciprocal visibility of the other two.

Mutual Visibility has been largely investigated in recent years in many forms, subject to different assumptions. One
ain distinction within the Look–Compute–Move model concerns the level of synchronicity assumed among robots.
obots are assumed to be synchronous [13], i.e., they are always all active and perform each computational cycle within
he same amount of time; semi-synchronous [14–17], i.e., robots are not always all active but all active robots always
erform their computational cycle within a same amount of time, after which a new subset of robots can be activated;
synchronous [15,17–22], i.e., each robot can be activated at any time and the duration of its computational cycle is finite
ut unknown. Robots are generally endowed with visible lights of various colors useful to encode some information (to
e maintained across different computational cycles and/or communicated to other robots), whereas in [16] robots are
onsidered completely oblivious, i.e., without any memory about past events. Usually, robots are considered as points
n the plane but in [23], where robots are considered ‘‘fat’’, i.e., occupying some space modeled as disks in the plane.
urthermore, instead of moving freely in the Euclidean plane, in [18,22] robots are constrained to move along the edges
f a graph embedded in the plane and still the mutual visibility is defined according to the collinearity of the robots in
he plane.

In this paper, we introduce the Geodesic Mutual Visibility problem (GMV, for short): starting from a configuration
omposed of robots located on distinct vertices of an arbitrary graph, within finite time the robots must reach, without
ollisions, a configuration where they all are in geodesic mutual visibility. Robots are in geodesic mutual visibility if they
re pairwise mutually visible, and two robots on a graph are mutually visible if there is a shortest path (i.e., a ‘‘geodesic’’)
etween them along which no other robots reside. This new problem can be thought of as a possible counterpart to the
utual Visibility for robots moving in a discrete environment.
While this concept is interesting by itself, its study is motivated by the fact that robots, after reaching a GMV condition,

.g., can communicate in an efficient and ‘‘confidential’’ way, by exchanging messages through the vertices of the graph
hat do not pass through vertices occupied by other robots or can reach any other robot along a shortest path without
ollisions. Concerning the last motivation, in [24], it is studied the Complete Visitability problem of repositioning a given
umber of robots on the vertices of a graph so that each robot has a path to all others without visiting an intermediate
ertex occupied by any other robot. In that work, the required paths are not shortest paths and the studied graphs are
estricted to infinite square and hexagonal grids, both embedded in the Euclidean plane.

The geodesic mutual visibility has been investigated in [25] from a pure graph-theoretical point of view in order to
nderstand how many robots, at most, can potentially be placed within a graph G in order to guarantee GMV. Such a
umber of robots has been denoted by µ(G). In a general graph G, it turns out to be NP-complete to compute µ(G),
hereas it has been shown that there are exact formulas for special graph classes like paths, cycles, trees, block graphs,
o-graphs, and grids [25–27]. For instance, within a path P , at most two robots can be placed, i.e., µ(P) = 2, whereas for
a ring R, µ(R) = 3. In a finite square grid G of N > 3 rows and M > 3 columns, µ(G) = 2min{M,N}, whereas for a tree
T , it has been proven that µ(T ) = ℓ(T ), with ℓ(T ) being the number of leaves of T .

1.1. Our results

After formally defining the problem of achieving GMV starting from a configuration of robots disposed on general
graphs, we focus on two main topologies: Square Grids and Trees.

The relevance of studying grids is certainly motivated by their peculiarity in representing a discretization of the
Euclidean plane. For trees, the interest has been motivated by the apparent simplicity of the topology which actually
hides many challenges. In both scenarios, robots are assumed to have no explicit means of communication or memory of
past events. In fact, we consider oblivious robots without lights. Hence, the movement of a robot does rely only on local
computations on the basis of the snapshot acquired in the Look phase. Furthermore, in order to approach the problem,
we make use of the methodology proposed in [3] that helps in formalizing the resolution algorithms as well as the related
correctness proofs.

Square grids. We consider GMV for robots moving on square grids embedded in the plane. Actually, we first consider
finite grids and then provide relevant intuitions for extending the results to infinite grids. Furthermore, our algorithm is
subject to the requirement to obtain a placement of the robots so that the final minimum bounding rectangle enclosing
all the robots is of minimum area (this area-constrained GMV problem is denoted as GMVarea). We provide time-optimal
algorithms that are able to solve GMVarea in both finite and infinite grid graphs. These algorithms work for synchronous
robots endowed with chirality (i.e., a common handedness).

Trees. Given a tree T with ℓ(T ) leaves, we first consider the extreme case of n = ℓ(T ) robots disposed on ℓ(T ) different
vertices of T and we look for a distributed algorithm that makes robots moving so as to achieve GMV without incurring in
collisions. Depending on the tree, the solution to the GMV problem is not unique, but an algorithm that moves robots so as
to occupy all the leaves of T always solves the problem. We design a deterministic algorithm, identical for all the robots,
that solves initial configurations when considering the very weak setting of semi-synchronous (and hence holding also
for synchronous) robots. For the initial configurations, where each vertex is occupied by at most one robot, we assume
the absence of critical vertices. Intuitively, a vertex v is said to be critical if two or more robots must pass through v in
2
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order to reach a leaf, hence potentially colliding in v. The formal definition of critical vertex will be given successively.
We then provide the necessary modifications to the algorithm for solving the case with n ≤ ℓ(T ). We also measure
the time complexity of our algorithm in terms of epochs – where an epoch is the time duration for all the robots to
execute at least one complete Look–Compute–Move cycle since the end of the previous epoch. We compare the obtained
result with a lower bound that leaves some gaps for improvements. Finally, we provide an extended discussion about
the configurations admitting critical vertices as well as the asynchronous or synchronous settings. In fact, the difficulties
arising in such contexts deserve deep investigation and attention. However, we provide challenging ideas, strategies and
observations in order to stimulate future research.

1.2. Outline

The rest of the paper is organized as follows. Section 2 introduces the robot model we have adopted. Section 3
formalizes the GMV problem and revises a resolution methodology to approach problems within the Look–Compute–Move
context. Section 4 deals with GMVarea on grids. It starts with some notation specific to the grid case, and then the resolution
algorithm along with its correctness proof is intuitively and formally provided according to the methodology recalled in
Section 3. The section terminates with an informal description of the extension of the algorithm to deal with infinite grids.
Section 5 concerns GMV on trees. It starts with some notation specific to the tree case. In particular, the formal definition
of critical vertex is provided. Then, the resolution algorithm for initial configurations without critical vertices is provided
along with its correctness proof according to the methodology recalled in Section 3. Finally, the section terminates with
challenging scenarios to highlight difficulties arising when critical vertices are admitted. Section 6 concludes the paper,
posing interesting future research directions.

2. Robot model

Robots are modeled according to OBLOT (e.g., see [28] for a survey), one of the classical theoretical models for swarm
robotics. In this model, robots are computational entities that can move in some environment (a graph in our case) and
can be characterized according to a large spectrum of settings. Each setting is defined by specific choices among a range
of possibilities, with respect to a fundamental component – time synchronization – as well as other important elements,
like memory, orientation and mobility. We assume such settings at minimum as follows:

• Anonymous: no unique identifiers;
• Autonomous: no centralized control;
• Dimensionless: no occupancy constraints, no volume, modeled as entities located on vertices of a graph;
• Oblivious: no memory of past events;
• Homogeneous: they all execute the same deterministic1 algorithm;
• Silent: no means of direct communication;
• Disoriented: no common coordinate system.

Each robot in the system has sensory capabilities allowing it to determine the location of other robots in the graph,
relative to its own location. Each robot refers in fact to a Local Coordinate System (LCS) that might be different from robot
to robot. Each robot follows an identical algorithm that is pre-programmed into the robot. The behavior of each robot can
be described according to the sequence of four states: Wait, Look, Compute, and Move. Such states form a computational
cycle (or briefly a cycle) of a robot.

1. Wait. The robot is idle. A robot cannot stay indefinitely idle;
2. Look. The robot observes the environment by activating its sensors which will return a snapshot of the positions

of all other robots with respect to its own LCS. Each robot is viewed as a point;
3. Compute. The robot performs a local computation according to a deterministic algorithm A (we also say that the

robot executes A). The algorithm is the same for all robots, and the result of the Compute phase is a destination
point. Actually, for robots on graphs, the result of this phase either is the vertex where the robot currently resides
or it is a vertex among those at one hop distance (i.e., at most one edge can be traversed);

4. Move. If the destination point is the current vertex where r resides, r performs a nil movement (i.e., it does not
move); otherwise, it moves to the adjacent vertex selected.

When a robot is in Wait, we say it is inactive, otherwise it is active. In the literature, the computational cycle is simply
referred to as the Look-Compute-Move (LCM) cycle, as during the Wait phase a robot is inactive.

Since robots are oblivious, they have no memory of past events. This implies that the Compute phase is based only on
what is determined in their current cycle (in particular, from the snapshot acquired in the current Look phase). A data
structure containing all the information elaborated from the current snapshot represents what later is called the view of

1 No randomization features are allowed.
3
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a robot. Since each robot refers to its own LCS, the view cannot exploit absolute orienteering but it is based on relative
positions of robots.

Concerning the movements, in the graph environment moves are always considered as instantaneous. This results in
lways perceiving robots on vertices and never on edges during Look phases. Hence, robots cannot be seen while moving,
ut only at the moment they may start moving or when they arrived. Two or more robots can move toward the same
ertex at the same time, thus creating what it called a multiplicity (i.e., a vertex occupied by more than one robot). When

undesired, a multiplicity is usually referred to as a collision.
In the literature, different characterizations of the environment have been considered according to whether robots are

fully-synchronous, semi-synchronous, or asynchronous (cf. [28,29]). These synchronization models are defined as follows:

• Fully-Synchronous (FSync): All robots are always active, continuously executing in a synchronized way their LCM-
cycles. Hence the time can be logically divided into global rounds. In each round, all the robots obtain a snapshot of
the environment, compute on the basis of the obtained snapshot and perform their computed move;
• Semi-Synchronous (SSync): robots are synchronized as in FSync but not all robots are necessarily activated during a
LCM-cycle;
• Asynchronous (Async): Robots are activated independently, and the duration of each phase is finite but unpredictable.

As a result, robots do not have a common notion of time.

In Async, the amount of time to complete a full LCM-cycle is assumed to be finite but unpredictable. Moreover, in the
Sync and Async cases, it is usually assumed the existence of an adversary which determines the computational cycle’s
iming. Such timing is assumed to be fair, that is, each robot performs its LCM-cycle within finite time and infinitely often.
ithout such an assumption the adversary may prevent some robots from ever moving.
It is worth remarking that the three synchronization schedulers induce the following hierarchy (see [30]): FSync robots

are more powerful (i.e., they can solve more tasks) than SSync robots, that in turn are more powerful than Async robots.
This simply follows by observing that the adversary can control more parameters in Async than in SSync, and more in
SSync than in FSync. In other words, protocols designed for Async robots also work for SSync and FSync robots. On the
contrary, any impossibility result proved for FSync robots also holds for SSync, and Async robots.

Whatever the assumed scheduler is, the activations of the robots according to any algorithm A determine a sequence
of specific time instants t0 < t1 < t2 < · · · during which at least one robot is activated. Apart from the Async case where
the notion of time is not shared by robots, for the other types of schedulers robots are synchronized. In the FSync case,
each robot is active at each time unit. In the SSync, we assume that at least one robot is active at each time t . If C(t)
denotes the configuration observed by some robots at time t during their Look phase, then an execution of A from an
initial configuration C is a sequence of configurations E : C(t0), C(t1), . . ., where C(t0) = C and C(ti+1) is obtained from
(ti) by moving at least one robot (which is active at time ti) according to the result of the Compute phase as implemented
y A. Note that, in SSync or Async there exists more than one execution of A from C(t0) depending on the activation of
he robots or the duration of the phases, whereas in FSync the execution is unique as it always involves all robots in all
ime instants.

