
         
 

 
UNIVERSITÀ DEGLI STUDI DELL'AQUILA 

DIPARTIMENTO DI INGEGNERIA E SCIENZE DELL’INFORMAZIONE E 
MATEMATICA (DISIM) 

 
 
 

 
Dottorato di Ricerca in Matematica e Modelli 

XXXV ciclo 

 
 
 
 
 

Titolo della tesi 

New Frontiers in Cable Mechanics: Modeling and Design of a Smart Cable 

 
SSD ICAR/08 SCIENZA DELLE COSTRUZIONI 

 
 
 

 
 

Dottorando 

Mahadeb Kumar Das 

 

 

 

Coordinatore del corso       Tutore 

Prof. Davide Gabrielli        Prof. Angelo Luongo  

_____________________       ___________________ 

 

Co-supervisore                                                                                  Supervisore 

Prof. Manuel Ferretti                                                                      Prof. Francesco D’Annibale 
 
_____________________                                                                 ________________________ 

 

A.A. 2021/2022 



New Frontiers in Cable Mechanics:
Modeling and Design of a Smart

Cable

Submitted By
Mahadeb Kumar Das
Student ID: 269100

DISIM-Dipartimento di Ingegneria e Scienze dell’Informazione e
Matematica

Submitted To
DISIM-Dipartimento di Ingegneria e Scienze dell’Informazione e

Matematica
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Supervised by
Prof. Angelo Luongo

Co-supervised by
Prof. Manuel Ferretti & Prof. Francesco D’Annibale

DICEAA-Dipartimento di Ingegneria civile, edile - architettura e
ambientale

University of L’Aquila, Italy, 2023



This PhD research work is co-financed with the resources
from the 2014-2020 National Operational Program (CCI
2014IT16M2OP005), European Social Fund, Action I.1 "In-
novative Doctorates with an industrial framework"

(a) (b) (c)

i



ACKNOWLEDGMENTS

At first I express my greatest and deepest gratitude to the almighty, the supreme of

the universe, to whom all praises go for enabling me to complete my PhD research

work.

It gives me great pleasure to express my deepest gratitude and appreciation to my

supervisor Prof. Angelo Luongo and co-supervisors Prof. Manuel Ferretti and

Prof. Francesco D’Annibale, DICEAA-Dipartimento di Ingegneria civile, edile

- architettura e ambientale, and coordinator Prof. Davide Gabrielli, DISIM-

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, University

of L’Aquila, Italy, for their willingness to accept me as research student and for

their constant supervision, effective guidance, invaluable instructions and endless

encouragement in preparing this thesis. I would also like to thank my supervi-

sors for their earnest feelings and enthusiasm, which help in matters concerning

my research affairs, and above all for always being there as my mentors. Their

suggestions drove me towards better ways of thinking, their reviews enriched

me in solving problems, and their support gave me strength at the time of my

dissappointment. I take this opportunity to express my great indebtedness to the

authority of the PON scholarship including the administrative staff and all the

honorable and respected teachers at the University of L’Aquila, Italy, for giving me

such a great opportunity to learn and acquire knowledge.

Finally, I wish to express my deepest sense of gratitude and love to my mother

Mandari Das, who was died on 27th of April 2017.

Above all, I am lucky to get Prof. Angelo Luongo, Prof. Manuel Ferretti and Prof.

Francesco D’Annibale as my supervisors and for this, I am very grateful to the

supreme almighty who enabled us to reach a successful end and also wish for my

supervisors longevity.

ii



ABSTRACT

The galloping instability of a suspended shallow flexible cable (possibly ice-accreted)

has been studied via a linear continuum model. The cable is suspended from the

same level of two supports and modeled as a linear one-dimensional structure

embedded in a three-dimensional space. External and internal damping are con-

sidered according to the Rayleigh model of damping, and the aerodynamic forces

are modeled under the assumption of quasi-steady theory. Two critical galloping

modes, in-plane and out-of-plane components, have been studied through an exact

analysis by solving a boundary value problem. An analytical analysis, through a

straight-forward perturbation method has been applied to analyze the galloping

phenomenon in three resonance conditions: non-resonant, one-one resonant and

one-one-one resonant cases. Lastly, two numerical approaches have also been

employed, and the outcomes have been compared with the exact and analytical

solutions, presented with figures and tables. The insight is that the coupling leads

to either lower or higher critical velocities compared with the prediction made by

the simplified planar model. Parallelly, a piezoelectric damper has been designed

to control the vibration of a straight single cable structure, tuned with the shunt

circuits. The optimal placement of the damper, and optimization of geometrical

and mechanical parameters have been described. The control procedure and per-

formance of the damper in terms of longitudinal and transversal vibrations are

presented. It is noticed that the LR and NC-R shunts show remarkable suppression

of vibrations. An energy harvester has also been designed and the energy has been

harvested from the structure as electric power. The harvester has been analyzed

in terms of frequency, electric load resistance, and acceleration dependence. The

amount of energy extracted from the PVDF energy harvester is low as the input

mechanical energy is low due to the hardness of the flexible cable to transfer

deformation to the piezoelectric tube and the dissipation of energy through the

circuit.
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NOMENCLATURE

aα, āα Unit vectors of the bases B f and B̄ f , (α= t,n,b), respectively

ai, āi Unit vectors of the bases B and B̄ , (i = 1,2,3), respectively

x Position vector in the current configuration

x̄ Position vector in the reference configuration

B ,B̄ ,Be current, reference and external bases

B̄ f Frenet basis

t0 Internal stress

p0,P0H Preloads

p Linear force density

PH End force

u Displacements

u (s, t) Tangential displacement

v (s, t) Normal displacement

w (s, t) Out-of-plane displacement

T0 Prestress of the cable

EA Axial stiffness

m Mass per unit length of iced cable

l Length of the cable

κ̄ Prestress curvature

e (t) Dynamic unit extension

f d
n Damping forces

f a
n Aerodynamic forces

ce Damping coefficient

η,ζ Viscosity coefficient
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ρ Air density

b Characteristic length of the cross-section

ω Modal frequency

Uc Critical wind velocity

cd Drag coefficient

cl Lift coefficient

ε Perturbation parameter

d Sag of the suspended cable

Λ2 Irvine parameter

ĉa1, ĉa
22, ĉa

23, ĉa
32, ĉa

33 Aerodynamic coefficients

ωc Modal frequency

P Applied force

q j Generalized coordinates

φ j Trial functions

δi j Kronecker delta

α,γ Initial attack angles

Overmarks

(·)′ space-derivative

˙(·) time-derivative

(·)0 preload and prestress

˜(·) incremental load or stress
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C H A P T E R 1

INTRODUCTION

1.1 Research Motivation

For tension structures, cables are broadly used, which is one of the most important

and mechanically efficient structural elements. They can be made of Copper, Silver,

Steel, fiberglass, and polyester. Suspended cable materials are light weight, flexible,

resistance of high tension, and these mechanical and physical properties are taken

into account to use them in different mechanical, civil, ocean, electrical and other

engineering applications by way of illustration in suspension and cable-stayed

bridges, guyed towers and mooring structures. They are the best media to carry

loads, transmit forces, and conduct of signals within long distances. The research

focuses on the modeling, design and implementation of cables with intelligent

functions.

The static and dynamic behavior of cables include free vibrations, reaction to

driving excitation, and experimental observations of the oscillation. For a long time

and in recent years, the study of cable problems in terms of the modes of vibration

and natural frequencies has been an important subject and has received much

attention among the researchers. Investigations by these time were conducted

by various researchers on suspended cables e.g. [21, 42, 44, 52, 56, 58, 61, 71, 90,

91, 120], the theory of vibration has been refined considerably. Many works had

done previously on this topic of the theory of cable vibration was restricted with

predefined conditions, such as cable was considered inextensible and purely flexible.

In recent years, the development of cable dynamics has got some enforcement by

considering the elasticity effect, sag-to-span ratio, and wind attack angles.
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1.2 Research Background and Historical Review
of Literature

We represent here, a historical review based on the references described in [42],

and then the development of theories as well as recent studies on this relevant

topic of suspended cables.

From the sketches of Leonardo da Vinci in fifteenth century, the notion of catenary

system has been found [86]. It predicted the result of loaded strings and other

related things such as the idea of mechanism of the collapse of voussoir arch. From

the description in the book "A span of bridges: an illustrated history", Stevin [34]

carried out experiments of strings with loaded mass. From the experiments, he

developed the theory of the formation of triangle forces. The study of the above

book was for the suspension bridges that stated "a cable hangs in a parabolic arc".

According to Truesdell [101] and Irvine [42], Beeckman solved the suspension

bridge problem by 1615 for the uniformly distributed loads. Contrary to this study,

in mid-seventeenth century, Leibnitz and Huygens, James Bernoulli and John

Bernoulli came to a conclusion that the shape of a hanging cable is catenary. They

used different approaches to discover the catenary, for example, Bernoulli brothers

and Leibnitz used calculus, and Huygen followed the geometrical approach. The

vibration of taut strings was studied extensively in the early part of the eighteenth

century. Daniel Bernoulli studied transverse oscillations of a hanging uniform

cable under the self weight whose one end was supported. Later, the same problem

was analyzed by L. Euler as mentioned in [101]. They proposed the solution of the

natural frequency in terms of infinite series. On that period, a lot of attention had

received of the investigation on discrete systems. In 1788, by Lagrange, described

in [106], a solution was proposed for vibrations of a massless, extensible string

whose both ends were fixed and many dead loads were hung. A configuaration,

like this of suspended masses described the cable as the uniform self-loading. To

describe the cable vibration, a breakthrough contribution was given by Poisson

in 1820, see [42]. He established the equation of motion, in the form of partial

differential equations, of a cable taking in consideration of general loading sys-

tem. These equations were used to improve the previously obtained solutions of

the problem of taut strings and vertically suspended cable. So that, the correct

form of solutions of the linear natural vibrations of the uniform suspended ca-

ble were presented by restricting in stationary form of catenary. Till then except

Lagrange’s work, the theory of cable vibration taking in consideration of cable

sag was not presented. With the help of general equations of Poisson’s correct to

the first order, Rohrs [93] consulting with Stokes, has developed an approximate

solution of symmetric-vertical vibrations taking into account a small sag-to-span

2



CHAPTER 1. INTRODUCTION

ratio of a uniform suspended inextensible cable. Routh [94] in 1868, gave an exact

solution for the symmetric and asymmetric in-plane vibrations of an inextensible

heterogeneous sagging cable suspended vertically in a cycloid form. His results

for the vibration of cycloid cable reduced the solution obtained by Rohr’s for small

sag-to-span ratio of uniform cable. His analysis did not cover the taut cable case

as he limiting his study for the inextensible cable. Gradually, the study of cable

vibration got a diverse applied field to investigate. Also a short review of cable

dynamics was presented by Starossek [97] describing the begining of the modern

mechanics. Den Hartog [17] proposed a vertical galloping mechanism for the vibrat-

ing ice-coated cables by studying experimentally the transmission line oscillations.

He observed high amplitudes for low frequency vibrations of the transverse wind

action on transmission lines. Rannie and Von Karman [95] in 1941, studied a

three-span inextensible cable and attained separately the natural frequencies

for the symmetric and anti-symmetric in-plane modes of vibrations. The cable’s

elasticity was used for the first time by Kloppel and Lie [50] in 1942. Later in

1945, Vincent taking in consideration of cable elasticity, developed Rannie and Von

Karman’s work for the symmetric modes [105]. Pugsley [83] studied a uniformly

suspended chain by giving emphasize on the first three planar modes in 1949 and

proposed a semi-empirical theory to describe its natural frequency. He compared

the obtained solution with experimental results and his previous work as well as

Routh’s work, and allowed the sag-to-span ratio from 1 : 10 up to 1 : 4. Bleich et

al. [2] in 1950, contributed to improve the theory of suspension bridge vibration

taking in consider of the elasticity of cable. But the obtained results for the effects

of elasticity are not percipient comparing with geometrical point of view, because

of the large sag-to-span ratio of the cable. For inextensible cable with effective sag,

Saxon and Cahn [96] conferred theoretical solutions in 1953. These solutions also

improved the previous solutions for the inextensible cable with small sag-to-span

ratio, and using this, the accuracy of asymptotic solution improves with the mode

number, when the sag-to-span ratio is large. In 1961, Goodey [31] investigated the

natural modes and frequencies of dig-sag cables suspended from the same level of

two fixed ends. He used different methods to get the solutions. He obtained the

similar expressions proposed by Saxon and Cahn, using angular displacement

as independent variable. Initially deformed cable vibrating between two fixed

supports was studied by Soler [98] and obtained solution in closed form for the

mode shapes and frequencies. There are some significant discrepancies of natural

frequencies between the symmetric planar modes of inextensible sagged cables

and taut strings. There were no experimental work found until 1970s to describe

this situation. In 1974, Irvine and Caughey [44] showed an accurate description

that the transition range of these two forms needs to include compatible cable
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elasticity. They studied the linear theory of shallow elastic cable and got a solu-

tion in closed form. Their study, first time, gave an immense perception about

the linear theory of free oscillations of fixed rigid supported cable horizontally

suspended from same level of two ends having the sag-to-span ratio from 1 : 8 to

zero approximately. They suggested a parameter combining cable elasticity and

geometry to ecxplain the extensibility of it as well as they gave explanation of

cables symmetric and anti-symmetric in-plane motions. From the experimental

results of symmetric and anti-symmetric planar modes, they predicted about the

modal cross-over points. West et al. [110] studied the natural frequencies and

vibration modes of suspended cables, where a discrete model is used. The cable

is considered as a linked structure consists of some straight bars, which are con-

nected by frictionless pins with concentrated masses. They have also discussed

about the modal cross-over phenomena and the discrepencies found previously for

the inextensible cables. Later, Irvine together with Griffin [43] extended his work

to explore the impact of the fundamental geometric and elastic parameter known

as Irvine parameter Λ2, in the response to the dynamic loading of a suspended

cable causes by support excitement due to earthquake. They presented wave-type

and modal solutions to describe the phenomena. The problem further includes the

analysis of the effects of aerodynamic instabilities. Yamaguchi [113] investigated

large sagged flat and inclined cables using Galerkin method and got approximated

results with great accuracy. He formulated the model of the cable as a flexible and

extensible continuum. The linearized model was solved by formulating a gener-

alized eigenvalue problem discretizing into a finite-DOF system and presented

obtained natural frequencies and shape of modes of the suspended cable. Rega and

Luongo [90] examined in-plane vibrations of inextensible cables with symmetric

movable supports and observed the cross-over points where the sag-to-span ratio

has a wide range of values. For the linear dynamics, they described the way to

insert a spring at one end of a cable, and it is possible to alter the effective value of

Λ2, that interact with the cables low order frequency dynamics.

Nonlinear model of suspended cables was also considered by many researchers

[21, 22, 23, 32, 35, 48, 49, 52, 56, 62, 63, 64, 71, 79, 85, 91, 120]. Owing to cables

quadratic and cubic nonlinearities, to understand the multi-modal dynamics of the

cable, it is important to analyze the internal resonances. Hanghold and Russel [36]

proposed a system of nonlinear equations for the cable structures, which includes

geometric nonlinearity accounting elastic deformation. They studied steady deflec-

tion, natural frequency measurements for small vibrations. For the transmission

lines oscillations having low frequencies and large amplitudes, Hagedorn and

Schäfer [35] investigated non-linear terms effects in the governing equations of

an elastic flexible suspended cable, taking into account of quadratic and cubic
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nonlinearities. They used Ritz-Galerkin method to approximate the solution of the

first normal modes of vibration. These motion components are coupled by cubic

nonlinearities caused by stretching cable and quadratic nonlinearities occured by

the curvature of equilibrium cable to provide a complete 3-dimensional reaction of

the cable known as modal interaction. Nonlinear effects in the governing equation

of a two-degree-of-freedom elastic model of cable suspended by it’s self-weight,

also investigated by Luongo et al. [62]. They analyzed geometric nonlinearities of

monofrequent vibrations to study the motion amplitude and frequency adjustment

of the modal oscillations when the internal resonance is absent. They solved the

quadratic and cubic nonlinearities by multiple time scale perturbation technique.

Later, Luongo et al. [63] developed nonlinear model of an initially deformed elastic

cable continuum through a Lagrangian description and a discrete model is devel-

oped by applying Galerkin method. They also investigated the proper approximate

solution procedure which is consistent to the system. Lee and Perkins [71] devel-

oped a flexible elastic suspended cable model considering the planar excitation

to investigate the interaction of symmetric planar and out-of-plane modes with

two-to-one internal resonances. They used second order perturbation analysis to

study the existence and stability of the solution, where the first order solution

exhibits saturation and jump phenomenon, and cubic and higher order nonlinear-

ities interrupt saturation. The effect of geometric nonlinearity of elastic cables

suspended horizontally was studied in the work of Perkins [85] by addressing

the modal interactions of in-plane and out-of-plane frequencies, which is at 2 : 1

ratio. By multiple scale method of analysis, it is observed that the first order terms

include small damping parameters, and the parametric terms and second order

terms are the external terms. Luongo and Piccardo [56] studied the aeroelastic

phenomenon of a suspended flexible cable subjected by its own weight from two

fixed supports, where the linear eigenfrequencies assumed in 1 : 2 ratio. They

creatively considered the geometric nonlinearity effect along with aerodynamic

effect, while it was neglected in the prevous work of Lee and Perkins [71]. They

also presented the effects of some parameters e.g., geometric cable parameters to

study the critical and post-critical behaviour of the system. One can find a full

description on the different critical conditions and the postcritical behaviour of a

flexible elastic suspended cable in the research work of Luongo et al. [61], where

multiple scale perturbation method was employed to study the internal resonances

and multimodal galloping. Ferretti et al. [23] studied the effects of a single moving

load combined with geometric nonlinearities on Kirchhoff taut strings taking into

account the changing tension. The moving force is considered very small resulting

small displacement and small increment in dynamic tension. They analyzed the

model through analytical and numerical approaches and compared the results.
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On the other hand, Triantafullou [100] studied linear dynamics of taut inclined

cables and derived a general asymptotic solution in 1984. He noticed modal cross-

over phenomena while studying the horizontal cable which coincides with the

prediction of Irvine and Caughey. But for the inclined cable, he did not observe

the cross-over phenomena. Jones [47] derived linearized coupled horizontal and

vertical equations of motion in terms of drag and lift forces. The aerodynamic

parameters of the iced conductor also determined and compared with Den Har-

tog’s criterion. A three-degree-of-freedom model is developed in the work of Yu

et al. [114] by analyzing an iced electrical transmission line to study the gallop-

ing phenomenon. They used perturbation technique to develop the bifurcation

equations assuming weak nonlinearity. Their study includes one non-resonant and

nine internal resonant cases. They have taken in consideration of axial stress and

torsion but neglected the curvature of the cable. A global model and a solution

methodology were proposed by Piccardo [84] to study the aeroelastic phenomena.

The onset of aerodynamic instability with any aeroelastic phenomenon of a system

can be studied by linearizing the model. Two solution approaches of perturbation

analysis were taken into account in the work of Pakdemirli et al. [87], one is

direct approach, applied to governing partial differential equations of suspended

cables with corresponding boundary conditions, and another approach of multiple

scale method, is applied after discretizing the partial differential equations. They

compared the results of both approaches, and discrepancies appear on the first

level of approximated solutions. Van Oudheusden [104] described the quasi-steady

aerodynamic modeling concept and the validity conditions of the similar systems

with two assumptions. Rega et al. [92] used two analytical approaches to develop

an asymptotic model to study the dynamic response of an elastic shallow suspended

cable excited by a harmonic motion. The second order solution may be not unique,

resulting the problem’s inconsistency to apply the method of multiple scale analy-

sis. An effective method of analyzing the impacts of wind force action on cables

is wind tunnel test. The test generally focused on the evaluation of aerodynamic

coefficients with respect to different wind attack angles. The wind tunnel tests

has done by many researchers e.g., [16, 30, 33, 67, 69, 76], in order to investigate

the response characteristics of cables, and presenting the galloping mechanisms.

Novak et al. [76] in 1978, studied the aerodynamic properties by experimenting

some iced guy cables to analyze their aeroelastic instability mechanisms in terms

of wind tunnel test and presented drag and lift coefficients with respect to wind at-

tack angles. Experimental investigation was done by Loredo-Souza and Davenport

[67] to study the aeroelastic modes of transmission lines through wind tunnel tests.

They compared the wind response in the transmission lines with the theoretical

predictions predicted by using statistical method. After consistency of the theory
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with the experiment, they proposed a modeling approach to model the conducter

cables of transmission lines.

Recently, researchers are contributing to develop improved model and different

richer solution techniques of the model of suspended cable considering different

geometrical and aeroelastic properties. Among them some contributed works are

presented through the references [42, 54, 55, 58, 62, 79, 91]. Irvine [46] proposed

general solutions to study the response of a horizontal, freely hanged cable, assum-

ing parabolic profile with small sag-to-span ratio, and subjected to a point load

or/and a distributed load. Later, Irvine with Sinclair [45] gave an exact solution for

developed non-dimensional equations of an elastic suspended cable subjected to

vertical point loads. Approximate numerical integration, using Gauss quadrature

formula [25], and Newton-Raphson method [25, 120], finite difference formulation

[21, 52, 73] were used to solve nonlinear equations of cable vibration. Regarding

the nonlinear vibrations of elastic suspended cables, Rega [91] summarized in

three parts of the review to model the cable structure and methods to analyze

the mechanical system via the continuum and their discretized models. Taking

in consideration of bending and torsional stiffness, Luongo et al. [55] developed

a stiff linear model of prestressed curved beam analyzing the galloping of sus-

pended cables. By using a magnitude order analysis, they simplified the equation

of motion of cables. Based on various types of ice-coated cable shapes, it is im-

portant to emphasize the study on the coupling effect between along-wind and

cross-wind responses. Recently, improved models have been proposed, such as,

Luongo and Piccardo [60] have developed analytical model dealing with bifurca-

tion phenomenon of the coupled flexural galloping in resonant and non-resonant

cases, and provide qualitative explanations for the coupled translational galloping

mechanism through perturbation solution for both conditions. As described in [52],

a stiff model is able to take into account the bending and torsional stiffness in a

consistent way, whereas in many research works, it was ignored. In their inves-

tigation, they considered the multimodal galloping in the nonlinear regime and

accounting quasi-steady aerodynamic forces. They have employed two numerical

methods and an analytical method to study the model. Luongo and Piccardo [58],

later, proposed an improved analytical approach for the equations of the suspended

cable taking into account the cable rotation and the passive modes of the cables.

The effects of internal resonances are also described for the continuous and dis-

crete models. In the study of galloping vibrations of suspended, small sag-to-span

ice-coated cables, Luongo et al. [64] pointed out the importance of cross-sectional

torsion and bending, based on a curved, prestressed elastic beam. As a result of

the self-weight and mean wind speed, the torsional rotation can be separated into

7
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static and dynamic components. With considering the similar effect of bending,

Kang et al. [49] studied linear and nonlinear dynamics of suspended cables. They

analyzed the first and third order planar symmetric mode’s frequencies when they

are in 3 : 1 ratio, by applying multiple scale method. Bending stiffness remarkably

changes the natural frequencies and shapes of mode. In research work conducted

by Luongo and Zulli [53], has included the simultaneous effect of rain and wind

flow on stay cable in cable-stayed bridges. They presented the obtained results in

terms of in-plane and out-of-plane motion describing through bifurcation diagrams.

Very recent researches are expanding with various external effects e.g., thermal

effects on suspended cables. An analytical model is developed and studied the

thermal effects by Lepidi and Gattulli [70]. An improved perturbation scheme

has been proposed in the research of Luongo and Zulli [57], involves perturbat-

ing all the parameters in the parameter space along straight lines. And, since

the exploring straight line can be freely selected, the parameters can be varied

independently. In [57], new developments of perturbation technique have been

proposed for the statics of cables subjected vertical forces distributed arbitrarily,

and then extended the scheme to the general 3D-loading case [59]. Ferretti et

al. [21] have investigated a continuum model of horizontally suspended shallow

ice-coated cable taking into account external and internal damping to study the

aeroelastic stability of the structure. The contribution of internal and external

damping has presented by proposing the damping scheme following Kelvin-Voigt

rheological model. To study the post-critical behavior, they have employed multiple

scale method and compared the results with numerical solutions. The nonlinear

effect of a string which traveled by a moving load is investigated and proposed a

developed semi-analytical approach to separate the total response into a quasi-

steady and an incremental dynamic part [22]. Nonlinear effects on horizontally

suspended cable also investigated by Zulli et al. [120] to study the critical aeroelas-

tic behavior taking in consideration of external and internal damping. They have

considered the steady swing of the cable and presented the solution in terms of

frequencies and mode shapes, and compared the analytical results with numerical

one. Besides, a detailed introduction of modeling and designing of a smart cable to

control vibration is presented in chapter 6.

8
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1.3 Objectives of the Research, Summary, and
Organization

1.3.1 Objectives

The objective of the reseach is to strengthen existing cable infrastructures due to

scientific and technological advancement in terms of:

1. Modeling of damping properties and air interaction effects

2. Non-destructive monitoring of structures

3. Energy harvesting using piezoelectric devices

4. Improving efficiency in passenger and freight transport through structural

control

5. Cost reduction and maintaining high levels of efficiency and environmental

sustainability.

1.3.2 Summary

Since cables are slender structures with a low damping coefficient that are prone to

galloping with the wind flow. This phenomena is known as aeroelastic phenomenon

caused by wind action on ice-coated suspended cables having non-circular cross-

sections. We assume that the cable is suspended by it’s own weight and is a

self-excited dynamical system. According to the quasi-steady theory, the excitation

is presented by forces proportional to the structural velocity and in a linear field.

By Den Hartog criterion, for one-degree-of-freedom system, the critical velocity of

the wind can be determined by applying the condition that total damping is zero.

For the system having more than one-degree-of-freedom, we study the eigenvalue

problem to obtain the least wind speed in which an eigenvalue from left crosses

the imaginary axis in the complex plane. Analytical analysis of such a model is

more complicated compared with an numerical analysis. On the other hand, this

type of model is effective to get closed form solutions which can enable to study

the bifurcation mechanism.

1.3.3 Organization of the Thesis

The research work from the last three years is summarized in this thesis. This

thesis consists of seven chapters. This chapter represents the introduction, describ-

ing the background, motivation, objectives, and scope of the research. The second

9
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chapter depicts the literature review of aeroelastic stability, followed by [66]. The

formulation of the problem of galloping of a shallow flexible suspended cable is

presented in Chapter 3. In-plane galloping of a shallow flexible cable modeled and

analyzed in a continuum approach is presented in Chapter 4, followed by [21].

Chapter 5 represents and analyzes a linear spatial galloping analysis of shallow

cables. A smart cable to suppress vibration is designed and modeled in chapter

6 by following the concept described in [111], and then an energy harvester is

also designed to harvest energy from the cable vibration. In chapter 7, we have

concluded the thesis and illustrated the future development of the model.

10



C H A P T E R 2

LITERATURE REVIEW: AEROELASTIC STABILITY

2.1 Introduction

When a flexible structure having non-circular cross-section e.g., because of ice-

accretion, subjected to a wind force, results change in its orientation according

to flow direction. Upon vibration in the structure, the acting wind force oscillates

accordingly. When the oscillating wind force accelerates the vibration in structure,

results aerodynamic unstability, which can lead to high-magnitude vibration. In

other words, the dynamic aeroelastic instability can occur when a lift-generating

structure subject to aerodynamic loads. When aerodynamic forces and structure’s

natural modes are coupled, large amplitude diverging motion may occur. In this

chapter, aerodynamic forces, related aerodynamic coefficients, the application of

quasi-static theory, and other relevant topics, as well as the aeroelastic bifurcation

mechanism, have been illustrated by following A. Luongo, M. Ferretti and S. Di

Nino [66].

