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Abstract In this paper, we analyse how the com-
bination of fault zone shape and material properties
affects the propagation of seismic waves in a two-
dimensional domain. We focus on SH wave propaga-
tion through several faults with different thicknesses
and bending radii, but the theory is easily general-
ized to the three-dimensional case. We show how the
density of energy released is mostly a function of the
radius and does not depend on the velocity inside a
fault zone.

Keywords Computational seismology · Earthquake
hazards · Seismic waves · Fault trapped waves

1 Introduction

According to the dictionary of Geology and Earth sci-
ence, a fault zone (FZ) is defined as “a region, from
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meters to kilometres in width, which is bounded by
major faults within which subordinate faults may be
arranged variably or systematically. Single fault zones
are marked by fault gouge, breccias, or mylonites”
(Allaby 2013). It is well known that a FZ is able to trap
and propagate low-velocity waves and/or guide head
waves, modifying substantially the damage pattern
and the seismic hazard of a strong earthquake. These
effects have been observed in many different real situ-
ations, see, for example, Rovelli et al. (2002), Li et al.
(2004), Li and Leary (1990), Li et al. (1994), and
Lewis et al. (2005). More recently some evidence of
this phenomena has been observed, for example dur-
ing the earthquakes (the largest being a 6.1 Mw event)
that hit the city of L’Aquila, in 2009 (Avallone et al.
2014; Calderoni et al. 2010). In particular, in Avallone
et al. (2014) the authors hypothesize the existence of
a low-velocity FZ able to trap the waves and amplify
the signal. A comparison between recorded data and
an analytical model is also presented.

Due to the well established impact of the fault zo-
nes on the damage distribution, the last decades have
seen more effort spent modelling wave propagation
through a FZ and, although analytical solutions are
available in just a few simple cases such as in Ben-
Zion and Aki (1990), numerical results are numerous
and quite complete. The common methods that are
used for the numerical solution of earthquake models
in general, and the ones with faults in particular, are
described in Igel (2017) and Hori (2011). They inclu-
de spectral element method (SEM), finite difference

–
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method (FDM) (Erickson et al. 2017; Moczo et al.
2014), boundary element method (BEM) and finite
volume method or a coupling of several methods
(O’Reilly et al. 2015). Finite difference method pro-
vides simple ways of discretizing partial differential
equations which correspond to the seismological prob-
lems, but it still has a number of drawbacks. First of
all, FDM is incapable of treating complex geometries
adequately. Besides, when using FDM, one should
choose small grid sizes to avoid numerical dispersion
(Moczo et al. 2000; Liu and Sen 2009b). Although
different techniques help to partially eliminate many
drawbacks of FDM, this method is not suitable for
solving certain seismological problems.

The important aspect of the spectral element me-
thod (Komatitsch and Tromp 2002) is the fact that it
can combine the approximations of different order in
different subdomains, in particular outside and inside
the fault. This is done by introducing the discontin-
uous Galerkin methods or mortar element methods.
As a result, on the basis of the spectral element
method various software has been created which help
model earthquakes and fault zones for 2D and 3D
models.

Unlike the SEM and FDM, BEM builds the approx-
imate solution to seismological problems based on
integral representation of the solution. The method
consists in building the solution to certain boundary
integral equations. The main advantage of this method
is that it helps to decrease the dimension of the prob-
lem. Unfortunately, BEM is not efficient for solving
nonlinear or non homogeneous problems. Moreover,
the final matrix of the problem is in general full and
non symmetric. There are techniques which reduce
the number of drawbacks for non stationary prob-
lems, though the construction of efficient methods for
simulating time-dependent realistic earthquake prob-
lems remains an open problem (Álvarez Rubio et al.
2004).

In this paper, we study how seismic waves, gener-
ated by a localized source, propagate through a FZ and
what happens when the fault has a bend. We only con-
sider the case of horizontally polarized shear waves
(SH waves), the general case including pressure waves
(P-waves) and vertically polarized shear waves (SV
waves) will be discussed in a further paper, where a
more general 3D case will also be analysed.

The propagation of SH waves in a homogeneous
isotropic linear elastic medium is described by the
following equation in a (x1, x2, x3) Cartesian space.

∂2u

∂t2
− V 2

SH

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
u = S, (1)

where u is the component of the displacement in the
x3 direction, VSH = √

μ/ρ is the shear wave velocity,
and S is the body force, modelled as a delta-source

S = δ(x − xs)M(t), (2)

where x = (x1, x2), xs is the location of the source and

M(t) = M0
t

τ 2
exp(−t/τ ), (3)

is a moment-rate time variation and τ is a smoothness
parameter related to the frequency which controls the
amplitude of the oscillations (Igel 2017).