. Problem formulation and resolution methodology

The topology where robots are placed is represented by a simple and connected graph G = (V , E). A function λ : V → N
ives the number of robots on each vertex of G, and we call C = (G, λ) a configuration whenever

∑
v∈V λ(v) is bounded

nd greater than zero. In this paper, we introduce the Geodesic Mutual Visibility (GMV, for short) problem:

roblem (GMV).

nput: A configuration C = (G, λ) in which each robot lies on a different vertex of a graph G.
Goal: Design a deterministic distributed algorithm working under the LCM model that, starting from C , brings all robots

on distinct vertices – without generating collisions – in order to obtain the geodesic mutual visibility, that is there
is a geodesic between any pair of robots where no other robots reside.

Since the definition of mutual visibility requires that robots are located in distinct vertices, then the above definition
equires that any possible solving algorithm does not create multiplicities. In fact, as the robots are anonymous and
omogeneous, regardless of the synchronicity model, the adversary will be able to keep the multiplicity unchanged and
o algorithm will ever be able to separate the robots. It is worth remarking that this is a special case with respect to the
eneral situation in which a configuration contains equivalent robots. The next paragraph provides a formal definition of
uch an equivalence relationship.

.1. Symmetric configurations

Two undirected graphs G = (V , E) and G′ = (V ′, E ′) are isomorphic if there is a bijection ϕ from V to V ′ such that
u, v} ∈ E iff {ϕ(u), ϕ(v)} ∈ E ′. An automorphism on a graph G is an isomorphism from G to itself, that is a permutation of
4
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the vertices of G that maps edges to edges and non-edges to non-edges. The set of all automorphisms of G forms a group
alled automorphism group of G and is denoted by Aut(G). If |Aut(G)| = 1, that is G admits only the identity automorphism,
hen the graph G is called asymmetric, otherwise it is called symmetric. Two vertices u, v ∈ V are equivalent if there exists
n automorphism ϕ ∈ Aut(G) such that ϕ(u) = v.
The concept of isomorphism can be extended to configurations in a natural way: two configurations C = (G, λ) and

C ′ = (G′, λ′) are isomorphic if G and G′ are isomorphic via a bijection ϕ and λ(v) = λ′(ϕ(v)) for each vertex v in G. An
utomorphism on C is an isomorphism from C to itself and the set of all automorphisms of C forms a group that we call

automorphism group of C and denote by Aut(C). Analogously to graphs, if |Aut(C)| = 1, we say that the configuration C is
asymmetric, otherwise it is symmetric. In a configuration C , two robots r1 and r2, respectively located on distinct vertices
r1 and vr2 , are equivalent if there exists ϕ ∈ Aut(C) such that vr2 = ϕ(vr1 ). Note that λ(vr1 ) = λ(vr2 ) whenever vr1 and
r2 are equivalent.
From an algorithmic point of view, it is important to remark that when ϕ ∈ Aut(C) makes the elements of V ′ ⊆ V

airwise equivalent, then a robot r1 cannot distinguish its position vr1 ∈ V ′ from that of a robot r2 located at vertex
r2 = ϕ(vr1 ) ∈ V ′. As a consequence, no algorithm can distinguish between two equivalent robots, and then it cannot avoid
he adversary activates two equivalent robots at the same time and that they perform the same move simultaneously.

.2. Methodology

The algorithms proposed in this paper are designed according to the methodology proposed in [3]. Assume that an
lgorithm A must be designed to resolve a generic problem P . Here we briefly summarize how A can be designed
ccording to that methodology.
In general, a single robot has rather weak capabilities with respect to P it is asked to solve along with other robots

we recall that robots have no direct means of communication). For this reason, A should be based on a preliminary
ecomposition approach: P should be divided into a set of sub-problems so that each sub-problem is simple enough to
e thought as a ‘‘task’’ to be performed by (a subset of) robots. This subdivision could require several steps before obtaining
he definition of such simple tasks, thus generating a sort of hierarchical structure. Assume now that P is decomposed into
imple tasks T1, T2, . . . , Tk, where one of them is the terminal one, i.e. the robots recognize that the current configuration
s the one in which P is solved and do not make any moves.

According to the LCMmodel, during the Compute phase, each robot must be able to recognize the task to be performed
ust according to the configuration perceived during the Look phase. This recognition can be performed by providing A
ith a predicate Pi for each task Ti. Given the perceived configuration, the predicate Pi that results to be true reveals to
obots that the corresponding task Ti is the task to be performed. With predicates Pi well-formed, algorithm A could be
sed in the Compute phase as follows: – if a robot r executing algorithm A detects that predicate Pi holds, then r simply
erforms a move mi associated with task Ti. In order to make this approach valid, the well-formed predicates must guarantee
he following properties:

rop1: each Pi must be computable on the configuration C perceived in each Look phase;

rop2: Pi ∧ Pj = false, for each i ̸= j; this property allows robots to exactly recognize the task to be performed;

rop3: for each possible perceived configuration C , there must exist a predicate Pi evaluated true.

Concerning the definition of the predicates, it is reasonable to assume that each task Ti requires some precondition to
e verified. Hence, in general, to define the predicates we need:

• basic variables that capture metric/topological/numerical/ordinal aspects of the input configuration which are
relevant for the used strategy and that can be evaluated by each robot on the basis of its view;
• composed variables that express the preconditions of each task Ti.

f we assume that prei is the composed variable that represents the preconditions of Pi, for each 1 ≤ i ≤ k, then predicate
i can be defined as follow:

Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ prek) (1)

his definition ensures that any predicate fulfills Property Prop2 (it is directly implied by Eq. (1)).
Consider now an execution of A, and assume that a task Ti is performed with respect to the current configuration C .

f A transforms C into C ′ and this new configuration has to be assigned the task Tj, then we say that A can generate
transition from Ti to Tj. The set of all possible transitions of A determines a directed graph called transition graph. Of
ourse, the terminal task among T1, T2, . . . , Tk must be a sink node in the transition graph.
According to the proposed methodology, in [3] it is shown that the correctness of A can be obtained by proving that

ll the following properties hold:

H1: for each task Ti, the tasks reachable from Ti by means of transitions are exactly those represented in the transition
graph (i.e., the transition graph is correct);
5
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Fig. 1. Examples of mbr(R).

H2: possible cycles in the transition graph (including self-loops) must be performed a finite number of times – apart for
the self-loop induced by a terminal task;

H3: unsolvable configurations are not generated by A (with respect to GMV, for instance, this means that A does not
generate multiplicities, i.e., it is collision-free).

4. Solving GMV on square grids

In this section, we solve GMV for robots moving on finite or infinite square grids embedded in the plane. Moreover,
we add the further requirement to obtain a placement of the robots so as that the final minimum bounding rectangle
enclosing all the robots is of minimum area. This area-constrained GMV problem is denoted as GMVarea. Such a requirement
avoids ‘trivial’ solutions – in terms of feasibility, especially in the case of infinite grids. In fact, by aligning all the robots
along a diagonal, GMV would be solved. In a finite grid G, instead, this is not always possible, depending on the number
of robots. Hence, different approaches are required anyway. Moreover, when the number of robots is exactly µ(G), then
the minimum area constraint is forced.

While considering synchronous robots endowed with chirality (i.e., they share a common handedness), we provide
time-optimal algorithms solving GMVarea in both finite and infinite grid graphs.

4.1. Preliminary concepts and notation

Given a graph G, let d(u, v) be the distance in G between two vertices u, v ∈ V in terms of the minimum number of
dges traversed. We extend the notion of distance to robots: given ri, rj ∈ R, d(ri, rj) represents the distance between
he vertices in which the robots reside. D(r) denotes the sum of distances of r ∈ C from any other robot, that is
(r) =

∑
ri∈C

d(r, ri). A square tessellation of the Euclidean plane is the covering of the plane using squares of side length
, called tiles, with no overlaps and in which the corners of squares are identically arranged. Let S be the infinite lattice
ormed by the vertices of the square tessellation. The graph called infinite grid graph, and denoted by G∞, is such that
ts vertices are the points in S and its edges connect vertices that are distance 1 apart. In this section, G denotes a finite
rid graph formed by M ·N vertices (i.e., informally generated by M ‘‘rows’’ and N ‘‘columns’’). By mbr(R), we denote the
inimum bounding rectangle of R, that is the smallest rectangle (with sides parallel to the edges of G) enclosing all the

obots (cf. Fig. 1). Note that mbr(R) is unique. By c(R), we denote the center of mbr(R).

ymmetric configurations. As chirality is assumed, then the only possible symmetries that can occur in our setting are
otations of 90 or 180 degrees. A rotation is defined by a center c and a minimum angle of rotation α ∈ {90, 180, 360}
orking as follows: if the configuration is rotated around c by an angle α, then a configuration coincident with itself

s obtained. The order of a configuration is given by 360/α. A configuration is rotational if its order is 2 or 4. The
ymmetricity of a configuration C , denoted as ρ(C), is equal to its order, unless its center is occupied by one robot,
n which case ρ(C) = 1. Clearly, any asymmetric configuration C implies ρ(C) = 1.

The type of center of a rotational configuration C is denoted by tc(C) and is equal to 1, 2, or 3 according to whether
he center of rotation is on a vertex, on a median point of an edge, or on the center of a square of the tessellation forming
grid, respectively (cf. Fig. 2).

he view of robots. In A, robots encode the perceived configuration into a binary string called lexicographically smallest
tring and denoted as LSS(R) (cf. [5,6]). To define how robots compute the string, we first analyze the case in which
br(R) is a square: the grid enclosed by mbr(R) is analyzed row by row or column by column starting from a corner and
roceeding clockwise, and 1 or 0 corresponds to the presence or the absence, respectively, of a robot for each encountered
ertex. This produces a string assigned to the starting corner, and four strings in total are generated. Ifmbr(R) is a rectangle,
hen the approach is restricted to the two strings generated along the smallest sides. The lexicographically smallest
tring is the LSS(R). Note that, if two strings obtained from opposite corners along opposite directions are equal, then
he configuration is rotational, otherwise it is asymmetric. The robot(s) with minimum view is the one with minimum

osition in LSS(R). The first three configurations shown in Fig. 1 can be also used for providing examples about the view.

6
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Fig. 2. Examples for the notion of center of three rotational configurations: in order, tc(C1) = 1, tc(C2) = 2, and tc(C3) = 3.

Fig. 3. Examples of special-paths with respect to different configurations.

In particular: in the first case, we have ρ(C) = 1 and LSS(R) = 0110 1001 1000 0100 0011, where the string starts from
the bottom-right corner; in the second case, we have ρ(C) = 2 and LSS(R) = 00110 01001 10001 10010 01100, where
he string starts from the bottom-left or the top-right corners; in the last case, we have ρ(C) = 4 and LSS(R) = 0110 1001
001 0110, where the string starts from any corner.

egions. Our algorithms assume that robots are assigned to regions of mbr(R) as follows (cf. Fig. 3). If mbr(R) is a square,
he four regions are those obtained by drawing the two diagonals of mbr(R) that meet at c(R). If mbr(R) is a rectangle,
hen from each of the vertices positioned on the shorter side of mbr(R) starts a line at 45 degrees toward the interior of
br(R) – these two pairs of lines meet at two points (say c1(R) and c2(R)) which are then joined by a segment.
In each of the four regions, it is possible to define a special-path that starts from a corner v and goes along most of

he vertices in the region. To simplify the description of such a path, assume that mbr(R) coincides with a sub-grid with
rows and N columns, and the vertices are denoted as (i, j), with 1 ≤ i ≤ M and 1 ≤ j ≤ N . The special-path that starts

t (1, 1) is made of a sequence of ‘‘traits’’ defined as follows: the first trait is (1, 1), (1, 2), . . . , (1,N − 1), the second is
2,N−1), (2,N−2), . . . , (2, 3), the third is (3, 3), (3, 4), . . . , (3,N−3), and so on. This process ends after ⌊min{M,N}/2⌋
raits are formed in each region, and the special-path is obtained by composing, in order, the traits defined in each region
see the red lines in Fig. 3).