2.2 Aerodynamic Forces

When a load is exerted on an elastic structure, results structure-wind interaction

and loss of stability of that structure can happen. A rigid cylindrical structure fixed

on the ground is taken as a sample to describe the mechanism. The az-axis of the

cylinder is submerged in laminar wind flow having velocity U=Uad perpendicular

to az, described in Figure 2.1 (a). We can neglect the effect of edge when the cylinder

is very long and we can also consider the fluid’s velocity field as planar which is

perpendicular to az. If the cross-section of the cylinder is a contour curve with no

corners, variable curvature (slow), i.e., the structure having an aerodynamic shape,

the threads of the fluid attached without smashing on the body. In such a case, we

can evaluate the normal and tangential fields of pressure that acts on the body,

by applying equations of motion of fluid, and integrating on the lateral surface

11
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of cylinder, we can determine the resultant force fa and couple ca measuring per

unit length of the cylinder, where the forces are known as aerodynamic forces. The

projection of the forces on the basis (ad,al ,az), having the relation al := az ×ad,

we can have,

fa := fdad + f lal , ca := czaz. (2.1)

where, fd is drag force or force of resistance which acts in the flow direction and

has a positive value if the orientation directed on ad; f l is the lift force which acts

on perpendicular to the direction of the flow, and is positive if it is oriented as

az ×ad; and cz is known as aerodynamic couple which is defined in a manner to a

predefined center, and is positive when it is oriented as az. They are expressed as

follows,

fd = 1
2
ρaU2DCd, (2.2a)

f l =
1
2
ρaU2DCl , (2.2b)

cz = 1
2
ρaU2D2Cm, (2.2c)

with the air density ρa, cross-sectional characteristic dimension D, kinetic force
1
2
ρaU2, and Cd,Cl and Cm are the drag, lift and moment coefficients respectively,

and they are known as aerodynamic coefficients. Generally, these coefficients de-

pend on the cross-sectional shapes and wind-interaction directions. By imposing

some conditions on the system, e.g., considering idealized airfoils, we can obtain

aerodynamic coefficients analytically. But most of the cases, they are determined

experimentally by fixing the structure in a wind tunnel, known as wind tunnel

tests, e.g., bluff bodies of which the edges are sharp and high variable curvatures,

see Figure 2.1 (b). And these create high differences of pressure between the wind

direction and opposite part of the structure, as a result, vortices produce.

Angle of attack
The angle formed in between the cross-sectional axis (e.g., a reference line on the

body) and the acting relative wind flow direction is known as the angle of attack.

The angle of attack denoted by α, formed with the direction of the cross-section

of body ax by the flow direction of wind ad, and the value of the angle is positive

if ax and ad coincide and rotates anti-clockwise with an angle smaller than π,

see Figure 2.1 (c). We are interested to evaluate the laws Ch (α), aerodynamic

coefficients. To determine the laws, wind tunnel tests employed where the flow

direction kept fixed and the cylinder is rotated clockwise around its axis by an

angle α, see Figure 2.1 (d). By approaching with the small increments of angle α,

12
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(a) (b)

(c) (d)

Figure 2.1: Aerodynamic forces on fixed rigid cylinder, taken from [66]: (a) aero-
dynamic cross-section; (b) squat cross-section; (c) cross-section subject to a flow
roated by an angle α> 0 (counterclockwise); (d) cross-section rotated by an angle
−α, subject to horizontal wind.

and using Equations 2.2 for the forces with related attack angles, the laws Ch (α)
are determined by points, as qualitatively depicted in Figure 2.2.

For the cross-sections, in general, the aerodynamic coefficients are of 1st ordered.

For any attack angle α, it is noticed that the drag coefficient Cd > 0, as the air

medium resists at the entrance by the structure. Contrarily, the coefficients Cl

and Cm can be positive or negative. Particularly, a lift force f l > 0 shows that the

direction of the aerodynamic reaction is vertical when the flow is horizontal and

directed on ax and, it is downward, if the lift force is negative. If the cross-section

is symmetric on the basis of the structural axis ax, then the laws Ch (α) can be

symmetric or anti-symmetric, if the forces are taken according to the attack angle

α, as in Figure 2.3 (a), and the tension is reversed about to the axis of symmetry,

see Figure 2.3 (b), the forces are certainly obtained corresponding to the attack

angle −α, as the cross-section shape is not altered. Referencing the basis (ad,al),

intrinsic to flow direction, it is noticed that fd (−α) = fd (α), f l (−α) =− f l (α) and

cz (−α)=−cz (α). In the conclusion, Cd (α) is symmetric and Cl (α) ,Cm (α) are anti-

13
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(a)

(b)

Figure 2.2: Qualitative form of the aerodynamic coefficients vs the angle of attack
[66]: (a) generic cross-section; (b) cross-section symmetric with respect with respect
to the α= 0 axis.

symmetric functions, see Figure 2.2 (b). When the cross-section is circular, and the

axes are symmetric, then Cl (α)= Cm (α)≡ 0.

(a) (b)

Figure 2.3: Aerodynamic forces on a symmetric cross-section [66]: (a) generic
condition; (b) overturning around the symmetric axis

Quasi-steady Theory
It is cumbersome to determine the aerodynamic forces, because of the vibration of

the cylinder owing to its elastic behavior, under the influence of wind flow rather

than remaining static. Which can be disseminated in the structure, or can be

absorbed through the ground, taking as a constraint. Indeed, the vibration of the

structure can change the nature of the flow, as a result, the forces are changed

from steady to unsteady varying with time as a function of the structures dynamic

reaction. It is also complex to evaluate the unsteady forces, which can be evaluated

by some approximated methods. The related aerodynamic coefficients can be found
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by wind tunnel tests and quasi-steady theory allows to use them to evaluate the

forces.

The concept of the quasi-steady theory is formed on the basis of the subsequent

hypothesis. If the movement of the body is slow comparing to the fluid material

particles that surround it, at an instance t, the aeroelastic forces have the same

value as they are determined on the body when it was fixed under the flow with

constant attack angle α (t), at the fixed time t. This is known as instanteneous

attack angle α (t). The angle of attack varies over time, because of the vibration of

the structure, and consequently, the quasi-steady theory does not follow the dy-

namics of the mechanism. Under this hypothesis, the expression for the aeroelastic

forces in equation (2.2) can be rewritten as follows:

fd = 1
2
ρaU2

r (t)DCd (α (t)) , (2.3a)

f l =
1
2
ρaU2

r (t)DCl (α (t)) , (2.3b)

cz = 1
2
ρaU2

r (t)D2Cm (α (t)) , (2.3c)

where, it is replaced the flow with Ur (t), instantaneous velocity; and α (t), instan-

taneous angle of attack.

2.3 Galloping of single-degree-of-freedom
systems

The loss of stability of an aeroelastic single -degree-of-freedom (SDOF) system

exhibits by itself with a phenomenon known as galloping. In a wind flow field,

galloping is defined as the low frequency and self-excited large vertical oscillation

of an elastic body (in general, cold region) e.g., iced electric lines, suspended cables.

2.3.1 Model

Let us assume, a rigid cylinder having length l, fixed horizontally and is con-

strained in a way that it can transform oscillations vertically, when an external

force is applied to it. A horizontal static wind of magnitude U is acting orthogonally

to the axis of the cylinder, illustrated in Figure 2.4. The governing equation of

motion of the system with the vertical displacement v (t), reads:

Mv̈ = F el
y (v)+Fv

y (v̇)+Fa
y (v̇;U) , (2.4)
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where, M is the body mass; depending on the displacement, F el
y is the elastic forces

applied by constraint; depending on the structural velocity, Fv
y (v̇) is the viscous

force; Fa
y (v̇;U) is vertical component of aeroelastic force, depends on structural

velocity.

Figure 2.4: Single degree of freedom system, subject to wind [66].

Assuming that the spring (see Figure 2.4) is non-linear and symmetric, the consti-

tutive law reads:

F el
y =−(

k1v+k3v3) , (2.5)

with the linear stiffness k1 > 0 and cubic stiffness k3 ≷ 0. When k3 > 0, i.e., the

nonlinear regain force is larger modulus comparing with linear one, the spring is

known as ‘hardening’ and if k3 < 0, it is called ‘softening’. On the other hand, the

viscous damper is considered linear with the structural coefficient cs, as,

Fv
y =−csv̇. (2.6)

Then the equation of motion (2.4) becomes,

v̈+2ξsωsv̇+ω2
s v+κsv3 = 1

M
Fa

y (v̇;U) , (2.7)

with ωs :=
√

k1

M
, circular frequency of undamped body; κs := k3

M
, nonlinear coeffi-

cient (structural); and ξs := cs

2ωsM
, structural damping coefficient.

Aeroelastic forces
It is prerequisite to determine the instantaneous angle of attack α (t) and relative

wind Ur acting on the structure, at instance t, along with the direction of the

material axis ax. The vector difference between relative velocity to the ground,
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Uax and the velocity of the body v̇ay, is the relative wind velocity to the body,

Urad, namely

Urad =Uax − v̇ay.

We have, ad = cosαax +sinαay, then the above relation can be written as,

Ur
(
cosαax +sinαay

)=Uax − v̇ay,

⇒ (U −Ur cosα)ax − (Ur sinα+ v̇)ay = 0.

From which, we have

Ur = U
cosα

, (2.8a)

tanα=− v̇
U

. (2.8b)

Figure 2.4 represents the relative velocity, Ur with the attack angle α, for the

structural velocity −v̇ay, and as a result, α is positive following equation (2.8b).

So, the body movement has the following effects:

(i) the movement of the body modifies velocity magnitude, by following equation

(2.8a); and (ii) it also modifies the attack angle.

As a result, both effects depend on structural velocity and are implicit functions

of time t, which illustrates why the aeroelastic forces rely on the velocity of the

structure, even in a simplified theory such as the quasi-steady theory. Now using

equations (2.3a), (2.3b) and equations (2.8), and projecting them onto ay, we have

the vertical component of the force,

Fa
y = fd l sinα+ f l l cosα= 1

2
ρaU2DlCy (α) , (2.9)

where,

Cy (α) := 1
cos2α

[Cd (α)sinα+Cl (α)cosα] , (2.10)

is another aerodynamic coefficient.

2.3.2 Linear Stability analysis

In this subsection, an initial linear analysis is attained on the commence of the

aeroelastic instability phenomenon. Assuming that the velocity (structural) v̇ is

smaller than the wind velocity U, we have from the Equation (2.8b), the attack

angle α is small as well. By series expansion of the trigonometric functions, we get

α=− v̇
U

+· · ·, (2.11)
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along with, Cy (α)= Cl (α)+Cd (α)α. Expansion of the aerodynamic coefficients on

the neighborhood of α= 0, we have

Ch (α)= Ch0 +C′
h0α+· · ·, h = d, l, (2.12)

the prime, here indicates the derivative with respect to α and the subscript 0

denotes the laws evaluated at α= 0, and hence, C′
h0 is slope of the curve Ch (α) at

origin. Following equation (2.11), linearizing equation (2.12) in α, we get

Cy (α)= Cl0 −
(
Cd0 +C′

l0
) v̇

U
. (2.13)

Neglecting elastic and aeroelastic nonlinearities and using equation (2.9) and

equation (2.13), the Equation of motion (2.7) becomes,

v̈+2ξsωsv̇+ω2
s v = 1

2
ρaU2Dl

M

[
Cl0 −

(
Cd0 +C′

l0
) v̇

U

]
. (2.14)

In the above equation, the existence of a static force, which is independent of v̇,

and a time varying force, which is proportional to v̇, is obvious. The static force

and the force which exerted at rest on the structure coincides. As it only modifies

the equilibrium position, it has no contribution to stability. The next force, instead,

proportional to v̇, a viscous force, which can be merged with the structural damping.

Hence, the equation of motion reads,

v̈+2ωs (ξs +Uζ1) v̇+ω2
s v = 0, (2.15)

where,

ζ1 := ρaDl
4ωsM

(
Cd0 +C′

l0
)
. (2.16)

The aerodynamic damping factor is defined as ξa :=Uζ1, proportional to the velocity

of the wind and whose values depend on ζ1. There are two contributions of this

coefficient, they are: (i) drag coefficient Cd0 > 0, measures the medium resistance

at the static position of the structure, and the derivative of lift coefficient C′
l0 R 0

measures the lift coefficients slope at the origin. There are two cases can arise:

(a) Cd0 +C′
l0 ≥ 0 (that is, (i) C′

l0 ≥ 0; or (ii) C′
l0 < 0, but |C′

l0| ≤ Cd0); resulting

ζ1 ≥ 0, which means stabilizing or neutralizing the aerodynamic damping

and added with structural damping, the system in this case is called aerody-

namically stable.

(b) Cd0 +C′
l0 < 0 (that is, C′

l0 < 0, and in addition |C′
l0| > Cd0); in this case,

it is instabilizing the aerodynamic damping, as it is deducted itself from

structural damping and the system is aerodynamically unstable.
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The following outcomes are originated from the above analysis: the 1st derivative

of lift coefficient at α= 0, must be (i) negative and (ii) large enough in modulus

to occur the aeroelastic instability. Due to the proportional relationship between

aerodynamic damping and U , a critical velocity Uc exists, called critical galloping

velocity, that total damping ξt := ξs +Uζ1 zeroes, we have Uc :=−ξs

ζ1
, or,

Uc = 4ωsM
ρaDl

ξs

|Cd0 +C′
l0|

, if Cd0 +C′
l0 < 0. (2.17)

The critical galloping velocity is also known as Den Hartog velocity. In critical

condition, when U =Uc, then λ=±iωs, i.e., a pair of purely imaginary eigenvalues

appear, where ωs is the natural frequency. As a result, there occurs a Hopf bifurca-

tion. The equilibrium is asymptotically stable when U <Uc, and unstable when

U >Uc.

Numerical values of the galloping aerodynamic coefficient
A long cylinder was considered whose aerodynamic coefficients were studied in the

case of various cross-sectional shapes and some numerical and experimental anal-

yses [1]. The results are discussed in details in the book by A. Luongo, M. Ferretti

and S. Di Nino [66]. Due to some inevitable errors in evaluations or inaccuracies

in numerical modeling, the obtained results in some cases are discordant, e.g., the

flow behavior, such as turbulent or laminar; the length of cylinder; different shapes

of cross-sections affect the results. In general, the summation C′
y0 := Cd0 +C′

l0 is

affected more than their separate values of Cd0 and C′
l0. In the Table 2.1, taken

from [1, 66], for different cross-sectional shapes which represents the values of

C′
y0. The observed results are described in below:

"the square shape is unstable; the vertically long rectangles are stable; the hor-

izontally long rectangles are unstable if the ratio of thickness-to-width is larger

than 1/4, otherwise stable. For the airfoil, the coefficient C′
y0 ' 2π, and is stable;

D-section is also stable but the L-profile is not stable."
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Table 2.1: Values of C′
y0 := Cd0 +C′

l0 for different cross-section shapes of a long
cylinder, subject to laminar flow, horizontally incident; negative values indicate
aerodynamically unstable cross-sections [66].

Influence of the orientation of the cross-section with respect to the flow
We assumed in the previous section, to formulate the laws Ch (α), the aerodynamic

coefficients, that the direction of the body which is the reference direction and

the direction of flow ax coincide. Now, we concern to the case where the material

direction, ax0 (say), does not coincide with the flow direction ax, but makes an

angle −α0, described by Figure 2.5.
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(a) (b)

(c)

Figure 2.5: Orientation of the cross-section with respect to the horizontal flow [66]:
(a) material axis ax0 aligned with ax; (b) material axis ax0 deviated from ax by an
(clockwise) angle −α; (c) aerodynamic coefficients evaluated at α0 (i.e., relative to
the orientation −α0 of the cross-section).

Such a condition arises, for instance, when attempting to evaluate the frozen

electric ducts dynamics that subjected to horizontal wind flow and whose an-

nexation is capable of assuming any orientation regarding the flow. By applying

the previous outcomes, we can determine the aerodynamic force which acts on

cylinder. The angle α= 0 should be replaced with new angle α=α0, as the aerody-

namic force depends on drag coefficient and the derivative of lift coefficient, which

are determined when the body is at rest and on the direction of the flow. So that,

Cd0+C′
l0 ≡ Cd (0)+C′

l (0) in the equation (2.16), have to replaced by Cd (α0)+C′
l (α0).

2.3.3 Nonlinear analysis: the limit cycle

From the linear analysis, we get the critical velocity Uc and in this velocity, the in-

stability condition occurs. Oscillations which are exponentially divergent, predicted

in the zone of instability, but no fact is provided regarding the limit cycles exis-

tence that constrain the amplitudes of the oscillation, and about the dependence

of these limit cycles on U . To find out the information of these problems, we need

to perform a nonlinear analysis accounting both the aeroelastic and structural

nonlinearities. In order to achieve this, the elastic spring’s cubic contribution is

once more taken into account, (which was neglected previous analysis), from the

equation of motion (2.7), and in addition, the higher order terms of the aeroelastic
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force in the expansion in Taylor series, are considered again.

Nonlinear aeroelastic forces
The vertical aerodynamic coefficient Cy (α) is precisely expressed in equation (2.10),

where the angle α can be found from equation (2.8b). It is necessary to take into

account not only the linear term but also the quadratic, cubic and other higher

order terms by expanding the angle in series with small enough but finitesimal

terms in
v̇
U

. The similar operation needs to be done for the lift and drag coefficients.

We have then,

α=− v̇
U

+ 1
3

(
v̇
U

)3
+· · ·, (2.18a)

Ch (α)= Ch0 +C′
h0α+ 1

2
C′′

h0α
2 + 1

6
C′′′

h0α
3 +· · ·, h = d, l. (2.18b)

Substituting equation (2.18) in equation (2.10), and also expanding the circular

functions in series up to cubic terms, we have

Cy (α)= Cl0−
(

v̇
U

)(
Cd0 +C′

l0
)+(

v̇
U

)2 (
1
2

Cl0 +C′
d0 +

1
2

C′′
l0

)
−

(
v̇
U

)3 (
1
2

Cd0 +
1
6

C′
l0 +

1
2

C′′
d0 +

1
6

C′′′
l0

)
.

(2.19)

Then, from equation (2.9), we get

Fy = 1
2
ρaU2Dl

[
A0 − A1

v̇
U

+ A2

(
v̇
U

)2
− A3

(
v̇
U

)3
+· · ·

]
, (2.20)

where, we define

A0 :=Cl0,

A1 :=Cd0 +C′
l0,

A2 :=1
2

Cl0 +C′
d0 +

1
2

C′′
l0,

A3 :=1
2

Cd0 +
1
6

C′
l0 +

1
2

C′′
d0 +

1
6

C′′′
l0.

(2.21)

Here A i ’s are the nondimensional aerodynamic coefficients.

For the case of cross-sectional symmetry, as Cd (α) is symmetric and Cl (α) is anti-

symmetric, we have C′
d0 = C′′′

d0 = · · · = 0, and Cl0 = C′′
l0 = · · · = 0. Hence, A0 = A2 =

· · · = 0, agreeing that Fy has to be an odd function of
v̇
U

, so that

Fy =−1
2
ρaU2Dl

[
A1 + A3

(
v̇
U

)3
+· · ·

]
. (2.22)
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Nonlinear equation of motion
Considering the symmetric cross-section regarding the flow, the equation of motion

(2.7) can be rewritten as:

v̈+2ωs (ξs +Uζ1) v̇+ω2
s v+κsv3 + 1

U
ζ3v̇3 = 0, (2.23)

where the terms higher than cubic, are neglected. Equation (2.23) is known as

Rayleigh-Duffing equation. The following conditions hold for a cross-section which

is aerodynamically unstable, as defined:

ζ1 := ρaDl
4ωsM

A1 < 0, ζ3 := ρaDl
2M

A3. (2.24)

There are two types of nonlinearities in equation (2.23), one is structural type

(Duffing-like), which is presented by cubic term in displacement, and other one

is aeroelastic type (Rayleigh-like), which is expressed by cubic term in structural

velocity.

Lindstedt-Poincaré method
Because of the nonlinearities in the Rayleigh-Duffing equation, in the closed

form, the equation is unsolvable. But the equation becomes weakly nonlinear and

allows it to be solved via a perturbation approach when the motion amplitude

is small and finite, which results smallness in the nonlinearities. We approach

with the Lindstedt-Poincaré method, one can get in details by following [66].

The following actions must be taken in order to use the approach, which entails

finding the periodic solutions to the equation of motion (2.23). We now introduce

a dimensionless time τ := Ωt, where Ω is unknown circular frequency. Hence,

equation (2.23) becomes,

Ω2v̈+2Ωωs (ξs +Uζ1) v̇+ω2
s v+κsv3 +Ω

3

U
ζ3v̇3 = 0. (2.25)

The dot here denotes the time derivative with respect to the new time τ. We are

interested to find the periodic solution to the above equation of one parameter

family of the form v = v (τ;ε), Ω=Ω (ε), U =U (ε), where ε is a perturbation param-

eter. Accounting the symmetry property of the system, we can expand the above

parameters in Taylor series as:

v (τ;ε)= εv1 (τ)+ε3v3 (τ)+· · ·, (2.26a)

Ω (ε)=Ω0 +ε2Ω2 +· · ·, (2.26b)

U (ε)=U0 +ε2U2 +· · ·. (2.26c)
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In the above expansions, the coefficients are unknown. Substituting equations

(2.26) into equation (2.25), and separating the similar order terms of ε, we get the

following perturbation equations:

order ε : Ω2
0v̈1 +2Ω0ωs (ξs +U0ζ1) v̇1 +ω2

s v1 = 0, (2.27a)

order ε2 : Ω2
0v̈3 +2Ω0ωs (ξs +U0ζ1) v̇3 +ω2

s v3 =−2Ω0Ω2v̈1 −κsv3
1 −2Ω0ωsU2ζ1v̇1

−2Ω2ωs (ξs +U0ζ1) v̇1 −
Ω3

0

U0
ζ3v̇3

1.

(2.27b)

Because of the periodicity with period 2π of the solution on τ scale, we have

v (2π)= v (0), v̇ (2π)= v̇ (0). Then from equation (2.26a), we get

vk (2π)= vk (0) , v̇k (2π)= v̇k (0) , k = 1,3, · · ·. (2.28)

Next, we introduce the normalization condition v (0;ε)= ε, v̇ (0;ε)= 0, characterizes

to ε the amplitude of the limit cycle. From equation (2.26a), we have

v1 (0)= 1, v̇ (0)= 0,

vk (0)= 0, v̇k (0)= 0, k = 3,5, · · ·.
(2.29)

Solution to the perturbation equations
The 1st order perturbation equation admits the periodic solutions iff it vanishes

the total damping ξs +U0ζ1. Consequently, we have U0 = −ξs

ζ1
≡ Uc, the critical

velocity. Besides, ω0 =ωs for the period 2π. From the equations (2.32b) and (2.32c),

with the initial values, inferring that the family of limit cycles bifurcates from the

equilibrium position at Hopf bifurcation. According to the normalization condition

and the above results, we have the solution for 1st order equation:

v1 = cosτ. (2.30)

Substituting the solution (2.30) into equation (2.27b) and performing some calcula-

tions, we get

ω2
s (v̈3 +v3)= 2ωsΩ2 cosτ+2ω2

sU2ζ1 sinτ−1
4
κs (3cosτ+cos(3τ))

+ 1
4
ω3

s

Uc
ζ3 (3sinτ−sin(3τ)) .

(2.31)
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Removing the resonant terms, and taking the coefficients of cosτ and sinτ, we

have

2ωsΩ2 − 3
4
κs = 0,

2ω2
sU2ζ1 + 3

4
ω3

s

Uc
ζ3 = 0.

(2.32)

Solving equations (2.32), we get

Ω2 = 3κs

8ωs
, U2 =−3ωsζ3

8Ucζ1
. (2.33)

Using the above results in equations (2.26), we have

v (τ;ε)= εcos(τ), (2.34a)

Ω (ε)=ωs

(
1+ε2 3κs

8ω2
s

)
, (2.34b)

U (ε)=Uc

(
1−ε2 3ωsζ3

8U2
c ζ1

)
. (2.34c)

Since τ=Ωt, we can come back to the true time, accounting ζ1 < 0,

v (t;ε)= εcos
((

1+ε2 3κs

8ω2
s

)
ωst

)
, (2.35a)

U (ε)=Uc

(
1+ε2 3ωsζ3

8U2
c |ζ1|

)
. (2.35b)

Now, after the elimination of ε, we get

v (t;U)=
√

8Uc|ζ1| (U −Uc)
3ωsζ3

cos
((

1+ κsUc|ζ1| (U −Uc)
ω3

sζ3

)
ωst

)
. (2.36)

Equations (2.34) represent the limit cycles of the system, where ε is amplitude with

Ω=Ω (ε) a frequency, and U =U (ε) a wind velocity. On the other hand, equation

(2.36) represents the limit cycle as a function of U instead of ε.
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(a) (b)

Figure 2.6: Bifurcation diagrams for the Rayleigh-Duffing equation [66]: (a) limit
cycle frequency-amplitude relationship; (b) amplitude of the limit cycle vs the wind
velocity (solid line: stable, dashed line: unstable)

Bifurcation diagrams for the expression of frequency and velocity of wind aganist

the amplitude are drawn in the Figure 2.6. From the figure, we can observe that:

(i) if κs > 0, that is, hardening of the spring, then Ω > ωs, meaning that, with a

higher frequency (comparing with natural frequency), the cycle is completed; and

if κs < 0, that is, softening the spring, then Ω<ωs; (ii) if ζ3 > 0, that is, in equation

(2.21), A3 > 0, then we have, super-critical limit cycle, i.e., it exists for U >Uc; and

if ζ3 < 0, that is, in equation (2.21), A3 < 0, then we have sub-critical limit cycle, i.e.,

it exists for U <Uc; (iii) at this order, there is no effect of structural nonlinearity

on the limit cycles amplitude but has only effect on frequency; also, there is no

effect of aeroelastic nonlinearity on frequency, but has effect on amplitude.

The closed orbit, which is described by the system, is an ellipse in the phase plane

(v, v̇), for the physical paremeters of the system and for an assigned ε, from the

equations (2.34), which moves clockwise (see Figure 2.7 (a), (b)). We can prove

that, if the bifurcation is super-critical then the orbit is stable, and if sub-critical,

then unstable. The stable limit cycle attracts the trajectories, described in Figure

2.7(a), constrains the exponential development of the motion which is predicted

by linear theory. Whereas, the unstable cycle repels the trajectories, see Figure

2.7(b). If it is higher magnitude than ε in the second case, the motion diverges,

even though for the stable equilibrium position. A 3-dimensional representation of

the limit cycles is described in Figures 2.7(c), (d). For each velocity U (fixed), which

is super-critical or sub-critical, there is a limit cycle whose amplitude grows with

|U −Uc|, as expresses by equation (2.34).
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(a) (b)

(c) (d)

Figure 2.7: Limit cycles for the Rayleigh-Duffing equation [66]: (a) stable (super-
critical) limit cycle; (b) unstable (sub-critical) limit cycle; (c) family of stable limit
cycles, parameterized by U >Uc; (d) family of unstable limit cycle, parameterized
by U <Uc

2.4 Galloping of strings

Previously, we determined a rigid cylinder’s motion on which static flow acts, and

the wind action was considered similar on all cross-sections, excluding the neigh-

boring ends of the cylinder. On the other hand, if the cylinder is deformable, such

as a taut string whose cross-sectional motion v (z, t) is irregular and has different

magnitude, where the aeroelastic forces f a
y are the function of z. The aeroelastic

forces depend on the deflection at z as well as on the deflection in the close field at

z and makes it non-planar as the motion of which affects the flow. By excluding the

non-local part of the phenomena and focusing just on the impact of the local mo-

tion of the string, or by the assumption f a
y (z, t)= f a

y (v̇ (z, t)), the problem becomes

simplified. On the basis of the assumption, we stated the following hypothesis:

"the aeroelastic forces act on z of the string, are similar of the forces those applied

on the infinitely long rigid cylinder, experiencing at the certain abscissa of the
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cross-section with the equivalent translational velocity."