We consider a 2D model where the fault bends
along the strike. Our computational domain is shown
in Fig. 1. It can be read as a section of a possible
3D domain parallel to the surface. In this sense, the
orientation of the fault is different from much of the
literature (see Ben-Zion et al. 2003, Fig. 5). However,
the main objective of this paper is to evaluate how the
trapped energy is released by a FZ due to its bending.
It is not important, at this stage, if it happens on the
surface or at depth.

Moreover, this simple 2D model also allows a quan-
titative analysis (for example in the calculation of the
parameter α introduced at the end of this section), that
becomes much more complex in a 3D setting. The sa-
me problem will be addressed in a more realistic geo-
logical setting with 3D physically based simulations
(preliminary results are available in Di Michele et al.
2021).

The energy lost as a consequence of the bend has
been the subject of intensive study, especially in the
field of optics, in order to avoid, or at least reduce the
signal lost due to a bend in a waveguide.

The mechanism surrounding this phenomena is a
simple application of Snell’s law, which says that at
the interface between two different materials, having
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Fig. 1 A representation
(not to scale) of the
horizontal layer simulation
domain in the case of a
straight and curved fault.
With the label S we identify
the source location, with the
labels LSC , LSR , LSL we
identify respectively the
monitored points on the
center, right and left side of
the fault zone. For the
curved fault the radius is
labeled as r . The labels lin
and lout refer to the
cross-section of the fault

reflectionindex n1 and n2 respectively, the incident
and refraction angle are such that

sin θi

sin θr

= n1

n2
= V2

V1
,

where V is the wave propagation velocity.
There exists a critical angle

θc = arcsin(V2/V1), (4)

for which the incoming waves are not transmitted but
all the signal remains trapped inside the guide. For all
θi < arcsin(V2/V1) the signal is partially transmitted
in the medium labeled as 2. If the guide bends such
that the incident angle exceeds the critical angle then
all of the signal is reflected within the guide.

Obviously in geology it is not so easy to predict
and/or evaluate the quantity of energy which will be
released, due to the uncertainties in the geometric
and mechanical parameters and the source structure.
However it could be important to understand how the
trapped energy is released as a consequence of the
fault geometry and of the mechanical properties of the
surrounding media.

During and after an earthquake, as a seismic wave
propagates in a real media a certain amount of its
carried energy is lost through being converted into
heat. This effect is usually modelled introducing an
attenuation coefficient named α:

α = π
f

V Q
, (5)

where f is the frequency, V is the wave velocity inside
the medium and Q is the so-called Q factor defined as

Q = − E

2πΔE
, (6)

where E is the peak strain energy and ΔE is the
energy stored per cycle. The energy (density) E is the
sum of the kinetic energy K and potential energy W ,
namely :

E = K + W, (7)

where

K = 1

2
ρu̇2, (8)
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and

W = 1

2
τij eij , (9)

In (9) τij and eij represent the stress and the strain
tensors, respectively (Shearer 2009). These quantities
can be written as functions of the displacement and its
derivative as follows

τij = λδij ∂kuk + μ(∂iuj + ∂jui), eij = 1

2
(∂iuj + ∂jui).

(10)

According to our knowledge a specific theory of the
bend loss for trapped seismic energy has not been
yet developed. However, this phenomenon can also be
described using Snell’s law and it looks reasonable to
assume that a particular geometric configuration, such
as the bending of a FZ, can be associated with an extra
energy release as for an optical cable. For this reason
we introduce a bending attenuation constant αr , that
is a complex function of the geometric and mechani-
cal parameters of the problem. αr can be modelled in
many different ways, depending on the approximation
adopted to solve the propagation of waves in guid-
ing structure (see, for example, Gloge 1976; Marcuse
1971, 1976 and reference therein).

Here, due to the complexity of the FZ structure, we
adopt the simplest approach by assuming

αr = C1e
−C2r , (11)

where r is the radius of curvature of the waveguide
and C1 and C2 are constants. In the optical framework
these constants depend on many parameters such as
magnetic permeability of the free space, propagation
constant, refractive indexes and many others. In this
context due to the lack of a suitable theoretical model
we calculate C1 and C2 experimentally at the end of
Section 3. In Section 3 the values of these constants
will be estimated using the numerical results in some
simple configurations.