.2. An algorithm for GMVarea

In this section, we present a resolution algorithm for the GMVarea problem, when considering n ≥ 7 fully synchronous
obots endowed with chirality and moving on a finite grid graph G with M,N ≥ ⌈ n2⌉ rows and columns. Note that the
constraints on the number of rows and columns depend on the fact that on each row (or column) it is possible to place
at most two robots, otherwise the outermost robots on the row (or column) are not in mutual visibility. Concerning the
number of robots, we omit the cases with n < 7 as they require just tedious and specific arguments that cannot be
generalized. Hence, we prefer to cut them out of the discussion, even though they can be solved.

Our approach is to first design a specific algorithmAasym that solves GMVarea only for asymmetric configurations. Later,
e will describe (1) how Aasym can be extended to a general algorithm A that also handles symmetric configurations,
nd (2) how, in turn, A can be modified into an algorithm A∞ that solves the same problem for each input configuration
efined on infinite grids.

he pattern formation approach. Aasym follows the ‘‘pattern formation’’ approach. In the general pattern formation
problem, robots belonging to an initial configuration C are required to arrange themselves in order to form a configuration
F which is provided as input. In [31,32], it is shown that F can be formed if and only if ρ(C) divides ρ(F ). Hence, here we
how some patterns that can be provided as input to Aasym so that:

1. ρ(C) divides ρ(F );
2. if ρ(C) ∈ {2, 4} then tc(C) = tc(F );
3. the positions specified by F solve GMV .
area

7
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Fig. 4. Patterns F for asymmetric input configurations with n = 8, 10, 12 robots. For n = 7, 9, 11, the position represented in white is not considered
n F .

The first requirement trivially holds since we are assuming that C is asymmetric and hence ρ(C) = 1. The second
s required since the center of symmetric configurations is an invariant for synchronous robots. Concerning the last
equirement, in Fig. 4 we show some examples for F when 7 ≤ n ≤ 12. In [25], it is shown how F is defined for any n
nd it is also proved that the elements in these patterns always solve GMV for the grid G. Finally, since in F there are two
obots per row and per column, and since in mbr(F ) all the rows and columns are occupied (for n even), it can be easily
bserved that F solves GMVarea.

igh level description of the algorithm. The algorithm is designed according to the methodology recalled in Section 3.2
hat allows dividing the problem GMVarea into a set of sub-problems that are simple enough to be thought as ‘‘tasks’’ to
e performed by (a subset of) robots.
As a first sub-problem, the algorithm Aasym selects a single robot, called guard rg , to occupy a corner of the grid G. As

obots are disoriented (only sharing chirality), the positioning of the guard allows the creation of a common reference
ystem used by robots in the successive stages of the algorithm. Given chirality, the position of rg allows robots to
dentify and enumerate rows and columns. rg is not moved until the final stage of the algorithm and guarantees that
he configuration C is kept asymmetric during the movements of the other robots. Given the common reference system,
ll robots agree on the embedding of the pattern F , which is realized by placing the corner of F with the maximum view
n correspondence with the corner of G in which rg resides. This sub-problem is solved by tasks T1a, T1b, or T1c . In task
2, the algorithm moves the robots so as to obtain the suitable number of robots for each row according to pattern F ,
hat is, two robots per row. The only exception comes when n is odd, in which case the last row will require just one
obot. During task T3, robots move toward their final target along rows, except for rg . When T3 ends, n− 1 robots are in
lace according to the final pattern F . During task T4, rg moves from the corner of G toward its final target, placed on a
eighboring vertex, hence leading to the final configuration in one step.

.3. Detailed description of the tasks

In this section, we provide all the necessary details for each of the designed tasks.

ask T1. Here the goal is to select a single robot rg to occupy a corner of the grid G. This task is divided into three sub-tasks
ased on the number of robots occupying the perimeter – and in particular the corners, of G. Let RS be the number of
obots on the sides of G, and let RC be the number of robots on the corners of G.

Task T1a starts when there are no robots on the perimeter of G and selects the robot rg such that D(r) is maximum,
ith r of minimum view in case of ties. The planned move is m1a: rg moves toward the closest side of G. At the end of the
ask, rg is on the perimeter of G.

Task T1b activates when the following precondition holds:

pre1b ≡ RS ≥ 1 ∧ RC = 0.

n this case, there are at least two robots on the perimeter of G but none on corners. The task selects the robot rg located
n a side of G closest to a corner of G, with the minimum view in case of ties, to move toward a corner of G. Move m1b
s defined as follows: rg moves toward the closest corner of G – arbitrarily chosen if more than one. At the end of task T1b,
single robot rg occupies a corner of the grid G.
Task T1c activates when the following precondition holds:

pre1c ≡ RC > 1.

n this case, all the robots on the corners but one move away from the corners. The moves are specified by Algorithm
. This algorithm uses some additional definitions. In particular, a special-path is said occupied if there is a robot on its
8
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Algorithm 1 MoveAlong special-path
Input: a configuration C
1: if p = 0 then
2: Let S be the occupied special-path whose first robot has the minimum view.
3: move: all the robots on a special-subpath and not on S move toward the neighbor vertex along the special-path.
4: if p = 1 then
5: Let I be the fully-occupied special-path
6: move: all the robots on a special-subpath and not on I move toward the neighbor vertex along the special-path
7: if p = 2 then
8: move: the robot on a corner of G, with an empty neighbor, moves toward it.

corner. A special-path is said to be fully-occupied if robots are placed on all its vertices. Given an occupied special-path
P , a special-subpath is a fully occupied sub-path of P starting from the corner of P . Finally, p denotes the number of
fully-occupied special-paths.

At line 1, the algorithm checks if there are no fully-occupied special-paths. In this case, there are at least two occupied
special-paths. The robot, occupying the corner, with minimum view, is elected as guard rg . The move is designed to empty
ll the other corners of G except for the one occupied by rg . In each occupied special-paths, but the one to which rg belongs
o, the robots on the corners, and those in front of them along the special-paths until the first empty vertex, move forward
long the special-path. At line 4, there is exactly one fully-occupied special path. Therefore, robots on the fully-occupied
pecial-path are kept still. Concerning the other occupied special-paths, the robots on corners, and those in front of them
ntil the first empty vertex, move forward along the special-path. At line 7 there is more than one fully-occupied special-
ath. Actually, this condition can occur only for a 4 × 4 grid G with two fully-occupied special-paths located on two
uccessive corners of G. Therefore, there is a single robot r , on a corner of G, with an empty neighbor. Then, r moves
oward that neighbor.

Note that, Algorithm 1 is designed so that, in a robot cycle, a configuration is obtained where exactly one corner of G
s occupied.

ask T2. In task T2, the algorithm moves the robots to place the suitable number of robots for each row according to
he pattern F , starting from the first row, while possible spare rows remain empty. At the end of the task, for each row
orresponding to those of the pattern F , there are two robots, except when the number of robots n is odd, in which case
n the last row is placed a single robot. The position of rg allows robots to identify the embedding of F and hence the
orresponding rows and columns. We assume, without loss of generality, that rg is positioned on the upper-right corner
f G. rg identifies the first row. In this task, we define c(r) and l(r) as the column and the row, respectively, where robot
resides. Columns are numbered from left to right, therefore l(rg ) = 1 and c(rg ) = N . Let tl be the number of targets on
ow l in F , let (t1, t2, . . . , tM ) be the vector of the number of targets, and let (n1, n2, . . . , nM ) be the number of robots on
ach of the M rows of G.
For each row l, the algorithm computes the number of exceeding robots above and below l with respect to the number

f targets, to determine the number of robots that need to leave row l. Given a row l, let Rl be the number of robots on
ows from 1 to l− 1, and let R′l be the number of robots on rows from l+ 1 to M . Accordingly, let t̂l and ťl be the number
f targets above and below the line l, respectively. We define the subtraction operation ´ between two natural numbers
and b as a ´ b = 0 if a < b, a ´ b = a− b, otherwise. Concerning to the number of targets, given a row l, let Bl be the

number of exceeding robots above l, l included, and let Al be the number of exceeding robots below l, l included. Formally,
l = (Rl + nl) ´ (t̂l + tl) and Al = (R′l + nl) ´ (ť + tl).
Let RDl = nl − (nl ´ Bl) be the number of robots that must move downward and RUl = nl − (nl ´ Al) be the number of

obots that must move upward from row l. Task T2 activates when precondition pre2 becomes true:

pre2 ≡ RC = 1 ∧ ∃ l ∈ 1, . . . ,M : Bl ̸= 0 ∨ Al ̸= 0.

The precondition identifies the configuration in which the guard rg is placed on a corner of G and there is at least a row
in which there is an excess of robots. We define outermost any robot that resides on the first or the last column of G. Let
Ul (Dl, resp.) be a set of robots on row l chosen to move upward (downward, resp.) and let U (D, resp.) be the list of sets
Ul (Dl, resp.) with l ∈ {1, . . . ,M}. The robots that move upward or downward are chosen as described in Algorithm 2.

For each row l, at lines 4–7, the algorithm computes the number of exceeding robots Bl, Al, and the number of robots
that must leave the row RDl and RUl. Then, it checks whether the number M of rows of G is greater than the number k
f rows of F . The algorithm selects RDl robots to move downward, starting from the first column, and Al robots to move
pward, starting from the Nth column.
Line 11 corresponds to the case in which M = k, the algorithm selects RDl robots to move downward, starting from

he second column and RUl robots to move upward, starting from the N − 1 column. This avoids the selection of robots
hat may move in one of the corners of G. At line 14, the algorithm checks if a robot r selected to move upward on row
, occupies vertex (2, 1). In the positive case, r is removed from U2. This avoids r to move to a corner of G. At line 15,

he algorithm returns the sets U of robots chosen to move upward for each row, and the sets D of robots chosen to move

9
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Algorithm 2 SelectRobots
Input: C ′ = (C \ rg )
1: Let U = {U1,U2, . . . ,UM } be a list of empty sets
2: Let D = {D1,D2, . . . ,DM } be a list of empty sets
3: for all l ∈ (1 . . .m) do
4: Bl ← (Rl + nl) ´ (t̂l + tl)
5: Al ← (R′l + nl) ´ (ťl + tl)
6: RDl ← nl − (nl ´ Bl)
7: RUl ← nl − (nl ´ Al)
8: if M > ⌈n/2⌉ then
9: Let Ul be the set of RUl robots of row l selected from right

10: Let Dl be the set of RDl robots of row l selected from left
11: else
12: Let Ul be the set of RUl robots of row l from right and not outermost
13: Let Dl be the set of RDl robots of row l from left and not outermost
4: if U2 = {r} and l(r) = 2 and c(r) = 1 then U2 = ∅

15: return U , D

Algorithm 3 MoveRobot
Input: a configuration C , guard rg
1: U , D = SelectRobots(C \ rg )
2: for all robots r do
3: Compute t(r)
4: if r /∈ Ul(r) or ∀ r1, r2, t(r1) ̸= t(r2) then
5: move to t(r)

Fig. 5. The three possible movement combinations as described in task T2 . Gray circles represent robots, arrows represent the direction of movements,
nd small dots are robot targets.

ownward. Given a robot r on a row l, let AlignedUp be the Boolean variable that is true when there exists another robot
′ such that (Ul+1 = {r ′} and c(r) = c(r ′)) holds, and AlignedDown be the Boolean variable that is true when there exists
nother robot r ′′ such that (Dl−1 = {r ′′} and c(r) = c(r ′′)) holds. Let t(r) be the target of a robot r defined as follows:

t(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(l(r)+ 1, c(r)) if r ∈ Dl

(l(r)− 1, c(r)) if r ∈ Ul

(l(r), c(r)− 1) if (AlignedUp or AlignedDown) and c(r) ≥ N/2
(l(r), c(r)+ 1) if (AlignedUp or AlignedDown) and c(r) < N/2
(2, 2) if RU2 = 1 and ∃! r on l2 | c(r) = 1 and l(r) = 2
(l(r), c(r)) otherwise