Consequently, the string’s curvature and interaction between cross-sectional veloc-

ities (structural) are neglected. Considering the effect of structural nonlinearities,

a linear structural model can be formulated under the condition of nonlinear

aeroelastic forces. Then the equation of motion takes the form:

mv̈+ ce v̇+
(
1+ η̂ ∂

∂t

)
K v = f a

y (z, t) , (2.37)

with the related boundary conditions. Where, v = v (z, t) is transversal displace-

ment; m is linear mass density; ce is external damping coefficient; K is total

stiffness operator, which are elastic and geometric stiffnesses; η̂ is internal damp-

ing coefficient, which is formulated on the basis of the rheological Kelvin-Voigt

model, describes internal viscous force, and f a
y (z, t) are aeroelastic forces per unit

length; under the conditions of symmetry, we have from equation (2.22),

f y (z, t)=−1
2
ρaU2D

[
A1

v̇ (z, t)
U

+ A3

(
v̇ (z, t)

U

)3
+· · ·

]
. (2.38)

To solve equation (2.37), we need numerical schemes e.g., finite element method or

finite difference method. If we use Galerkin method, the problem will be simplified,

we consider

v (z, t)=φ (z) q (t) , (2.39)

where, φ (z) is deflection, considered as reference function and q (t) is time depen-

dent amplitude. This weak formulation of the equilibrium gives an ODE with

unknown Lagrangian parameter q.

2.4.1 Strings

We consider a string which is taut and fixed at the supports A, B (z = 0, l), and a

wind of velocity Uax acts on it. It is assumed that the cross-section of the string is

non-circular e.g., because of ice-coation, which is symmetric along ax-axis and can

oscillate freely on the transverse direction ay. The associated equation of motion

with the boundary condition reads:

mv̈+ ce v̇−ηAsv̇′′−T0v′′ = f a
y (z, t) ,

v (0, t)= 0,

v (l, t)= 0,

(2.40)

with v = v (z, t) is the displacement on transverse direction, m is the mass per

unit length of iced string, ce is the external damping coefficient, η is the internal
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damping coefficient, As is the structural cross-sectional area of the non-iced string,

T0 is the string’s tension, defined as T :=σ0As, and f a
y is the aeroelastic forces per

unit length of the string.

If it is rescricted that the oscillation of the string happens in it’s first natural mode,

then we have

v (z, t)= q (t)sin
(πz

l

)
. (2.41)

This is the exact solution of the equation of motion regarding linear part. By

applying the orthogonality condition of the residual of field equation with the

reference shape function, we have the weak formulation of the equilibrium:

l∫
0

[
mv̈+ ce v̇−ηAsv̇′′−T0v′′− f a

y (z, t)
]
sin

(πz
l

)
dz = 0. (2.42)

Using equation (2.41) and then integrating, we obtain an ODE, known as Rayleigh

oscillator,

Mq̈+ (cs +Ub1) q̇+k1q+ 1
U

b3 q̇3 = 0, (2.43)

where,

M := m
l∫

0

sin2
(πz

l

)
dz = 1

2
ml,

k1 := T0
π2

l2

l∫
0

sin2
(πz

l

)
dz = T0

π2

2l
,

cs :=
(
ce +ηAs

π2

l2

) l∫
0

sin2
(πz

l

)
dz = 1

2

(
cel+ηAs

π2

l2

)
,

b1 := 1
2
ρaDA1

l∫
0

sin2
(πz

l

)
dz = 1

4
ρaDlA1,

b3 := 1
2
ρaDA3

l∫
0

sin4
(πz

l

)
dz = 3

16
ρaDlA3.

(2.44)

The equation (2.43) and equation (2.23) are same when ω2
s =

k1

M
,ξs = cs

2ωsM
,κs =

0,ζ1 = b1

2ωsM
and ζ3 = b3

M
.
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C H A P T E R 3

DEVELOPMENT OF THE MODEL OF A SHALLOW

FLEXIBLE CABLE

3.1 Introduction

In this chapter, we have developed a mathematical model of shallow flexible cable,

suspended between two fixed points. It is assumed that the cable subject to an

uniform wind. The torsional and flexural stiffnesses are neglected. Firstly, we have

considered the prestressed cable model; and successively, we have presented the

linearized theory; and lastly, we have obtained the required model for shallow

cables.

3.2 Basic Assumptions

The derivation of the mathematical model of a suspended cable is performed based

on the work of H. M. Irvine [42] and A. Luongo and D. Zulli [54].

To develop the model of a suspended cable, the following assumptions are taken

into account through this thesis work:

i. The cable is flexible and the bending stiffness is neglected.

Through the study in this work, we neglect the effect of bending stiffness

because of smallness. Some authors have disscussed about this topic, one

can find the work [21, 22, 23, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,62, 63, 64,

65 120]. Our cable systems in this work are mainly affected more by axial

stiffness compared to bending stiffness. And, these cables are considered

perfectly flexible.

ii. The cable is subjected to tensile forces only. The cable is assumed only to

trasmit the large amplitude of tensile forces and no resistance acts against

bending and compression.
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iii. The supports are fixed and the material of the cable follows the Hooke’s law.

3.3 Prestressed Cables

We have considered a suspended cable, which is prestressed by static forces, to

develop a mathematical model representing the reaction of it, when embedded

in a three-dimensional space. The cable is in equilibrium under its own weight,

which is the reference configuaration. We are interested in oscillations around

equilibrium configuration that have small amplitude.

3.3.1 Quasi-exact model

Prestressed reference state: A suspended flexible cable, considered lying on

curve S in the three-dimensional space and expressed by the parametric equations

x̄= x̄ (s) ,

where s denotes the arclenth of the curve S. The Frenet triad is then defined as,

B̄ f = (āt (s) , ān (s) , āb (s)) ,

where the unit vectors satisfy the Frenet formulas:

ā′
t = κ̄ān, ā′

n = τ̄āb −κāt, ā′
b =−τ̄ān.

Assuming that the cable is in equilibrium position subjected to internal stress

t0 (s) and static external forces p0 (s) ,P0H , here H = A,B the fixed points of the

supports. Therefore, the balance equations with the boundary conditions read:

t′0 +p0 = 0,

∓t0H =P0H .
(3.1)

(a) (b)

Figure 3.1: Prestressed cable [54]: (a) kinematics: reference prestressed configura-
tion S, current configuration Ŝ, displacement u ; (b) dynamics: preloads p0, P0H ,
prestress t0, current loads p, PH .
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Kinematics: Let us consider, the (non-natural) parametric equations x= x (s, t),
at time t > 0 represent the current configuration of the cable. Denoting the relevant

Frenet triad,

B := (at (s, t) ,an (s, t) ,ab (s, t)) ,

satisfying the following, taking the stretch as unity:

a′
t = κan,a′

n = τab −κat,a′
b =−τan, (3.2)

where,

at = x′,an = 1
κ

x′′,ab =
1
κ

(
x′×x′′) , (3.3)

and, κ= ‖x′′‖, τ= x′×x′′ ·x′′′

‖x′′‖2 .

Let us consider the displacement measured from the reference configuration, to

express the current configuration with it, as follows:

u := x (s, t)− x̄ (s) , (3.4)

with the geometric boundary conditions

uH = ŭH . (3.5)

We have, the unique scalar strain component (unit extension), defined as: e =
‖x′‖−1. Taking into account the relation x̄′ = āt and using equation (3.4), we have

e =
√

1+2u′ · āt +u′ ·u′−1. (3.6)

Now, defining the displacement vector in terms of external basis, as follows:

u :=
3∑

j=1
u ji j. (3.7)

As āt =∑3
j=1 x̄′ji j, we have

e =
√√√√1+2

(
3∑

j=1
x̄′ju

′
j +

1
2

3∑
j=1

u′2
j

)
−1. (3.8)

On the other hand, representing the displacement vector in the intrinsic reference

basis, as:

u := utāt +unān +ubāb, (3.9)

then, we have the derivative of u:

u′ = u′
tāt +utā′

t +u′
nān +unā′

n +u′
bāb +ubā′

b,

= u′
tāt +utκ̄ān +u′

nān +un (τ̄āb − κ̄āt)+u′
bāb −ubτ̄ān.
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So that,

u′ = (
u′

t − κ̄un
)
āt +

(
u′

n + κ̄u′
t − τ̄ub

)
ān +

(
u′

b + τ̄un
)
āb. (3.10)

Using equation (3.10), equation (3.6) becomes,

e =
√

1+2
(
u′

t − κ̄un
)+ (ut − κ̄un)2 + (

u′
n + κ̄ut − τ̄ub

)2 + (
u′

b + τ̄un
)2 −1. (3.11)

Dynamics: Let us assume the cable is subjected to external forces acting on its

domain, whose linear density is p (s, t), and at the boundaries H, other forces PH (t)
are applied.

A virtual motion v is superimposed to the current state to express the internal and

external virtual powers, as:

Pinternal :=
∫

S
t ·ds,

Pexternal :=
∫

S
p ·vds+

B∑
H=A

PH ·vH ,

where t is a forced-stress acting to the stretching velocity gradient d := (v′ ·at)at.

Since d is collinear to at, we have

t= Tat,

with T, the tension of the cable. Now, we have∫
S

p ·vds+
B∑

H=A
PH ·vH =

∫
S

t ·v′ds ∀v.

Integrating by parts,∫
S

(
t′+p

) ·vds+
B∑

H=A
[(PH ± tH) ·vH]= 0 ∀v.

From which, we get the local balance equation as follows:

t′+p= 0.

Through the d’Alembert principle, the inertial effects is taking into consideration

and the above field equation modifies to,

t′+p= mẍ,

and the associated boundary conditions,

(PH ± tH) ·vH = 0.

33



CHAPTER 3. DEVELOPMENT OF THE MODEL OF A SHALLOW FLEXIBLE
CABLE

The incremental balance equations: Accounting the displacement vector, we

have the balance equations (for details, one can see the book "Mathematical models

of Beams and Cables" [54]):

t′+p= mü,

∓ tH =PH ,
(3.12)

where, t (s, t) is stress and p (s, t) is the acting force on the current configuration.

Subtracting equation (3.1) from equation (3.12), we can get the incremental balance

equations with respect to reference configuration:

(t− t0)′+ p̃= mü,

∓ (t− t0)H = P̃H ,
(3.13)

where p̃ :=p−p0 and P̃H :=PH −P0H are incremental loads.

As we have t= Tat and t0 = T0āt, i.e., they are not parallel. From equation (3.3),

at = x′,

=u′+ x̄′,

=u′+ āt,

and,

t− t0 = Tat −T0āt = T
(
u′+ āt

)−T0āt. (3.14)

Now from equation (3.13), we get[
T

(
āt +u′)−T0āt

]′+ p̃= mü,

⇒[
(T −T0) āt +Tu′]′+ p̃= mü.

Which implies with the boundary conditions,[
T̃āt +Tu′]′+ p̃= mü,

∓[
T̃āt +Tu′]

H = P̃H ,
(3.15)

where, T̃ = T −T0.

Projecting equation (3.15) onto external basis, we have[
T̃ x̄′j +Tu′

j

]′+ T̃ j = mü j, j = 1,2,3 (3.16)

and, boundary conditions

∓
[
T̃ x̄′j +Tu′

j

]
H
= P̃ jH , j = 1,2,3. (3.17)

From equation (3.15), we have

T̃ ′āt + T̃ā′
t +T ′u′+Tu′′+ p̃= mü. (3.18)
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We have, using equation (3.10), the second derivative of u:

u′′ =
[(

u′
tκ̄un

)′− κ̄(
u′

n + κ̄ut − τ̄ub
)]

āt +
[(

u′
n + κ̄ut − τ̄ub

)′+ κ̄(
u′

t − κ̄κ̄un
)

−τ̄(
u′

b + τ̄un
)]

ān +
[(

u′
b + τ̄un

)′+ τ̄(
u′

n + κ̄ut − τ̄ub
)]

āb.
(3.19)

Equation (3.18) becomes, with the help of equation (3.19):

T̃ ′āt + T̃κ̄ān +T ′ [(u′
t − κ̄un

)
āt +

(
u′

n + κ̄u′
t − τ̄ub

)
ān +

(
u′

b + τ̄un
)
āb

]
+T

[(
u′

tκ̄un
)′− κ̄(

u′
n + κ̄ut − τ̄ub

)]
āt

+T
[(

u′
n + κ̄ut − τ̄ub

)′+ κ̄(
u′

t − κ̄κ̄un
)− τ̄(

u′
b + τ̄un

)]
ān

+T
[(

u′
b + τ̄un

)′+ τ̄(
u′

n + κ̄ut − τ̄ub
)]

āb + p̃= mü.

Rewriting[
T̃ ′+T ′ (u′

t − κ̄un
)+T

(
u′

t − κ̄un
)′− κ̄T

(
u′

n + κ̄ut − τ̄ub
)]

āt

+ [
κ̄T̃ +T ′ (u′

n + κ̄ut − τ̄ub
)+T

(
u′

n + κ̄ut − τ̄ub
)+ κ̄T

(
u′

t − κ̄un
)− τ̄T

(
u′

b + τ̄un
)]

ān

+
[
T ′ (u′

b + τ̄un
)+T

(
u′

b + τ̄un
)′+ τ̄T

(
u′

n + κ̄ut − τ̄ub
)]

āb + p̃= mü.

(3.20)

Projecting equation (3.20) onto the intrinsic reference basis, we obtain

T̃ ′+ [
T

(
u′

t − κ̄un
)]′− κ̄T

(
u′

n + κ̄ut − τ̄ub
)+ p̃t = müt,

κ̄T̃ + [
T

(
u′

n + κ̄ut − τ̄ub
)]′+ κ̄T

(
u′

t − κ̄un
)− τ̄T

(
u′

b + τ̄un
)+ p̃n = mün,[

T
(
u′

b + τ̄un
)]′+ τ̄T

(
u′

n + κ̄ut − τ̄ub
)+ p̃b = müb,

(3.21)

and, the associate boundary conditions:

∓ [
T̃ +T

(
u′

t − κ̄un
)]

H = P̃t,

∓ [
T

(
u′

n + κ̄ut − τ̄ub
)]

H = P̃n,

∓ [
T

(
u′

b + τ̄un
)]

H = P̃b.

(3.22)

The elastic law: We consider the cable is made of hyperelastic materials. Let us

consider a potential,

φ= T0e+ 1
2

EAe2,

which is non-homogeneous and quadratic, where EA is the axial stiffness of the

flexible cable. We have,

∂φ

∂e
= T0 +EAe.

By Green law, T = ∂φ

∂e
, so that

T = T0 +EAe. (3.23)

The fundamental problem: The following set of equations are important to

construct the fundamental problem of the cable model:
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• the strain-displacement relationship i.e., equation (3.6)

• the incremental balance equations i.e., equation (3.13a)

• the elastic law i.e., equation (3.23)

• the related geometric and mechanical boundary conditions i.e., equation (3.5)

and equation (3.13b)

Now we have from equation (3.13),

(t− t0)′+ p̃= mü,

⇒[
T

(
x̄′+u′)−T0x̄′]′+ p̃= mü,

⇒[
(T0 +EAe) x̄′+ (T0 +EAe)u′−T0x̄′]′+ p̃= mü.

Therefore, [
EAex̄′+ (T0 +EAe)u′]′+ p̃= mü. (3.24)

When the above equation is projected on the external basis, we have[
EAex̄′j + (T0 +EAe)u′

j

]′+ p̃ j = mü j, j = 1,2,3 (3.25)

and, the related boundary conditions,

∓
[
EAex̄′j + (T0 +EAe)u′

j

]
H
= P̃ jH , j = 1,2,3. (3.26)

Taking into account the intrinsic basis, we have from equation (3.24):[
EAeāt + (T0 +EAe)u′]′+ p̃= mü,

⇒ (EAe)′ āt +EAeā′
t + (T0 +EAe)′u′+ (T0 +EAe)u′′+ p̃= mü,

⇒ (EAe)′ āt +EAeκ̄ān + (T0 +EAe)′
[(

u′
t − κ̄un

)
āt +

(
u′

n + κ̄ut − τ̄ub
)
ān +

(
u′

b + τ̄un
)
āb

]
+ (T0 +EAe)

[(
u′

t − κ̄un
)′− κ̄(

u′
n + κ̄ut − τ̄ub

)]
āt

+ (T0 +EAe)
[(

u′
n + κ̄ut − τ̄ub

)′+ κ̄(
u′

t − κ̄un
)− τ̄(

u′
b + τ̄un

)]
ān

+ (T0 +EAe)
[(

u′
b + τ̄un

)′+ τ̄(
u′

n + κ̄ut − τ̄ub
)]

āb + p̃= mü.

After projecting on intrinsic basis, we have

(EAe)′+ [
(T0 +EAe)

(
u′

t − κ̄un
)]′− κ̄ (T0 +EAe)

(
u′

n + κ̄ut − τ̄ub
)+ p̃t = müt,

(EAe) κ̄+ [
(T0 +EAe)

(
u′

n + κ̄ut − τ̄ub
)]′

+ (T0 +EAe)
[
κ̄

(
u′

t − κ̄un
)− τ̄(

u′
b + τ̄un

)]+ p̃n = mün,[
(T0 +EAe)

(
u′

b + τ̄un
)]′+ τ̄ (T0 +EAe)

(
u′

n + κ̄ut − τ̄ub
)+ p̃b = müb,

(3.27)

and, the boundary conditions:

∓ [
EAe+ (T0 +EAe)

(
u′

t − κ̄un
)]

H = P̃t,

∓ [
(T0 +EAe)

(
u′

n + κ̄ut − τ̄ub
)]

H = P̃n,

∓ [
(T0 +EAe)

(
u′

b + τ̄un
)]

H = P̃b.

(3.28)
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3.3.2 The Linearized Theory

After Linearizing,

from equation (3.6), we have the strain

e =u′ · āt, (3.29)

and, the incremental balance equations (3.15) take the form[
T̃āt +T0u′]′+ p̃= mü,[
T̃āt +T0u′]

H = P̃H .
(3.30)

The constitutive law can be written as

T̃ = EAe. (3.31)

Now, we have from equation (3.30a),[
EAeāt +T0u′]′+ p̃= mü,

⇒[
EA

(
u′ · āt

)
āt +T0u′]′+ p̃= mü,

⇒[
EA

(
u′ · āt

)]′ āt +
[
EA

(
u′ · āt

)]
ā′

t +
[
T0u′]′+ p̃= mü,

⇒[
EA

((
u′

t − κ̄un
)
āt +

(
u′

n + κ̄ut − τ̄ub
)
ān +

(
u′

b + τ̄un
)
āb

) · āt
]′ āt

+ [
EA

((
u′

t − κ̄un
)
āt +

(
u′

n + κ̄ut − τ̄ub
)
ān +

(
u′

b + τ̄un
)
āb

) · āt
]
κ̄ān

+ [
T0

((
u′

t − κ̄un
)
āt +

(
u′

n + κ̄ut − τ̄ub
)
ān +

(
u′

b + τ̄un
)
āb

)]′+ p̃= mü,

⇒[
EA

(
u′

t − κ̄un
)]′ āt +

[
EA

(
u′

t − κ̄un
)]
κ̄ān +

[
T0

(
u′

t − κ̄un
)]′ āt +

[
T0

(
u′

t − κ̄un
)]

ā′
t

+ [
T0

(
u′

n + κ̄ut − τ̄ub
)]′ ān +

[
T0

(
u′

n + κ̄ut − τ̄ub
)]

ā′
n +

[
T0

(
u′

b + τ̄un
)]′ āb

+ [
T0

(
u′

b + τ̄un
)]

ā′
b + p̃= mü,

⇒[
EA

(
u′

t − κ̄un
)]′ āt +

[
EA

(
u′

t − κ̄un
)]
κ̄ān +

[
T0

(
u′

t − κ̄un
)]′ āt +

[
T0

(
u′

t − κ̄un
)]
κ̄ān

+ [
T0

(
u′

n + κ̄ut − τ̄ub
)]′ ān +

[
T0

(
u′

n + κ̄ut − τ̄ub
)]

(τ̄āb − κ̄āt)+
[
T0

(
u′

b + τ̄un
)]′ āb

+ [
T0

(
u′

b + τ̄un
)]
τ̄ān + p̃= mü.

Projecting the above equation onto the intrinsic basis, we obtain[
EA

(
u′

t − κ̄un
)]′+ [

T0
(
u′

t − κ̄un
)]′− κ̄T0

(
u′

n + κ̄ut − τ̄ub
)+ p̃t = müt,

EAκ̄
(
u′

t − κ̄un
)+ [

T0
(
u′

n + κ̄ut − τ̄ub
)]′+T0

[
κ̄

(
u′

t − κ̄un
)− τ̄(

u′
b + τ̄ub

)]
+ p̃n = mün,[

T0
(
u′

b + τ̄un
)]′+ τ̄T0

(
u′

n + κ̄ut − τ̄ub
)+ p̃b = müb,

(3.32)

with the related boundary conditions,

∓ [
EA

(
u′

t − κ̄un
)+T0

(
u′

t − κ̄un
)]

H = P̃t,

∓ [
T0

(
u′

n + κ̄ut − τ̄ub
)]

H = P̃n,[
T0

(
u′

b + τ̄un
)]

H = P̃b.

(3.33)
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3.3.3 Shallow cables

We will now develop an approximated mathematical model for the shallow cables,

one can get details from A. Luongo and D. Zulli [54], Irvine [42]. First, we will

drive an approximated nonlinear model and then we will linearize it.

(a) (b)

Figure 3.2: Shallow cable [54]: (a) reference configuration; centerline S in the
(i1,i2)-plane, sag d ; (b) current configuration, centerline Ŝ and its horizontal
projection, displacement components ut,un,ub.

Hypotheses: The cable hangs under its self-weight and no wind effects on it.

As long it hangs under the effect of gravity, the cable lies in a certain plane

and have a small sag-to-span ratio, mathematically δ := d/l, of order O
(
10−1)

and we neglect torsional rigidity. The curvature κ̄ and pretension T0 is taken

constant along the cable. The ratio T0/EA is small as of order O
(
10−3), or smaller,

which describes that, the celerity of transverse wave of the cable, ct =
√

T0

m
is the

much smaller comparing with the longitudinal one cl =
√

EA
m

. The displacements

are varied on a scale length of cable length order, that is, u′
α = O(uα/l). The

tangential displacement is considered to be smaller, as ut/l = O
(
δ2), whereas,

the transverse displacements are considered the order of the order of sag, i.e.,

un/l =O (δ) ,ub/l =O (δ). And, the additive forces are transverse, that is, p̃t = 0.

By the series expansion of the unit extension for a small displacement and taking

τ̄= 0, we have from equation (3.11),

e = u′
t − κ̄un + 1

2

[(
u′

t − κ̄un
)2 + (

u′
n + κ̄ut

)2 +u
′2
b

]
+H.O.T. (3.34)

Accounting to Biot approximation, we can omit the linear squared term and we can

neglect κ̄ut comparing with u′
n, because of their ratio O

(
δ2), and lastly neglecting

the higher order terms,

e = u′
t − κ̄un + 1

2
(
u′2

n +u′2
b
)
. (3.35)
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The static condensation of the tangential displacement : From the 1st equa-

tion of (3.27), the leading term among the internal forces, (EAe)′ =O
(
EAu′′

t
)
, and

the other terms have δ2- times smaller. Also, the terms with a characteristic time

O (l/ct), we have

müt =O

(
mut

c2
t

l2

)
=O

(
T0ut

l2

)
¿O

(
EAut

l2

)
= (EAe)′ . (3.36)

So, the tangential inertia can be neglected, and the equation simplified as

(EAe)′ = 0, (3.37)

which implies that

e (s, t)= e0 (t) , (3.38)

which expresses that the unit extension is constant along the cable but changes

with time.

Integrating equation (3.35),∫ s

sA

eds =
∫ s

sA

u′
tds− κ̄

∫ s

sA

unds+ 1
2

∫ s

sA

(
u′2

n +u′2
b
)
ds.

We get,

ut = utA (t)+ e0 (t) (s− sA)+ κ̄
∫ s

sA

unds− 1
2

∫ s

sA

(
u′2

n +u′2
b
)
ds. (3.39)

From the above equation, it is clear that the tangential displacement condensed

statically. Equation (3.39) becomes with the two fixed ends, A and B,

utB = utA (t)+ e0 (t) (sB − sA)+ κ̄
∫ sB

sA

unds− 1
2

∫ sB

sA

(
u′2

n +u′2
b
)
ds,

⇒utB = utA (t)+ e0 (t) l+ κ̄
∫ sB

sA

unds− 1
2

∫ sB

sA

(
u′2

n +u′2
b
)
ds.

Applying the geometric boundary conditions utA = utB = 0, we obtain

e0 (t)=− κ̄
l

∫ sB

sA

unds+ 1
2l

∫ sB

sA

(
u′2

n +u′2
b
)
ds. (3.40)

The transverse motion: Now again, the balance equations taking τ̄= 0, we have

the equations at the normal and binormal directions:

(EAe0) κ̄+ [
(T0 +EAe0)

(
u′

n + κ̄ut
)]′+ (T0 +EAe0)

[
κ̄

(
u′

t − κ̄un
)]+ p̃n = mün,[

(T0 +EAe0)u′
b
]′+ p̃b = müb.

We have T0 +EAe0 = const., from the hypothesis and previous analysis. From the

equation along the normal direction, we note that
κ̄ut

u′
n

=O
(
δ2) as well as
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κ̄
(
u′

t − κ̄un
)

u′′
n

=O
(
δ2), therefore, the smaller terms can be neglected. So that, amidst

the error of O
(
δ2), the transverse motion is governed by the following equations,

(T0 +EAe0)u′′
n +EAe0κ̄+ p̃n = mün,

(T0 +EAe0)u′′
b + p̃b = müb,

e0 =− κ̄
l

∫ sB

sA

unds+ 1
2l

∫ sB

sA

(
u′2

n +u′2
b
)
ds.

(3.41)

The first two equations are the integro-differential equations in the transverse

displacements un (s, t) and ub (s, t), with the geometric boundary conditions,

unA = unB = 0 and ubA = ubB = 0 ∀t. (3.42)

For the case of small amplitude around the pretension configuration of the shallow

flexible cable, we study linearized theory. Ignoring the nonlinear terms, and taking

the linear part of the unit extension, we can rewrite the equation (3.41):

T0u′′
n +EAe0κ̄+ p̃n = mün,

T0u′′
b + p̃b = müb,

e0 =− κ̄
l

∫ sB

sA

unds,

(3.43)

with the boundary conditions:

unA = unB = 0 and ubA = ubB = 0 ∀t. (3.44)
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C H A P T E R 4

A CONTINUUM APPROACH TO THE NONLINEAR

IN-PLANE GALLOPING OF SHALLOW FLEXIBLE

CABLES

4.1 Introduction

In this chapter, we have considered the model and associated investigations fol-

lowing the scientific research done in [21] by M. Ferretti, D. Zulli and A. Luongo.

We have considered a continuum mechanical cable model to analyze its galloping

phenomenon, caused by the interaction of wind and non-circular cross-section of

ice-coated cable, resulting large amplitude of oscillations at small frequencies. The

contribution of an internal damping related to viscous effects and the classical ex-

ternal damping caused by medium resistance is introduced. The internal damping

is employed in the model taking proportional to the linear stiffness operator on

the basis of the Rayleigh model of damping. The aerodynamic forces are modeled

according to the quasi-steady theory of aerodynamic damping of the galloping

mechanism. The critical conditions in the form of wind velocity and modal fre-

quency of the first mode of galloping are obtained in the linear field when the cable

is far from the cross-over point [42]. Next, we analyzed a nonlinear problem with

the help of the multiple scale method (MSM), a perturbation analysis, to investi-

gate the postcritical behavior of cable, the amplitude of vibration and the shape

of the limit-cycle. Two finite dimensional models, namely, the finite difference

method and the multimodal Galerkin method are used to integrate the equations

numerically and to compare the obtained results.
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4.2 Continuum Model

4.2.1 Governing Equations

Here an ice-coated, shallow horizontal cable is considered to study the galloping

instability phenomenon. The cable is hanging under its self-weight from the

same level, at points A abd B in the
(
āx, āy

)
- vertical plane, depicted in Figure

4.1, presenting equilibrium configuration C̄. A local triad (āt, ān, āb), formed of

tangential, normal and binormal unit vectors, is defined to express the equilibrium

configuration. Then we assume a uniform wind U = Uāz is blowing, results a

time-dependent configuration C (thick line in Figure 4.1) with a displacement

u= uāt+vān+wāb, consisting of tangential u (s, t), normal v (s, t), binormal w (s, t)
components, from the configuration C̄.