A third factor producing the seismic wave attenu-
ation is the scattering, due to the presence of obsta-
cles such as fractures and fluid filled pores that
mostly constitute the fault zones. These irregulari-
ties and their distribution strongly contribute to the
energy dissipation and to the seismic wave propaga-
tion. Many papers in the literature account for these
effects, such as Jahnke et al. (2002) and Gulley et al.
(2017ba, b) and many others. However, in our model,

we decide to neglect scattering attenuation, and focus
on the geometric contribution to the FZ shape. The
contribution of the anisotropies, both in the fault zone
and in the bedrock, will be included in a forthcoming
paper still in preparation.

2 Numerical method

Let us consider (1) supplemented with the absorbing
boundary conditions

∂u

∂t
= −VSH

du

dn
, x ∈ ∂Ω, (12)

where n is a unit outer normal vector to the domain Ω .
As for the initial conditions, we assume that both the
displacement and velocity at the starting time t = 0
are equal to 0, namely

∂u

∂t
= u = 0 x ∈ Ω, t = 0. (13)

In order to obtain the weak formulation of problem (1)
with boundary conditions (12) we first multiply equa-
tion (1) by the regular test function v, integrate over
Ω , use Green’s formula and then boundary conditions
(12), which results in

a(u, v) = b(u, v) + l(v), ∀v ∈ H 1(Ω), (14)

where

a(u, v) =
∫

Ω

∂ttuvdΩ, (15)

b(u, v) = −V 2
SH

∫
Ω

∇u·∇vdΩ−VSH

∫
∂Ω

∂tuvd∂Ω,

(16)

l(v) =
∫

Ω

SvdΩ. (17)

Let us divide the domain Ω into triangles ΩK ,
K = 1, ..., ne and choose the approximate solution
uh(t, x) in the form uh(t, x) = ∑

ui(t)φi(x). Substi-
tuting the approximate solution into (14) and choosing
v = φi(x) one arrives to the semi-discrete system

MÜ + BU̇ = −AU + F, (18)
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where

M = {mij }ni,j=1, mij =
∫

Ω

φiφjdΩ, (19)

A = {aij }ni,j=1, aij = V 2
SH

∫
Ω

∇φi · ∇φjdΩ, (20)

B = {bij }ni,j=1, bij =
∫

∂Ω

φiφjd∂Ω, (21)

F = {fi(t)}ni=1, fi =
∫

Ω

SφidΩ, (22)

U = {ui(t)}ni=1. (23)

Let us denote Uk = U(tk), Fk = F(tk). For the
time discretization we use the leapfrog method of the
form

(
M + Δt

2
B

)
Uk+1 = (2M − (Δt)2A)Uk

−
(

M − Δt

2
B

)
Uk−1 + (Δt)2Fk,(24)

with the first timestep

MU1 =
(

M − (Δt)2

2
A

)
U0 + (Δt)2

2
F 0. (25)

It should be noted that the choice of the leapfrog
timestepping method is motivated by the fact that this
method is explicit, and therefore, finding the solution
on each timestep does not require solving a linear sys-
tem (in the case of the mass lumping described below
that leads to diagonal mass matrix) unlike in case of
implicit methods. This is especially useful since the
large number of finite elements in our problem would
make it too time consuming to solve the linear system
at each timestep (Igel 2017).

Besides, as we are dealing with a hyperbolic equa-
tion, the use of explicit over implicit methods is typical
because of the CFL condition (Maggio and Quarteroni
1994; Wendroff 1968; Strikwerda 2004).

Let us now introduce the spectral element nodes
and basis functions that lead to a diagonal mass matrix
M as shown in Cohen et al. (2001). In the case of

quadratic elements for the reference triangle the nodes
are defined as Si — the vertices of the triangle, Mi —
the midpoints of the triangle sides, G — its centroid.
The basis functions wG, w

Si

2i and w
Mi

2i in this case are
described by

wG = 27b,w
Si

2i = p
Si

2i +9b,w
Mi

2i = p
Mi

2i −12b, b = λ1λ2λ3,

(26)

where λi are the barycentric coordinates and p
Si

2i ,

p
Mi

2i are the standard P2 basis functions on triangular
elements.

Finally, the corresponding weights in the quadra-
ture formulae are given by ws = 1/20, we =
2/15, wG = 9/20. For the case of higher order ele-
ments, see Cohen et al. (2001), Giraldo and Taylor
(2006), and Mulder (2001).