(2)

The first two cases reported in the definition of Eq. (2) identify the target of robot r when is selected to move downward
upward, resp.). The target of r is one row below (above, resp.) its current position and on the same column. The third and
he fourth cases refer to the occurrence in which there is a robot r1, positioned in the same column of r , that is selected
o move upward or downward. Then, the target of r is on a neighboring vertex, on the same row, closer to the center of
. The fifth case reports the target of a robot r when positioned on the second row and first column, and one robot is
equired to move on the first row. To avoid occupying a corner of G, the target of r is the neighboring vertex to r on its
ame row. In all other cases, the target of a robot r is its current position. Robots move according to Algorithm 3.
Each robot runs Algorithm 3 independently. At line 1, a robot calls procedure SelectRobotson C ′ = {C \ rg} and

cquires the sets of robots selected to move upward and downward, respectively. At lines 2–3, a robot computes the
argets of all the robots. At line 4, the robot checks if it is not selected to move upward and if any couple of robots have
he same target. This test avoids collisions. Possible conflicting moves are shown in Fig. 5(b). Two robots can have the
ame target when they are in the same column at distance two and the robot with the smallest row index is selected to
10
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Table 1
The table summarizes the phases of the algorithm: the first column reports a summary of the task’s goal, the second
column reports the task’s name, the third column reports, for each task the precondition to enter the task, the last
column reports the transitions among tasks.
Sub-problem Task Precondition Transitions

Placement of the guard robot
T1a True T1a , T1b
T1b RS ≥ 1 ∧ RC = 0 T1b , T2 , T3 , T4
T1c RC > 1 T2 , T3 , T4

Bringing tl robots for each row T2 RC = 1 ∧ ∃ l ∈ {1 . . .m} :
Bl ̸= 0 ∨ Al ̸= 0

T2 , T3 , T4

Bring n− 1 robots to final target T3 RC = 1 ∧ ∀ row l (Bl = 0 ∧ Al = 0) T3 , T4
Bring the guard robot to final target T4 n− 1 robots on final target T5
Termination T5 F formed T5

move downward, while the other upward. An example is shown in Fig. 5(b) for robots r3 and r4. The only other possible
ollision is for the robot r1 having t(r1) = (2, 2) (case five in Eq. (2)). There might be a robot r2 with l(r2) = 3 and
(r2) = 2 selected to move upward. This configuration is shown in Fig. 5(b). In all these cases, to avoid any collision, the
pward movement is performed only when there are no robots having the same target, otherwise the robot stays still.
ach conflict is resolved in a robot cycle since downward and side movements are always allowed.
Fig. 5 shows the three types of possible movements performed by robots. Robots move concurrently without collisions.

ig. 5(a) shows robots moving downward or upward and having different targets. Fig. 5(b) shows two robots having the
ame target. To resolve the conflict, the upward movement is stopped for a cycle. Fig. 5(c) shows the cases in which a
obot is selected to move upward (r8) or downward (r5) on a target vertex that is already occupied by another robot (r7,
6 respectively). Robots r5 and r8 perform their move while r6 and r7 move on a neighboring vertex on the same row and
loser to the center of G. Since movements are concurrent (robots are synchronous), collisions are avoided.

ask T3. This task is designed to bring n− 1 robots to their final target except for rg . This task activates when task T2 is
ver, therefore pre3 holds:

pre3 ≡ RC = 1 ∧ ∀ row l : (Bl = 0 ∧ Al = 0)

iven the embedding of F on G, in each row l, there are tl targets and nl robots, with tl = nl, therefore robots identify
heir final target and move toward it without collisions. Given the particular shape of F , there are at most two targets per
ow, therefore we can state the move m3 as follows: for each row, the rightmost robot moves toward the rightmost target
nd the leftmost robot moves toward the leftmost target except for rg .

ask T4. During task T4, the guard rg moves from the corner of G and goes toward its final target. This task activates when
re4 holds:

pre4 ≡ n− 1 robots but rg match their final target.

The corresponding move is called m4 and is defined as follows: rg moves toward its final target. The embedding of F
uarantees that the final target of rg is on its neighboring vertex on row 1. Therefore, in one step, rg reaches its target.
fter task T4, the pattern is completed.

ask T5. This is the task in which each robot recognizes that the pattern is formed and no more movements are required.
ach robot performs the nil movement keeping the current position. The precondition is

pre5 ≡ F is formed.

Although our algorithm is designed so as to form a specific pattern F that solves GMVarea, pre5 could be simply stated
s ‘GMVarea solved’. In this way, robots would stop moving as soon as the problem is solved and not necessarily when the
rovided pattern F is formed. However, since the formation of F is usually required, for the ease of the discussion we
refer the current form for pre5.

.4. Formalization and correctness

We have already remarked that the algorithm has been designed according to the methodology recalled in Section 3.2.
ccordingly, Table 1 summarizes the designed tasks, the corresponding preconditions, and the possible transitions from
ach task. Furthermore, all the transitions are shown in the transition graph depicted in Fig. 6.
We observe that the predicates used in the algorithm are all well-formed since they guarantee that Prop1, Prop2, and

rop3 are all valid. In particular, Prop1 follows from the definition of the simple preconditions expressed in Table 1, Prop2
olds because each predicate Pi has been defined as indicated in Eq. (1), and Prop3 directly follows from the definitions
f Pi (if P5, P4, . . . , P1b are all false, then P1a holds).
Concerning the correctness of Aasym, still using the methodology in the remainder of this section we show that

roperties H1, H2, and H3 hold by providing a specific lemma for each task. Finally, such lemmata will be used in a final
heorem responsible for assessing the correctness of A .
asym

11
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Fig. 6. Transition graph (derived from Table 1).

emma 1. Let C be a configuration in T1a. From C, Aasym eventually leads to a configuration belonging to T1b.

roof. In task T1a, Algorithm Aasym selects a robot denoted as rg , called guard, such that D(r) is maximum and with the
inimum view in case of ties. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

1: In task T1a, no robots are on a side of the grid G, nor on its corners and rg moves toward the closest side of G, D(R)
increases for rg , therefore, rg is repeatedly selected. When rg reaches a side of G, it is the only robot on a side of G
and RS = 1. Still, there are no robots on corners of G therefore RC = 0, pre1b becomes true and the configuration
is in T1b, since the preconditions of all the other tasks, except for T5, require at least one robot on a corner of G, and
T5 requires more than one robot on the sides of G.

2: At each cycle, rg decreases its distance from the closest side of mbr(C) by one. Therefore, within a finite number of
LCM cycles, it reaches its target and the configuration is not in T1a anymore.

3: Since rg is the robot such that D(r) is maximum, it must be on a side of mbr(C). While moving toward the closest
side of G, rg increases its distance from the other robots therefore it cannot meet any other robot on its way toward
the target and no collision can occur. □

emma 2. Let C be a configuration in T1b. From C, Aasym eventually leads to a configuration belonging to T2, T3 or T4.

roof. In task T1b, Algorithm Aasym selects a robot denoted as rg on the perimeter of G, closest to a corner of G, and having
he minimum view in case of ties. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

1: At the beginning of the task, there are no robots on a corner of G, and rg moves toward the closest corner. As rg
moves toward its target, the distance from it decreases, therefore rg is repeatedly selected. When it reaches its
target, there is a single robot on a corner of G and RC = 1. Then, the obtained configuration can be in T2, T3 or T4,
all configurations in which the rg is placed on a corner of G. The obtained configuration is not in T5 because the
pattern F has no targets on the corners of G.

2: At each cycle, rg decreases its distance from the closest corner of G by one. Therefore, within a finite number of LCM
cycles, rg reaches its target and the configuration is not in T1b anymore.

3: Since rg is the robot closest to the corner of G it cannot meet any other robot on its way toward the target and no
collision can occur. □

emma 3. Let C be a configuration in T1c . From C, Aasym eventually leads to a configuration belonging to T2, T3 or T4.

roof. In task T1c , Algorithm 1 moves robots along special-paths. Let p be the number of fully-occupied special-paths. p
annot be greater than two and it can be two only when k = min(N,M) = 4. In fact, the length of a special-path is k2/4
hen k is even and (k2 − 1)/4 when k is odd, whereas the maximum number of robots is 2k. For k even, we have that
k2/4 = 2k, that is pk = 8. Hence, if k > 4 there can be only one fully-occupied special-path, otherwise k = 4 and there
an be two fully-occupied special-paths. Similar analysis can be done for k odd that leads to pk < 8, then there can be
nly one fully-occupied special-path.
When p = 2, the special-paths must be on successive corners of G otherwise the configuration would be symmetric.

et us analyze properties H , for 1 ≤ i ≤ 3, separately.
i

12
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H1: When T1c starts, RC ≥ 1. After the move, the guard rg is placed and RC = 1. Therefore, the configuration is either in
T2, T3 or T4 and it is not in T5 because the pattern F has no targets on corners of G.

H2: In task T1c , all the corners of G but one are emptied in a robot cycle.

H3: The special-paths are designed so that they are disjoint. During task T1c , only robots on special-subpaths move along
the special-path. These are the robots on a corner of G and the ones in front of it until the first empty vertex. Since
robots are synchronous, all these robots move forward by an edge, hence no collision can occur. □

Lemma 4. Let C be a configuration in T2. From C, Aasym eventually leads to a configuration belonging to T3 or T4.

Proof. During task T2, robots move to place two robots per row. The only exception occurs when n is odd, in which
case the last row requires just one robot. In particular, each robot runs Algorithm 3 in which they recall Algorithm 2 that
selects the robots moving upward and downward for each row. The first row is identified by the position of rg on the
upper-right corner of G. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

H1: The choice of robots and their movements avoid robots occupying more than a corner of G. Indeed, Algorithm 2
selects robots moving upward and downward. When the number of rows M of the grid G are equal to ⌈n/2⌉, the
algorithm selects robots between the second and the (N − 1)-th column. The number of robots on the grid ensures
that, even in a configuration in which robots in each row, from the second to the (M − 1)-th one, occupy the first
and the last columns, there are at least other two robots if n is odd and three if n is even that can be selected to
move, able to finalize task T2. Since no robots can move on a corner of G, then the configuration is not in T1a, T1b
nor in T1c .
When M > ⌈n/2⌉, robots do not move toward the last row of G, therefore they cannot occupy the corners of the
Mth row of G.
If a robot r1 occupies the vertex with coordinates (2, 1), RU2 = 1, and it is the only robot on row 2, to avoid occupying
the corner of G with coordinates (1, 1), the target of r1 is (2, 2) according to the fifth case of Eq. (2). If a robot r2
occupies the vertex with coordinates (2,N) and it is selected to move upward, r2 moves on its target (1,N) while
the guard robot rg moves to coordinates (1,N−1) according to the third case of Eq. (2). Then, the role of rg is taken
by robot r2 and a single corner of G is occupied by a robot. In both cases, the configuration is not in T1c because
a single corner of G remains occupied. Moreover, the configuration is neither in T1a nor T1b since rg is not moved,
except for the case in which it is replaced by another robot.
During task T2, the guard rg is placed on a corner of G and RC = 1. At each cycle, Bl becomes 0 for the first row l for
which Bl ̸= 0. In at most M−1 steps, Bl = 0 and Al = 0 for each l in at most 2(M−1) cycles, given that the upward
movement can be prevented for a cycle when two robots have the same target. Examples of robots having the same
target are depicted in Fig. 5(b). In both cases, the algorithm stops any upward movement, while allowing side and
downward movements, see line 4 of Algorithm 3. At the successive cycle, robots are on the same column and both
move. Once solved, no other conflict can occur in the same row. Then, in a finite number of cycles, Al becomes 0 for
each l. At the end of the task, there are two robots on each row except when n is odd, in which case the last row
contains a single robot. Precondition pre3 becomes true, eventually, and the configuration is in T3. If n− 1 robots
match their target, the configuration is in T4 and it is not in T5 because the pattern F has no targets on corners of G.

