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Abstract

We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamics equations with

transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are pro-

vided by combining analytic and probabilistic arguments, especially heat kernel properties and maximal

estimates for stochastic convolutions. Similar ideas are applied to the stochastic 2D Keller-Segel model,

yielding explicit choice of noise to ensure that the blow-up probability is less than any given threshold. Our

approach also gives rise to some mixing property for stochastic linear transport equations and dissipation

enhancement in the viscous case.
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1. Introduction

This paper is mainly concerned with scaling limits for some nonlinear (inviscid) fluid equa-

tions perturbed by multiplicative noise of transport type. We already know that, under a suitable

scaling of the noise, the stochastic equations converge weakly to some deterministic viscous

equation, see e.g. [16,13,24]. These results may be interpreted as the emergence of an eddy vis-

cosity, in a fluid with small scale turbulence. However, they are proved mainly by compactness

method, and thus the rate of convergence is not known. Our first aim is to find explicit estimate

on the convergence rate in such scaling limit results (see Section 1.1). Furthermore, motivated

by the above-mentioned works and also by [12], we have shown in the recent paper [14] that

transport noise enhances dissipation in a similar scaling limit, hence it can be used to suppress

possible explosion of solutions to some nonlinear PDEs, e.g. the Keller-Segel system. Here we

improve the result in [14] by providing quantitative estimates on the probability that the life time

of solution is greater than some given T ; this allows to choose the correct noise in order for the

blow-up probability to be less than any initially chosen threshold (cf. Section 1.2).

Next, we shall study the convergence rate of a linear inviscid transport equation, with transport

noise, to a deterministic parabolic equation (see Section 1.3.1 below). In this case, the property

we prove is a quantitative version of the so-called mixing, where we can say precisely the rate of

mixing and the closedness, on a finite time horizon, to the decaying profile of the parabolic equa-

tion (cf. [10,6,32,1,3,17] for related results among the vast literature). Said differently, we prove

that an eddy dissipation emerges when the mixing is sufficiently turbulent. For linear viscous

equation perturbed by the same transport noise, we show in Section 1.3.2 the phenomenon of

dissipation enhancement (see e.g. [5,11,7,4]): the solutions converge to equilibrium in L2-norm

at an arbitrarily fast exponential speed for suitably chosen noise parameters.

Before giving more precise statements of the results obtained in this paper, let us introduce

some frequently used notations. Given positive numbers a, b, we write a . b if there exists a

constant C > 0 such that a ≤ C b, a ∼ b if a . b and b . a; we write a .λ b to stress the

dependence C = C(λ). We will mostly work on the torus T
d = R

d/Z
d and denote by {ek}k∈Zd

the standard Fourier basis ek(x) = e2πik·x ; we denote by H s(T d ;R
m) with s ∈ R,m ≥ 1 the

usual (possibly vector-valued) Sobolev spaces on T
d . Whenever it does not create confusion we

will simply write H s , similarly L2 in place of L2(T d ;R
m). We denote by 〈·, ·〉 the L2-inner

product or the duality between Sobolev spaces.

1.1. Quantitative convergence rate for 2D fluid models

In this section we consider on T
2 the stochastic 2D Euler/Navier-Stokes equation in vorticity

form perturbed by transport noise:

{

dω + u · ∇ω dt + ◦dW · ∇ω = ν1ω dt,

u = K ∗ ω,
(1.1)

where ν ≥ 0 (ν = 0 corresponding to stochastic Euler), K is the Biot-Savart kernel on T
2, and

u and ω are the velocity and vorticity of fluid; the stochastic differential is understood in the

Stratonovich sense. The noise W , parametrized by κ > 0 and θ ∈ ℓ2(Z2
0), is defined as

W(t, x) =
√

2κ
∑

k∈Z2
0

θk σk(x)W k
t , (1.2)

2
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where {W k}k∈Z2
0

are standard complex Brownian motions defined on some filtered probability

space (�,F , (Ft ),P ), satisfying W k = W−k , and {σk}k∈Z2
0

are given by

σk(x) = akek(x), k ∈ Z
2
0,

where ak ∈ R
2 is a unit vector such that ak · k = 0 and ak = a−k . A typical choice is ak = k⊥

|k|
for k ∈ Z

2
+ and ak = a−k for k ∈ Z

2
−, where k⊥ = (k2,−k1)

∗ and Z
2
0 = Z

2
+ ∪ Z

2
− is a partition

of Z
2
0 with Z

2
+ = −Z

2
−. By construction, the family {σk}k∈Z2

0
is a CONS of the subspace of

L2(T 2;C
2) consisting of mean zero, divergence free vector fields. It follows from (1.2) that W

is entirely characterized by the pair (κ, θ).