Unfortunately, in the case of triangular finite ele-
ments, the matrix M+Δt

2 B is non-diagonal. In order to
avoid inverting the matrix M + Δt

2 B we proceed in the
following way. Let us divide the finite element nodes
in two sets: the ones lying inside the domain Ω and
the ones lying on the boundary ∂Ω . On each timestep
we find the approximate solution separately for these
two sets. It can be seen that, for the points inside the
domain, the corresponding matrix of the linear system
is diagonal, so this part can be solved directly. As for
the system that corresponds to the points lying on the
boundary ∂Ω , the matrix of the related linear system
is non-diagonal, but the dimension of this part is much
smaller than of the original system. In other words, the
space dimension of this part is reduced by one, since
in this case we consider only the boundary nodes. As a
result, if the original problem is two-dimensional, this
part of the matrix M + Δt

2 B can be inverted without
major difficulties.

3 Results and discussion

We consider a two-dimensional (2D) domain Ω hav-
ing sides of 10 × 20 km, containing a curved or a
straight fault as in Fig. 1. The bottom left corner of
the domain corresponds to the origin of the Cartesian
coordinates, that is ((0, 0) km). On all the boundaries
absorbing conditions are prescribed as in (12).

The geometric parameters of the problem are the
thickness of the fault h, the radius of the curvature r

and the velocity ratio β, that is the velocity reduction
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inside the fault zone with respect to surrounding
media. From the geological literature we know that h

ranges between and hundreds of meters, whereas β is
in the range 0.2–0.6 (Huang and Ampuero 2011; Li
and Vidale 1996; Kuwahara and Ito 2002). Although
β and h are, in general, variable within a real FZ struc-
ture, here we will assume that both are constant. From
here we label all the physical and geometric parame-
ters related to the fault zone with a subscript FZ and
the parameters related with surrounding media with a
subscript O.

Within this paper we consider a constant value for
velocity in the surrounding media (VO = 1000 m/s),
and different values of the velocity inside the fault
zone, namely VFZ = 400, 600, 800 m/s. In other
words we consider a velocity reduction of 60%, 40%
and 20% with respect to the surrounding rock, that
means β = 0.6, 0.4, 0.2 respectively. We also point
out that in our framework the parameter choice refers
to a superficial layer on the crustal model.

Three different values of the fault thickness are
also considered, h = 0.25, 0.5, 1 km. We remark
that a smaller thickness is theoretically possible but
adds numerical difficulties as more finite elements and
smaller timestep may be required to get favourable
results.

Concerning the radius of curvature r , this parame-
ter is more difficult to estimate because the fault zones
are composed of a sequence of cracks and their struc-
ture is often very complicated and not well known.
Here we consider r = 1 km and r = 4 km. The source,
located at (5.0, 3.5) km, is modelled as a delta-source
using (2) and (3). Obviously it does not represent a
real earthquake, but it is able to generate well trapped
waves inside our structure, as we will show later. We
remark that there are two parameters which character-
ize the source, namely M0 and τ . The first controls
the amplitude of the incoming waves, the second their
frequencies, which we choose as τ = 0.05 s. The
behaviour of the source together with its fast Fourier
transform is given in Fig. 2a. Observing Fig. 2b it
is clear that the source contains all frequencies, with
most of the spectrum in the range [0–5] Hz. Low fre-
quency f means a large wavelength λ ( f = V/λ).
The wavelengths corresponding to f = 5 Hz for the
VFZ considered within this paper are λ = 80 m for
VFZ = 400 m/s, λ = 120 m for VFZ = 600 m/s,
and λ = 160 m for VFZ = 800 m/s. Therefore, all the
wavelengths taken into account are small enough to

see a fault zone having thickness in the range 0.25–1
km and we expect trapped waves to be observed.

Finally we remark that due to the linearity of the
problem, M0 plays the role of a scale factor. Here we
set M0 = 1016 Nm.

The signal, the displacement u in this case, is
detected at three seismograph locations (LS). We
name the LS point located inside the fault LSC ,
whereas LSR and LSL are on the right and left side of
the fault respectively, at distance (in the normal direc-
tion) of 500 m from the fault zone boundary. Some
related test with distances equal to 50 m and 150 m
will also be discussed at the end of this Section.

As we want to focus on the effects of the fault shape
on the trapped waves, we locate the point source at the
beginning of the fault far enough from the bend and
boundary of the domain, in order to allow the wave
to be well trapped and to avoid reflection from the
domain boundaries.