H2: As described in H1, at the end of this task, Bl = 0 ∧ Al = 0 for each row l. This condition is reached in at most
2(M − 1) cycles since the upward and downward movements are concurrent and no other configuration will be in
T2 anymore.

H3: When the number of robots selected to move downward on row l is such that RDl ≥ 2, the exceeding number of
robots on l will saturate all the targets of row l+ 1. Therefore, in the same cycle, any robots on row l+ 1 occupying
the targets of robots on row l must also move downward. As a consequence, any robot selected to move downward
on row l will reach a free target. When RDl = 1, a robot r moves on row l+ 1 and at the same time, the robots on
row l + 1 will also move downward leaving at most one robot r1. If r is on the same column of robot r1, r moves
downward while r1 moves to its neighbor closer to the center of G (see Fig. 5(c)). Note that, the neighbors of r1
will be empty since all other robots on row l + 1 left the row. Moreover, the choice of the neighbor toward the
center avoids r1 going to one of the corners of G, see cases three and four of Eq. (2). The same reasoning applies
to robots moving upward. When there are robots having the same target, see robots in Fig. 5(b) for reference, the
algorithm detects this condition at line 4, and the upward movement is not performed. The robots are allowed to
move downward or to the side, therefore collisions are avoided. □

Lemma 5. Let C be a configuration in T3. From C, Aasym eventually leads to a configuration belonging to T4.

Proof. Task T3 is designed to bring n− 1 robots to their final target on F except for rg . Let us analyze properties Hi, for

1 ≤ i ≤ 3, separately.
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H1: During this task, there are rl robots and tl targets per row. In each row, robots move toward their final target on their
same row. The task continues until n − 1 robots are correctly placed according to the pattern, pre4 becomes true
and the configuration is in T4.

2: At each LCM cycle, in each row, robots reduce the distance from their target by one until they reach the target.

3: There are at most two robots per row and two targets per row. Therefore, the rightmost robot goes to the rightmost
target and the leftmost robot goes toward the leftmost target. In this way, collisions are avoided. □

emma 6. Let C be a configuration in T4. From C, Aasym eventually leads to a configuration belonging to T5.

roof. In task T4, n− 1 robots are correctly positioned according to the pattern except for rg . From this configuration, rg
oves toward its final target, in a single LCM cycle. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

1: As rg moves, it matches its target on F , then the pattern is formed, pre5 becomes true and the configuration is in
T5.

2: The embedding of the pattern F guarantees that the target of rg is at distance one from the corner of G in which it
resides, therefore in one LCM cycle the task is over.

3: All robots, except for rg , are matched and perform the nil movement, no other robots are on the target of rg given
the definition of m4, therefore no collision can occur. □

In the following, we state our main result in terms of time required by the algorithm to solve the problem GMVarea.
ime is calculated using the number of required LCM cycles given that robots are synchronous. Let L be the side of the
mallest square that can contain both the initial configuration and target configuration. Note that, any algorithm requires
t least O(L) LCM cycles to solve GMVarea. Our algorithm solves GMVarea in O(L) LCM cycles which is time optimal. Our result
s stated in the following theorem:

heorem 1. Aasym is a time-optimal algorithm that solves GMVarea in each asymmetric configuration C defined on a finite
rid.

roof. Lemmata 1–6 ensure that properties H1, H2, and H3 hold for each task T1a, T1b, . . . , T5. Then, all the transitions
re those reported in Table 1 and depicted in Fig. 6; the generated configurations can remain in the same task only for
finite number of cycles; and the movements of the robots are all collision-free. Lemmata 1 and 6 also show that from
given task only subsequent tasks can be reached, or pre5 eventually holds (and hence Aasym is solved). This formally

mplies that, for each initial configuration C and for each execution E : C = C(t0), C(t1), C(t2), . . . of Aasym, there exists a
inite time tj > 0 such that C(tj) is similar to the pattern to be formed in the GMVarea problem and C(tk) = C(tj) for each
ime tk ≥ tj.

Concerning the time required by Aasym, it is calculated using the number of required LCM cycles, as robots are
ynchronous. Recall that L is the side of the smallest square that can contain both the initial configuration and the target
onfiguration. Tasks T1a and T1b require O(L) LCM cycles since a robot must move for O(max{N,M}) edges in each of them.
ask T1c requires exactly one LCM cycle. By the proof given in Lemma 4, robots complete Task T2 in at most 2(M− 1) LCM
ycles, that is in O(L) time. Task T3 requires at most O(N) LCM cycles, i.e. O(L) time. Task T4 requires exactly one LCM cycle.
hen, Algorithm Aasym requires a total of O(L) LCM cycles, hence it is time optimal since no algorithm can solve GMVarea
n less than O(L) LCM cycles. □

.5. The case of symmetric configurations and infinite grids

In this section, we discuss (1) how Aasym can be extended to a general algorithm A able to handle also symmetric
onfigurations, and (2) how, in turn, A can be modified into an algorithm A∞ that solves the same problem defined on
he infinite grid G∞.

ymmetric configurations. We first explain how to solve symmetric initial configurations with ρ(C) = 1, then those with
(C) ∈ {2, 4}. If C is a symmetric configuration with ρ(C) = 1, then there exists a robot rc located at the center c of C ,
nd for C ′ = {C \ rc}, ρ(C ′) ∈ {2, 4}. To make the configuration asymmetric, A must move rc out of c (symmetry-breaking
ove). To this end, when rc has an empty neighbor – arbitrarily chosen if more than one – then rc moves toward it. If all

he four neighbors of rc are occupied but there is at least an empty vertex on the same row or column of rc , the neighbors
f rc and the robots in front of them until the first empty vertex, move along the row or column. As a result, a neighbor
f rc will eventually be emptied. Then, the symmetry-breaking move can be applied. If all the vertices on the same row
nd column of rc are occupied, then all other vertices except one (if any) must be empty. Therefore the four neighbor
obots of rc move toward a vertex placed on the right with respect to c , if empty. Again, a neighbor of rc will eventually
e emptied and the symmetry-breaking move can be applied. When the configuration is made asymmetric, Aasym runs
n C and GMV is solved.
area
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Fig. 7. Patterns F for ρ(C) = 4: left tc(C) = 1, right tc(C) = 3.

Fig. 8. Patterns F for ρ(C) = 2 and |R| mod 4 = 0: left tc(C) = 1, middle tc(C) = 2, right tc(C) = 3.

Consider now C with ρ(C) ∈ {2, 4}. In these cases, the configurations is divided into rectangular sectors, i.e., regions
of G that are equivalent up to rotations. Then, A instantiates Aasym in each sector according to suitably chosen patterns.

We now explain how the subdivision into sectors is performed. Given the symmetry of the configuration, the algorithm
A selects ρ(C) robots as guards and places each of them on different corners of the grid. The placement is done as in Aasym

by means of either tasks T1a and T1b or T1c . Given the placement of the guards, robots identify and enumerate rows and
columns, as done in , and agree on how to subdivide G into ρ(F ) sectors according to values of ρ(C), of |R| mod 4, and
the type of center tc(C).

For configurations having ρ(C) = 4 the configuration is divided into four disjoint sectors (cf. Fig. 7): for centers
tc(C) = 1, each orthogonal line originating from the center is associated to the sector on its left, for centers of type
tc(C) = 3, sectors are obtained with two orthogonal lines passing through the center of the configuration. When ρ(C) = 2
two sectors are obtained with a line parallel to the rows of G passing through c (cf. Figs. 8 and 9). Note that, when
tc(C) = 1, the line belongs to both sectors. In so doing, sectors keep a rectangular shape and Aasym can be applied to each
of them.

We now explain how patterns are selected and embedded. Figs. 7, 8, and 9 also illustrate some examples concerning
the optimal patterns for all cases and for specific values of n. From those examples, patterns F for larger values of n can
be easily obtained by suitably enlarging the provided patterns (detailed instructions can be found in [25]). Since robots in
C are synchronous, irrespective of the algorithm operating on C , the center c of the configuration is invariant, therefore
robots agree on the embedding of F by identifying its center with c and placing the ρ(F ) corners of F with the maximum
view closest to the ρ(C) guard robots. F is selected so that ρ(C) divides ρ(F ) and tc(F ) = tc(C), and the placement of
obots in F solves GMVarea.

As pointed out before, each sector contains a sub-configuration that is asymmetric, then A instantiates Aasym in each
ector while the definitions of functions Al, Bl, RDl, and RUl apply to each sector. Note that the algorithm works correctly
ven for configurations having ρ(C) = 2 and tc(C) = 1 where the two sub-grids, in which the Aasym runs independently,
hare the central row of G. In particular, the number of robots and targets is computed by each instance of Aasym only
onsidering those lying on the half of the central row closest to the guard. Note that, the center is never considered by
he computation as there is neither a target nor a single robot there. If a robot from a sector, say the first one, moves on
15
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Fig. 9. Patterns F for ρ(C) = 2 and |R| mod 4 = 2: left tc(C) = 1, middle tc(C) = 2, right tc(C) = 3.

the central row, it may fall into the half row belonging to the other sector, say the second one, but its equivalent robot
in the second sector would move in the opposite direction entering the half row belonging to the first sector and the
number of robots in each sector is kept. In such situations, two robots may move and collide on the center of C , c(R). In
this case, we need to slightly modify Aasym: robots are prevented from moving on c(R) while other robots will eventually
move on the central row.

Another difference with Aasym, is the movement of the guard robot toward its final target in F during task T4. In this
case, rg is not one step away from its target as in the asymmetric case, given the embedding of F into the center of G.
Move m4 works also in A, but it is completed in more than one LCM cycle.

Infinite grids. To obtain A∞, it is sufficient to make small changes to tasks T1a, T1b, and T4. In Aasym, task T1a selects a
single robot rg to occupy a corner of G. Since G∞ does not have corners, A∞ selects rg as in T1a and then moves it to a
distance D ≥ 3 · max{w(C ′), w(F )}, where C ′ = {C \ rg}, and w(C ′), w(F ) are the longest sides of mbr(C ′) and mbr(F ),
respectively. In task T1b, rg must be chosen as the robot with a distance D from C ′, and it moves toward a corner of C . In
T2, the first row is identified as the first row of C ′ occupied by a robot, approaching C ′ from rg . The embedding on F is
achieved by matching the corner of F with the maximum view in correspondence with the corner of C ′ on the first row
and having the same column of rg . Tasks T2 and T3 are unchanged, while in task T4, rg takes D LCM cycles to move toward
its final target in F . Because of the specific pattern F , the detection of rg will be always guaranteed being such a robot the
only one that can finalize the formation of F with a straight movement toward its target.

5. Solving GMV on trees

In this section, we address GMV for robots moving on trees. We first provide all the necessary concepts to define
what we call ‘‘critical vertices’’, and then we restrict the problem to configurations that do not contain these kinds of
vertices. The restricted version of the problem, denoted as GMVc, is then solved by devising an algorithm that works for
semi-synchronous robots and assumes the weak robot model described in Section 2.

5.1. Critical vertices and the addressed problem

Given a configuration C = (T , λ), a vertex v of T such that λ(v) > 0 is called occupied, unoccupied otherwise. If v is
ccupied by a robot r , we often denote v also as vr . Notation ℓ(T ) is used to represent the number of leaves of T . As
sual, N(v) denotes the set of all adjacent vertices of a vertex v. Assuming N(v) = {v1, v2 . . . , vk}, the removal of v from
creates k subtrees, each denoted as T (v, vi) and assumed rooted at vi, i = 1, 2, . . . , k. Given two nodes v1 and v2 of T , if

e = (v1, v2) is an edge of T , the removal of e from T creates two subtrees, each denoted as T (e, vi) and assumed rooted at
vi, i = 1, 2. In each removal operation, the obtained subtrees are called complete subtrees of T . These removal operations
are now used to provide some additional definitions.