Throughout this paper we will always assume ‖θ‖ℓ2 = 1, which comes without loss of gener-

ality up to relabelling κ . We further impose θ to be symmetric, i.e.

θk = θl for all k, l ∈ Z
2
0 with |k| = |l|. (1.3)

Under this condition, it is easy to show that the first equation in (1.1) has the Itô form

dω + u · ∇ω dt + dW · ∇ω = (κ + ν)1ω dt. (1.4)

Given ω0 ∈ L2, this equation admits a weak solution (strong in the probabilistic sense if ν > 0)

satisfying

sup
t≥0

{

‖ωt‖2
L2 + 2ν

t
∫

0

‖∇ωt‖2
L2 dt

}

≤ ‖ω0‖2
L2 P -a.s. (1.5)

According to [13], if we take a sequence {θn}n ⊂ ℓ2 such that

‖θn‖ℓ2 = 1 (∀n ≥ 1), lim
n→∞

‖θn‖ℓ∞ = 0, (1.6)

and consider the solutions ωn of (1.1) corresponding to θn, then for any α > 0, ωn converges

in probability, in the topology of C([0, T ];H−α), to the unique solution of the deterministic 2D

Navier-Stokes equation

∂t ω̃ + ũ · ∇ω̃ = (κ + ν)1ω̃, ω̃|t=0 = ω0, (1.7)

where ũ = K ∗ ω̃.

Our first main result gives an explicit estimate on the distance between the solutions of (1.1)

and (1.7).

Theorem 1.1. Let ω and ω̃ be weak solutions to (1.1) and (1.7) respectively and assume ω satis-

fies (1.5). Then, for any α ∈ (0,1), there exists some C = C(α) > 0 such that for any ε ∈ (0, α],
one has

3
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(i) for any ν ≥ 0,

E

[

‖ω − ω̃‖p

C([0,T ];H−α)

]1/p

.ε,p,T κε/2‖θ‖α−ε
ℓ∞ ‖ω0‖L2 exp

[

C
1 + T (κ + ν)

(κ + ν)2
‖ω0‖2

L2

]

;

(ii) if ν > 0, then

E

[

‖ω − ω̃‖p

C([0,T ];H−α)

]1/p

.ε,p,T κε/2‖θ‖α−ε
ℓ∞ ‖ω0‖L2 exp

[

C

ν
‖ω0‖2

L2

]

.

In the above estimates, the implicit constants behind the notation .ε,p,T might explode as

ε → 0 or p,T → ∞. Below we give some more comments on the results.

Remark 1.2.

(1) The first estimate is stable in the vanishing viscosity limit, indeed there is no harm in taking

ν = 0 as long as κ > 0; the second one instead has the advantage that T does not appear in

the exponential.

(2) The relevant information in the above estimates comes from values of α as large as possible,

α ∼ 1 − ε. Indeed the statement for values α′ < α follows from interpolating the estimate

for α with the uniform bound

‖ω − ω̃‖C([0,T ];L2) ≤ 2‖ω0‖L2 P -a.s.

Similarly, in the case ν > 0 one can obtain rates of convergence in L2(0, T ;H s) for any

s ∈ (0,1), by interpolating with the uniform bound in L2(0, T ;H 1) coming from (1.5).

(3) In the above result we assumed for simplicity ω0 = ω̃0. If this is not the case, the second

estimate becomes

E

[

‖ω−ω̃‖p

C([0,T ];H−α)

]1/p

.ε,p,T

[

‖ω0 −ω̃0‖H−α +κε/2‖θ‖α−ε
ℓ∞ ‖ω0‖L2

]

exp

[

C

ν
‖ω0‖2

L2

]

;

similar changes apply to the first estimate.

In practice, we take a sequence of {θn}n ⊂ ℓ2 with the properties (1.3) and (1.6), and consider

the corresponding stochastic equations (1.1) with θn in place of θ . This together with Theo-

rem 1.1 will give us explicit rates of convergence, as shown by the next example.

Example 1.3. Consider θn
k := θ̃n

k /‖θ̃n‖ℓ2 for some θ̃n ∈ ℓ2, n ≥ 1. Let a ≥ 0.