The source point is located exactly in the middle
of the fault although it is known that the maximum
capability of the fault to trap waves can be observed
for sources located at the fault boundaries. This is
because in our model it is very important to have a
symmetric source to observe the effect of the curva-
ture. In other words, for a straight fault no differences
can be observed for the displacement recorded by LSL

and LSR due to the symmetry of the problem and all
the differences recorded for the curved shape can be
attributed mostly to the curvature itself.

However, for the sake of completeness we have
also investigated the effect of the source position, the
results of which are displayed in the Appendix.

First of all we verify that, as expected, the waves are
well trapped before they reach the curve. We compare
the displacement observed at LSC for a straight fault
with the signal detected at the same location in a plain
domain. We analyse in detail the case correspond-
ing to VFZ = 600 m/s. The displacement has been
recorded for all the three values of the thickness at
LSC and LSR (see Fig. 3). For the straight fault, after
the first peak arrives at LSC , large oscillations in the
displacement can be observed for many seconds, for
all values of the FZ thickness. On the contrary, in the
homogeneous case after the first waves arrive, the dis-
placement decays quite quickly. A similar behaviour
of the displacement can be observed at LSR , the oscil-
lations have a similar frequency but smaller amplitude
compared to those inside the fault, this is due to the
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Fig. 2 Source and its
Fourier transform for
τ = 0.05 s

different mechanical properties between the FZ and
the surrounding media as well as the transmission of
the trapped signal at the interface between the two
media. Similar behaviour can be observed for the other
two velocities studied, VFZ = 400 m/s and VFZ =
800 m/s, see Fig. 14a and b in the Appendix. Finally,
we observe that when decreasing the velocity inside
the FZ the trapped waves become less compact as
observed in Li and Vidale (1996).

As mentioned before, in our framework, the simu-
lation parameters refer to the crustal layer. To analyse
the wave behaviour at deeper regions we set VO =

3000 m/s, VFZ = 2000 m/s and compare the recorded
signal at LSL and LSR for two different radii r = 1
km and r = 4 km. Three different values of fault
thickness, h = 0.25, 0.5, 1 km, are considered in com-
parison with the homogeneous case (VFZ = VO =
2000). The results are displayed in Fig. 4, where we
can observe a displacement behaviour qualitatively
similar to the one already described above for lower
wave speeds.

Having verified that the fault zone, as we designed
it, is able to trap waves, we start the parametric
analysis of our model focusing on the effects of the

Fig. 3 Displacement u for
the velocity VFZ = 600
m/s, detected at LSC and
LSR , each curve refers to a
different FZ thickness
h = 1, 0.5, 0.25 km in red,
blue, and green respectively.
The black curve refers to
the homogeneous case with
VO = VFZ

10 11 12 13 14 15 16 17 18 19 20
-5

0

5

10 11 12 13 14 15 16 17 18 19 20
-0.5

0

0.5

1

1.5
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Fig. 4 Displacements at
LSL and LSR for
VFZ = 2000 m/s and
VO = 3000 m/s. Two radii
of curvature are considered
r = 1 km and r = 4 km
(first and second lines,
respectively). (a) LSL with
r = 1 km. (b) LSR with
r = 1 km. (c) LSL with
r = 4 km. (d) LSR with
r = 4 km

curvature and on the trapped energy release. Also
in this case we discuss in detail what happens for
VFZ = 600 m/s. We start by considering a width value
h = 0.25 km, then we increase it until h = 1 km.
A decrease in thickness leads to an increase in the
frequency of the trapped waves, as expected. The dis-
placement, recorded at the LSR and LSL, for each of
the velocities are plotted in Fig. 5 for a radius of cur-
vature r = 1 km and r = 4 km, and for the straight
fault, namely r∞. The first peak has a similar ampli-
tude of approximately 0.6 cm. However for r∞ the
oscillation decays in amplitude quite fast, whereas for
a bending fault the oscillation remains almost constant
in amplitude for 10 s. On the opposite location, namely
on the right side, for all three radii we observe similar
behaviour.

Similar effects can be observed for the other two
velocities taken into account (see Fig. 15a and b in
the Appendix), except the case VFZ = 400 m/s and
r = 4 km where the bending effect is smaller. Indeed
according to the definition of the critical angle (4),
θc decreases as VFZ decreases, and a larger amount
of energy remains trapped, reducing the effect of the
bending.

As noted in the previous section, the displacement
in the direction of the LSL is larger than that on the

right side of the domain. Therefore, a strong release of
energy from the curved faults in the left direction can
be expected.