Definition 1. Let C = (T , λ) be a configuration, and T ′ be a complete subtree of T obtained by a removal operation. T ′ is
overloaded if the number of robots in T ′ is greater than the number of leaves of T in T ′.

Fig. 10 shows three configurations where the complete subtrees of vertex v with robots are overloaded subtrees.

Definition 2. Let C = (T , λ) be a configuration. An edge e = (v1, v2) of T is considered oriented from v1 to v2 if the
complete subtree T (e, v1) is overloaded. A path P = (v1, v2, . . . , vk) of T is considered oriented if all its edges are oriented
toward the same endpoint, i.e., either v1 or vk. P is considered partially-oriented if all the oriented edges (if any) are
oriented toward the same endpoint.
16
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Fig. 10. Examples of configurations. Occupied vertices are represented in black.

Consider again Fig. 10. All the given configurations are represented according to the edge orientation described in the
bove definition. In each case, the path from vr1 to any unoccupied leaf is oriented, whereas the path from any occupied
eaf to any unoccupied leaf is partially-oriented.

efinition 3. Let C = (T , λ) be a configuration, and v be a vertex of T . Vertex v is critical if its removal generates at
east two overloaded complete subtrees T (v, v1) and T (v, v2) such that (T (v, v1), λ) and (T (v, v2), λ) are isomorphic. In
uch a case, these subtrees are called critical-subtrees. Vertex v is potentially-critical if its removal generates at least two
verloaded complete subtrees and all such generated subtrees are pairwise non-isomorphic.

As an example, vertex v in the configuration given in Fig. 10.(a) is critical (in fact, (T (v, vr1 ), λ) and (T (v, vr2 ), λ) are
somorphic and both overloaded). In Fig. 10.(b), instead, vertex v is potentially-critical as it is non-critical but the two
ub-trees below it are both overloaded. The term potentially-critical is motivated by the observation that when moving
obots from an overloaded subtree toward unoccupied leaves, the performed move could transform the vertex from
otentially-critical to critical (and this, as it will be clarified in Section 5.7, could generate unsolvable configurations).

he addressed problem. The specific version of GMV addressed in this section is denoted as GMVc and is defined as
follows: given a configuration C = (T , λ) without critical vertices and with n ≤ ℓ(T ) robots located on n distinct vertices,
esign a deterministic distributed algorithm that transforms C into a configuration C ′ = (T , λ′) in which each robot
ccupies a distinct leaf of T . Notice that, C ′ has all robots positioned on the leaves, and this ensures that GMVc is solved
ven if the original problem definition does not require such a property.
In the remainder of this section, we will provide an algorithm that is able to solve GMVc. We first show how the

lgorithm works in the extreme case with n = ℓ(T ) robots. Successively, we give the necessary modifications for the
eneral case with n ≤ ℓ(T ).
We remark that, in general, the solvability of many algorithmic problems defined for robots moving in a discrete or

ontinuous environment is strongly influenced by symmetries in the input configuration, and therefore by the presence
f pairwise equivalent robots. It is important to note that we do consider symmetric configurations, but without critical
ertices. In Section 5.7, we provide an extensive discussion in which we motivate how the presence of critical vertices
akes solving GMV on trees particularly difficult, if not even impossible.

.2. Further notation and definitions

Given a configuration C = (T , λ), we denote by R = {r1, r2, . . . , rℓ(T )} the set of robots in C .2 The center of a graph
s the set of all vertices that minimize the maximal distance from other points in the graph. It is well known that the
enter of a tree is a set containing one vertex or two adjacent vertices [33]. The provided algorithm requires that each
obot identifies a single vertex as center, denoted as c(T ).3 To this aim, when the center of T is a single vertex v, then
ach robot assumes c(T ) = v; when the center is {v1, v2} and e = (v1, v2) is oriented toward vi, then each robot assumes
(T ) = vi; when the center is {v1, v2} and e = (v1, v2) is non-oriented, each robot located in the subtree T (e, vi) assumes
= T (e, vi) and c(T ) = vi, i = 1, 2, that is like running the algorithm concurrently in two distinct instances.
We denote by P(C) the set containing all the partially-oriented paths from c(T ) to some unoccupied leaf of T , if any.
e will show that P(C) ̸= ∅ for each configuration C where GMVc is not yet solved.

efinition 4. Let C = (T , λ) be configuration without critical vertices and multiplicities. R′(C) is the set containing any
obot r ∈ R such that:

2 We recall that we are first considering the extreme case of n = ℓ(T ) robots and that the robots are anonymous. The notation is used only for
the sake of presentation, since robots are anonymous no algorithm can take advantage of names of elements in R.
3 Although there is a little abuse in the notation, the definition of c(T ) does not have to be confused with that provided in Section 4 referring

to the geometric center of a grid.
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Fig. 11. Examples of views associated with different robots/vertices.

• r is on a vertex of a path P ∈ P(C) leading to an unoccupied leaf l;
• r is the closest robot to l among the robots on vertices of P;
• the subpath of P is oriented from vr to l.

For each edge e = (u, v) of T , let s(e) be the minimum number of robots that have to pass through e to solve GMVc on C .
ormally, if e is not oriented, then s(e) = 0; if e is oriented from u to v, then s(e) is the difference between the number of
obots on the vertices of T (e, u) and the number of leaves of T in T (e, u). For a partially-oriented path P , s(P) =

∑
e∈P s(e).

iew of a robot. In the algorithm we provide for solving GMVc, sometimes we need to distinguish among robots having
some properties (e.g., minimum distance from unoccupied leaves). To this purpose, to model the view of a robot, we
consider an approach similar to that used in [34,35] to determine isomorphisms among trees. In particular, a robot r
can associate a unique string to the tree rooted in the vertex vr where it resides, keeping trace of the presence/absence
of a robot in a vertex by associating 1 or 0, respectively. Moreover, parentheses are inserted into the strings to track
the relationship between one node and its children recursively. For example, the string associated with the vertex vr1 in
Fig. 11 is (1(1(1)(0))(0(1))(0)), obtained by lexicographically ordering the strings recursively associated with the roots of its
subtrees. The lexicographic order assumes ‘‘(‘‘<’’)’’ < ‘‘1’’ < ‘‘0’’. Since the string associated with vr2 is (1(1(0(1))(0))(1)(0)),
then we say that the view of robot r1 is smaller than the view of robot r2. Notice that two equivalent robots have the same
view (i.e., are associated with the same string). In conclusion, each robot can compute the view of all robots, determine
the robot(s) with minimum view, and also determine whether there is any symmetry in the observed configuration.

5.3. Description of the algorithm

The provided algorithm for solving GMVc is called MoveToLeaf and it has been designed according to the methodology
ecalled in Section 3.2. The algorithm is based on three tasks named Tep, Tfp, and Tt : Tep is responsible for ‘‘emptying paths
n P(C)’’; Tfp for ‘‘filling paths in P(C)’’; Tt for checking the ‘‘termination’’, that is checking that GMVc is solved and no
further move is necessary.

According to the reduced number of tasks, here the algorithm is formalized in pseudo-code instead of the tabular form
as used in Section 4. The pseudo-code is described in Algorithm 4. Essentially, we can assume that, during a LCM-cycle,
each robot first acquires a snapshot of the current configuration (in the Look phase), and then executes MoveToLeaf (in
the Compute phase). In the Move phase, the moving robot performs the move as specified in MoveToLeaf.

To check which task must be performed, the algorithm uses simple predicates based on R′(C) and S , where the latter
is a data structure computed by the associated Procedure DetermineMovingRobots (cf. the pseudo-code described in
Algorithm 5). It can be easily observed that the used predicates are well-formed since both R′(C) and S fulfill properties
Prop1, Prop2, and Prop3 defined in Section 3.2.

The strategy behind algorithm MoveToLeaf is the following. At line 2, the set R′(C) is computed. If such a set is not
empty, then there are robots on partially-oriented paths from c(T ) toward unoccupied leaves which can be brought to
arget by moving them along oriented paths. This case can be observed in Fig. 12, where robots r1 and r2 belong to R′(C).
n this situation, the algorithm performs task Tep: it preliminarily moves these robots (cf. move m1 at Line 5) until a
onfiguration C1 in which R′(C1) = ∅ is generated.
Successively, at Line 7, since R′(C) is empty, MoveToLeaf calls procedure DetermineMovingRobots. Assume that

a robot r (located on some non-leaf vertex vr ) can move along an oriented path P to reach a vertex v that belongs to
any partially-oriented path in P(C). DetermineMovingRobots associates a priority to r according to the integers s(e)
assigned to each edge e of P (an example of this assignment is shown in Fig. 12). In this way, a sequence of integers is
18
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Algorithm 4 MoveToLeaf
Input: A configuration C = (T , λ) without critical vertices and multiplicities.
1: compute the view of C
2: compute R′(C)
3: if R′(C) ̸= ∅ then
4: {task Tep}
5: move m1: each robot r ∈ R′(C) of minimum view moves toward one of its closest unoccupied leaves along a path P ∈ P(C)

toward one of such leaves
6: else
7: let S = DetermineMovingRobots(C)
8: if S ̸= ∅ then
9: {task Tfp}
0: move m2: let (v, vr ) be the entry of S with r of minimum view, r moves toward v

1: else
2: {task Tt }
3: move m3: nil

Algorithm 5 DetermineMovingRobots

Input: A configuration C = (T , λ) without critical vertices and multiplicities.
1: let S be an empty map
2: compute P(C)
3: for all P ∈ P(C) do
4: let l be the leaf where P leads
5: let v be the vertex on P closest to l such that there exists an edge e = (u, v) oriented toward v with u not in P
6: for all occupied vertex vr ∈ T (v, u) do
7: if the path P(v, vr ) = (v ≡ v0, v1, v2, . . . , vt ≡ vr ) is oriented toward v then
8: let S[(v, vr )] = (s((v0, v1)), s((v1, v2)), . . . , s((vt−1, vr ))
9: let S ′ be the submap of S containing the lexicographically minimal sequences of S
0: return S ′

Fig. 12. A schematic representation of a configuration C elaborated by MoveToLeaf. The triangles represent two subtrees denoted as T1 and T2 and
containing unoccupied leaves. The dashed and curved lines represent paths. In the discussion, it is assumed that the paths from c(T ) to T1 and from
c(T ) to T2 belong to P(C).
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Fig. 13. Transition graph associated with Algorithm MoveToLeaf.

ssigned to robots, and the robot with the lexicographically smallest sequence is then moved by MoveToLeaf along an
riented path toward a path in P(C). Notice that, if the configuration has vertices equivalent to v, equivalent robots can
e selected and moved concurrently (but remember that their activation is decided by the adversary). We remark that
he priority based on the integer sequences is an essential part of the strategy as it avoids performing ‘‘bad moves’’ that
ould transform vertices from potentially-critical to critical thus generating unsolvable configurations. For instance, the
ightmost sequence represented in Fig. 12, it can be observed that the lexicographically smallest sequence (3, 3, 1, 1) is
associated to the only robot that can reach v without creating critical vertices and following a path in P(C).

By considering again the current scenario, it follows that MoveToLeaf calls DetermineMovingRobots to select one
obot (and its equivalent robots) to be moved toward a partially-oriented path from c(T ) to unoccupied leaves (and this
orresponds to task Tfp). When this path is reached by a robot, set R′ turns out to be not empty and hence move m1
is applied again to lead that robot on an unoccupied leaf. The whole process is repeated until a final configuration is
created. In that case, we have R′(C) = ∅ and S = ∅ and hence robots detect that task Tt is running and no further moves
are necessary. The transitions among the three tasks are represented in Fig. 13.