Figure 4.1: Shallow horizontal cable under normal wind flow. Thin line: in-plane
equilibrium position under self-weight; thick line: current configuration under the
action of both self-weight and wind.

The governing equations of motion of the cable, developed in the literature of

[53] for the transverse motion v (s, t) ,w (s, t), where the flexural and tortional

stiffness are ignored, and the tangential displacement u (s, t) is condensed under

the dependable hypothesis, that states the speed of propagation of longitudinal

waves is much larger comparing with the associated transversal waves [35, 42, 44,

71, 85, 91], also discussed in chapter 3. Taking in consideration of weakly affected

galloping phenomenon, the out-of-plane displacement w (s, t) is ignored in this

model. The governing equations for the in-plane motion then take the form [21]:

(T0 +EAe)v′′+EAκ̄e−mv̈+ f d
n + f a

n = 0,

e =− κ̄
l

∫ l

0
vds+ 1

2l

∫ l

0
v′2ds,

vA = 0,

vB = 0,

(4.1)
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where, T0 is prestress, constant on the abscissa s ∈ [0, l]; l is the length of the

cable, chosen close (almost equal) to the chord; EA is the axial stiffness; m is the

mass per unit length of cable ( can be included of iced-coating ); κ̄ := mg
T0

is the

uniform prestress curvature; e (t) is the dynamic unitary extension, constant on s,

using this, the dynamic tension is obtained as T̃ = EAe; f d
n and f a

n are damping

and aerodynamic forces, respectively, acting in normal direction per unit length of

cable. Here the subscripts A and B is used to express the evaluation of the variable

at the points A and B, i.e., at s = 0 and s = l, respectively; the prime denotes the

space-differentiation and the dots are used for expressing the time-derivatives.

4.2.2 Damping Model

Damping restrains the vibratory motion, for example, mechanical oscillations by

dissipating energy, and for such reasons, it is obligatory to take in consideration of

damping to deal with a galloping problem. There are two types of damping, one is

external damping, which is the result of the resistance of surrounding medium,

and second is internal damping, caused by various dissipative occurances in

material of the structure. The linear external damping force is modeled by taking

proportional to velocities, that is, f dexternal
n = −ce v̇, where ce > 0 is an external

damping coefficient. In accordance with the rheological Kelvin-Voigt model and

Rayleigh model of damping (described in details by the authors of [21]), the internal

damping force components become f dinternal
n = ζ

(
v̇′′+ EA

T0
κ̄ė

)
, with ζ an internal

damping coefficient.

Therefore, the total damping force takes the form,

f d
n =−ce v̇+ζ

(
v̇′′+ EA

T0
κ̄ė

)
. (4.2)

The equations of motion (4.1) then read,

T0

(
1+ ζ

T0
∂t

)
v′′+EAκ̄

(
1+ ζ

T0
∂t

)
e+EAev′′−mv̈− ce v̇+ f a

n = 0,

e =− κ̄
l

∫ l

0
vds+ 1

2l

∫ l

0
v′2ds,

vA = 0,

vB = 0.

(4.3)

To model the aerodynamic force f a
n , the small curvature of the cable is neglected

[16, 24, 114, 115], that is, a curved cable element is assumed to be subjected to the

same aerodynamic forces acting on a long cylinder oriented as the local triad. We

have,

f a
z = 1

2
ρU2b

(
A0 − A1

(
ż
U

)
− A2

(
ż
U

)2
− A3

(
ż
U

)3
+· · ·

)
, (4.4)
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where ρ is the density of air, b is a characteristic cros-section length, and A i are

aerodynamic coefficients which depend on the iced cross-section’s shape, assumed

constant along the span in average. We have A0 = 0, according to the hypothesis of

static response to wind, is zero.

4.2.3 The Linear Problem

To obtain the critical galloping conditions, namely, the critical velocity Uc and

modal frequency ωc, we introduce the relataed linear problem of (4.3), which takes

the form:

T0

(
1+ ζ

T0
∂t

)
v′′+EAκ̄

(
1+ ζ

T0
∂t

)
e−mv̈− (ce +Uc ĉa1) v̇ = 0,

e =− κ̄
l

∫ l

0
vds,

vA = 0,

vB = 0,

(4.5)

where, the aerodynamic coefficient is defined as, ĉa1 := 1
2
ρbA1.

4.2.4 The Space Eigenvalue Problem

Concerning the periodicity of motion at bifurcation point, we separate the variables

in space and time by applying

v (s, t)= v̂ (s)exp(iωct),

e (t)= êexp(iωct),
(4.6)

where ωc is the unknown modal frequency. Using equations (4.6), we have from

the 1st equation of (4.5),

T0

(
1+ iωc

ζ

T0

)
v̂′′exp(iωct)+EAκ̄

(
1+ iωc

ζ

T0

)
êexp(iωct)+mω2

c v̂exp(iωct)

− iωc (ce +Uc ĉa1) v̂exp(iωct)= 0,

⇒T0

(
1+ iωc

ζ

T0

)v̂′′+ EAκ̄
T0

ê+ mω2
c − iωc (ce +Uc ĉa1)

T0

(
1+ iωc

ζ

T0

) v̂

= 0,

⇒v̂′′+ EAκ̄
T0

ê+β2v̂ = 0,
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and from the 2nd equation of (4.5),

êexp(iωct)+ κ̄

l

∫ l

0
v̂exp(iωct) ds = 0,

⇒ê+ κ̄

l

∫ l

0
v̂ ds = 0.

Collecting both from the above calculation, we obtain an eigenvalue problem as

follows,

v̂′′+ EAκ̄
T0

ê+β2v̂ = 0,

ê+ κ̄

l

∫ l

0
v̂ds = 0,

v̂A = 0,

v̂B = 0,

(4.7)

where β is defined as,

β2 := mω2
c − iωc (ce +Uc ĉa1)

T0

(
1+ i

(
ζ

T0

)
ωc

) . (4.8)

The problem (4.7) is likely similar with that one in [42] for the linear natural

vibrations of cable. Therefore, the solutions of equation (4.7) are the natural modes,

we denote

(v̂ (s) , ê)= (
v̂ j (s) , ê j

)
, j = 1,2, ...

the jth natural mode (symmetric or anti-symmetric), and the relevant wave num-

ber β=β j solves the obtained characteristic equation, which is for the antisymmet-

ric case, sin
(
βl
2

)
= 0, or for the symmetric case, the transcendental Irvine equation

[42]:

tan
(
βl
2

)
=−

(
βl
2

)3 4
λ2 +

(
βl
2

)
(4.9)

with λ=
√

EA (κ̄l)2

T0
. We have, from equation (4.8),

β2
j T0

(
1+ iωc j

ζ

T0

)
= mω2

c j − iωc j
(
ce +Uc j ĉa1

)
,

⇒β2
j T0 + iωc jζβ

2
j = mω2

c j − iωc j
(
ce +Uc j ĉa1

)
.

Separating real and imaginary parts, we obtain

Uc j =
ce +ζβ2

j

|ĉa1|
, ĉa1 < 0

ωc j =β j

√
T0

m
,

(4.10)
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where the suffix j indicates the jth root. Since we have Uc := min jUc j =Uc1, in

accordance with this model, the cable gallops in its first natural mode.

We can figure out the role of the internal damping ζ, appears in the equation (4.10).

It divides the critical velocity into infinitely many parts, each of them is related

to a different natural mode. If the cable is internally undamped, various natural

modes can appear simultaneously. This is relatively an unrealistic case because of

the reduction of damping ratio to
1
ω j

. For the case of discrete models, this type of

situation is unclear and various damping ratios of the natural modes are obtained

by experimental studies, instead of deriving it from a relevant model.

4.2.5 The Adjoint Eigenvalue Problem and the Solvability
Condition

Concerning the nonlinear perturbation analysis, we require to construct an adjoint

problem of (4.7) along with the solvability condition for the subsequent nonhomo-

geneous problem,

v̂′′+ EAκ̄
T0

ê+β2v̂ = f (s) ,

ê+ κ̄

l

∫ l

0
v̂ds = ν,

v̂A = 0,

v̂B = 0,

(4.11)

where f (s) and ν are known. Now, we rewrite the equation (4.11) in the integrodif-

ferential form, substituting ê in the first equation of it and by defining φ := v̂ (s) for

the favor of notation,

φ′′+β2φ− EAκ̄2

T0l

∫ l

0
φds = f (s)− EAκ̄

T0
ν,

φA = 0,

φB = 0.

(4.12)

We have the relevant “Extended Green Identity” :∫ l

0
ψ

[
φ′′+β2φ− EAκ̄2

T0l

∫ l

0
φ (s̃)ds̃

]
ds =

∫ l

0
φ

[
ψ′′− EAκ̄2

T0l

∫ l

0
ψ (s̃)ds̃+β2ψ

]
ds

+ [
φ′ψ+φψ′]l

0 .

(4.13)
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From which, we can see that the eigenvalue problem (4.7) is self-adjoint, when

ψ≡φ. Then, the solvability condition becomes,∫ l

0
φ (s)

(
f (s)− EAκ̄

T0
ν

)
ds = 0. (4.14)

4.3 The Nonlinear Problem

A nonlinear analysis is developed with the help of multiple scale method (MSM) to

study the vibration characteristics of the cable in the nonlinear field and in the

neighborhood to the dynamic bifurcation. We have the equation of motion in the

nonlinear form,

T0

(
1+ ζ

T0
∂t

)
v′′+EAκ̄

(
1+ ζ

T0
∂t

)
e−mv̈− (ce +Uĉa1) v̇

+EAev′′− ĉa2v̇2 − ĉa3

U
v̇3 = 0,

e =− κ̄
l

∫ l

0
vds+ 1

2l

∫ l

0
v′2ds,

vA = 0,

vB = 0,

(4.15)

where the aerodynamic coefficients, ĉak := 1
2
ρbAk, for k = 1,2,3.

4.3.1 Multiple Scale Analysis

An asymptotic multiple scale method [77, 78, 80] is employed to solve the equa-

tion (4.15). The dependent variables are expanded in a formal series via a small

perturbation parameter ε, which will be reabsorbed at the end of the analysis, we

have also introduced independent time scales (fast, slow, slowest). Expanding the

dependent variables in series with respect to ε, we have

v = εv1 +ε2v2 +ε3v3,

e = εe1 +ε2e2 +ε3e3,

U =Uc +ε2U2,

(4.16)

where Uc denotes the critical velocity. The time scales and the related differentia-

tion rules are introduced as follows:

t0 := t,

t2 := ε2t,

∂t = ∂0 +ε2∂2,

∂2
t = ∂2

0 +2ε2∂0∂2,

(4.17)
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with ∂ j := ∂

∂t j
, j = 0,2. Substituting equation (4.16) in 1st equation of (4.15), and

using equation (4.17), we have

T0

(
1+ ζ

T0

(
∂0 +ε2∂2

))(
εv′′1 +ε2v′′2 +ε3v′′3

)+EAκ̄
(
1+ ζ

T0

(
∂0 +ε2∂2

))(
εe1 +ε2e2 +ε3e3

)
−m

(
∂2

0 +2ε2∂0∂2
)(
εv1 +ε2v2 +ε3v3

)− (
ce +Uc ĉa1 +ε2U2 ĉa1

)(
∂0 +ε2∂2

)(
εv1 +ε2v2 +ε3v3

)
+EA

(
εe1 +ε2e2 +ε3e3

)(
εv′′1 +ε2v′′2 +ε3v′′3

)− ĉa2
[(
∂0 +ε2∂2

)(
εv1 +ε2v2 +ε3v3

)]2

− ĉa3(
Uc +ε2U2

) [(
∂0 +ε2∂2

)(
εv1 +ε2v2 +ε3v3

)]3 = 0,

⇒εT0

(
1+ ζ

T0
∂0

)
v′′1 +ε2T0

(
1+ ζ

T0
∂0

)
v′′2 +ε3T0

(
1+ ζ

T0
∂0

)
v′′3 +ε3ζ∂2v′′1

+εEAκ̄
(
1+ ζ

T0
∂0

)
e1 +ε2EAκ̄

(
1+ ζ

T0
∂0

)
e2 +ε3EAκ̄

(
1+ ζ

T0
∂0

)
e3

+ε3 EAκ̄
T0

ζ∂2e1 −εm∂2
0v1 −ε2m∂2

0v2 −ε3m∂2
0v3 −ε32m∂0∂2v1 −ε (ce +Uc ĉa1)∂0v1

−ε2 (ce +Uc ĉa1)∂0v2 −ε3 (ce +Uc ĉa1)∂0v3 −ε3 (ce +Uc ĉa1)∂2v1 −ε3U2 ĉa1∂0v1

+ε2EAe1v′′1 +ε3EAe1v′′2 +ε3EAe2v′′1 −ε2 ĉa2 (∂0v1)2 −ε32ĉa2 (∂0v1) (∂0v2)

−ε3 ĉa3

Uc
(∂0v1)3 +O

(
ε4)= 0.

Collecting the coefficients of ε at the 1st, 2nd, and 3rd orders, we have

Order ε :

T0

(
1+ ζ

T0
∂0

)
v′′1 +EAκ̄

(
1+ ζ

T0
∂0

)
e1 −m∂2

0v1 − (ce +Uc ĉa1)∂0v1 = 0,

e1 + κ̄

l

∫ l

0
v1ds = 0,

v1A = 0,

v1B = 0.

(4.18)

Order ε2 :

T0

(
1+ ζ

T0
∂0

)
v′′2 +EAκ̄

(
1+ ζ

T0
∂0

)
e2 −m∂2

0v2 − (ce +Uc ĉa1)∂0v2 = ĉa2 (∂0v1)2 −EAv′′1 e1,

e2 + κ̄

l

∫ l

0
v2ds = 1

2l

∫ l

0
v′21 ds,

v2A = 0,

v2B = 0.

(4.19)
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Order ε3 :

T0

(
1+ ζ

T0
∂0

)
v′′3 +EAκ̄

(
1+ ζ

T0
∂0

)
e3 −m∂2

0v3 − (ce +Uc ĉa1)∂0v3 = 2m∂0∂2v1

−ζ∂2v′′1 −ζ
EA
T0

κ̄∂2e1 + (ce +Uc ĉa1)∂2v1 +U2 ĉa1∂0v1 +2ĉa2 (∂0v1) (∂0v2)

+ ĉa3

Uc
(∂0v1)3 −EA

(
v′′2 e1 +v′′1 e2

)
,

e3 + κ̄

l

∫ l

0
v3ds = 1

l

∫ l

0
v′1v′2ds,

v3A = 0,

v3B = 0.

(4.20)

When internal resonances are excluded from the natural modes, we assume the

generating (monomodal) solution to the ε order problem as:(
v1

e1

)
= A (t2)

(
v̂c (s)

êc

)
exp(iωct0)+ c.c. (4.21)

where A (t2) is a complex modulating function, (v̂c (s) , êc) is the first in-plane

natural mode of vibration of the cable, ωc is the critical modal frequency, and c.c.

represents complex conjugate.

Using solution (4.21), we have from equation (4.19)

T0

(
1+ ζ

T0
∂0

)
v′′2 +EAκ̄

(
1+ ζ

T0
∂0

)
e2 −m∂2

0v2 − (ce +Uc ĉa1)∂0v2

= ĉa2
(
iωc Av̂c exp(iωct0)− iωc Ā exp(−iωct0)

)2

−EA
(
Aêc exp(iωct0)+ Ā êc exp(−iωct0)

)(
Av̂′′c exp(iωct0)+ Āv̂′′c exp(−iωct0)

)
,

= A2 (−ω2
c ĉa2v̂2

c −EAv̂′′c êc
)
exp(2iωct0)+ AĀ

(
ĉa2ω

2
c v̂2

c −EAv̂′′c êc
)+ c.c.

and,

e2 + κ̄

l

∫ l

0
v2ds = 1

2l
v′21 ds,

= A2
(

1
2l

∫ l

0
v̂′2c ds

)
exp(2iωct0)+ AĀ

(
1
2l

∫ l

0
v̂′2c ds

)
+ c.c.

From which, the ε2-order perturbation problem (4.19) takes the solution of the

form,

v2 = A2χ22 (s)exp(2iωct0)+ AĀχ20 (s)+ c.c.

e2 = A2η22 exp(2iωct0)+ AĀη20 + c.c.
(4.22)

where χ20 (s) ,χ22 (s) are the second order modal shape corrections, and η20,η22 are

the second order dynamic unitary extension corrections, respectively.
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The (complex) function χ22 (s) and constant η22 are the solution of the following

boundary value problem,

T0

(
1+2iωc

ζ

T0

)
χ′′22 +EAκ̄

(
1+2iωc

ζ

T0

)
η22 +

(
4mω2

c −2iωcce −2iωcUc ĉa1
)
χ22

=−ω2
c ĉa2v̂2

c −EAv̂′′c êc,

η22 + κ̄

l

∫ l

0
χ22ds = 1

2l

∫ l

0
v̂′2c ds,

χ22A = 0,

χ22B = 0,

(4.23)

and the (real) function χ20 (s) and constant η20 are the solution of the following

boundary value problem,

T0χ
′′
20 +EAκ̄η20 =−EAv̂′′c êc +ω2

c ĉa2v̂2
c ,

η20 + κ̄

l

∫ l

0
χ20ds = 1

2l

∫ l

0
v̂′2c ds,

χ20A = 0,

χ20B = 0.

(4.24)

For approaching to the solution of ε3-order problem (4.20), we must be verified the

solvability condition (4.14). Next, we substitute the 2nd equation of (4.20) in the

1st equation to get the integrodifferential equation, as follows:

T0

(
1+ ζ

T0
∂0

)
v′′3 −

EAκ̄2

l

(
1+ ζ

T0
∂0

)∫ l

0
v3ds−m∂2

0v3 − (ce +Uc ĉa1)∂0v3

=
(
i ĉa1U2ωc Av̂c + 3i ĉa3

Uc
ω3

c A2 Āv̂3
c +4ĉa2ω

2
c A2 Āv̂cχ22 − EAêcκ̄ζ

T0
A′

+ (ce + ĉa1Uc +2imωc) A′v̂c −ζA′v̂′′c −EA
(
2η20 +η22

)
A2 Āv̂′′c

−EAêc A2 Ā
(
2χ′′20 +χ′′22

)−EAκ̄
(
1+ iωc

ζ

T0

)
A2 Ā

l

∫ l

0
v̂′c

(
2χ′20 +χ′22

)
ds

)
exp(iωct0)

+NRT + c.c.

(4.25)

where NRT stands for nonresonant terms. The solvability condition for equation

(4.20) requires that the known term is orthogonal to v̂c (s), i.e.,∫ l

0
v̂c

(
i ĉa1U2ωc Av̂c + 3i ĉa3

Uc
ω3

c A2 Āv̂3
c +4ĉa2ω

2
c A2 Āv̂cχ22 − EAêcκ̄ζ

T0
A′

+ (ce + ĉa1Uc +2imωc) A′v̂c −ζA′v̂′′c −EA
(
2η20 +η22

)
A2 Āv̂′′c

−EAêc A2 Ā
(
2χ′′20 +χ′′22

)−EAκ̄
(
1+ iωc

ζ

T0

)
A2 Ā

l

∫ l

0
v̂′c

(
2χ′20 +χ′22

)
ds

)
ds = 0.

(4.26)
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Now, we lead the calculation to go back to the true time, which gives the following

ordinary differential equation (bifurcation equation) for amplitude, as follows:

Ȧ =−U2c1A+ (c3R + ic3I) A2 Ā, (4.27)

and this is the ( well-known ) normal form of Hopf bifurcation [32], where,

c1 = ĉa1

2m
,

c3R =− 1

2mωc
∫ l

0 v̂2
c ds

[
3ĉa3ω

3
c

Uc

∫ l

0
v̂4

c ds+4ĉa2ω
2
c

∫ l

0
v̂2

cχ22I ds− EAκ̄
l

∫ l

0
v̂cds

·
(
ζωc

T0

∫ l

0
v̂′c

(
2χ′20 +χ′22R

)
ds+

∫ l

0
v̂′cχ

′
22I ds

)
−EAη22I

∫ l

0
v̂c v̂′′c ds

−EAêc

∫ l

0
v̂cχ

′′
22I ds

]
,

c3I = 1

2mωc
∫ l

0 v̂2
c ds

[
4ĉa2ω

2
c

∫ l

0
v̂2

cχ22Rds− EAκ̄
l

∫ l

0
v̂cds

(
ζωc

T0

∫ l

0
v̂′cχ

′
22I ds

−
∫ l

0
v̂′c

(
χ′22R +2χ′20

)
ds

)
−EA

(
η22R +2η20

)∫ l

0
v̂c v̂′′c ds

−EAêc

∫ l

0
v̂c

(
χ′′22R +2χ′′20

)
ds

]
,

and χ22 (s)= χ22R (s)+ iχ22I (s), η22 = η22R + iη22I .

Let us consider, A (t)= 1
2

a (t)exp
(
iϕ (t)

)
, and substitute in equation (4.27), we have

1
2

ȧ (t) eiϕ(t) + i
1
2

a (t) ϕ̇ (t) eiϕ(t) =−1
2

U2c1a (t) eiϕ(t) + 1
8

(c3R + ic3I)a3 (t) eiϕ(t).

Separating real and imaginary parts, the bifurcation equation in real form is

derived, as follows:

ȧ =−u2c1a+ c3R

4
a3,

aϕ̇= c3I

4
a3.

(4.28)

Solving the above equation (4.28), we get the equilibrium solutions a0 = 0, a

trivial solution, and other two as a1,2 =±2
√ c1

c3R
, limit-cycle amplitudes. With an

eigenvalue analysis, it shows that when U2 < 0, a0 is stable and unstable when

U2 > 0. The bifurcation curves a1,2, rising from U2 = 0 and becomes stable for the

values U2 > 0, results, the Hopf bifurcation is supercritical.

Then we get the solution as the motion on the limit-cycle of the cable,

v (s, t)= a (t) v̂c (s)cos
(
ωct+ϕ (s)

)+ 1
2

a (t)2

· [χ20 (s)+χ22R cos
(
2

(
ωct+ϕ (t)

))−χ22I (s)sin
(
2

(
ωct+ϕ (t)

))]
,

e (t)= a (t) êc cos
(
ωct+ϕ (t)

)+ 1
2

a (t)2

· [η20 +η22R cos
(
2

(
ωct+ϕ (t)

))−η22I sin
(
2

(
ωct+ϕ (t)

))]
.

(4.29)
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The χ’s functions express the complex behavior of the nonlinear normal mode

of vibration, that is, the deformed shape of the mode of cable changes while

completing a period.

4.4 Finite-Dimensional Models

To analyze the galloping mechanism and compare the results for numerical studies,

two finite-dimensional numerical models: (1) the finite difference method and (2)

the Galerkin method, are developed.

4.4.1 Finite Difference Method

We divide the space interval [0, l] into Ns > 2 sub-intervals with equal spaced

having amplitude ∆= l
Ns

. Let us define,

s j := j∆, j = 0,1,2, · · ·, Ns,

v j := v
(
s j, t

)
, j = 0,1,2, · · ·, Ns,

v′j := v′
(
s j, t

)
, j = 0,1,2, · · ·, Ns.

(4.30)

and, the following second ordered central finite difference rules,

v′ = v j+1 −v j−1

2∆
,

v′′ = v j+1 −2v j +v j−1

∆2 .
(4.31)

Also, the integral is evaluated using the Trapezoidal rule∫ l

0
vds =∆

(
Ns−1∑
j=1

v j +
v0 +vNs

2

)
. (4.32)

By using equations (4.30), (4.31) and (4.32), the equations in (4.15) read,

mv̈ j+ (ce +Uĉa1) v̇ j −ζ
v̇ j+1 −2v̇ j + v̇ j−1

∆2 + ĉa2v̇2
j +

ĉa3

U
v̇3

j

= (T0 +EAe)
v j+1 −2v j +v j−1

∆2 +EAκ̄
(
e+ ζ

T0
ė
)
, j = 1,2, · · ·, Ns −1,

(4.33)

where,

e =−∆κ̄
l

Ns−1∑
k=1

vk +
1

4l∆

[
v2

1 +v2
Ns−1 +

1
2

Ns−1∑
k=1

(vk+1 −vk−1)2

]
,

ė =−∆κ̄
l

Ns−1∑
k=1

v̇k +
1

2l∆

(
v1v̇1 +vNs−1v̇Ns−1 + 1

2

Ns−1∑
k=1

[(vk+1 −vk−1) (v̇k+1 − v̇k−1)]

)
,

v0 = vNs = 0.

(4.34)
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In the calculation of e and ė, the space derivatives at s = 0, l of the displacements,

are followed the forward and backward finite differences, are as follows:

v′0 =
v1

∆
,

v′Ns
=−vNs−1

∆
.

(4.35)

The equations (4.33) are a set of Ns −1 ordinary differential equations of the

unknown nodal displacements v j (t) with j = 1,2, · · ·, Ns −1. They are solved by

using mathematica progamming.

4.4.2 Galerkin Method

The displacement field v (s, t) is defined as the truncated series, as follows:

v (s, t)=
Ns∑
j=1

φ j (s) q j (t) , (4.36)

where, q j are the generalized coordinates, and φ j are the trial functions, defined

as

φ j (s)=
√

2
ml

sin
(

jπ
l

s
)
, (4.37)

which satisfy ∫ l

0
φiφ jds = 1

m
δi j,∫ l

0
φ′

iφ
′
jds = 1

m

(
jπ
l

)2
δi j,

(4.38)

in which δi j is the Kronecker delta.