To quantify this effect we plot the integral kinetic
energy normalized with respect to the density ρ,
namely IK(t) = ∫ t

0 u̇2.
We studied the amount of normalized kinetic

energy IK(t) transmitted by the fault to LSL and
LSR for three different values of fault thickness h =
0.25 km, h = 0.5 km and h = 1 km. All the combina-
tions of the fault zone velocity and radius of curvature
are considered. We discuss, in detail, the case corre-
sponding to the fault thickness of 0.5 km, plotted in
Fig. 6 (plots related to the other two cases are reported
in Appendix Figs. 16 and 17).

In the case r = 1 km we get IK |LSL
> IK |LSR

for all the noted velocities. At the beginning of the
curve, a transient time for which IK |LSR

> IK |LSL

is observed. This effect is due to the first peak arrival
time that is smaller for LSR because this recorder is
closest to the source. Similar observations can be done
also for large curvature, that is r = 4 km, except
for VFZ = 400 m/s, where the behaviour is com-
pletely different and IK |LSR

> IK |LSL
almost every-

where. As we have observed before in this case the
effect of the bending is reduced and the effect of the
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Fig. 5 Displacement u for velocity VFZ = 600 m/s detected at LSL and LSR , each line refers to a different FZ thickness h =
0.25, 0.5, 1 km, r = 1.0, 4.0 km and r = ∞ in red, blue and green respectively

distance between source point and LS point becomes
dominant.

Similar behaviour can be observed in the Appendix
for the other fault thicknesses (h), as displayed in
Fig. 16, for h = 0.25 km, and Fig. 17, for h = 1 km.

Let IK(Tp) be the plateau value for the function
IK(t). We remark that the plateau is reached at a dif-
ferent time Tp for each FZ velocity we select. IK(t)

represents the kinetic total energy (normalized by the
density) released in a certain point. In Fig. 7 the
plateau value is plotted as a function of the radius

of curvature, for all the velocities VFZ and the FZ
thickness.

The behaviour of the energy and of its cumula-
tive function depends on many parameters, such as
geometry and mechanical properties of the domain
as well as source frequency spectrum. However some
common threads can be observed in Fig. 7 (and
Figs. 18 and 19 in the Appendix): a) IK(Tp)LSR

and
IK(Tp)LSC

are almost constant except for the case
VFZ = 400m/s where some oscillations are visi-
ble, b) IK(Tp)LSL

looks almost radius independent
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Fig. 6 IK for fault thickness h = 0.5 km at LSL (red) and LSR (blue), r = 1.0, 4.0 km and VFZ = 400, 600, 800 m/s

Fig. 7 Dependence of the total energy IK(Tp) on radius of curvature r for the fault thickness h = 0.5 km at LSL, LSC and LSR ,
VFZ = 400, 600, 800 m/s in red, blue and green respectively
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Fig. 8 Dependence of the total energy IK(Tp) on FZ velocity VFZ for the fault thickness h = 0.5 km at LSL, LSC and LSR ,
r = 1.0, 4.0 km in red and blue respectively

anddecays as the radius of curvature increases, c)
IK(Tp)LSL

> IK(Tp)LSR
. Concerning the last point,

we remark that all the data presented within this
paper refer to 0.5 km distance between the LS points
and the fault boundaries, although we expect that
the curvature effect will increase when that distance
is reduced. Therefore, we compare the cumulative
energy released by the fault at LSR and LSL for dif-
ferent LS-fault boundary distances (500, 150 and 50
m). In particular we consider VFZ = 600 m/s and
h = 0.5 km. Results are displayed in Fig. 9. We see
that as the distance increases the energy released is
increased and the fault bending effect becomes more
pronounced. According to Fig. 7 (and Figs. 18 and 19
in the Appendix) the trigger parameter for the energy
lost is the curvature radius of the fault, the ratio β

between velocity inside and outside the FZ does not
play any role. To verify this effect in Fig. 8 (and
Figs. 20 and 21 in the Appendix) we plot IK(Tp)

as a function of the velocity inside the FZ. Also in
this case some common threads can be observed: a)
IK(Tp)LSR

and IK(Tp)LSC
decay quite fast, although

some oscillation is noticeable for small velocities at
LSR , b) IK(Tp)LSL

looks velocity independent and
remains almost constant in a wide range of veloci-
ties, c) IK(Tp)LSL

> IK(Tp)LSR
for all velocities if

r = 1 km (Fig. 9).