5.4. Correctness

We have already remarked that MoveToLeaf has been designed according to three tasks only and that the used
predicates are all well-formed. The corresponding transition graph is depicted in Fig. 13. Concerning the correctness, in
what follows we provide a sequence of lemmata that are either structural (e.g., showing properties about P(C)) or show
properties about the algorithm once a single execution of m1 (made in task Tep) or m2 (made in task Tfp) occurs. Finally,
such lemmata are exploited by a theorem that provides the correctness of MoveToLeaf. In particular, as introduced in
Section 3.2, our algorithm needs to fulfill conditions H1 − H3. Condition H3 is implied by Lemmata 8 and 10. Whereas
conditions H1 and H2 are verified in Theorem 2.

Lemma 7. Let C = (T , λ) be a configuration without critical vertices and multiplicities. If GMVc is not solved in C, then
(C) ̸= ∅.

roof. Since GMVc is not solved in C , there exists at least one unoccupied leaf. By contradiction, assume P(C) = ∅. This
mplies that each path from c(T ) to an unoccupied leaf has at least one edge oriented toward c(T ). Let P1 be one of such
aths and let e = (v1, v2) be an edge of P1 oriented toward c(T ). Removing e from T generates the subtrees T (e, v1) and
(e, v2). Without loss of generality assume that c(T ) is contained in T (e, v1). By definition of oriented edge, in T (e, v1) the
umber of robots is strictly less than the number of leaves of T in T (e, v1). Hence T (e, v1) contains at least an unoccupied
eaf l. Let P2 be the path from c(T ) to l. Let then remove one edge oriented toward c(T ) from P2 and consider again the
enerated subtree containing c(T ). Repeat this procedure until the generated subtree T ∗ containing c(T ) has no unoccupied
eaf. In T ∗, the number of robots is strictly less than the number of leaves of T in T ∗, but the number of unoccupied leaves
f T ∗ is zero, a contradiction. □

emma 8. Let C = (T , λ) be a configuration without critical vertices and multiplicities, and let C ′ be the configuration
enerated from C by MoveToLeaf according to one execution of move m1. Then, C ′ contains neither critical vertices nor
ultiplicities.

roof. Consider the set R′′ containing all the equivalent robots moved by movem1. We have to show that the configuration
′, created after the move of the robots in R′′, contains neither critical vertices nor multiplicities. By Lemma 7 and definition
f R′(C), each robot in R′′ admits a distinct directed path toward an unoccupied leaf where no other robots lie. Hence,
he creation of multiplicities along such paths is not possible. Let r ∈ R′′ and, by contradiction, let u be a critical vertex
enerated after the move of r and the robots equivalent to r in R′′, if any. Vertex u must be on the path from r to c(T ),
therwise it was a critical vertex even before the move. Since u is critical, there must be two or more pairwise isomorphic
ubtrees created after the move of r . Robot r must be in one of them, say T (u, v). Since T (u, v) is overloaded, the edge
20
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(u, v) must be oriented from v to u. This is a contradiction since (u, v) belongs to the path from c(T ) to the unoccupied
eaf l, target of r , and this path is partially-oriented from c(T ) to l. □

emma 9. Let C = (T , λ) be a configuration without critical vertices and multiplicities. If R′(C) = ∅ then each P ∈ P(C) does
ot contain any occupied vertex.

roof. By contradiction, assume that there exists a path P ∈ P(C), partially-oriented from c(T ) to an unoccupied leaf l,
ith some occupied vertices. Let r be the robot on P closest to l. Denote as P ′ and P ′′ the subpaths of P from c(T ) to vr and

rom vr to l, respectively. According to the definition of R′(C), the assumption R′(C) = ∅ implies that P ′′ is not oriented
oward l. Since the number of robots is equal to ℓ(T ), there must exist an oriented path P ′′′ from vr to an unoccupied leaf
′
̸= l. Since P ′ is partially-oriented toward vr , then P ′ and P ′′′ do not share any edge. Hence, the concatenation of P ′ and
′′′ forms a partially-oriented path from c(T ) to l′. A robot in this path (either r or the robot in the path that is closest to
′) fulfills Definition 4. Hence R′(C) ̸= ∅, against the assumption. □

emma 10. Let C = (T , λ) be a configuration without critical vertices and multiplicities, and let C ′ be the configuration
enerated from C by MoveToLeaf according to one execution of move m2. Then, also C ′ contains neither critical vertices nor
ultiplicities.

roof. Since MoveToLeaf applies move m2 then R′(C) = ∅. By Lemma 9, each path P ∈ P(C) does not contain robots.
onsider the set R′′ containing all the equivalent robots moved by move m2. We have to show that the configuration C ′,
reated after the move of the robots in R′′, contains neither critical vertices nor multiplicities.
Move m2 selects a pair (v, vr ) and moves the robot r toward v. The algorithm moves all the robots equivalent to r ,

nd then with minimal view, if any. When r is moving toward v, say from vr to v′ ∈ N(vr ), there are two cases in which
critical vertex can be created:

1. the complete subtree T (v′, vr ) becomes isomorphic to another tree T (v′, a), hence v′ becomes critical;
2. robot r becomes equivalent to a robot r ′.

(Case 1) Before r moves, T (v′, vr ) has one robot more than T (v′, a). Notice that there must be at least one robot in both
he sub-trees. Hence, s((v′, vr )) > s((v′, a)) and then S[(v, vr )] > S[(v, a)]. This implies that a robot in T (v′, a) had to be
oved instead of r .
(Case 2) After the move of r on v′, a new critical vertex u is created at the center of the path Q between v′ and vr ′ ,

ith the two incident edges on paths P(v′, u) and P(vr ′ , u) oriented toward u. Moreover, u is the vertex closest to c(T )
mong the vertices in Q . Then u is in the path P(c(T ), v), subpath of P , or in the path P(v, v′). Vertex u cannot be a vertex
f P(c(T ), v), v excluded, due to the orientation of the edges of P toward an unoccupied leaf. Then, u is a vertex in the
ath P(v, v′) (extremes included). Since robots r and r ′ are equivalent, we have s(P(v, v′)) = s(P(v, vr ′ )). Then, s(P(v, vr ′ ))
s a prefix of s(P(v, vr )) before the move. So, s(P(v, vr ′ )) < s(P(v, vr )) and the robot to be moved was r ′, indeed.

As for the multiplicities, if r is the only robot moving on v′ ̸= v then no multiplicity is possible since, by the minimality
f s(P(v, vr )), v′ is unoccupied. If r is the only robot moving on v′ when v′ = v, then v′ is unoccupied because it is on
path P ∈ P(C) and, since R′(C) = ∅, by Lemma 9, P has no occupied vertices. If r is not the only robot moving on v′,

hen all the robots moving on v′ are equivalent, and v′ is critical in C , a contradiction to the assumption that C does not
ontain critical vertices. □

heorem 2. Let C = (T , λ) be a configuration composed of n = ℓ(T ) SSync robots. If C contains neither critical vertices nor
ultiplicities, then MoveToLeaf correctly solves GMVc from C.

Proof. Given s(C) =
∑

e∈E s(e), it easily follows that GMV is solved from C if and only if s(C) = 0. Let E : C =
C(0), C(1), C(2), . . . be an execution of MoveToLeaf formed by a sequence of configurations observed at discrete time
t = 0, 1, 2, . . .. We have to show that there exists t∗ ≥ 0 such that C(t∗) ∈ E, s(C(t∗)) = 0, and C(t) = C(t∗) for each
t > t∗.

Assume s(C(0)) > 0, and without loss of generality R′(C(0)) ̸= ∅. This implies that MoveToLeaf performs task Tep by
applying m1 to C(0).

By Lemma 8 the resulting configuration C(1) is still without critical vertices and without multiplicities. Moreover,
s(C(1)) < s(C(0)) because m1 moves robots toward unoccupied leaves along oriented edges. Hence, by repeatedly
applying m1, MoveToLeaf leads to a configuration C(t ′), t ′ > 0, without critical vertices and multiplicities and such that
R′(C(t ′)) = ∅. In C(t ′), MoveToLeaf performs task Tfp by applying move m2. Lemma 10 guarantees that C(t ′ + 1) is still
without critical vertices and without multiplicities. In particular: (1) move m2 moves robot r (along with its equivalent
robots), (2) vr belongs to a path P(v, vr ) oriented from vr to v, and (3) r moves along P(v, vr ) toward v. This implies that
s(C(t ′+ 1)) < s(C(t ′)). If in C(t ′+ 1) robot r does not reach v, move m2 is applied again. Assume that at time t ′′, for some
t ′′ > t ′ + 1, r reaches v. Since v is on a path P ∈ P(C(t ′′)), by Lemma 9 we get R′(C(t ′′)) ̸= ∅ and move m1 is applied
again.
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As depicted in the transition graph shown in Fig. 13, it follows that the execution E is formed by alternating
ubsequences of configurations in which each subsequence is generated only by move m1 or only by move m2. Since
e have shown that the function s() decreases at each execution of MoveToLeaf, it is clear that condition H2 is fulfilled,
hat is there exists a time t∗ > 0 such that s(C(t∗)) = 0, R(C(t∗)) = ∅, and the map S is empty. Hence, robots detect that
ask Tt is reached in C(t∗) and hence no further moves are made. By the above discussion, it is clear that also condition
1 (the transitions between tasks are exactly those represented in the transition graph) is fulfilled and this means that

MoveToLeaf is able to solve GMVc from C . □

.5. Case with n ≤ ℓ(t) robots

So far, the proposed algorithm has been designed to approach the extreme case with n = ℓ(T ) robots. In this section,
e provide all the details necessary to deal also with n < ℓ(T ) robots. In general, the strategy will be to add ℓ(T ) − n
irtual (and static) robots to the configuration so as to allow the use of the algorithms described before. In particular,
he added virtual robots are used to compute all the directions on the edges of the input tree in order to define the set
f paths P(C). Actually, virtual robots are not used to compute R′(C) or any other subset involving robots. Of course, for
onsistency reasons, all robots must agree about the same locations where to add the virtual robots. Moreover, we have
o guarantee that such robots do not affect the normal functioning of the algorithms designed for the case of n = ℓ(T ).

About the location(s) where to add ℓ(T ) − n virtual robots, we consider the center of the input tree T . In particular,
f the center of T is a set containing just one vertex c(T ), then robots can compute the directions of the edges by adding
(T )−n virtual robots in c(T ). When the center is {v1, v2}, we remind that there exists the edge e = (v1, v2). Let ni be the
umber of robots residing in the subtree T (e, vi), i = 1, 2. Now, if vi is not a leaf of T (e, vi) then set ρi = ℓ(T (e, vi))− ni,
therwise set ρi = (ℓ(T (e, vi))− 1)− ni. If ρi > 0, then add ρi virtual robots to vi, for i = 1, 2. In doing so, we ensure that
he role of the virtual robots never changes, as well as their positioning.

Let us now consider the functioning of the proposed algorithms. First of all, Algorithm DetermineMovingRobots is
ot affected by virtual robots as by construction c(T ) is never part of the subtree considered by that algorithm. Concerning
lgorithm MoveToLeaf, instead, it would move robots from c(T ) if the paths to the leaves do not contain robots. Since
irtual robots are not accounted in R′(C), the algorithm would not allow virtual robots to move. Hence, if Algorithm
oveToLeaf has still robots to move, it proceeds; otherwise, if only virtual robots remain to move then it means GMVc
as been solved.
By Theorem 2 and the above discussion, we conclude the following final statement.

heorem 3. Let C = (T , λ) be a configuration without critical vertices and composed of n ≤ ℓ(T ) SSync robots. Then,
oveToLeaf correctly solves GMVc from C.