Substituting equation (4.36) into the first equation of (4.15) and using equations

(4.37) and (4.38), we have the residual,

R = T0

Ne∑
j=1

φ′′
j q j +ζ

Ne∑
j=1

φ′′
j q̇ j +EAκ̄

(
1+ ζ

T0
∂t

)
e−m

Ne∑
j=1

φ j q̈ j − (ce +Uĉa1)
Ne∑
j=1

φ j q̇ j

+EAe
Ne∑
j=1

φ′′
j q j − ĉa2

Ne∑
j=1

Ne∑
h=1

φ jφh q̇ j q̇h −
ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

φ jφhφk q̇ j q̇h q̇k,

=−T0
π2

l2

Ne∑
j=1

j2φ j q j −ζπ
2

l2

Ne∑
j=1

j2φ j q̇ j +EAκ̄
(
1+ ζ

T0
∂t

)
e−m

Ne∑
j=1

φ j q̈ j

− (ce +Uĉa1)
Ne∑
j=1

φ j q̇ j −EAe
π2

l2

Ne∑
j=1

j2φ j q j − ĉa2

Ne∑
j=1

Ne∑
h=1

φ jφh q̇ j q̇h

− ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

φ jφhφk q̇ j q̇h q̇k.
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We force the following integral to vanish over the solution domain by using the

weighted residual approach, that is,∫ l

0
φiRds = 0,

⇒− T0π
2

l2

Ne∑
j=1

j2q j

∫ l

0
φiφ jds− ζπ2

l2

Ne∑
j=1

j2 q̇ j

∫ l

0
φiφ jds+EAκ̄

(
1+ ζ

T0
∂t

)∫ l

0
φids

−m
Ne∑
j=1

q̈ j

∫ l

0
φiφ jds− (ce +Uĉa1)

Ne∑
j=1

q̇ j

∫ l

0
φiφ jds−EAe

π2

l2

Ne∑
j=1

j2q j

∫ l

0
φiφ jds

− ĉa2

Ne∑
j=1

Ne∑
h=1

q̇ j q̇h

∫ l

0
φiφ jφhds− ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

q̇ j q̇h q̇k

∫ l

0
φiφ jφhφkds = 0,

⇒− T0π
2

l2

Ne∑
j=1

j2q j
1
m
δi j − ζπ2

l2

Ne∑
j=1

j2 q̇ j
1
m
δi j +EAκ̄

(
e+ ζ

T0
ė
)

l
iπ

√
2

ml

(
1+ (−1)i+1

)
−m

Ne∑
j=1

q̈ j
1
m
δi j − (ce +Uĉa1)

Ne∑
j=1

q̇ j
1
m
δi j −EAe

π2

l2

Ne∑
j=1

j2q j
1
m
δi j

− 2
ml

√
2

ml
ĉa2

Ne∑
j=1

Ne∑
h=1

q̇ j q̇h

∫ l

0
sin

(
iπ
l

s
)
sin

(
jπ
l

s
)
sin

(
hπ
l

s
)
ds

− 4
m2l2

ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

q̇ j q̇h q̇k

∫ l

0
sin

(
iπ
l

s
)
sin

(
jπ
l

s
)
sin

(
hπ
l

s
)
sin

(
kπ
l

s
)
ds = 0,

⇒− T0π
2

l2

Ne∑
j=1

j2q j
1
m
δi j − ζπ2

l2

Ne∑
j=1

j2 q̇ j
1
m
δi j +EAκ̄

(
e+ ζ

T0
ė
)

l
iπ

√
2

ml

(
1+ (−1)i+1

)
−m

Ne∑
j=1

q̈ j
1
m
δi j − (ce +Uĉa1)

Ne∑
j=1

q̇ j
1
m
δi j −EAe

π2

l2

Ne∑
j=1

j2q j
1
m
δi j

− 1
2mπ

√
2

ml
ĉa2

Ne∑
j=1

Ne∑
h=1

q̇ j q̇h

(
(−cos(h+ i− j)π+1)

(h+ i− j)
+ (−cos(h− i+ j)π+1)

(h− i+ j)

+ (cos(h+ i+ j)π−1)
(h+ i+ j)

+ (cos(h− i− j)π−1)
(h− i− j)

)
− 1

m2l
ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

q̇ j q̇h q̇k

[
sin(i− j+h−k)π

(i− j+h−k)π
+ sin(i− j−h+k)π

(i− j−h+k)π

−sin(i+ j+h−k)π
(i+ j+h−k)π

− sin(i+ j−h+k)π
(i+ j−h+k)π

− sin(i− j+h+k)π
(i− j+h+k)π

− sin(i− j−h−k)π
(i− j−h−k)π

+sin(i+ j+h+k)π
(i+ j+h+k)π

+ sin(i+ j−h−k)π
(i+ j−h−k)π

]
= 0.

Using the definition of Kronecker delta, and performing some simple calculations,
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we get the following set of equations:

q̈i + 1
m

[
ζ

(
iπ
l

)2
+ ce +Uĉa1

]
q̇i + (T0 +EAe)

m

(
iπ
l

)2
qi

−
(
1+ (−1)i+1

i

)
1
π

√
2

ml
EAκ̄

(
e+ ζ

T0
ė
)
+ ĉa2

Ne∑
j=1

Ne∑
h=1

(
Γi jh q̇ j q̇h

)
+ ĉa3

U

Ne∑
j=1

Ne∑
h=1

Ne∑
k=1

(
Γi jhk q̇ j q̇h q̇k

)= 0, i = 1,2, · · ·, Ne

(4.39)

where,

e =− κ̄
π

√
2

ml

Ne∑
h=1

(
1+ (−1)h+1

h
qh

)
+ π2

2ml3

Ne∑
h=1

(
h2q2

h
)
,

ė =− κ̄
π

√
2

ml

Ne∑
h=1

(
1+ (−1)h+1

h
q̇h

)
+ π2

ml3

Ne∑
h=1

(
h2qh q̇h

)
,

Γi jh =



0 i = j+h,

or j = i+h,

or h = i+ j
4
π

√
2

m3l

[
(−1)i+ j+h −1

]
i jh

(i+ j+h) (i− j+h) (i+ j−h) (i− j−h)
otherwise

Γi jhk =



3
2m2l

i = j = h = k

− 1
2m2l

i = j+h+k, or j = i+h+k, or h = i+ j+k,

or k = i+ j+h
1

2m2l
i+ j = h+k, j 6= h, j 6= k

or i+h = j+k,h 6= j,h 6= k

or j+h = i+k,h 6= i,h 6= k
1

m2l
i = j,h = k, or i = h, j = k, or i = k, j = h

0 otherwise

(4.40)

The equations (4.39) are a set of Ne ordinary differential equations for the general-

ized coordinates q j (t) , j = 1,2, · · ·, Ne.

55



CHAPTER 4. A CONTINUUM APPROACH TO THE NONLINEAR IN-PLANE
GALLOPING OF SHALLOW FLEXIBLE CABLES

4.5 Numerical Results

We have considered a sample of cable having the geometrical and mechanical

properties as follows: the mass per unit length (of iced-cable), m = 1.80 kg/m;

length, l = 267 m; axial stiffness, EA = 2.97×107 N. The mass density of the cable

is ρ = 1.25 kg/m3 and the mean diameter is b = 0.0281m. The damping coefficients

are as: external damping coefficient, ζ= 48.939 kgm/s and the internal damping

coefficient, ce = 0.022 kg/(ms). Here, we consider two different case studies on

the basis of initial sag, d ' mgl2

8T0
; one is, when the initial sag d = 5m, results

λ= 4.602< 2π, i.e., the cable is under the first cross-over point; and second initial

sag d = 7m, with λ= 7.624> 2π, i.e., the cable is above of the first cross-over point.

We have considered the aerodynamic parameters from the references [114, 115],

concerning with an U-shaped conductor with a symmetric portion, which have the

maximum ice eccentricity aganist the mean wind flow. The standardized drag and

lift coefficients are as follows:

cd (α)= 1.08334+0.735935α2

cl (α)=−1.5979α+4.77362α3
(4.41)

where α is the angle of attack, at which the relative wind flow meets the cross-

sectional plane of the cable. The angle is formed in between the unit vector ab and

wind axis az. The values of α is taken valid in the range −0.6<α< 0.6 radian.

In Figure 4.2, the initial approximation of first linear modal in-plane displacement

is presented.

0 50 100 150 200 250

-0.0015

-0.0010

-0.0005

0.0000

s

f(
s
)

Figure 4.2: Case study 1: Approximated initial first linear mode
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(a) (b)

(c) (d)

Figure 4.3: Case study 1: (a) Frist linear symmetric mode; (b, c, d) Second order
corrections; figures are taken from [21].

In the first case, Figure 4.3 represents the mode shapes and their second order

corrections. The first linear mode is symmetric, depicted in Figure 4.3(a), the

dynamic unitary extension êc = −5.901×10−4, and critical velocity Uc = 4.465

m/s and modal frequency ωc = 2.547 rad/s are obtained. The corrections for the

second order of modal shape χ20 (s), χ22R (s), and χ22I (s) are presented in Figures

4.3(b), 4.3(c) and 4.3(d) respectively, with the dynamic unitary extension correc-

tions η20 =−7.939×10−5, η22R = 1.314×10−4, and η22I = 1.255×10−6.
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(a) (b)

Figure 4.4: Case study 1: (a) Bifurcation diagram, solid line: stable, dashed line:

unstable; (b) Reconstituted displacement v (s, t) of the cable for
U2

Uc
= 0.11, taken

from [21].

Figure 4.4(a) depicts the bifucation diagram, which shows the behavior of clas-

sical supercritical Hopf bifurcation, and Figure 4.4(b) displays the post-critical

evolution of the time and space of the cable with the value of postcritical condition,

U2/Uc = 0.11.

Taking the same value of post-critical condition U2/Uc = 0.11, the evolution of time

of the cable is presented in Figure 4.5, comparing the results with multiple scale

method, Galerkin method with nodes Ne = 20 and finite difference method with

nodes NS = 100. Figure 4.5(a) displays the half-span displacement, whereas Figure

4.5(b) shows quarter-span displacement. The MSM, Galerkin method and finite

difference method are showed with green, blue and orange lines respectively, and a

good agreement has been reached among the results, i.e., the asymptotic analysis

is dependable.

Phase plots for the half-span and quarter-span have drawn in Figure 4.6, where

they have shown a small modification in elliptical form. Also they are showing

a small alteration of the shape of vibration over a period, caused by nonlinear

contributions.
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(a) (b)

Figure 4.5: Case study 1: reconstituted time evolution of the displacement v (s, t)

for
U2

Uc
= 0.11 at (a) half-span; (b) quarter-span (green line: multiple scale method;

blue line: Galerkin method; orange line: finite difference method) [21].

(a) (b)

Figure 4.6: Case study 1: reconstituted phase plot (v, v̇) for
U2

Uc
= 0.11 at (a) half-

span; (b) quarter-span (green line: multiple scale method; blue line: Galerkin
method; orange line: finite difference method)[21].

In the following, Figure 4.7 represents the initial approximation of the first linear

mode in the case 2. Figure 4.8 represents the mode shapes and their second order

corrections for the second case, where the first linear mode is antisymmetric,

depicted in Figure 4.8(a), the values of dynamic unitary extension êc = 0, and
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Figure 4.7: Case study 2: Approximated initial first linear mode.

critical velocity Uc = 5.454 m/s and modal frequency ωc = 2.630 rad/s are obtained.

The corrections for the second order of modal shape χ20 (s), χ22R (s), and χ22I (s) are

presented in Figures 4.8(b), 4.8(c) and 4.8(d) respectively, with the dynamic unitary

extension corrections η20 = 2.369×10−5, η22R = 2.191×10−4, and η22I = 1.643×10−6.

(a) (b)

(c) (d)

Figure 4.8: Case study 2: (a) Anti-symmetric mode; (b, c, d) Second order corrections
[21].
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Figure 4.9(a) depicts the bifucation diagram for the 2nd case, which still shows the

behavior of classical Hopf bifurcation, and Figure 4.9(b) displays the post-critical

evolution of the time and space of the cable with the value of postcritical condition,

U2/Uc = 0.09.

The evolution of time of the cable is presented in Figure 4.10 by using the post-

critical condition U2/Uc = 0.09 and comparing the results with multiple scale

method, Galerkin method with nodes Ne = 20 and finite difference method with

nodes NS = 100. Figure 4.10(a) displays the half-span displacement, whereas

Figure 4.10(b) shows quarter-span displacement. The MSM, Galerkin method and

finite difference method are showed with green, blue and orange lines respectively,

and a good agreement has been reached in this case as well, i.e., the asymptotic

analysis is reliable as discussed in the 1st case. The stationary drift in the Figure

4.10(a), shows an obvious dominant contribution of nonlinearities.

Phase plot for the quarter-span have displayed in Figure 4.11, where for the

nonlinear effects, it is showing a small alteration of the shape of vibration over a

period.

(a) (b)

Figure 4.9: Case study 2: (a) Bifurcation diagram, solid line: stable, dashed line:

unstable; (b) Reconstituted displacement v (s, t) of the cable for
U2

Uc
= 0.09, taken

from [21].
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(a) (b)

Figure 4.10: Case study 2: reconstituted time evolution of the displacement v (s, t)

for
U2

Uc
= 0.09 at (a) half-span; (b) quarter-span (green line: multiple scale method;

blue line: Galerkin method; orange line: finite difference method) [21].

Figure 4.11: Case study 2: reconstituted phase plot (v, v̇) for
U2

Uc
= 0.09 at quarter-

span (green line: multiple scale method; blue line: Galerkin method; orange line:
finite difference method) [21].
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4.6 Conclusion

A continuum approach is employed to analyze the in-plane galloping phenomenon

of a horizontally suspended flexible cable. The aerodynamic forces are modeled via

quasi-steady theory. On the basis of Rayleigh model of damping, the contribution

of the both external and internal damping is taken into account. The study of pre-

and post-critical analyses are presented. A perturbation method is employed to

evaluate the modifications of the shape of critical mode and limit-cycle’s magnitude.

For two case-studies, numerical results in terms of finite difference and Galerkin

method are presented, and they show a good agreement with the results found in

analytical approach.
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C H A P T E R 5

SPATIAL GALLOPING ANALYSIS OF SHALLOW

CABLES VIA A LINEAR CONTINUUM MODEL

5.1 Introduction

A shallow flexible suspended cable, subjected to its self-weight, is modeled assum-

ing it as a self-excited dynamical system in the linear field, taking in consideration

of aerodynamic and damping forces. In accordance with the quasi-steady theory,

the aerodynamic forces are developed in the model. Both the internal and external

damping forces are considered simultaneously, on the basis of the Kelvin-Voigt

rheological model. An exact analysis accompanied with an asymptotic and two

numerical methods are performed to study the model in critical condition. The

obtained outcomes are compared with different methods, as mentioned above, and

presented with some tables and figures.

5.2 Mathematical Modeling

A horizontal shallow flexible cable is considered, suspended under the effect of

gravity at the vertical points A and B. As long it hangs under its self-weight

and no wind effects, the cable hangs in the vertical plane-
(
āx, āy

)
, by assuming

an equilibrium configuration, taken as reference configuration presented by C̄
(thin line in Figure 5.1). This is here approximated by a parabola, while more

refined perturbation analyses are discussed in [77, 78, 80]. An orthonormal triad

of unit vectors
(
āx, āy, āz

)
is introduced, with āx horizontal, āy vertical and āz

normal to the plane. A second, intrinsic basis (āt (s) , ān (s) , āb (s)) is also considered,

where indexes denote the tangential, normal (in-plane) and binormal (out-of-plane)

directions at the abscissa s (with āb ≡ āz). An orthogonal uniform wind flow

U=Uāz is assumed to act on the cable, which pushes the body to a current, time-

depending, configuration (thick line in Figure 5.1), described by the displacement
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field u= u (s, t) āt (s)+v (s, t) ān (s)+w (s, t) āb.

Figure 5.1: Shallow horizontal cable under normal wind flow. Thin line: in-plane
equilibrium position under self-weight; thick line: current configuration under the
action of both self-weight and wind.

5.2.1 Equation of Motion

The equation of motion of the cable, with the tangential displacement u (s, t)
condensed, and flexural and torsional stiffnesses ignored, have been derived in

chapter 3, following [42, 54, 58, 91], for the transverse motion v (s, t), w (s, t). When

nonlinearities are neglected, they read:

T0v′′+EAκ̄e−mv̈+ f d
n + f a

n = 0,

T0w′′−mẅ+ f d
b + f a

b = 0,

e =− κ̄
l

∫ l

0
vds,

vA = 0, vB = 0,

wA = 0, wB = 0.

(5.1)

where, T0 is the pretension, constant on s; EA is the axial stiffness; m is the mass

per unit length of the iced cable; l is the length of the cable, nearly equal to the

chord; κ̄ := mg
T0

is the initial curvature; e (t) is the dynamic unit extension, constant

on s; f d
n , f d

b are damping forces and f a
n , f a

b are aerodynamic forces, all per unit

length, acting in the normal and binormal direction, respectively; finally, the dot

and dashes denote differentiation with respect to time and space, respectively.

5.2.2 Damping Model

Damping of the vibration of suspended iced cable emerges with the loss of energy

by dissipative forces. For the reason of aerodynamic instability, the iced cable tends

to gallop by a self excited vibration with low frequencies and high amplitudes. In
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such problems, we need to take account the damping of the oscillation. To control

the high amplitude vibrations, damping plays an important role in the steady-state

excitations, albeit the damping forces are small compared to elasticity and inertia

forces in many structural applications. In many dynamical systems, damping

plays a critical role in defining the boundary between stability and instability

by significantly affecting the response amplitudes and phases around resonance.

There are two forms of damping [21, 120] namely, external and internal, both are

considered in this study.

It includes the aerodynamic drag and dissipation of support motion of structures

while accounting external damping. The drag force can be linear or nonlinear.

It was observed that aerodynamic damping had a considerable impact on the

high-amplitude vibrations of cables with low damping and high elastic modulus.

The cause of external damping is due to resistance of medium of the system.

The external damping is modeled as proportional to velocities, mathematically,

f de
n =−ce v̇, f de

b =−ceẇ, where ce > 0 is a damping coefficient. Which implies that

an external damping operator is taken as proportional to the mass operator.

On the other hand, internal damping, accounting for various dissipation sources

in material are modeled via an ‘equivalent’ viscous mechanism. Since the stiffness

of the cable is of mixed nature, namely, elastic and geometric [21]. Taking in

consideration of the elastic stiffness, according to Kelvin-Voigt model, we consider

a local force ηAκ̄ė, where η is a coefficient of viscosity. By following the damping

model proposed in [21], we have the damping forces:

f d
n =−ce v̇+ζ

(
EA
T0

κė+ v̇′′
)
,

f d
b =−ceẇ+ζẇ′′.

(5.2)

Substituting equation (5.2) into equation (5.1), we have

T0v′′+EAκ̄e−mv̈− ce v̇+ζ
(

EA
T0

κ̄ė+ v̇′′
)
+ f a

n = 0,

T0w′′−mẅ− ceẇ+ζẇ′′+ f a
b = 0,

e =− κ̄
l

∫ l

0
vds,

vA = 0, vB = 0,

wA = 0, wB = 0.
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Rearranging the first two equations of the above system, the equations of motion

read:

T0

(
1+ ζ

T0
∂t

)
v′′+EAκ̄

(
1+ ζ

T0
∂t

)
e−mv̈− ce v̇+ f a

n = 0,

T0

(
1+ ζ

T0
∂t

)
w′′−mẅ− ceẇ+ f a

b = 0,

e =− κ̄
l

∫ l

0
vds,

vA = 0, vB = 0,

wA = 0, wB = 0.

(5.3)

5.2.3 Aerodynamic Forces

In this study, the formulation of aerodynamic forces are followed by adopting the

quasi-steady theory [1, 66]. According to the quasi-steady assumption, unsteady

aerodynamic forces can be modeled with defining an identical steady aerodynamic

situation. The theory actually is the complementary of two assumptions, are as: (1)

By knowing the instanteneous motion, orientation and position of the structure, it

can be completely determined the aerodynamic forces, as the oscillatory motion

influences the unsteady consequence at a very low frequency. Since the 2nd and

higher order derivatives of the motion are omitted, this assumption is identical to

neglect inertia effect. (2) A steady system is possible to assume, which is identical

to the corresponding unsteady system.

On the basis of the above assumption, we model the aerodynamic forces by ne-

glecting the small curvatures of the cable. Because of the ice accretion, the cable’s

cross-sections become non-circular, and hence affected by aerodynamic forces. In

the linear case, they are as follows:(
f a
n

f a
b

)
=−U

[
ĉa

22 ĉa
23

ĉa
32 ĉa

33

](
v̇
ẇ

)
, (5.4)

where,

ĉa
22 := 1

2
ρb

(
Cd0 +C

′
l0

)
, ĉa

23 :=−ρbCl0, ĉa
32 := 1

2
ρb

(
Cl0 −C

′
d0

)
, ĉa

33 := ρbCd0,

and, Cd0,Cl0,C
′
d0,C

′
l0 are drag and lift aerodynamic coefficients and their deriva-

tives with respect to the attack angle, evaluated at the origin. Here, the static
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component of the aerodynamic force has been ignored. Now, the model (5.3) reads:

T0

(
1+ ζ

T0
∂t

)
v′′+EAκ̄

(
1+ ζ

T0
∂t

)
e−mv̈− ce v̇−U

(
ĉa

22v̇+ ĉa
23ẇ

)= 0,

T0

(
1+ ζ

T0
∂t

)
w′′−mẅ− ceẇ−U

(
ĉa

32v̇+ ĉa
33ẇ

)= 0,

e =− κ̄
l

∫ l

0
vds,

vA = 0, vB = 0,

wA = 0, wB = 0.

(5.5)

5.3 The “Exact” Galloping Analysis

We can rewrite the equation (5.5) as:

T0

(
1+ ζ

T0
∂t

)(
v′′

w′′

)
+

EAκ̄
(
1+ ζ

T0
∂t

)
0

 e−m

(
v̈
ẅ

)

−
[

ce +Uĉa
22 Uĉa

23

Uĉa
32 ce +Uĉa

33

](
v̇
ẇ

)
=

(
0

0

)
,

e =− κ̄
l

∫ l

0
vds,

vA = 0, vB = 0,

wA = 0, wB = 0.

(5.6)

It should be noticed that the linearized field equations, which are uncoupled in

the motionless air, are instead coupled by the wind flow, producing aerodynamic

damping.

By separating the variables according to,
v (s, t)
w (s, t)

e (t)

=


v̂ (s)
ŵ (s)

ê

exp(λt), (5.7)

where λ is complex.
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Using equation (5.7), we have,

v′′ = v̂′′exp(λt)

v̇′′ =λv̂′′exp(λt)

v̇ =λv̂exp(λt)

v̈ =λ2v̂exp(λt)

and,

w′′ = ŵ′′exp(λt)

ẇ′′ =λŵ′′exp(λt)

ẇ =λŵexp(λt)

ẅ =λ2ŵexp(λt)

(5.8)

Substituting equations (5.8) into first equation of (5.6), we have

T0

(
1+λ ζ

T0

)(
v̂′′

ŵ′′

)
+

EAκ̄
(
1+λ ζ

T0

)
0

 ê−mλ2

(
v̂
ŵ

)

−
[

ce +Uĉa
22 Uĉa

23

Uĉa
32 ce +Uĉa

33

]
λ

(
v̂
ŵ

)
=

(
0

0

)
,

and then, substitute (5.8) into the 2nd equation of (5.6), we obtain an eigenvalue

problem in space as follows, namely:

A (λ) û′′+B (λ,U) û+b (λ) ê = 0,

ê =− κ̄
l

∫ l

0
v̂ds,

v̂A = 0, v̂B = 0,

ŵA = 0, ŵB = 0,

(5.9)

where, we define

A (λ) := T0

(
1+λ ζ

T0

)
I,

B (λ,U) :=−mλ2I −λ
[

ce +Uĉa
22 Uĉa

23

Uĉa
32 ce + ĉa

33

]
,

b (λ) :=
EAκ̄

(
1+λ ζ

T0

)
0

 ,

û :=
(

v̂
ŵ

)
,

(5.10)

and I is the 2×2 identity matrix. Since the problem has to be solved in the complex

range, the galloping modes are complex, differently from what happens for a
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simplified in-plane model, where they are real [21].

Solution to the field equation assumes the form,

û = (
C1 exp

(
β1s

)+C2 exp
(
β2s

))
φ1+

(
C3 exp

(
β3s

)+C4 exp
(
β4s

))
φ2+ êû∗. (5.11)

In solution (5.11), β1,β2,β3,β4 are the eigenvalues and φ1,φ2 are eigenvectors of

the following 2×2 algebraic problem:[
B (λ,U)+β2A (λ)

]
φ= 0. (5.12)

Moreover, û∗ :=−B−1 (λ,U)b (λ) is a particular solution to the non-homogeneous

problem (considering ê as a ‘known’ term), and C1,C2,C3,C4 are arbitrary con-

stants.

Now,

û∗ =− 1
detB


(−mλ2 −λ(

ce +Uĉa
22

))
EAκ̄

(
1+λ ζ

T0

)
λUĉa

32EAκ̄
(
1+λ ζ

T0

)
 ,

and, from the solution (5.11), the in-plane and out-of-plane displacements takes

the form(
v̂
ŵ

)
=

((
C1 exp

(
β1s

)+C2 exp
(
β2s

))(φ11

φ12

)
+ (

C3 exp
(
β3s

)+C4 exp
(
β4s

))(φ21

φ22

))

− ê
1

detB


(−mλ2 −λ(

ce +Uĉa
22

))
EAκ̄

(
1+λ ζ

T0

)
λUĉa

32EAκ̄
(
1+λ ζ

T0

)
 .

By substituting v̂ in the equation for ê, this latter is drawn in terms of the arbitrary

constants. Finally, from the boundary conditions, a 4×4 homogeneous algebraic

problem follows:

C1φ11 +C2φ11 +C3φ21 +C4φ21 − ê
detB

(−mλ2 −λ(
ce +Uĉa

22
))

EAκ̄
(
1+λ ζ

T0

)
= 0,

C1φ11 exp
(
β1l

)+C2φ11 exp
(
β2l

)+C3φ21 exp
(
β3l

)+C4φ21 exp
(
β4l

)
− ê

detB
(−mλ2 −λ(

ce +Uĉa
22

))
EAκ̄

(
1+λ ζ

T0

)
= 0,

C1φ12 +C2φ12 +C3φ22 +C4φ22 − ê
detB

λUĉa
32EAκ̄

(
1+λ ζ

T0

)
= 0,

C1φ12 exp
(
β1l

)+C2φ12 exp
(
β2l

)+C3φ22 exp
(
β3l

)+C4φ22 exp
(
β4l

)
− ê

detB
λUĉa

32EAκ̄
(
1+λ ζ

T0

)
= 0.

(5.13)

In the critical condition (Hopf bifurcation), the motion is harmonic, i.e., λ= iωc; the

corresponding (unknown) wind velocity is the critical velocity U =Uc. By splitting

the characteristic equations in the real and imaginary parts, two real equations

for ωc and Uc are derived.
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5.4 The Asymptotic Galloping Analysis

To obtain qualitative (and hopefully, quantitative) information on the role of the

out-of-plane component on galloping, we will solve equation (5.9) by a perturbation

method. In such an analysis, we will follow the procedure applied in [60], where a

sectional model of cable or beam was studied, by expanding it to the continuous

problem discussed here, and accounting also for more complicated resonances not

considered before.

The basic idea of the perturbation analysis consists in assuming that all the

damping forces, external, internal and aerodynamic, are small, so that the damped

aeroelastic system can be considered as a perturbation of the undamped elastic

system in the void. This hypothesis is founded on the consideration that internal

and external damping are small for physical reasons, and the aeroelastic forces,

close to bifurcation, are of the same order of magnitude of damping. On the other

hand, a-posterior numerical checks of the results will confirm the reliability of

such conjecture.

By rescaling all damping forces via a perturbation parameter ε, the equation (5.9a)

read:

T0

(
1+ελ ζ

T0

)(
v̂′′

ŵ′′

)
− [

mλ2I +ελC (U)
](

v̂
ŵ

)
+

(
EAκ̄

0

)(
1+ελ ζ

T0

)
ê =

(
0

0

)
.

We can re-write the eigenvalue problem (5.9) as,

T0

(
1+ελ ζ

T0

)(
v̂′′

ŵ′′

)
− [

mλ2I +ελC (U)
](

v̂
ŵ

)
+

(
EAκ̄

0

)(
1+ελ ζ

T0

)
ê =

(
0

0

)
,

ê+ κ̄

l

l∫
0

v̂ds = 0,

v̂A = 0, v̂B = 0,

ŵA = 0, ŵB = 0,

(5.14)

where,

C (U) :=
[

ce +Uĉa
22 Uĉa

23

Uĉa
32 ce +Uĉa

33

]
. (5.15)

We solve this equation by the strained parameter method [64], by introducing the

following expansions with the same perturbation parameter:

v̂ = v̂0 +εv̂1 +· · ·
ŵ = ŵ0 +εŵ1 +· · ·
ê = ê0 +εê1 +· · ·
λ= iω0 +ελ1 +· · ·

(5.16)
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in which we accounted for λ0 = iω0. By substituting these expansions in equation

(5.14a), we have

T0

(
1+ε (iω0 +ελ1 + ...)

ζ

T0

)[
v̂′′0 +εv̂′′1 + ...