Finally, to verify the formula (11) we compute
numerically the parameter αr , as

αr = − 1

πr

IEout − IEin

IEin

, (27)

where IEin
= ∫ T

0

∫
lin

Eindlindt and IEin
= ∫ T

0∫
lout

Eoutdloutdt are the integrals of incoming energy
Ein and outgoing energy Eout (given by (7)) that pass
through the cross-sections lin and lout respectively
(Fig. 1). In other words, IEin

and IEout are calculated
as the line integrals over time along the corresponding
cross-section using numerical quadrature. The bend-
ing attenuation constant αr is then obtained as the ratio
between the integrals of total energy lost per unit fault
length through the curved part of the fault and the inte-
gral of incoming total energy IEin

. Since the length
of the curved part of the fault is equal to πr

2 , in order
to obtain the energy lost per unit fault length of the
curved part, we have to normalize it by the factor of
πr
2 . The exponential behaviour is well fitted by the

numerical data at least for the higher velocities 600
m/s and 800 m/s (see Fig. 10). The constants C1 and
C2 are estimated, for τ = 0.05 s, using a SCILAB
function for a data fitting.

Test C1, 1/km C2, 1/km e

τ = 0.05 s, VFZ = 400 m/s 0.20 1.02 4.56 · 10−4
τ = 0.05 s, VFZ = 600 m/s 0.43 0.95 2.79 · 10−4
τ = 0.05 s, VFZ = 800 m/s 0.51 0.65 3.37 · 10−4
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Fig. 9 IK for velocity VFZ = 600 m/s and FZ thickness h = 0.5 km, r = 1.0, 4.0 km and r = ∞ with distance from the faults equal
to 50, 150 and 500 m in red, blue and green respectively

Fig. 10 Dependence of the parameter αr on radius of curvature r for τ=0.05 s
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4 Conclusions and further studies

In the paper we have investigated the effect of the fault
geometry on the SH waves propagation. Contrary to
the available literature (for example Ben-Zion 1989,
2003) where the 2-D vertical section is analysed, in
this study the fault is located at a certain depth in
the horizontal plane to better appreciate the effect of
the bending. In other words we analyse a horizontal
section of the fault zone instead of the usual verti-
cal one. We have investigated bending effects while
varying fault zone thickness and found (see Figs. 5
and 15 in the Appendix) that the fault zones are able
to guide trapped waves through curved geometries
according to the stated aim of this paper. In particu-
lar we have shown that a greater amount of energy is
released in the direction of the negative curvature of
the fault. According to our study, the velocity inside
the fault does not affect the energy release in a strong
way (see Figs. 7c and 18c and 19c in the Appendix).
However it strongly depends on the radius of curva-
ture (see Figs. 8c and 20c and 21c in the Appendix).
We treated only simple 2D geometric cases, a deeper
understanding of the phenomena could be obtained
from an extension into 3D and the addition of realis-
tic geological features inside the studied domain. This
work was performed as a preliminary study into poten-
tial fault guide effects, which have been proven, before
undertaking more complicated tests on a more real-
istic domain. A new set of tests will be performed
by using SPEED (SPectral Elements in Elastodynam-
ics with Discontinuous Galerkin- http://speed.mox.
polimi.it/). SPEED is an open-source code able to
simulate seismic events in a three-dimensional recon-
structed domain (Mazzieri et al. 2013; Antonietti et al.
2012). Using this tool we will be able to include com-
plex fault zones and we will evaluate in more detail the
effects of the fault zone shape on wave propagation.

Appendix

A.1 Derivation of the energy conservation law for
seismic waves

The energy density carried by seismic waves can be
expressed as a sum between the kinetic energy den-
sity (K) and the potential energy density (W ), as
E = K + W while K , as usual, can be written

as

K = 1

2
ρu̇2,

the derivation of W (strain energy functional), is
classically based on mechanical and thermodynamic

Fig. 11 A representation (not to scale) of the simulation
domain in the case of a bent fault. With the labels S, S1, S2 and
S3 we identify the source locations, with the labels LSR , LSL

we identify respectively the monitored points on the right and
left side of the fault zone. The radius of the bent fault the is
labeled as r
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Fig. 12 Displacements at LSL and LSR for VFZ = 800 m/s and VO = 1000 m/s. Two radii of curvature (r = 1 km and r = 4 km)
have been considered. The fault thickness is h = 1 km

Fig. 13 Dependence of the displacements u on the bending angle for the fault thickness h = 1 km and FZ velocity VFZ = 800 m/s
at LSC , LSR and LSL, bending angles equal to 45, 60 and 90 degrees in red, blue and green respectively
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considerations (Aki and Richards 2002). Therefore,
for convenience of the reader, in the following, we
sketch the derivation of W (see Aki and Richards 2002

for more details). In our case we consider the system
to be adiabatic, namely that there is no heat exchange
with the exterior.