(1) Define

θ̃n
k =

1

|k|a
1{n≤|k|≤2n}, k ∈ Z

2
0.

Then ‖θ̃n‖ℓ∞ = n−a and ‖θ̃n‖ℓ2 ∼ n1−a , thus

4
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‖θn‖ℓ∞ =
‖θ̃n‖ℓ∞

‖θ̃n‖ℓ2

∼
1

n
.

We see that the convergence rate is the same for different value of a ≥ 0.

(2) Define

θ̃n
k =

1

|k|a
1{1≤|k|≤n}, k ∈ Z

2
0,

then ‖θ̃n‖ℓ∞ = 1 and

‖θ̃n‖ℓ2 ∼











n1−a, 0 ≤ a < 1;
√

logn, a = 1;
1, a > 1.

Hence,

‖θn‖ℓ∞ =
‖θ̃n‖ℓ∞

‖θ̃n‖ℓ2

∼











na−1, 0 ≤ a < 1;
(logn)−1/2, a = 1;
1, a > 1.

The convergence rate in this case strongly depends on a. Note that in the case a > 1 there is

no rate of convergence, indeed we are not in the hypothesis for the scaling limit to hold; we

list it here for the sake of completeness.

We provide a simple consequence of the above result to show the power of the quantitative

convergence rates. In the rest of this subsection, we assume ν = 0 and thus we are considering

stochastic 2D Euler equations in (1.1). In this case, it is well known that the uniqueness of

solutions remains open for the deterministic 2D Euler equation with L2-initial vorticity. We

have discussed in [13, Section 6.1] the “approximate uniqueness” of weak solutions to stochastic

2D Euler equations. Roughly speaking, it means that the distances between weak solutions of

(1.1) will vanish if we take a sequence of θn as in the example above. This follows from the

scaling limit result since the weak solutions of (1.1) converge weakly to the unique solution

of the deterministic 2D Navier-Stokes equation (1.7) with ν = 0; see [13, Corollary 6.3] for a

qualitative statement. Thanks to Theorem 1.1, we can now provide a more explicit estimate on

the distances between weak solutions.

To this end, we fix some α ∈ (0,1) and denote by X := C([0, T ],H−α); we also write Lθ for

the collection of laws of weak solutions to (1.1), with a fixed initial condition ω0 ∈ L2(T 2); Lθ

can be regarded as a subset of the space P(X ) of Borel probability measures on X . We endow

the space P(X ) with the Wasserstein distance: for Q,Q′ ∈P(X ),

dp(Q,Q′) =
[

inf
π∈C(Q,Q′)

∫

X×X

‖ω − ω′‖p

X
dπ(ω,ω′)

]1/p

,

5
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where C(Q,Q′) is the collection of probability measures on X ×X having Q and Q′ as the first

and the second marginal measures. Then we have the following simple result which quantifies

the distances between elements in Lθ .

Corollary 1.4. Assume ν = 0 in (1.1); then for any p ≥ 1 and T > 0, we have

dp(Q,Q′) .p,T κα/4‖θ‖α/2
ℓ∞ ‖ω0‖L2 exp

[

C

κ2
(1 + T κ)‖ω0‖2

L2

]

for any Q,Q′ ∈ Lθ . In particular, assuming that θn is defined as in (1) of Example 1.3, then

dp(Qn,Q
′
n).p,T

κα/4

nα/2
‖ω0‖L2 exp

[

C

κ2
(1 + T κ)‖ω0‖2

L2

]

for any Qn,Q
′
n ∈ Lθn .

The results in this part will be proved in Section 3.1. We remark that our method for deriving

estimates in Theorem 1.1 is quite general (see Section 1.4 for a brief description), thus we can

deal with other fluid models such as the 2D Boussinesq system and the modified Surface Quasi-

Geostrophic (mSQG for short) equations. We will present the related results in Sections 3.2 and

3.3.