ŵ′′
0 +εŵ′′

1 + ...

]
− [

m (iω0 +ελ1 + ...)2 I

+ε (iω0 +ελ1 + ...)C (U)]

[
v̂0 +εv̂1 + ...

ŵ0 +εŵ1 + ...

]

+
(
EAκ̄

0

)(
1+ε (iω0 +ελ1 + ...)

ζ

T0

)
(ê0 +εê1 + ...)=

(
0

0

)
,

⇒T0

(
1+εiω0

ζ

T0
+ε2λ1

ζ

T0
+ ...

)[
v̂′′0 +εv̂′′1 + ...

ŵ′′
0 +εŵ′′

1 + ...

]
− [

m
(
i2ω2

0 +ε2λ2
1 +2εiω0λ1 + ...

)
I

+εiω0C (U)+ε2λ1C (U)+ ...
][

v̂0 +εv̂1 + ...

ŵ0 +εŵ1 + ...

]
+

(
EAκ̄

0

)
(ê0 +εê1

+εiω0 ê0
ζ

T0
+ε2iω0 ê1

ζ

T0
+ε2λ1 ê0

ζ

T0
+ ...

)
=

(
0

0

)
,

⇒T0

(
v̂′′0
ŵ′′

0

)
εT0

(
v̂′′1
ŵ′′

1

)
+εiω0ζ

(
v̂′′0
ŵ′′

0

)
− [(−mω2

0 +ε2miω0λ1
)
I +εiω0C (U)

][
v̂0 +εv̂1 + ...

ŵ0 +εŵ1 + ...

]

+
(
EAκ̄

0

)(
ê0 +ε

(
iω0 ê0

ζ

T0
+ ê1

))
+higher odered terms of ε=

(
0

0

)
,

⇒T0

(
v̂′′0
ŵ′′

0

)
+ε

(
T0

(
v̂′′1
ŵ′′

1

)
+ iω0ζ

(
v̂′′0
ŵ′′

0

))
+mω2

0

(
v̂0

ŵ0

)
εmω2

0

(
v̂1

ŵ1

)

−ε (iω0C (U)+2miω0λ1I)

(
v̂0

ŵ0

)
+

(
EAκ̄

0

)
ê0

+ε
(
EAκ̄

0

)(
iω0 ê0

ζ

T0
+ ê1

)
+higher odered terms of ε=

(
0

0

)
.

From the 2nd equation of (5.14),

(ê0 +εê1 + ...)+ κ̄

l

l∫
0

(v̂0 +εv̂1 + ...)ds = 0.
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Separating the coefficients with different orders of ε, we have the perturbation

equations are as follows:

Order ε0:

T0

(
v̂′′0
ŵ′′

0

)
+mω2

0

(
v̂0

ŵ0

)
+

(
EAκ̄

0

)
ê0 =

(
0

0

)
,

ê0 + κ̄

l

∫ l

0
v̂0ds = 0,

v̂0A = 0, v̂0B = 0,

ŵ0A = 0, ŵ0B = 0.

(5.17)

Order ε1:

T0

(
v̂′′1
ŵ′′

1

)
+mω2

0

(
v̂1

ŵ1

)
+

(
EAκ̄

0

)
ê1 = 2imω0λ1

(
v̂0

ŵ0

)
− iω0ζ

(
v̂′′0
ŵ′′

0

)

+ iω0C (U)

(
v̂0

ŵ0

)
− iω0ζ

EA
T0

κ̄

0

 ê0,

ê1 + κ̄

l

∫ l

0
v̂1ds = 0,

v̂1A = 0, v̂1B = 0,

ŵ1A = 0, ŵ1B = 0.

(5.18)

Since the ε0-order equations (5.17) govern the undamped motion of the cable,

its solutions are the natural modes. Namely: (i) (v̂0 (s) , ê0) = (
v̂0 j (s) , ê0 j

)
is the

jth (symmetric, with ê0 j 6= 0; or anti-symmetric, with ê0 j = 0) in-plane mode, of

frequency ω0 j; (ii) ŵ0 (s)= ŵ0k (s) is the kth (symmetric or anti-symmetric ) out-of-

plane mode, of frequency ω0k. Depending on the Λ2, Irvine parameter [42], several

circumstances can occur, in which: (i) an eigenvalue is simple, (ii) an eigenvalue is

double and semi-simple, or even (iii) an eigenvalue is triple and semi-simple. All

these occurrences call for a specific perturbation algorithm.

By superimposing to the spectrum of the planar and out-of-plane frequencies [42],

we obtain the plot in Figure 5.2.
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Figure 5.2: Spectrum of the planar v̂ j (continuous lines) and out-of-plane ŵk
(dashed lines) frequencies of the cable as function of the Irvine parameter. Odd
indexes denote symmetric modes, even indexes antisymmetric modes. Points A to
D are representative of different resonance conditions, taken from [42].

There, typical resonance conditions are marked at points A to D; namely:

• At (generic) points like A, i.e., falling in the trasition phase in which a

symmetric mode is changing its shape, a symmetric in-plane mode v̂ j is

nonresonant (i.e., ω0 j is a single eigenvalue); we will refer to such case as

nonresonant.

• At (generic) points like B, i.e., far from the cross-over points, a symmetric

in-plane mode v̂ j is in 1:1 resonance with a symmetric out-of-plane mode ŵ j

(both sinusoidal of the same wave-number, having the same frequency); we

will refer to this case as symmetric 1:1 resonance case;

• At (generic) points like C, i.e., still far from cross-over points, an anti-

symmetric in-plane mode v̂ j is in 1:1 resonance with an anti-symmetric

out-of-plane mode ŵ j (both sinusoidal of the same wave-number, having the

same frequency); we will refer to this as anti-symmetric 1:1 resonance case;

• At (special) points like D, i.e., at crossover, two planar modes, one symmet-

ric v̂ j and one anti-symmetric v̂ j+1, are in 1:1:1 resonance with an anti-

symmetric out-of-plane mode ŵ j; such a degenerate resonance condition
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persists in a neighborhood of points D, in which only the symmetric mode

slightly change its frequency; we will refer to this as the 1:1:1 resonant case.

An additional nonresonant case, in principle, exists, concerning the first out-of-

plane mode ŵ1 on the left of crossover. However, this case can be proved to be

meaningful, since the cable cannot gallop in a shape which, at the leading order, is

out-of-plane only, since in this direction the aerodynamic force is stabilizing for

any cross-section shape (i.e., ĉa
33 > 0).

We will study separately (i) the nonresonant case, (ii) the two 1 : 1 resonant cases,

and (iii) the 1 : 1 : 1 resonant case.

5.4.1 The Non-resonant Case

We take a generating solution to equation (5.17) made of just one planar mode, i.e.,
v̂0

ŵ0

ê0

=


v̂0 j (s)

0

ê0 j

 , (5.19)

in which, ê0 j 6= 0 if the mode is symmetric, and ê0 j = 0 if anti-symmetric. Then the

properties of the natural mode,

l∫
0

(
v̂0 j

0

)[
T0

(
v̂′′0 j

0

)
+mω2

0 j

(
v̂0 j

0

)
+

(
EAκ̄

0

)
ê0 j

]
ds =

(
0

0

)
.

We get,
l∫

0

v̂0 j v̂′′0 jds+
mω2

0 j

T0

l∫
0

v̂2
0 jds+ EA

T0
κ̄

l∫
0

v̂0 j ê0 jds = 0. (5.20)

The solvability condition for Eq. (5.18) requires the known term is orthogonal to

the eigenvector, i.e.,

l∫
0

(
v̂0 j

0

)T 2mλ1 j

(
v̂0 j

0

)
−ζ

(
v̂′′0 j

0

)
+C (U)

(
v̂0 j

0

)
−ζ

EA
T0

κ̄

0

 ê0 j

ds = 0. (5.21)

From which we have,

2mλ1 j

l∫
0

v̂2
0 jds−ζ

l∫
0

v̂0 j v̂′′0 jds+ (
ce +Uĉa

22
) l∫

0

v̂2
0 jds−ζEA

T0
κ̄

l∫
0

v̂0 j ê0 jds = 0,

⇒[
2mλ1 j +

(
ce +Uĉa

22
)] l∫

0

v̂2
0 jds−ζ

 l∫
0

v̂0 j v̂′′0 jds+ EA
T0

κ̄

l∫
0

v̂0 j êo jds

= 0.
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By accounting for the properties of the mode (5.20),

(
2mλ1 j + ce +Uĉa

22
) l∫

0

v̂2
0 jds+ζ

mω2
0 j

T0

l∫
0

v̂2
0 jds = 0

⇒2mλ1 j + ce +Uĉa
22 +ζ

mω2
0 j

T0
= 0.

The frequency correction is derived:

λ1 j =− 1
2m

[
ce +Uĉa

22 +ζ
mω2

0 j

T0

]
. (5.22)

This result shows that all the forms of damping add a real contribution to the purely

imaginary eigenvalue iω0 j. While ce > 0 and ζ> 0 (i.e., they are stabilizing), ĉa
22 ≷ 0

(i.e., it can be stabilizing or instabilizing). The equilibrium is stable when the

square bracket is positive, and unstable when negative. The bifurcation condition

then occurs when λ1i = 0, i.e., at the critical wind velocity:

Uc j =
ce +ζ

mω2
0 j

T0

|ĉa
22|

, ĉa
22 < 0. (5.23)

This expression coincides with that one found in [60] for the simplified in-plane

galloping model.

From the above outcome, we can summarize, in the non-resonant case, the added
out-of-plane degree-of-freedom does not change, at the leading order, the critical

wind velocity evaluated by accounting according to the Den-Hartog criterion. As

only significant effect, it adds an out-of-plane component of motion, described

by the solution ŵ1 (s) to equation (5.18b); since this component is in quadrature

with respect to the planar mode (all the known terms of the equations being

affected by the imaginary unit), the galloping mode is complex. On the other hand,

since
‖ŵ (s)‖
‖v̂ (s)‖ =O (ε), any material point of the cable describes trajectories whose

projection in the cross-section plane are very narrow ellipses. We conclude that the

rougher model is quite accurate in the nonresonant case.

5.4.2 The 1:1 Resonant Case

We consider a bi-modal generating solution to equation (5.18), made of a planar

and an out-of-plane mode, either symmetric or anti-symmetric, namely:
v̂0

ŵ0

ê0

= a1


v̂0 j (s)

0

ê0 j

+a2


0

ŵ0 j

0

 , (5.24)
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where v̂0 j ≡ ŵ0 j = sin
(

jπs
l

)
, with ê0 j different from zero only when j is odd, and

where a1, a2 are arbitrary constants. We denote by ω0 j = jπ
l

√
T0

m
the common

frequency.

Properties of eigenmodes,

l∫
0

(
v̂0 j

0

)T [
T0

(
a1v̂′′0 j

a2ŵ′′
0 j

)
+mω2

0 j

(
a1v̂0 j

a2ŵ0 j

)
+

(
EAκ̄

0

)
a1 ê0 j

]
ds

l∫
0

(
0

ŵ0 j

)T [
T0

(
a1v̂′′0 j

a2ŵ′′
0 j

)
+mω2

0 j

(
a1v̂0 j

a2ŵ0 j

)
+

(
EAκ̄

0

)
a1 ê0 j

]
ds

which implies,

l∫
0

v̂0 j v̂′′0 jds+
mω2

0 j

T0

l∫
0

v̂2
0 jds+ EA

T0
κ̄

l∫
0

v̂0 j ê0 jds = 0 (5.25a)

T0

l∫
0

ŵ0 jŵ′′
0 jds+mω2

0 j

l∫
0

ŵ2
0 jds = 0 (5.25b)

The solvability conditions of the 1st equation of (5.18) require the known term is

orthogonal to both the eigenvectors associated with the semi-simple eigenvalue

ω0 j, i.e.,

l∫
0

(
v̂0 j

0

)T (
2mλ1 j +C (U)

)(a1v̂0 j

a2ŵ0 j

)
−ζ

(
a1v̂′′0 j

a2ŵ′′
0 j

)
−ζ

EA
T0

κ̄

0

a1 ê0 j

ds = 0 (5.26a)

l∫
0

(
0

ŵ0 j

)T (
2mλ1 j +C (U)

)(a1v̂0 j

a2ŵ0 j

)
−ζ

(
a1v̂′′0 j

a2ŵ′′
0 j

)
−ζ

EA
T0

κ̄

0

a1 ê0 j

ds = 0 (5.26b)

From the equation (5.26a),

(
2mλ1 j + ce +Uĉa

22
)
a1

l∫
0

v̂2
0 jds+Uĉa

23a2

l∫
0

v̂0 jŵ0 jds−ζa1

l∫
0

v̂0 j v̂′′0 jds

−ζEA
T0

κ̄a1

l∫
0

v̂0 j ê0 jds = 0.

Using the properties (5.25a) of the eigenmodes, we get(
2mλ1 j + ce +Uĉa

22 +ζ
mω2

0 j

T0

)
a1 +Uĉa

23a2 = 0. (5.27)

77



CHAPTER 5. SPATIAL GALLOPING ANALYSIS OF SHALLOW CABLES VIA A
LINEAR CONTINUUM MODEL

From the equation (5.26b) and by using properties (5.25b), we get

Uĉa
32a1 +

(
2mλ1 j + ce +Uĉa

33 +ζ
mω2

0 j

T0

)
a2 = 0. (5.28)

Equations (5.27) and (5.28) can be written in the following matrix form:

(
B (U)+λ1 j I

)(a1

a2

)
=

(
0

0

)
, (5.29)

where, by accounting for the modal shapes and frequency,

B (U) := 1
2m

(
Bd +UBa

)
,

= 1
2m


ce +ζ

(
jπ
l

)2
0

0 ce +ζ
(

jπ
l

)2

+U

[
ĉa

22 ĉa
23

ĉa
32 ĉa

33

] ,
(5.30)

and where Bd accounts for external and internal damping, and Ba for the aerody-

namic damping.

Equation (5.29) is an eigenvalue problem in λ1 j, whose characteristic equation

reads,

λ2
1 j +λ1 jB (U)+detB (U)= 0, (5.31)

where trB := B11 +B22, detB := B11B22 −B12B21 are the invariants of the total

(damping plus aerodynamic) modal damping matrix B = B (U). The roots λ(1)
1 j ,

λ(2)
1 j of Equation (5.31) rule the stability of equilibrium. From the characteristic

equation (5.31),

λ(1)
1 j =

−trB+
√

tr2B−4detB
2

,

λ(2)
1 j =

−trB−
√

tr2B−4detB
2

.

(5.32)

By following [60], an exhaustive description of the bifurcation scenario is depicted

in Figure 5.3(a) on the invariant plane, where the four eigenvalues λ j =±iω0 j +
ελ

(1,2)
1 j are sketched in each of the regions bounded by two half-axes and the

parabola tr2B = 4detB (on which the eigenvalues coalesce in pair). It is seen that

the first quadrant of the plane is stable, and bounded by two half-axes, on which

two different bifurcation occur, namely:

• when detB = 0 and trB > 0, we have

λ(1)
1 j =

−trB+ trB
2

= 0
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and,

λ(2)
1 j =

−trB− trB
2

=−trB < 0

so that, λ j =±iω0 j +ελ(2)
1 j , with λ(1)

1 j = 0 and λ(2)
1 j < 0 i.e., just a pair of complex

conjugate eigenvalues is on the imaginary axis, which implies that a simple

Hopf bifurcation occurs.

• when trB = 0 and detB > 0, we have

λ
(1,2)
1 j =±i

√
|detB|

so that, λ j =±iω0 j +ελ(1,2)
1 j , with λ

(1,2)
1 j =±i

√
|detB| i.e., two pairs of complex

conjugate eigenvalues are on the imaginary axis, which implies that a double

Hopf bifurcation occurs.

(a) (b)

Figure 5.3: Eigenvalues λ1 j =±iω0 j +ελ(1,2)
1 j in the plane of the invariants of the

modal damping matrix B: (a) eigenvalue sketches in each region, (b) eigenvalue
paths for increasing wind velocity U, according to the signs of trBa, detBa; the
parabola has equation tr2B = 4detB, taken from [60].

Figure 5.3(b) describes the paths followed by the system when U increases from

zero. When U = 0, the damping matrix is made of the damping part only, for

which all the eigenvalues have real and negative parts and coalesce in pair on the

parabola. When, however, U increases from zero, depending on the aerodynamic

properties of the cross-section (described by trBa, detBa), a pair, or both pairs of

eigenvalue can cross the imaginary axis, thus entailing loss of stability. Namely,

• if trBa > 0, detBa < 0 (case I in Figure 4.3(b)), a simple Hopf bifurcation
occurs at a sufficiently high wind velocity Uc;
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• if trBa > 0, detBa ≥ 0 (case II in Figure 4.3(b)), the equilibrium remain stable
for any wind velocity Uc;

• if trBa < 0, detBa ≤ 0 (case III in Figure 4.3(b)), a simple Hopf bifurcation
again occurs at a sufficiently high wind velocity Uc;

• if trBa < 0, detBa > 0 (case IV in Figure 4.3(b)), either two successive Hopf
bifurcations (curve (a)) or a double Hopf bifurcation (curve (b)) occur at a

sufficiently high wind velocity Uc.

Therefore, once the invariants of the aerodynamic matrix Ba are known, it is a

prior known the mechanism of galloping (if any) the cable will undergo.

Concerning the value assumed by critical wind velocity, it is determined by requir-

ing either: (i) detB = 0 and trB > 0 for simple Hopf bifurcation, or, (ii) trB = 0 and

detB > 0 for double Hopf bifurcation.

From the 1st case:

− 1
2m

(
2

(
ce +ζ

(
jπ
l

)2)
+U

(
ĉa

22 + ĉa
33

))+(
1

4m2

(
4

(
ce +ζ

(
jπ
l

)2)2

+4
(
ce +ζ

(
jπ
l

)2)
U

(
ĉa

22 + ĉa
33

)+U2 (
ĉa

22 + ĉa
33

))− 1
4m2

(
4

(
ce +ζ

(
jπ
l

)2)2

+4
(
ce +ζ

(
jπ
l

)2)
U

(
ĉa

22 + ĉa
33

)+4U2 (
ĉa

22 ĉa
33 − ĉa

23 ĉa
32

)))1/2

= 0,

⇒U
√(

ĉa
22 + ĉa

33
)−4

(
ĉa

22 ĉa
33 − ĉa

23 ĉa
32

)−U
(
ĉa

22 + ĉa
33

)= 2
(
ce +ζ

(
jπ
l

)2)
,

⇒U
(√

trBa −4detBa − trBa
)
= 2

(
ce +ζ

(
jπ
l

)2)
,

⇒U =
2

(
ce +ζ

(
jπ
l

)2)
√

tr2Ba −4detBa − trBa
.

It follows that, a simple Hopf bifurcation occurs (in I, III or IV-a) at:

Uc = 2

(
ce +ζ

(
jπ
l

)2)
√

tr2Ba −4detBa − trBa
, (5.33)

and from the 2nd case,(
ce +ζ

(
jπ
l

)2
+Uĉa

22

)
+

(
ce +ζ

(
jπ
l

)2
+Uĉa

33

)
= 0,

⇒2
(
ce +ζ

(
jπ
l

)2)
+UtrBa = 0,

⇒U =−
2

(
ce +ζ

(
jπ
l

)2)
trBa ,
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which follows that, a double Hopf bifurcation occurs (in case IV-b) at:

Uc =−2

(
ce +ζ

(
jπ
l

)2)
trBa . (5.34)

It can be checked, by numerical experiments carried out ahead on data relevant

to real iced cross-sections that, such critical velocities at the resonance can be

either higher or lower than the critical Den-Hartog velocity. This means that the

coupling between the in-plane and out-of-plane motion can have a beneficial as

well as detrimental effect with respect to the single-component motion, occuring in

conditions of non-resonance.

As a significant example, let us consider the case ĉa
22 > 0 which occurs for the

so-called aerodynamically stable cross-sections (according to the one degree-of-

freedom model). Since it is ĉa
33 > 0 for any cross-sections, results trBa > 0, so that

double Hopf bifurcation cannot occur (since equation (5.34) gives a negative value).

However, if detBa < 0 (i.e., if the case I occurs), then a simple Hopf bifurcation

takes place (since equation (5.33) supplies a positive value). Hence, coupling makes

unstable a cable that would be stable in non-resonance conditions.

Once the critical wind velocity has been evaluated, we could be interested in

finding the galloping mode. To face this problem, we have to find the eigenvector

(a1,a2) of equation (5.29). We distinguish two cases:

• In the simple Hopf bifurcation case, it is λ(1)
1 j = 0 at criticality; therefore a

real
(
a(1)

1 ,a(1)
2

)
eigenvector is found. This entails that the galloping mode, as

in the nonresonant case, is real at the leading order, i.e., the material points

describe straight lines in the cross-section plane. If, however, we account for

higher-order corrections, the motion become (weakly) complex.

• In the double Hopf bifurcation case, λ(1,2)
1 j =±i

√
|detB|, so that two complex(

a(1,2)
1 ,a(1,2)

2

)
eigenvectors are found. This entails that galloping manifests

itself via the superposition of two complex modes. In each mode, a mate-

rial point describes an ellipse whose axis lengths are of the same order of

magnitude.

5.4.3 The 1:1:1 Resonant Case

We consider a three-modal solution to equation (5.18), involving all the three

resonant modes, a planar symmetric mode v̂ j (s), a planar anti-symmetric mode

v̂k (s), and an out-of-plane anti-symmetric mode ŵk (s), with k = j+1, v̂k = ŵk =
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sin
(

kπs
l

)
. Close to the cross-over point, it is:

ω0k =
kπ
l

√
T0

m
, ω0 j =ω0k +εσ, (5.35)

where σ is a detuning parameter.

The generating solution reads:
v̂0

ŵ0

ê0

= a1


v̂0 j (s)

0

ê0 j

+a2


v̂0k (s)

0

0

+a3


0

ŵ0k (s)
0

 , (5.36)

where a1,a2,a3 are arbitrary amplitudes. Then, the properties of eigenmodes,

l∫
0

(
v̂0 j

0

)T [
T0

(
a1v̂′′0 j +a2v̂′′0k

a3ŵ′′
0k

)
+mω2

0 j

(
a1v̂0 j +a2v̂0k

a3ŵ0k

)
+

(
EAκ̄

0

)
a1 ê0 j

]
ds =

(
0

0

)
l∫

0

(
v̂0k

0

)T [
T0

(
a1v̂′′0 j +a2v̂′′0k

a3ŵ′′
0k

)
+mω2

0 j

(
a1v̂0 j +a2v̂0k

a3ŵ0k

)
+

(
EAκ̄

0

)
a1 ê0 j

]
ds =

(
0

0

)
l∫

0

(
0

ŵ0k

)T [
T0

(
a1v̂′′0 j +a2v̂′′0k

a3ŵ′′
0k

)
+mω2

0 j

(
a1v̂0 j +a2v̂0k

a3ŵ0k

)
+

(
EAκ̄

0

)
a1 ê0 j

]
ds =

(
0

0

)

We get the followings respectively,

a1

l∫
0

v̂0 j v̂′′0 jds+a2

l∫
0

v̂0 j v̂′′0kds+
mω2

0 j

T0
a1

l∫
0

v̂2
0 jds

+a1
EA
T0

κ̄

l∫
0

v̂0 j ê0 jds+
mω2

0 j

T0
a2

l∫
0

v̂0 j v̂0kds = 0,

(5.37)

a1

l∫
0

v̂0k v̂′′0 jds+a2

l∫
0

v̂0k v̂′′0kds+
mω2

0 j

T0
a1

l∫
0

v̂0k v̂0 jds

+a1
EA
T0

κ̄

l∫
0

v̂0k ê0 jds+
mω2

0 j

T0
a2

l∫
0

v̂2
0kds = 0,

(5.38)

and,
l∫

0

ŵ0kŵ′′
0kds+

mω2
0 j

T0

l∫
0

ŵ2
0kds = 0. (5.39)
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When the solution (5.36) is substituted in equation (5.18), the known term must be

rendered orthogonal to the three eigenvectors which span the null space. Therefore,

the following three algebraic conditions must hold simultaneously:

l∫
0

(
v̂0 j

0

)T [(
2mλ1 j +C (U)

)(a1v̂0 j +a2v̂0k

a3ŵ0k

)
−ζ

(
a1v̂′′0 j +a2v̂′′0k

a3ŵ′′
0k

)

−ζ
EA

T0
κ̄

0

a1 ê0 j

ds = 0.

(5.40a)

l∫
0

(
v̂0k

0

)T [(
2mλ1 j +C (U)

)(a1v̂0 j +a2v̂0k

a3ŵ0k

)
−ζ

(
a1v̂′′0 j +a2v̂′′0k

a3ŵ′′
0k

)

−ζ
EA

T0
κ̄

0

a1 ê0 j

ds = 0.

(5.40b)

l∫
0

(
0

ŵ0k

)T [(
2mλ1 j +C (U)

)(a1v̂0 j +a2v̂0k

a3ŵ0k

)
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a3ŵ′′
0k

)

−ζ
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κ̄

0

a1 ê0 j

ds = 0.

(5.40c)

From the equation (5.40a),

l∫
0

(
v̂0 j

0

)T [((
2mλ1 j + ce +Uĉa

22
)(

a1v̂0 j +a2v̂0k
)+Uĉa

23a3ŵ0k

Uĉa
32

(
a1v̂0 j +a2v̂0k

)+ (
2mλ1 j + ce +Uĉa

33
)
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)

−ζ
(
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)
−ζ
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κ̄

0

a1 ê0 j

ds =
(
0

0

)
,

⇒(
2mλ1 j + ce +Uĉa

22
)
a1

l∫
0

v̂2
0 jds+ (

2mλ1 j + ce +Uĉa
22

)
a2

l∫
0

v̂0 j v̂0kds

+Uĉa
23a3

l∫
0

v̂0 jŵ0kds−ζa1

l∫
0

v̂0 j v̂′′0 jds−ζa2

l∫
0

v̂0 j v̂′′0kds−ζEA
T0

κ̄a1

l∫
0

v̂0 j ê0 jds = 0.

By taking into account the properties of eigenmode (5.37), we get from the above
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equation(
2mλ1 j + ce +Uĉa

22 +ζ
mω2

0 j

T0

)
a1
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0

v̂2
0 jds

+
(
2mλ1 j + ce +Uĉa

22 +ζ
mω2

0 j

T0

)
a2

l∫
0

v̂0 j v̂0kds+Uĉa
23a3

l∫
0

v̂0 jŵ0kds = 0,

⇒
[

2mλ1 j +
(
ce +Uĉa

22 +ζ
mω2

0 j

T0

)]
a1 = 0,

by accounting for symmetry/ anti-symmetry of the modal shapes, some integrals of

products disappear. From the equation (5.40b), we have

(
2mλ1 j + ce +Uĉa

22
)
a1

l∫
0

v̂0 j v̂0kds+ (
2mλ1 j + ce +Uĉa

22
)
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0
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0
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0
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From the equation (5.40c), we get

Uĉa
32a1

l∫
0
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33
)
a3

l∫
0

ŵ2
0kds−ζa3

l∫
0
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(
2mλ1 j + ce +Uĉa

33
)
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] l∫
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ŵ2
0kds+ζa3

mω2
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T0
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0

ŵ2
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Collecting all equations, we obtain:[
2mλ1 j +

(
ce +Uĉa

22 +ζ
mω2

0 j

T0

)]
a1 = 0. (5.41a)
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2mλ1 j +
(
ce +Uĉa

22 +ζ
(

kπ
l

)2)]
a2 +Uĉa

23a3 = 0. (5.41b)[
2mλ1 j +

(
ce +Uĉa

33 +ζ
(

kπ
l

)2)]
a3 +Uĉa

23a2 = 0. (5.41c)

Since the equation (5.41a) is uncoupled from the remaining two, and identical to

that derived in the non-resonant case, the symmetric mode is not involved into the

resonance, but behaves as it were non-resonant. The remaining two anti-symmetric

modes, instead, interact; however, since the relevant equations are identical to that

determined in the 1 : 1 resonance, the same results discussed here hold. Therefore,

this case add nothing of new to the previous ones.