Fig. 14 Displacement u for
the velocity VFZ = 400 m/s
(a) VFZ = 800 (b),
detected at LSC and LSR ,
each curve refers to a
different FZ thickness
h = 1, 0.5, 0.25 km in red,
blue, and green respectively.
The black curve refers to
the homogeneous case with
VO = VFZ
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Fig. 15 Displacement u for
velocity VFZ = 400 m/s (a),
VFZ = 800 m/s (b) detected
at LSL and LSR , each row
pair refers to a different FZ
thickness h = 0.25, 0.5, 1
km, r = 1.0, 4.0 km and
r = ∞ in red, blue and
green respectively
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Fig. 16 IK for fault thickness h = 0.25 km at LSL (red) and LSR (blue), r = 1.0, 4.0 km and VFZ = 400, 600, 800 m/s

Let B an elastic body having volume V and bound-
ary surface S. The variation of the total energy (kinetic
+ potential) per “infinitesimal time” Ė, coincides with
the variation of the related mechanical energy.

In view of Gauss’s divergence theorem it is not
difficult to show that

Ė = ∂

∂t

∫
V

ρ

2
u̇i u̇j dV +

∫
V

τij ėij dV (28)

where u denotes the displacement vector and τij

and eij represent the stress and the strain tensors,
respectively.

As mentioned previously the kinetic contribution
to the energy increase follows the standard law of
classical mechanics; therefore,

K̇ = ∂

∂t

∫
V

ρ

2
u̇i u̇i dV (29)

In view of the expressions (28)–(29) the internal
energy U for adiabatic process, can be written in
differential form as

dU = τij deij . (30)

hence U = W. Then, for instance in the Hookean case,
after some simple calculations it follows that

W = 1

2
τij eij . (31)

A.2 Source position and bending angles effects

Within this work all of the tests use a source located
at the center of the fault zone at the same distance
with respect to the left and right fault boundary. In
this way the system is symmetric except for the fault
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Fig. 17 IK for fault thickness h = 1 km at LSL (red) and LSR (blue), r = 1.0, 4.0 km and VFZ = 400, 600, 800 m/s

Fig. 18 Dependence of the total energy IK(Tp) on radius of curvature r for the fault thickness h = 0.25 km at LSL, LSC and LSR ,
VFZ = 400, 600, 800 m/s in red, blue and green respectively
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Fig. 19 Dependence of the total energy IK(Tp) on radius of curvature r for the fault thickness h = 1 km at LSL, LSC and LSR ,
VFZ = 400, 600, 800 m/s in red, blue and green respectively

Fig. 20 Dependence of the total energy IK(Tp) on FZ velocity VFZ from 400 to 1000 m/s for the fault thickness h = 0.25 km at
LSL, LSC and LSR , r = 1.0, 4.0 km in red and blue respectively

Fig. 21 Dependence of the total energy IK(Tp) on FZ velocity VFZ for the fault thickness h = 1 km at LSL, LSC and LSR ,
r = 1.0, 4.0 km in red and blue respectively
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bending. To evaluate the effect of the source we con-
sider four different sources at different positions as
in Fig. 11. The results are displayed in Fig. 12, for
two radii of curvature r = 1 km (Fig. 12a and b)
and r = 4 km (Fig. 12c and d). The fault thickness
is 1 km. For both LSL and LSR the behaviour of the
recorded signal is quite close to each other, for S3 this
presents remarkable differences due to the fact that the
source is located outside the fault in a material having
different mechanical properties.

Finally we discuss the effect of angle of bending
that in Section 3 is assumed to be 90◦. Here we con-
sider and compare 3 different values of the bending
angle, namely 90◦, 60◦ and 45◦, to better approxi-
mate the real fault zone total bending angle (Fig. 13).
According to this preliminary results for the selected
frequency range, the effects of the bending values
remain remarkable for angles greater then 60◦, but dif-
ferent set of mechanical and physical parameters must
be considered to better understand the phenomenon
not only with respect to the main curvature of the FZ,
but also with respect to the often more pronounced
local curvatures.

A.3 Other tests

In this section we collect the figures mentioned in
the main text and moved here for greater readability.
All the pictures are cited in Section 3 and carefully
described in the captions
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