5.6. Time complexity

The time complexity is measured in terms of epochs, where an epoch is the time duration for all robots to execute at
least one complete LCM-cycle since the end of the previous epoch. For FSync robots, an epoch coincides with a round. For
SSync and Async robots, instead, the duration of an epoch may vary from time to time and it is unknown, however, by
the fairness condition, it is finite.

In what follows, D denotes the diameter of the tree of a given configuration.

Lemma 11. MoveToLeaf requires O(nD) epochs to solve GMVc from configurations without critical vertices and composed of
SSync robots.

roof. The statement simply follows by observing that procedure MoveToLeaf, at Line 5 or at Line 10, always moves a
obot at a time (along with all the robots equivalent to it) along shortest oriented paths toward a target leaf which might
e of length D. □

emma 12. GMVc requires Ω(n + D) epochs to be solved from configurations without critical vertices and composed of n
SSync robots.

Proof. Let C = (T , λ) be a configuration without critical vertices and composed of n SSync robots r1, r2, . . . , rn. Assume
hat T is a tree consisting of a path P = (v1, v2, . . . , vn, . . . , vm) such that m ≫ n, along with n − 1 pendant vertices
ttached to vm. Assume r1, r2, . . . , rn are disposed on v1, v2, . . . , vn, respectively. This implies that r1 is already on a target,
hereas the remaining n − 1 robots must be moved on the n − 1 leaves connected to vm. In C = C(0), only vn can be
oved, otherwise a collision is created. Let C(1) be the configuration obtained after the move of vn. In C(1), only robots

n and vn−1 can be moved. By repeating this analysis, we get that each solving algorithm can move v2 for the first time
o earlier than t = n− 2. After this first movement, v2 requires D− 1 additional epochs to reach its target. At that time,
MVc is solved. This implies that any solving algorithm requires Ω(n + D) epochs to solve GMVc on the assumed input
onfiguration. □
22
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Fig. 14. (a): A configuration with a critical vertex v. The dashed arrows show the direction proposed for the movement of the robots in order
to solve GMV; (b): the symmetric configuration obtained after the one on the left with a new proposed movement; (c): the configuration made
symmetric.

.7. On the difficulties posed by critical vertices

In this section, we illustrate some of the challenges posed by GMV on trees when critical vertices are allowed. To
his aim, we show a few cases of input configurations with critical vertices that are either unsolvable or require specific
trategies within SSync. Furthermore, we discuss how they can be approached within FSync.

. Unsolvable configurations. Consider the configuration C1 shown in Fig. 10.(a). Vertex v is critical in C1 since
T (v, vr1 ), λ) and (T (v, vr2 ), λ) are isomorphic and both overloaded (in particular, each vertex in these critical-subtrees
s occupied). Notice that, in C1 each resolving algorithm for GMV should move robots r1 and r2 toward v. However, since
1 and r2 are equivalent, no algorithm can distinguish between the two subtrees and decide which robot among r1 and r2
hould make a step toward the parent vertex v. Hence, each algorithm would create a collision in v. Since the definition
f GMV requires to not incur in collisions, then GMV results to be unsolvable in C1, as stated in the following claim.

laim 1. Let C be a configuration without multiplicities. Assume also that in C there is a critical vertex admitting
ritical-subtrees having all vertices occupied. Then, GMV cannot be solved from C even by FSync robots.

In fact, when the conditions of this claim hold, it is clear that if a robot enters (exits from or moves within) any of the
ritical-subtrees then a multiplicity is created.
Fig. 10.(c) shows another unsolvable configuration in which the previous claim does not apply. Theoretically, if other

obots are present, in some cases it is possible to move them inside critical-subtrees so as to break the symmetry and
olve the problem. GMV cannot be solved from the configuration shown in Fig. 10.(c) because there are no robots that
an be used to break the symmetry. The following paragraph presents a deeper analysis.

. Using leader robots to remove critical vertices.
Consider the configuration shown in Fig. 14.(a). The vertex v is critical since it has two subtrees, T (v, vr1 ) and T (v, vr2 )

hat are isomorphic and overloaded. As in the previous case, it can be observed that r1 and r2 cannot move directly on
otherwise they would collide. By observing that T (v, vr1 ) and T (v, vr2 ) are not completely occupied – as it happens

n Fig. 10.(a), a resolving strategy could move a robot inside one of the two isomorphic subtrees in order to break the
ymmetry and hence transforming v from critical to potentially-critical.
In fact, the robot rl (which can be elected as a ‘‘leader’’ since it has no equivalent robots) can actually move toward v

hile r1 and r2 move downward. As we are in SSync (but the approach seems to be effective also in Async), such moves
o not necessarily happen concurrently. In particular, if for instance r1 moves before r2, then the algorithm may let robots
ait for r2 to move.
After that, as in Fig. 14.(b), rl can move toward one of the two symmetric subtrees, hence breaking the symmetry, and

hus obtaining the configuration in Fig. 14.(c). In so doing, the critical vertex v actually becomes potentially-critical. From
here, r2 can freely move toward a leaf, and afterward rl and r1, in turn, can reach their destination leaves, solving GMV.

Notice that the proposed strategy clearly requires (1) the presence of a leader robot outside the two isomorphic
ubtrees, and (2) that the involved isomorphic subtrees admit at least one unoccupied vertex where the leader robot
an enter to break the symmetry. This leads to the following claim:

laim 2. Let C be a configuration without multiplicities in which there is a critical vertex but no leader robots. Then, GMV
annot be solved from C even by FSync robots.

Fig. 15.(a) shows a more general case with respect to Fig. 14 since v has more than two isomorphic critical-subtrees. A
esolution strategy moves a leader robot rl inside one of the critical-subtrees see Fig. 15.(a) and then the algorithm creates

configuration on other critical-subtrees so that to be different from any other configuration created on the first subtree
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Fig. 15. (a): A symmetric configuration with more than two isomorphic overloaded subtrees. Vertex v is critical, rl is a leader robot, rl moves inside
he first subtree (b): robots of other subtrees, move toward v, (c): the first subtree can be emptied. (d): v is critical and rl is the only robot that
an act as leader. The robots on the leaves move up, then rl moves toward v.

during the emptying of the subtree. In particular, in Fig. 15.(a), rl moves inside the first subtree making it different from all
the other subtrees. In Fig. 15.(b), robots r2, . . ., rn and the ones on the leaves cautiously move one step toward v making
the subtrees different from any configuration that might be created by the first subtree in the successive movements.
In Fig. 15.(c), rl and r1 move out of the subtree. Then all the robots that previously moved toward the root make a step
back to their starting position. From here, the strategy can be repeated to move all the robots in the overloaded subtrees
toward the leaves.

However a variation of the configuration of Fig. 15.(a), shown in Fig. 17.(a) is unsolvable in SSync. Even though a leader
robot is present, it is not possible to move the robots in the other two subtrees so as to generate a configuration different
from each configuration generated in the first subtree during its emptying. In fact, the robots on the leaves cannot move.
Other unsolvable configurations can be generated when the leader robot cannot move, as shown in Fig. 17.(c).

In any case, in order to solve GMV from a configuration C with a critical vertex v, it is necessary to solve the
ub-problem EmptyRoots defined as follows: if v is critical, T (v, v1), T (v, v2), . . . , T (v, vk) are pairwise isomorphic critical-
subtrees of v, and v1, v2, . . . , vk are occupied, then each resolving algorithm for GMV must be able to transform C into
configuration C ′ in which v1, v2, . . . , vk are all unoccupied. This is necessary so that a leader robot can move onto one
f them in order to break the symmetry among the critical-subtrees. Notice that the only way to solve EmptyRoots is

moving robots located in vi downward to the corresponding critical-subtrees T (v, vi), i = 1, . . . , k.
Sometimes solving EmptyRoots implies the movement of other robots (see Fig. 16.(a)), in other cases EmptyRoots

cannot be solved (see Fig. 16.(b)). In Fig. 16.(a), if the robot on vr2 moves downward as first move, the configuration
becomes unsolvable; in fact, the vertex left by r2 becomes a critical vertex being the two subtrees (below such a vertex)
isomorphic and overloaded. Moreover, EmptyRoots must be solved for these two critical-subtrees as well, as this cannot
be done without incurring in collisions. On the other hand, the configuration of Fig. 16.(a), can be solved by first moving
robot r1 upward and then moving r2 downward. The movement of r1 makes the left subtree of vr2 different from the one
on its right. On the contrary, the configuration shown in Fig. 16.(b) is unsolvable because it is not possible to design a
preliminary move in order to differentiate the subtrees of v′r2 before moving r2 downward. We conjecture that deciding
whether the sub-problem EmptyRoots can be solved could require exploring a very large number of possible moves (even
an exponential number).

3. For GMV, FSync robots are more powerful. Consider the configuration of Fig. 17.(a). Since r2 and r3 are pairwise
equivalent robots, it is not reasonable to let them both move concurrently. Instead, as shown in Fig. 17.(b), rl and r1 can
move concurrently toward v (we recall the reader that here we assume FSync robots). From there, rl can move toward a
leaf whereas r1 can start playing the role previously played by rl, i.e., it can move downward toward another subtree and
grab another robot outside to make its role. In general, if there were n − 1 critical-subtrees, by repeating this strategy,
all the robots can be correctly moved to the leaves. Notice that this strategy cannot be implemented in SSync since from
the configuration shown in Fig. 17.(b) the adversary could move only rl back to v creating a loop in the algorithm or only
r1, creating a multiplicity with rl.

As an additional example, consider the configuration shown in Fig. 17(c). It represents a case in which there is a critical
vertex v because of exactly two critical-subtrees and it is possible to elect a leader. We have already discussed a similar
case in which the leader robot can move within one critical-subtree to break the symmetry and hence to solve GMV. We
now show that here the problem cannot be solved in SSync but it is solvable in FSync. In fact, in SSync, moving rl or
the two equivalent robots r1 and r2 would make the three subtrees all isomorphic. Hence, in any case, v remains critical
and the obtained configuration does not contain any more leader robots. Instead, in FSync, the simultaneous movement
of r1, r2 and rl, as shown in the figure, allows to solve the problem. In fact, while rl moves toward v, both r1 and r2 can
move downward, and the achieved configuration becomes similar to that in Fig. 14, where the leader robot can enter a

critical-subtree to break the symmetry. Clearly, the combined movement described cannot be applied in SSync.
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Fig. 16. Both figures show configurations in which GMV requires solving the sub-problem EmptyRoots. (a) A solvable configuration where the
reliminary move of r1 upward followed by the move of r2 downward maintains the difference between the subtrees currently rooted in vr2 . (b)
n unsolvable configuration.

Fig. 17. Three figures referring to symmetric configurations solvable in FSync but not in SSync.

6. Conclusion

We have introduced the Geodesic Mutual Visibility problem in the context of robots moving along the edges of a
graph, and in particular, on grids and trees, operating under the LCMmodel. Regarding capabilities, robots are rather weak,
as they are oblivious and without any direct means of communication.

For (finite or infinite) grids, robots are considered to be synchronous and endowed with chirality. Under these
conditions, we have shown that GMVarea can be solved by a time-optimal distributed algorithm.

For trees, robots are considered to be semi-synchronous and we have shown that GMV can be solved when the initial
configuration does not admit critical vertices. Concerning the time complexity, the algorithm leaves some gaps with the
proposed lower bound.

This work opens a wide research area concerning GMV on other graph topologies or even on general graphs. However,
difficulties may arise in moving robots in the presence of symmetries. Then, the study of GMV in asymmetric graphs or
graphs with a limited number of symmetries deserves main attention, as well as the removal of the assumption about
a common chirality. Other directions concern deeper investigations into the different types of schedulers: synchronous,
semi-synchronous or asynchronous. Furthermore, for graphs with an embedding in a Euclidean space, the introduction of
obstructed visibility during the Look phase might be of main interest, i.e., the property that if three robots are collinear,
the one in the middle obstruct the reciprocal visibility of the other two.
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