5.5 Numerical Results

A horizontal shallow flexible cable is considered as a sample to study its geometrical

and mechanical properties. In this study, we considered the length of the cable

is l = 267m, the mass per unit length is m = 4.4kg/m, the axial stiffness is EA =
4.0×108N. Our study corresponds for the two different sags,d = 3m, which is

denoted by S, for this case the internal damping ce = 0.056kg×s/m and the external

damping ζ= 239.4kg×m×s, the curvature κ= 3.37×10−4m-1 and the pretension

T0 = 128.213kN. The larger sag is taken as d = 26m, the case is denoted by L and

for which the initial curvature is κ = 2.92×10−3m-1, pretension T0 = 14.734kN.

The aerodynamic parameters, taken from [76], refers to the galloping for the ice-

coated cable, they are, air mass per unit volume ρ = 1.25kg/m3, radius b = 0.102m.

The aerodynamic coefficients as drag coefficient Cd (α) and lift coefficient Cl (α)
are plotted in Figure 5.4. Figure 5.4(b) is drawn to study the initial angle of

ice-coating comparing the configuration with Den-Hartog criterion [16], which is

Cd (α)+C
′
l (α) > 0, and the initial attack angle is taken α0 = π

25
= 7.2o. Here, the

numerical result are described for the cases S and L, where S stands for smaller

sag, L for larger sag respectively.
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Figure 5.4: Aerodynamic coefficients, taken from [9, 120]: (a) Drag and lift coeffi-
cients; (b) Values of Cd +C

′
l

The solution of the system (5.9) in terms of the critical modes with respect to

velocity and modal frequency of the oscillation are investigated as exact galloping

analysis comparing with analytical and numerical studies. In table 5.1 and table

5.2, the critical velocity and modal frequencies are compared between exact and

numerical solutions in two different cases. The results of exact galloping analysis

and numerical treatment with two methods are showing a good agreement. Partic-

ularly, the errors in modal frequencies between different approaches, in both cases,

are practically zero.

Table 5.1: Critical modal conditions for exact and numerical solutions: velocity
( ms-1 )

Case Uc exact. Uc FDM err. % Uc GM err. %
S 2.781 2.809 1.00 2.859 2.72
L 0.891 0.917 2.83 0.893 0.22

Table 5.2: Critical modal conditions for exact and numerical solutions: frequency (
rad/s )

Case ωc exact. ωc FDM err. % ωc GM err. %
S 4.017 4.017 0.0 4.016 0.02
L 1.361 1.361 0.0 1.361 0.0

The numerical representation of modal shapes of the exact galloping analysis

comparing with numerical methods are depicted in Figure 5.5 - Figure 5.8. Figure

5.5 and Figure 5.6 represent the normal (v̂) and binormal (ŵ) components of

displacement respectively, for the case S. The modal shape is anti-symmetric and

complex with the same magnitude. The modal shape for the larger sag case (L) are
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shown in Figure 5.7 and Figure 5.8; where the critical mode is anti-symmetric and

complex. The numeric results are in good agreement with exact analysis.
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Figure 5.5: critical mode for case S: (a) Real parts of v̂; (b) imaginary parts of v̂
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Figure 5.6: critical mode for case S: (a) real parts of ŵ; (b) imaginary parts of ŵ
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Figure 5.7: critical mode for case L: (a) real parts of v̂; (b) imaginary parts of v̂
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Figure 5.8: critical mode for case L: (a) real parts of ŵ; (b) imaginary parts of ŵ

5.5.1 The non-resonant case

For the non-resonant case, we have the configuration having only planar displace-

ment. Table 5.3 and Table 5.4 display the comparison of the wind speed between

the asymptotic analysis and the numerical analysis with the corresponding modal

frequencies.

Table 5.3: Critical modal conditions for analytical and numerical solutions: velocity
( ms-1 )

Case Uc non-res. Uc FDM err. % Uc GM err. %
S 2.3159 2.3161 0.008 2.3180 0.09
L 1.5595 1.5760 1.04 1.5800 1.29

Table 5.4: Critical modal conditions for analytical and numerical solutions: fre-
quency (rad/s)

Case ωc non-res. ωc FDM err. % ωc GM err. %
S 3.426 3.426 0.0 3.426 0.0
L 1.947 1.947 0.0 1.947 0.0

From the above table 5.3 and table 5.4, the critical wind velocities and modal

frequencies for two different cases, in analytical analysis, are agreed well with

the finite difference and Galerkin’s methods, specially the modal frequencies. The

numerical solution as critical velocity and modal frequency for the non-resonant

case are drawn in the Figure 5.9 and Figure 5.10 for the cases S and L, respectively.

For the small sag (S) and larger sag (L) cases, the critical mode is symmetric and
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complex. The two numerical methods are fitted well with the same amplitude. For

the case S, along the span, the mode shape has one semi-wave ; and for the case L,

it has three semi-wave shapes.
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Figure 5.9: critical mode for case S: (a) real parts of v̂; (b) imaginary parts of v̂
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Figure 5.10: critical mode for case L: (a) real parts of v̂; (b) imaginary parts of v̂

5.5.2 One - One resonant case

For the smaller sag (S) case: with different initial attack angles and aerody-

namic coefficients, the stability conditions of equilibrium are analyzed, are as

follows:

• at initial attack angle, α= π

20
= 9◦, trBa = 0.141> 0,detBa =−0.0028< 0, a

simple Hopf bifurcation occurs at wind velocity Uc = 5.011m/s with a real

eigenvector
(
a(1)

1 ,a(1)
2

)
= (4.718,1).
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• at initial attack angle, α= 3π
50

= 10.8◦, trBa = 0.251> 0,detBa = 0.0041> 0,

with the eigenvector
(
a(1)

1 ,a(1)
2

)
= (−1.76,1), the wind velocity Uc =−5.001m/s,

i.e., the equilibrium remains stable.

• at initial attack angle, α= 27π
100

= 48.6◦, trBa =−0.037< 0,detBa =−0.026<
0, a simple Hopf bifurcation occurs at wind velocity Uc = 0.488m/s with

eigenvector
(
a(1)

1 ,a(1)
2

)
= (5.84,1).

• for the aerodynamic coefficients, ca
22 =−0.5, ca

23 =−0.2, ca
32 = 0.6, and ca

33 =
0.2, trBa = −0.3 < 0,detBa = 0.02 > 0, a single Hopf bifurcation occurs at

Uc = 0.445m/s with a real eigenvector
(
a(1)

1 ,a(1)
2

)
= (−0.666,1), and a double

Hopf bifurcation occurs at Uc = 0.594m/s with two complex eigenvectors(
a(1,2)

1 ,a(1,2)
2

)
= (−0.56±0.079i,1).

All the cases are described in the following table 5.5, where IV (a) and IV (b) indi-

cates single Hopf and double Hopf bifurcation cases, respectively.

Table 5.5: Critical modal conditions for analytical and numerical solutions: velocity
( ms-1 )

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 5.011 5.011 0.0 4.827 3.81
II -5.001 -5.002 0.02 -5.076 1.47
III 0.488 0.477 2.3 0.487 0.20

IV(a) 0.445 0.437 1.8 0.438 1.59
IV(b) 0.594 0.597 0.5 0.588 1.02

The following figures, Figure 5.11 to Figure 5.20, are representing the modal

shapes of normal and binormal displacements, discussed in the above table 5.5.

The results are showing good agreement with the two different numerical methods.
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Figure 5.11: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.12: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.13: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.14: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.15: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.16: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ

92



CHAPTER 5. SPATIAL GALLOPING ANALYSIS OF SHALLOW CABLES VIA A
LINEAR CONTINUUM MODEL

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(a)

0 50 100 150 200 250
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(b)

Figure 5.17: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
v̂; (b) imaginary parts of v̂
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Figure 5.18: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
ŵ; (b) imaginary parts of ŵ
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Figure 5.19: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of v̂; (b) imaginary parts of v̂
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Figure 5.20: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of ŵ; (b) imaginary parts of ŵ

For the larger sag (L) case, with the same aerodynamic coefficients, the out-

comes of the analysis are described below:

• for trBa = 0.141> 0,detBa =−0.0028< 0, a simple Hopf bifurcation occurs

at wind velocity Uc = 1.692ms-1 with eigenvector
(
a(1)

1 ,a(1)
2

)
= (4.71,1).

• for trBa = 0.251 > 0,detBa = 0.0041 > 0, with the eigenvector
(
a(1)

1 ,a(1)
2

)
=

(−1.76,1), the wind velocity Uc =−1.689ms-1, i.e., the equilibrium remains

stable.

• for trBa =−0.037< 0,detBa =−0.026< 0, a simple Hopf bifurcation occurs

at wind velocity Uc = 0.165ms-1 with eigenvector
(
a(1)

1 ,a(1)
2

)
= (5.84,1).

• for trBa = −0.3 < 0,detBa = 0.02 > 0, a single Hopf bifurcation occurs at

Uc = 0.150ms-1 with a real eigenvector
(
a(1)

1 ,a(1)
2

)
= (−0.666,1), and a double

Hopf bifurcation occurs at Uc = 0.200ms-1 with two complex eigenvectors(
a(1,2)

1 ,a(1,2)
2

)
= (−0.56±0.08i,1).

Like above, the following table 5.6 depicts all the bifurcation coditions for the

larger sag case with common frequency ωc = 0.680rad/s.
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Table 5.6: Critical modal conditions for analytical and numerical solutions: velocity
( ms-1 )

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 1.692 1.73 2.24 1.75 3.31
II -1.689 -1.63 3.62 -1.71 1.22
III 0.165 0.161 2.48 0.169 2.36

IV(a) 0.150 0.154 2.59 0.156 3.8
IV(b) 0.200 0.198 1.01 0.200 0.0

Figure 5.21 to Figure 5.30, depict the modal shapes of normal and out-of-normal

displacements, discussed in the above table 5.6. The results are showing good

agreement with the two different numerical methods.
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Figure 5.21: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.22: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ

95



CHAPTER 5. SPATIAL GALLOPING ANALYSIS OF SHALLOW CABLES VIA A
LINEAR CONTINUUM MODEL

0 50 100 150 200 250

-0.2

-0.1

0

0.1

0.2

(a)

0 50 100 150 200 250

-0.5

0

0.5

1

(b)

Figure 5.23: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.24: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.25: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.26: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.27: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
v̂; (b) imaginary parts of v̂
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Figure 5.28: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
ŵ; (b) imaginary parts of ŵ
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Figure 5.29: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of v̂; (b) imaginary parts of v̂
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Figure 5.30: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of ŵ; (b) imaginary parts of ŵ

5.5.3 The 1:1:1 resonant case

From the system of equations 5.41, the study of the non-resonant and 1:1 resonant

cases hold here.

Bifurcation occurs at the critical wind velocity,

Uc =
ce +ζ

mω2
0 j

T0

|ĉa
22|

, ĉa
22 < 0 (5.42)

with a real eigenvector (a1,0).

As analyzed above, the single Hopf bifurcation occurs for detB = 0 and trB > 0, or,

double Hopf bifurcation occurs for trB = 0 and detB > 0. It follows that, a simple
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Hopf bifurcation occurs (in cases I, III or IV-a) at:

Uc = 2

(
ce +ζ

(
kπ
l

)2)
−trBa +

√
tr2Ba −4detBa

, (5.43)

and, a double Hopf bifurcation occurs (in case IV-b) at:

Uc =−2

(
ce +ζ

(
kπ
l

)2)
trBa . (5.44)

For the smaller sag (S) case:

• at initial attack angle, α = π

20
= 9◦, trBa = 0.141 > 0,detBa = −0.0028 < 0,

bifurcation condition occurs at the critical velocity Uc = 4.60ms-1 and a

simple Hopf bifurcation occurs at wind velocity Uc = 10.60ms-1 with a real

eigenvector
(
a(1)

1 ,a(1)
2

)
= (4.718,1).

• at initial attack angle, α = 3π
50

= 10.8◦, trBa = 0.251 > 0,detBa = 0.0041 >
0, bifurcation condition occurs at Uc = −2.0ms-1 and with the eigenvector(
a(1)

1 ,a(1)
2

)
= (−1.76,1), and the critical wind velocity is found Uc =−10.58ms-1,

i.e., the equilibrium remains stable.

• at initial attack angle, α= 27π
100

= 48.6◦, trBa =−0.037< 0,detBa =−0.026<
0, bifurcation condition occurs at Uc = 0.759ms-1, and a simple Hopf bifur-

cation occurs at wind velocity Uc = 1.033ms-1 with eigenvector
(
a(1)

1 ,a(1)
2

)
=

(5.84,1).

• for the aerodynamic coefficients, ca
22 =−0.5, ca

23 =−0.2, ca
32 = 0.6, and ca

33 =
0.2, trBa = −0.3 < 0,detBa = 0.02 > 0, bifurcation condition occurs at Uc =
0.304ms-1, a single Hopf bifurcation occurs at Uc = 0.942ms-1 with a real

eigenvector
(
a(1)

1 ,a(1)
2

)
= (−0.666,1), and a double Hopf bifurcation occurs at

Uc = 1.257ms-1 with two complex eigenvectors
(
a(1,2)

1 ,a(1,2)
2

)
= (−0.56±0.079i,1).

All the cases are described in the following table 5.7 and 5.8, where IV (a) and

IV (b) indicates single Hopf and double Hopf bifurcation cases, respectively.

Table 5.7: Critical modal conditions for analytical and numerical solutions with
common modal frequency ω0 j = 3.42rad/s: velocity ( ms-1 ); (Non-resonant part)

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 4.60 4.46 3.13 4.60 0.0
II -2.00 -2.09 4.30 -2.03 1.47
III 0.759 0.757 0.26 0.753 0.79
IV 0.304 0.305 0.32 0.304 0.0
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Table 5.8: Critical modal conditions for analytical and numerical solutions with
common frequency ω0 j = 4.017rad/s: velocity ( ms-1 )

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 10.60 10.66 0.56 10.67 0.65
II -10.58 -10.59 0.09 -10.60 0.18
III 1.033 1.035 0.19 1.035 0.19

IV(a) 0.942 0.944 0.21 0.946 0.42
IV(b) 1.257 1.262 0.39 1.265 0.63

with the corresponding mode shapes, presented in the following figures:
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Figure 5.31: modal shapes for the non-resonant part of (case I in Figure 5.3-(b)):
(a) real and (b) imaginary parts of v̂
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Figure 5.32: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.33: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.34: modal shapes for the non-resonant part of (case II in Figure 5.3-(b)):
(a) real and (b) imaginary parts of v̂
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Figure 5.35: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.36: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.37: modal shapes for non-resonant part of (case III in Figure 5.3-(b)): (a)
real and (b) imaginary parts of v̂
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Figure 5.38: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.39: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.40: modal shapes for non-resonant part of (case IV in Figure 5.3-(b)): (a)
real and (b) imaginary parts of v̂
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Figure 5.41: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
v̂; (b) imaginary parts of v̂
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Figure 5.42: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
ŵ; (b) imaginary parts of ŵ
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Figure 5.43: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of v̂; (b) imaginary parts of v̂
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Figure 5.44: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of ŵ; (b) imaginary parts of ŵ
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For the larger sag (L) case with the same aerodynamic coefficients,

• for trBa = 0.141 > 0,detBa = −0.0028 < 0, bifurcation condition occurs at

Uc = 3.09ms-1, and a simple Hopf bifurcation occurs at wind velocity Uc =
3.39ms-1 with eigenvector

(
a(1)

1 ,a(1)
2

)
= (4.71,1).

• for trBa = 0.251> 0,detBa = 0.0041> 0, for the non-resonant case, the wind

velocity Uc = −1.34ms-1 and for the 1:1 resonance, with the eigenvector(
a(1)

1 ,a(1)
2

)
= (−1.76,1) the wind velocity Uc =−3.39ms-1, i.e., the equilibrium

remains stable.

• for trBa = −0.037 < 0,detBa = −0.026 < 0, bifurcation condition occurs at

Uc = 0.510ms-1, and a simple Hopf bifurcation occurs at wind velocity Uc =
0.331ms-1 with eigenvector

(
a(1)

1 ,a(1)
2

)
= (5.84,1).

• for trBa = −0.3 < 0,detBa = 0.02 > 0,bifurcation occurs at Uc = 0.205ms-1,

and a single Hopf bifurcation occurs at Uc = 0.302ms-1 with a real eigen-

vector
(
a(1)

1 ,a(1)
2

)
= (−0.666,1), and a double Hopf bifurcation occurs at Uc =

0.402ms-1 with two complex eigenvectors
(
a(1,2)

1 ,a(1,2)
2

)
= (−0.56±0.08i,1).

Like above, the following table 5.9 and 5.10 depict all the bifurcation coditions for

the larger sag case (L) with the corresponding common frequencies.

Table 5.9: Critical modal conditions for analytical and numerical solutions with
common modal frequency ω0 j = 1.94rad/s: velocity ( ms-1 ); (Non-resonant part)

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 3.09 3.06 0.98 3.10 0.32
II -1.34 -1.36 1.47 -1.36 1.47
III 0.510 0.514 0.77 0.508 0.39
IV 0.205 0.198 3.53 0.208 1.44

Table 5.10: Critical modal conditions for analytical and numerical solutions with
common frequency ω0 j = 1.361rad/s: velocity ( ms-1 )

Case Uc analyt. Uc FDM err. % Uc GM err. %
I 3.39 3.37 0.59 3.31 2.41
II -3.39 -3.45 1.73 -3.43 1.16
III 0.331 0.334 0.89 0.337 1.78

IV(a) 0.302 0.306 1.30 0.305 0.98
IV(b) 0.402 0.403 0.24 0.407 1.22
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With the corresponding mode shapes, presented in the following figures:
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Figure 5.45: modal shapes for the non-resonant part of (case I in Figure 5.3-(b)):
(a) real and (b) imaginary parts of v̂
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Figure 5.46: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.47: modal shapes for (case I in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.48: modal shapes for the non-resonant part of (case II in Figure 5.3-(b)):
(a) real and (b) imaginary parts of v̂
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Figure 5.49: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.50: modal shapes for (case II in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.51: modal shapes for non-resonant part of (case III in Figure 5.3-(b)): (a)
real and (b) imaginary parts of v̂
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Figure 5.52: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of v̂; (b)
imaginary parts of v̂
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Figure 5.53: modal shapes for (case III in Figure 5.3-(b)): (a) real parts of ŵ; (b)
imaginary parts of ŵ
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Figure 5.54: modal shapes for non-resonant part of (case IV in Figure 5.3-(b)): (a)
real and (b) imaginary parts of v̂
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Figure 5.55: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
v̂; (b) imaginary parts of v̂
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Figure 5.56: modal shapes for (case IV, curve (a), in Figure 5.3-(b)): (a) real parts of
ŵ; (b) imaginary parts of ŵ
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Figure 5.57: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of v̂; (b) imaginary parts of v̂
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Figure 5.58: modal shapes for (case IV, curves (b), in Figure 5.3-(b)): (a) real parts
of ŵ; (b) imaginary parts of ŵ
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Summarizing the above analysis, all the results at the critical condition, have a

good agreement with exact, analytical and numerical studies.

5.6 Conclusions

Coupled in-plane and out-of-plane galloping of shallow horizontal cable has been

studied via a continuous approach, in the linear field. The structural model, taken

from literature, consists of two coupled integro-differential equations in the trans-

verse displacement components, where the integral term derives from condensa-

tion of the longitudinal component. Damping has been included according to the

Rayleigh model, consisting in an external part, proportional to the mass algebraic

operator, and an internal part, proportional to the differential stiffness operator.

Aerodynamic forces have been described according to the quasi-static theory. An

exact differential boundary value problem has been obtained, from which the

critical wind velocity is derived. Both exact and numerical solutions, based on

Finite Differences and Galerkin Methods, have been worked out.

Aimed at obtaining simpler analytical expressions, the boundary value problem has

been also tackled by asymptotic methods, based on perturbations of mono-modal or

multi-modal solutions to the undamped and not-self-excited problem. The analysis

of the spectrum of the natural frequencies of the cable has revealed the occurrence

of some peculiar circumstances, depending on the value of the Irvine’s parameter.

namely: (i) non-resonance, (ii) 1 : 1 resonance, and (iii) 1 : 1 : 1 resonances, involving

one, two or three modes, respectively, each calling for a devoted analysis. This has

shown that galloping of horizontal cables manifests via two different mechanisms:

• Non-resonant (almost) planar mono-modal oscillations: these involve a sym-

metric mode only, and occurs in the transition regions of the spectrum, where

the mode is fastly changing its shape. The non-resonant behavior is well

captured by the simpler planar model of galloping, since coupling only trig-

gers small out-of-plane displacements, which, being in quadrature, lead the

material points to describe narrow elliptical trajectories.

• Resonant in-plane and out-of-plane bi-modal oscillations: these involve two

modes, one in-plane and the other out-of-plane, of the same wavelength,

either symmetric or anti-symmetric, whose amplitudes are of the same order

of magnitude. The resonant behavior occurs in any region far from the tran-

sition, but including the cross-over. The relevant critical wind velocity can

be either lower or higher than that predicted by the planar model. Coupling,
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under some circumstances, can induce motions in which the trajectories of

the material points are wide ellipses.

• For symmetry reasons, three-modal coupled oscillations do not occur, since

they brake into a planar symmetric mono-modal motion and a spatial

antisymmetric-antisymmetric bi-modal motion.

Numerical results, concerning (i) exact analytical solution, the (ii) Finite Difference

and the (iii) Galerkin solutions have validated the findings of the asymptotic

analysis. The solution with the four different methods (exact, analytical, and two

numerical) are fitted well.
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C H A P T E R 6

VIBRATION CONTROL OF A CABLE STRUCTURE VIA

A FLEXIBLE PIEZOELECTRIC DAMPER AND ENERGY

HARVESTING

6.1 Introduction

Piezoelectricity or piezoelectric effect in general, literally means the electricity

originated by pressure, which is found in our nature environment in many mate-

rials. Two French scientists Pierre and Jacque Curie, more than a century ago,

discovered the ability of some materials to metamorphose the mechanical energy

into electrical energy and vice-versa by deforming the body of the materials. They

noticed that there are a class of materials, produce electricity when pressure is

given and also when they are placed in an electric field, they strain mechanically.

Some materials found naturally as tourmaline, quartz, topaz and etc. are the class

of monocrystalline materials which have the piezoelectric properties. But these

materials cannot be used directly as actuators or sensors for controlling vibra-

tions of structures. On the other hand, artificially made polycrystalline ceramic

materials are suitable to use as sensors and actuators. These materials includes

lead zirconate (PZT), polyvinylidene fluride (PVDF) and others, can be made in a

way that can show remarkable piezoelectric properties. These elements are the

most used piezoelectric transducers, because of their ease production and powerful

coupling behavior of electrical and mechanical energies. There are different types

of piezoelectric devices with different forms and different shapes. Day by day these

devices have become most popular among the relevant fields and industries in the

application of vibration control and harvesting energy.
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6.1.1 Piezoelectric devices to control vibration of
structures

Piezoelectric devices have been widely used in many applications, such as, con-

trolling the structural vibrations. Due to their perfect sensing and actuation

capabilities, which arises from their exceptional non-intrusiveness behavior and

high electro-mechanical coupling coefficient, they are extensively utilized materials

in this particular application of vibration control.

Piezoelectric devices are embedded in a structure, possibly flexible in nature, to

which vibration needs to control or harvesting energy from vibration. In gen-

eral, the structural system is lightly damped and their transfer functions are of

higher orders [88]. The problem arises with controlling vibration of these systems

are always complicated. The vibration control problems include aircrafts, satel-

lites, sport products and many structural systems. Suspended cables, suspension

bridges, cable nets, stay-cables, structural beams, transmission lines are examples

of structural problems where piezoelectric devices can be attached for the purpose

of controlling vibration.

Many researchers are currently working on this subject to diminish vibration of

structures and to harvest energy from it [14, 107]. Researchers and structural

designers have a lot of options when using so called smart materials such as,

piezoelectric material, in structural construction and different machines, as these

materials have the capability to generate control functions, exalted integrating

detection, sensing and actuation in engineering systems [88]. The widely use of

piezoelectric materials to suppress vibration are found in the following studies. Xie

et al. [111] have formulated and designed a shunted flexible piezoelectric damping

system with a single cable structure and solved numerically in the purpose of

controlling vibration of deployable space cable structures. They used a tube-shaped

PVDF piezoelectric material with different layers and attached at one end of a

single cable to absorb the energy arises as a result of vibration. They employed LR

and NC-R shunt circuits and compared the outcomes with the control free struc-

ture. Li and Ma [72] developed a robust controller named µ-synthesis controller

that can effectively suppress the effects of external and mixed uncertainties on

flexible cable structures. Their results indicated that the controller can meet the

performance requirements while maintaining the stability of the system. However,

it can introduce unnecessary conservativeness and cannot acheive the desired

results. In order to control the vibration in a partially covered surface of a com-

pressed shell, Zhang and colleagues [121] have studied the effects of the increasing

number of layers in a laminated PVDF actuator on the voltage distribution in

the cavity. They found that the number of layers can be decrease the resistance
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voltage in the active vibration control of the shell. To create a more effective and

efficient mechanism for wave filtering, Ouisse et al. [81] developed a kirigami

based piezo-shunted structure with an auxetic core. The structure is composed

of a pyramidal core and a series of piezoelectric patches. Crawley with Luis [14]

developed a theoretical formulation to introduce controlling vibration of structures

by utilizing piezoelectric materials. They used analytical techniques to develop an

intelligent structure with a PZT actuator concerning static and dynamic stresses.

They attached the PZT actuator with a composite laminated cantilever beam.

On the other study, Hagood and Crawley [37] used an electrical inductance in

series to investigate the damping performance of space structures experimentally.

A technique to attenuate vibration, called positive position feedback (PPF), was

proposed by Fanson and Caughey [26]. They performed experimental investigation

in laboratory on a cantilever beam by attaching piezoelectric material with it as

actuator and sensor.

Bailey and Hubbard [3], first time, studied by analytical approach the active vi-

bration control of a smart beam, where piezoelectric actuators and sensors were

distributed along the beam. They used polyvinylidene fluoride as the piezoelectric

material. As active vibration control phenomena is much more complex, it needs

complicated algorithms and highly advanced hardwares [111], where in a actuator,

the piezoelectric material supplies conducting force, whereas in a sensor, piezo-

electric material provides the information about the amplitude and phase of the

vibrations.

On the other hand, passive control of vibration generally depends on the mod-

ification of some basic properties of the system without any external supply of

electrical energy. The ability of a resonant shunt circuit to suppress the vibration

of a system at tuning frequency, is not constraint by its dependence on external

electrical energy, variations in vibration or on its geometrical properties. There

are several types of shunt circuits, such as inductive-resistive (LR), inductive (L),

resistive-inductive-capacitive (RLC), and capative-inductive (LC). First time, the

piezoelectric shunt damping was introduced by Forward [27]. By experimental

investigation, he illustrated the feasibility to attach exterior electric circuits to

suppress the mechanical vibrations in optical structures. He also designed the

resistance-negative capacitance (NC-R) shunt [28]. Hagood and Flotow [38] for-

warded the theoretical base of shunt circuit by introducing resistive shunt and

resonant shunt techniques. These circuits need to connect with the structure as a

mechanical vibration absorber. A detailed description of piezoelectric transducers

for controlling structural vibration can be found in [74]. Generally, a piezoelectric

shunt circuit composed of piezoelectric transducer by connecting it with an elec-

tric impedance, and by attaching them on a smart structure, for example, cables,
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beams.

Several researchers have emphasized on the optimal design of shunt circuits [4, 39,

40, 99, 102, 116]. Berardengo et al. [18] studied optimal shunt circuit design with

negative capacitance. Theoretical and experimental observations were performed

to design optimal LR shunt by Thomas et al. [102]. Researchers also investigated

multimodal vibration control mechanism with the smart material using as actu-

ator [5, 8, 9, 41, 108, 117]. By using only a single piezoelectric device, Hollkamp

[41] described a method to attenuate multiple mode vibration. Wu [108] used a

single piezoelectric transducer, Behrens et al. [8] used shunt circuits with negative

capacitance controller on piezoelectric laminated structures to propose a technique

to control the multimode vibrations. The use of negative capacitance in shunt

circuits for damping vibration of piezoactuated structures are discussed in [6, 7,

10, 11, 75, 103]. Bisegna and Caruso [10] performed theoretical investigation by

connecting a negative capacitance in two electric circuits to suppress single-mode

and multi-mode vibration of piezoactuated structures. Theoretical as well as exper-

imental investigations on damping vibration by using negative capacitance shunts

with effective suppression performances were reported in [6, 7, 75].

As above, researchers also emphasized on the vibration control phenomenon of

flexible structures like, flexible cables, strings. In general, most of the piezoelec-

tric materials have a higher stiffness than flexible structures, and the fragility

nature of piezoelectric ceramics, it is difficult to transfer any deformation in the

flexible structure to piezoelectric material in the purpose of controlling vibration

or harvesting energy. But hopefully, there are some flexible piezoelectric materials,

and they have been used in flexible structures to suppress vibration and in de-

vices of energy harvesters [112, 119], flexible sensors [15, 18, 118]. These flexible

piezoelectric materials are attracted by researchers in recent years, where they

are used as dampers, actuators, sensors, or energy harvesters, connecting with

resonant shunt circuits [10, 111, 121]. Here, we consider piezoelectric polymer

polyvinylidene fluoride (PVDF) thin film as its flexible nature, high piezoelectric

coefficient, high frequency bandwith response and above all for high performance

[29, 51, 89].

6.1.2 Piezoelectric devices for harvesting energy

Researchers are also interested to develop wireless systems and electronic devices

with extremely low power, which is intended as an aspect of possible interest for

the energy sectors, where the suppilers are looking for renewable source of energies.

The research on this field is growing day by day as the world is experiencing the

scarcity of different source of energies. Most often these piezoelectric devices are

116



CHAPTER 6. VIBRATION CONTROL OF A CABLE STRUCTURE VIA A
FLEXIBLE PIEZOELECTRIC DAMPER AND ENERGY HARVESTING

cheap to produce and maintain, and widely used in generating power in sensors,

wireless communication systems, and electric signals. The main limitations of

power harvesting field are due to the fact that the power produced by piezoelectric

energy harvesters is insufficient to power the majority of modern electronics

[122]. A crucial part of designing energy harvesters is selecting the compatible

piezoelectric material. For cable structures, it is not possible to transfer the total

deformation from flexible cable elements to the rigid piezoelectric materials such as,

piezoelectric ceramics and single crystals. Since PVDF material is flexible polymer,

it is possible to transfer the deformation from cable to the PVDF piezoelectric

polymer. Due to high polarisations inside their crystalline formations, piezoelectric

ceramics and single crystals have substantially stronger piezoelectric capabilities

than piezoelectric polymers [123]. Besides, a certain amount of electrical energy

dissipates when the harvester is tuned with electrical circuits. As a result, the

power generation of cable harvesters with PVDF polymer is small compared to

that of harvesters made with rigid ceramics and single crystals.

In this chapter, we have designed a tube-shaped damper with PVDF material and

connect it with electric shunt circuits, and lastly, attached them in flexible straight

cable to control its vibration passively and compared the obtained results with

[111]. After that, we harvested energy from this composite structure as electricity.

6.2 Modeling

To design a control system, the first step is to develop a mathematical model

of the system by taking into account the disturbances that responsible for the

unbesought vibrations. The analytical model of the structure can be developed by

using finite element (FE) method. We have here, developed a smart cable to control

the vibration, whose one end is encircled by PVDF tube, as described in the Figure

6.1.
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Figure 6.1: The smart cable: a single cable of length L, left end of which encircled
by piezoelectric PVDF tube of length l.

6.2.1 Finite element modeling of the smart cable

The representation of the developed FE model of the smart cable must be done

reliably that the model can be used in later applications, such as control applica-

tions, energy harvesting. We need to select the type of elements and sizes optimally

to get the best FE model. A detailed description of the geometry of the smart

cable is depicted in Figure 6.1 and Figure 6.2. For FE model, we have employed

COMSOL Multiphysics to model the structure and solving the model. A smart

cable is designed using a single cable of length L, whose left end is encircled by

polyvinylidene fluride (PVDF) thin film as tube of length l, and neglecting the gaps

between the cable and the tube. We have the characteristics of the model: number

of elements: domains 10360, boundaries 6036, edges 1016 and DOF 60981.
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(a)

(b)

Figure 6.2: Geometry of the smart cable.

6.2.2 Tube-shaped PVDF damping component modeling
and design

Introducing a piezoelectric PVDF damping component in the structure implies the

use of a suitable electric impedance controlling the vibrations. The damper as a

tube-shaped PVDF thin film is rolled up along one end of a vibrating cable in a way

that the gap between the curved surfaces of the tube and cable can be neglected,

see Figures 6.1, 6.2. As the PVDF tube is flexible and wide frequency bandwith

response, the deformation in the cable can be transmitted upon vibration to the

PVDF tube and that causes charge on the both surfaces, inner and outer of it due

to the effect of piezoelectricity. When a resonant shunt circuit is connected with the
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PVDF tube, the electric current produces due to the charges of the surfaces, and

some of the electrical energy dissipated in the circuit via electric resonance. The

major deformation in the PVDF tube can be happended when cable experienced

axial tension and pure bending. Taking all these in mind, the PVDF tube is

designed on the basis of the relation of deformation in the cable with the surface

charges in PVDF tube.

(a) (b)

Figure 6.3: A schematic of the PVDF tube [111]: (a) under longitudinal tension; (b)
under pure bending

6.2.2.1 Deformation and surface charges

The concept of design of the PVDF tube is followed by Xie et al. [111], where the

deformation regarding tension and bending are considered. The characteristics

of the PVDF tube is considered linear throughout the study. The thickness of the

tube is taken uniform, denoted by th := d2 −d1

2
, where d1 and d2 are the inner

and outer diameter of the tube with length l. A uniform axial force F acts on

x-direction, the axial normal stress,

σ1 = F
Ac

, (6.1)

with Ac, the cross-sectional area. The relative piezoelectric displacement [88],

D i = di jσ j, (6.2)

where di j (i = 1,2,3; j = 1,2,3,4,5,6) are piezoelectric coefficients. The total surface

charge,

Q =
∫

D3dA,

=
∫

d31σ1dA,
(6.3)

where A is the average circumferential area of the tube. Using equation (6.1) into

equation (6.3), we get
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Q =
2π∫
0

2d31Fl (d1 +d2)
π

(
d2

2 −d2
1
) dθ. (6.4)

(a)

(b)

Figure 6.4: Charge distribution in the PVDF tube [111]: (a) under an axial tension;
(b) under a pure bending

The polarization direction of the tube is in thickness direction, as a result the

outer surface charge and inner surface charge acts opposite direction to each other.

When an axial force acts, then the polarization direction at all positions directed

from inner surface to outer surface. Upon vibration, a voltage difference produces

by axial tension, between the surfaces of inner and outer of the tube, see Figure

6.4, by which the mechanical energy can be transformed into electrical energy.

Accounting pure bending, the normal stress in the axial direction,
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σ1 = Mz
I y

, (6.5)

with M is the bending moment and I y is the cross-sectional moment of inertia

with respect to y-axis, and z = sign (z), which determines the stress in tension or

in compression. Using equation (6.5), equation (6.3) becomes

Q =
2π∫
0

d31Ml (d1 +d2)sinθ
2I y

dθ. (6.6)

The aggregated charges on the tension and compression sides are of same value

with opposite sign to each other, as a result the total surface charge vanishes. To

get rid of this phenomena, the PVDF tube cut into several sectors while bending,

and connect each of them with different electrodes. We need such a design for the

transversal vibration, but not for the longitudinal one.

6.2.3 Geometric parameters optimization

The attachment of the PVDF tube cohesively with the cable regarded as a combined

load carrying structure. The cross-sectional area and the normal stress of the PVDF

tube depend on the thickness of the tube, and the thickness has an impact on the

tube’s capacitance, and consequently, the overall quantity of charge stored. For

the optimal performance of damping, we need to calculate the accurate thickness

of the tube. The optimization procedure is performed on the basis of maximizing

mechanical vibration’s modal electromechanical coupling factor, as the shunt is

tuned with the mechanical vibration mode of the structure. Combined with PVDF

tube, structure’s left end is fixed and right end is under a tensile force F0. It is

assumed that along the length of PVDF tube, the axial force is uniform; we neglect:

the change in radius, capacitance change of the tube, gaps between PVDF sectors

and change in inner diameter.

By assumption of the PVDF tube a capacitor with capacitance c of a single layer,

the electrical energy generates in the tube [88, 111],

W0 = Q2

2c
, (6.7)

where Q is the total electrical charge on the circumferential surface of the PVDF

tube. Using equation (6.3),

Q = d31
F0

At
A, (6.8)

with At is the entire cross-sectional area of the composite structure. We have the

capacitance [88],
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c = εrε0A
t0

, (6.9)

where εr is the PVDF tube’s relative dielectric permittivity, ε0 is the free space’s

dielectric permittivity, t0 is the thickness of a layer of PVDF tube. Using equations

(6.8), (6.9) into equation (6.7), we get

W0 =
d2

31F2
0 t0A

2εrε0A2
t

. (6.10)

Total energy of the n-layered tube is,

W = n ·W0 =
d2

31F2
0

2εrε0A2
t

(nt0A) , (6.11)

where t0A is the volume of a layer of PVDF tube and nt0A is the total volume

Vtube of the n-layered tube. Accounting the cross-sectional geometry, we have the

relation as follows:

Vtube = th

(
2π

(
r+ th

2

))
l, (6.12a)

At =π (r+ th)2 . (6.12b)

Using equations (6.12) into equation (6.11), we get

W =
d2

31F2
0 th

(
2π

(
r+ th

2

))
l

2εrε0
(
π (r+ th)2)2 . (6.13)

For the maximum value of W with respect to th, we have

dW
dth

= πd2
31F2

0 l
εrε0π2 · r2 −2rth − t2

h

(r+ th)5 = 0, (6.14)

which implies,

th =
(p

2−1
)
r. (6.15)

Hence, the PVDF tube’s optimal thickness is, th ≈ 0.4r. Figure 6.5 shows the

relationship between the normalized electrical energy and thickness of the tube.

From the equation (6.15) and the figure, when the thickness is about 0.4 times of

the inner radius, the total electrical energy is generated, and when the thickness

is 0.2 times of inner radius, the maxium electrical energy 1.19 times of reference

energy, is generated.
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Figure 6.5: Relationship between the electrical energy and the thickness.

6.2.4 Positioning of the PVDF tube

Here, we have calculated the optimal position of the PVDF tube under transverse
vibration. For the best performance, it is needed to place the tube in a position of

the cable that can produce maximum electrical energy to damp maximum vibration

of the cable. We consider here, a 1D free transverse vibration problem of a string

following [109, 111], whose initial displacement is f (x) and initial velocity is g (x).

The solution is given by,

v (x, t)=
∞∑

k=1
sin

nπx
l

 2
ωkl

l∫
0

g (x)sin
kπx

l
dxsinωkt+ 2

l

l∫
0

f (x)sin
kπx

l
dxcosωkt

 ,

(6.16)

with v (x, t), the transverse displacement of the string at time t and position x; ωk

is the k-th order natural frequency, dx is the infinitesimal section of the string.

The axial strain,

ε= ds−dx
dx

=
√

1+v2
x (x, t)−1,

(6.17)

with ds, the infinitesimal length of the section after deformation; vx represents

rotational angle, a partial derivative of v (x, t) with respect to x. To evaluate the
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optimal position, we have taken an initial displacement f (x) with zero initial

velocity, as follows:

f (x)= v (x,0)=


2hx

l
, when x ≤ 0.5l,

2h (l− x)
l

, when x > 0.5l,

(6.18a)

g (x)= ∂v
∂t

(x,0)= 0, (6.18b)

where h is an initial lateral displacement. Now using equations (6.18), (6.16) into

equation (6.17), we can represent the time histories of displacement and the strain

in Figure 6.6 for the positions of 2m and 0.01m, respectively. From the figures, the

axial strain at 0.01m is larger than at 2m, under the vibration of cable. So, the

optimal position should be very close to the fixed end of the cable.
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Figure 6.6: Transverse displacement and strain
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6.3 Shunt circuit design

In this section, we consider two types of shunt circuits, LR (series resistance-

inductance) shunt and NC-R (series resistance-negative) shunt circuits. The PVDF

tube is considered as capacitor and voltage source, are connected in series.

6.3.1 The LR shunt circuit

The design of LR shunt is presented in Figure 6.7, and the optimal value of R and

L is given by [38],

Ropt =
p

2ki

ωsc
i Cp

(
1+k2

i

) , (6.19a)

and

Lopt = 1(
ωsc

i

)2 (
1+k2

i

)
Cp

, (6.19b)

where, ki :=
(
ωoc

i

)2 − (
ωsc

i

)2(
ωsc

i

)2 is the i-th effective coupling factor, Cp is the capaci-

tance of the tube, ωoc and ωsc are the natural frequencies in the open circuit and

short circuit, respectively.

Figure 6.7: LR shunt circuit system taken from [111].

6.3.2 The NC-R shunt circuit

As the NC-R shunt can dissipate the generated energy by the stretching and

bending deformations simultaneously, we have taken into account the negative
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capacitance (NC) to control vibration. In general, the NC is used for improving the

suppress performance by increasing modal coupling factor. The NC-R shunt circuit

system is shown in Figure 6.8. In this study, the NC-R shunt circuit as well as the

stability condition of the negative capacitance and the related optimal resistance

followed by [6]:

Cn > Cp

(
1+

N∑
i=1

k2
i

)
, (6.20a)

and

Rn = 1
ωFCeq

, (6.20b)

where, ωF :=

√√√√(
ω

′sc
i

)2 +
(
ω

′oc
i

)2

2
=

√(
ωsc

i

)2 + Cn −2Cp

2
(
Cn −Cp

) ((
ωoc

i

)2 − (
ωsc

i

)2
)
,

and Ceq =
CpCn

Cn −Cp
, with ω

′sc
i , ω

′oc
i are natural frequencies of the structure when

the NC-R circuit is connected with PVDF tube with the conditions of short circuit

and open circuit.

Figure 6.8: NC-R shunt circuit system taken from [111].
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6.4 Numerical Results

We have modeled the structure as described above, the cable of length L = 1m

of which the left end is encircled by PVDF thin film as a tube of length l = 0.1m,

and using the other optimized parameter values given in Table 6.1 and 6.2, we

have studied the model via finite element analysis in COMSOL Multiphysics. We

have investigated the cable structure’s frequency response, time-history response

under forced condition. For the PVDF tube, we consider: the piezoelectric constant

d31 = 23 pCN−1; electromechanical coupling factor k31 = 0.12; Young’s modulus

Ep = 2×109 Nm−2; Poisson’s ratio νp = 0.3; density ρp = 1780 kgm−3; relative

dielectric constant εr/ε0 = 12, and for the cable, the Young’s modulus Es = 2×109

Nm−2; Poisson’s ratio νs = 0.3; mass density ρs = 800 kgm−3.

6.4.1 Damping characteristics

Modeling of damping parameters are of remarkable significance to determine

dynamical response of the structures. We are assumed viscous damping and

dependent on frequency. A specific type of viscous damping is known as Rayleigh

damping. Under Rayleigh damping, we assumed the structure’s modal damping

ratio is 0.005.

6.4.2 Analysis of the longitudinal vibration of a single
cable structure

We have studied here, the axial deformation only and for this, we have used a

single-layered PVDF tube without cutting it different sectors. When the structure

is subjected to longitudinal vibration, the configuration of the structure is illus-

trated in Figure 6.9. All degrees of freedom at the left end of the cable structure

are constrained and a constant axial pretension 0.5 MPa acts on the right end.

The radius of the cable is taken r = 0.005 m, and the thickness of the PVDF tube

th = 0.002 m.

Under the short circuit condition with the PVDF tube, we have evaluated the natu-

ral frequency of the structure using the optimized values of the circuit components

as described in Table 6.1.
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(a)

(b)

Figure 6.9: Single cable structure with the tube shaped PVDF damping system.

Table 6.1: The natural frequency of the longitudinal vibrating structure and the
parameters for the shunt circuits

Natural frequency (short circuit) ωshort (Hz) 414.84

LR shunt circuit Ropt (Ω) 7.52×104

Lopt (H) 733.23

NC-R shunt circuit Rn (Ω) 5.65×106

Cn (F) 2.1×10−10

For the purpose of numerical simulations, we have applied a small axial force

F = 1 N for analyzing frequency response and time-history response for the forced
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vibration analysis. For the forced vibration analysis, we have used the first order

resonance frequency of the structure.

The obtained results are depicted in Figure 6.10. The frequency response under

frequency domain analysis is presented in Figure 6.10(a), describing the responses

under control-free, LR shunt connected and NC-R shunt connected structure. The

response amplitude of the frequency at resonance dropped by 87.45% with LR

shunt and 63.44% with NC-R shunt, comparing with the control free response.

In the forced vibration analysis, the amplitude of response suppressed by 90.52%

with LR shunt and 77.98% with NC-R shunt with the comparison of control-free

response, shown in Figure 6.10(b).

From the above discussion of the outcomes, we can conclude that the design with

LR shunt damping system gives better performance to reduce vibration comparing

with NC-R shunt in the case of right end point displacement.
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Figure 6.10: The longitudinal vibration response of the single cable structure
with the tube-shaped PVDF damping system: (a) Frequency response of the right
endpoint; (b) time-history response of the right endpoint under forced vibration.

6.4.3 Analysis of the transverse vibration of a single-cable
structure

To study the transverse vibration response of the cable structure, we cut the PVDF

tube into two sectors and bonded them at the left end and an initial constant

axial pretension 0.5 MPa is applied to the cable. The configuration of the structure

is shown in Figure 6.11. The left and right end of the cable are fixed. We have

applied a small force F = 1 N at the midpoint of the cable on transverse direction,
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as described in the figure, for the cases of amplitude response of the frequency

analysis and forced vibration analysis.

(a)

(b)

Figure 6.11: Single cable structure with the tube shaped PVDF damping system.

Here, we have only considered in the Z-direction’s displacement. The optimal value

of the corresponding geometric parameters are in Table 6.2. If the frequency for

the transverse vibration is ω, then the frequency for the stretching will be 2ω

(twice of the transverse vibration) [111]. The annexed PVDF tube, in the case of

transverse vibration, experiences bending and stretching deformations. Because of

high frequency dependence of LR shunt circuit to model the damper, depending

on the frequency difference for the bending and stretching deformation, here, two

optimization schemes are followed. The composite structure’s natural frequency is

obtained in the cases of short circuit or open circuit and presented in Table 6.2.
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Table 6.2: The natural frequency of transverse vibrating structure and the para-
meters for the shunt circuits

Natural frequency (short circuit) ωshort (Hz) 16.0

LR shunt circuit for bending Ropt (Ω) 5.09×105

Lopt (H) 6.62×105

LR shunt circuit for stretching Ropt (Ω) 2.69×105

Lopt (H) 1.65×105

NC-R shunt circuit Rn (Ω) 1.69×107

Cn (F) 1.05×10−10

The numerical representation of the transverse vibration amplitude response is

shown in Figure 6.12. In Figure 6.12(a), the amplitude response of the frequency

decreased by 64.95% with LR shunt for bending, 77.76% with LR shunt for stretch-

ing and 72.73% with NC-R shunt damping system.

From Figure 6.12(b), the amplitude is dropped by 44.05% with LR shunt for bend-

ing, 67.68% with LR shunt for stretching and 65.07% with NC-R shunt for the

forced vibration analysis.
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Figure 6.12: The transverse vibration response of the single cable structure with
the tube-shaped PVDF damping system: (a) Frequency response of the midpoint;
(b) time-history response of the midpoint under forced vibration.

From the above outcomes for the both cases of longitudinal and transverse vi-

brations, an axial strain is caused by the stretching deformation. By assuming

the induced maximum voltage in damping as Umax, in the case of longitudinal

vibration, it varies from −Umax to Umax, and for the transverse vibration, it varies
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from 0 to Umax. Thus, it is more fruitful the energy transformation procedure in

the design of damping system with longitudinal vibration. As a result, LR shunt

has a lesser performance in the transverse vibration control. On the other hand,

NC-R shunt has less remarkable performance for longitudinal vibration case than

LR shunt.

6.5 Configuration of the model for energy
harvester

Here, the geometry of the energy harvester is shown in Figure 6.1, where we

consider the same composite structure, constructed by attaching a piezoelectric

tube at one end of a straight cable. The left end of the structure is fixed in all

degrees of freedom and the right end is free to move. We have taken into account

only the body load of the structure. The harvester is analyzed in a reference frame

which is vibrating, as it is modeled in COMSOL Multiphysics with applying a

sinusoidal body load.

6.6 Discussion of results

A straight cable of length L = 1m and a PVDF tube of length l = 0.1m is taken into

account to design the composite structure to harvest energy when the harvester

excites with a sinusoidal acceleration. The electrical load is considered R_load =
5.09×105 Ω. The input of mechanical energy by the excitation of the harvester

by acceleration, the harvested energy from the input energy, and the induced

voltage in the PVDF tube, all are presented as functions of frequency in figures

6.13 (a) - 6.13 (c). Figure 6.13 (a) shows the peak of induced voltage across the

piezoelectric tube. The maximum voltage 0.2015 V is produced at 11.5 Hz. At the

same frequency, the peak of input mechanical power is 5.447×10−3 W, presented

in Figure 6.13 (b), and the harvested energy as electric power 3.988×10−8 W

from the mechanical power input, is drawn in Figure 6.13 (c). As it is discussed

above that it is difficult to transform the total deformation of a flexible structure

to the piezoelectric material and the attachment of electrical circuits with the

piezoelectric harvester, the amount of input mechanical energy is small which

results a low amount of energy extraction from the harvester.
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Figure 6.13: Energy harvester: (a) The peak of induced voltage across the PVDF
tube; (b) The mechanical power input in the harvester; (c) The harvested power
from the mechanical power input.

The harvester’s performance depending on the resistance of electrical load is drawn

in Figure 6.14 . Figure 6.14 (a) shows the induced voltage in the PVDF harvester,

Figure 6.14 (b) depicts the mechanical power input to the harvester, and the

harvested energy from the PVDF harvester is presented in Figure 6.14 (c) at 1g

acceleration when the cable is oscillating at 11.5 Hz. The outcomes are presented

in logarithmic scale for x-axis. The peak of harvested energy as electric power is

3.78×10−6 W.
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Figure 6.14: Energy harvested depending on electrical load resistance: (a) Induced
voltage across the PVDF tube; (b) The mechanical power input in the harvester; (c)
The harvested power from the mechanical power input.

In Figure 6.15 (a), the voltage induced across the harvester; in Figure 6.15 (b),

the input mechanical power, and in Figure 6.15 (c), the output electrical power,

all are depicted against the mechanical acceleration when the frequency of the

oscillation is 11.5 Hz. The voltage is linearly increased with acceleration with an

applied load impedance of 5.09×105 Ω, and the mechanical power input and the

output harvested electric power are increasing quadratically with the acceleration.
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Figure 6.15: Energy harvested dependance on mechanical acceleration: (a) Induced
voltage across the PVDF tube; (b) The mechanical power input in the harvester; (c)
The harvested power from the mechanical power input.

6.7 Conclusion

A smart cable structure is designed with a shunted piezoelectric tube-shaped

damper to suppress vibration of the cable when subjected to an axial or a trans-

verse load. Flexible piezoelectric polymer, polyvinylidene fluoride (PVDF) thin

film is used to model such a damper. The optimal placement and thickness of the

PVDF damper are determined. Two shunt circuits, LR and NC-R shunts are taken

into account to observe the performances of controlling vibration. The geometrical

parameters and the parameters for shunt circuits are also determined optimally.

We are in conclusion that, for the axial vibration, LR shunt shows a better perfor-

mance than that of designed with NC-R shunt circuit. On the other hand, for the

transverse vibration, LR and and NC-R shunts more or less equally work. Also,

energy is harvested from the harvester, showing the dependance of electric load

resistance and acceleration when the structure is oscillating at a certain frequency.
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CONCLUSIONS AND FUTURE DEVELOPMENT

In this thesis paper, the presented research works deal with the outcomes of my

studies and research conducted under the supervission of my professors during

the PhD period of last three years. The in-plane and out-of-plane galloping of an

iced suspended cable is analyzed in the first part of this research work via a con-

tinuum model. Various methods of solutions are employed to analyze the model for

studying the mechanical behavior of the structure. By exact analysis, the critical

wind velocity and modal frequencies are determined. In order to get the qualitative

as well as quantitative information on the role of the out-of-plane component on

galloping, we have addressed analytical method to solve the space eigenvalue

problem. Three resonance cases are illustrated by the analytical analysis; where,

in non-resonant case, the planar (mono-modal) mode is symmetric and happens in

the transition phase of the spectrum. At the leading order, the additional degree-

of-freedom has no effect on the critical wind velocity as determined by accounting

the use of Den-Hartog criterion. Only significant consequence is that, it adds the

bi-normal component of the motion, which makes the galloping mode complex as it

is in quadrature with the planar mode. Besides, every material point of the cable

specifies trajectories that project as extremely small ellipses in the cross-section

plane. In the one-one resonant case, a planar mode and an out-of-plane mode with

same magnitude of wavelength, symmetric or antisymmetric, occurs far from the

transition region. In one-one-one resonant case, a symmetric planar mode and

a spatial antisymmetric-antisymmetric bi-mode occur. Regarding the numerical

results, the obtained results e.g., the vibration modes, critical solutions as critical

wind velocities and modal frequencies at different cases are of good agreement

with the exact and analytical solutions.

In the reduced order model i.e., in the planar model, the governing integro-

differential equation was solved by exact analysis in the linear field, and solved

asymptotically in nonlinear field. At the resonance, by the numerical analysis, the

critical velocities either higher (one-one resonance) or lower (non-resonance) than
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the critical Den-Hartog velocity. This indicates that, when occuring under non-

resonance conditions, the coupling between the in-plane and out-of-plane motion

can have both a positive as well as a negative impact on the single-component

motion. A cable that would be stable in non-resonance case can be unstable due to

the coupling.

More specifically, from the linear in-plane model, it reveals that: the critical wind

velocities are split into each associated mode by internal damping; the critical

mode can be symmetric or anti-symmetric. A stable Hopf bifurcation occurs in the

planar cable, and it changes its shape along the limit-cycle by a drift and a small

out-of-plane component which makes the nonlinear normal mode complex. On the

other hand, the linear spatial model expreses the coupling between planar and

out-of-plane displacements due to the aerodynamics forces.

In the second part, a smart cable is designed and mathematically formulated to

control vibration of the structures, and to harvest energy due to the oscillation of

the cable. A single straight cable is attached with a PVDF tube and is tuned with

electrical shunt circuits, one is LR shunt and other one is NC-R shunt circuits.

Design with LR shunt shows remarkable performance when studying longitudinal

vibration suppression of the cable. For transverse vibration control, LR shunt and

NC-R shunt, both are equally performed. On the other hand, the energy in the

form of electrical power is extracted from the designed cable harvester, and the

extracted energy is compatible to power small electronic devices.

I would like to devote my future work to extend the research by accounting swing

angle and thermal effects on the cable structures. One of my further interest is

to develop a smart long curved cable by attaching piezoelectric devices when the

stucture is subjected to wind force.
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