1.2. Explicit estimates on blow-up probability

In this part we are concerned with nonlinear PDEs exhibiting a dichotomy between global

solutions for small initial data and finite time blow-up for large ones. A famous example is the

2D Keller-Segel system (cf. [29,20,21])

{

∂tρ = 1ρ − χ∇ · (ρ∇c),

−1c = ρ − ρ�,
(1.8)

where � ⊂ R
2 is a regular bounded domain and ρ� =

∫

�
ρ(x)dx. Here ρ : � → R describes the

evolution of a bacterial population density whose motion is biased by the density of a chemoat-

tractant c : � → R produced by the population itself; χ > 0 is a fixed sensitivity parameter,

which will be taken as 1 in the sequel. It was shown in [19] that for ρ�(0) below a critical

threshold, global existence of regular solutions (ρ, c) holds, while there exist radially symmetric

solutions blowing up in finite time if � is a disk; see also [22, Theorem 8.1] for similar examples

when � = T
2. The blow-up mechanism is due to mass concentration and formation of Diracs

for ρ.

In the recent paper [14], we have shown that transport noise delays blow-up for large initial

data with high probability; this idea works for a large class of nonlinear PDEs, including (1.8).

However, as in [13,12], the method in [14] is again based on compactness arguments and thus

we were only able to prove that, under some natural conditions on the nonlinear term, for any

given T > 0 and small ε > 0, there exist κ > 0 and θ ∈ ℓ2 (determining the noise W in (1.2))

such that the corresponding solution has a life time greater than T , with probability greater than

1 − ε. In this work, we will give quantitative estimate on the blow-up probability, which in turn

yields explicit choices of (κ, θ).

6
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As in [14], the approach works for a large class of PDEs, but we will mostly focus on equation

(1.8) in order to convey the main ideas underlying it. We fix the domain � = T
2 with periodic

boundary condition, χ = 1 and consider the stochastic Keller-Segel system

{

dρ =
[

1ρ − ∇ · (ρ∇c)
]

dt + ◦dW · ∇ρ

−1c = ρ − ρT 2

(1.9)

with initial data ρ0 ∈ L2; the noise is given as in (1.2).

Since W is spatially divergence free, the stochastic equation enjoys the same energy estimate

as (1.8) and hence local existence and uniqueness of a maximal solution can be shown similarly

to the deterministic case (see [14] for a rigorous proof); still, solutions might blow up in finite

time. Given initial value ρ0 ∈ L2, θ ∈ ℓ2 and noise intensity κ > 0, we denote by τ(ρ0; θ, κ) the

blow-up time of the unique local solution to (1.9). Here is the main result of this section.

Theorem 1.5. Fix ε ∈ (0,1), p ∈ [1,∞), L,T > 0. Then there exist constants C1 and C2 =
C2(ε,p,L,T ) with the following property: for any tuple (ρ0, κ, θ) such that ‖ρ0‖L2 ≤ L, κ ≥
1 + C1L

2 and θ ∈ ℓ2 satisfying (1.3) with ‖θ‖ℓ2 = 1, it holds

P (τ (ρ0; θ, κ) < T ) ≤ C2 κεp/4 ‖θ‖p(1−ε)
ℓ∞ .

Remark 1.6. The constant C1 does not depend on (ε,p,L,T ), but it depends on d = 2 and the

domain � = T
2, due to the application of Poincaré inequality and Sobolev embedding in the

proof. Both constants C1 and C2 can be calculated explicitly, see Section 4 for more details. It

follows from the above estimate that, once κ is fixed as above, choosing θn as in Example 1.3-(1)

yields

P (τ (ρ0; θn, κ) < T ) . n−p(1−ε)

i.e. the probability of blow-up before time T decreases with arbitrarily high polynomial rate.

1.3. Some results on mixing and dissipation enhancement

It turns out that, in the linear case, our approach also leads to some interesting (though possibly

weaker) results on the mixing property and dissipation enhancement due to transport noise. In

this section, we shall work on the general torus T
d (d ≥ 2) and consider the following noise

which is similar to (1.2):

W(t, x) =
√

Cdκ
∑

k∈Z
d
0

d−1
∑

i=1

θkσk,i(x)W
k,i
t , (1.10)

where Cd = d/(d − 1) is a normalizing constant, κ > 0 is still the noise intensity and θ ∈ ℓ2 =
ℓ2(Zd

0) is symmetric in k ∈ Z
d
0 ; {W k,i : k ∈ Z

d
0 , i = 1, . . . , d −1} are standard complex Brownian

motions satisfying

W k,i = W−k,i,
[

W k,i,W l,j
]

t
= 2tδk,−lδi,j ;

7
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{σk,i : k ∈ Z
d
0 , i = 1, . . . , d − 1} are divergence free vector fields on T

d defined as

σk,i(x) = ak,iek(x),

where {ak,i}k,i is a subset of the unit sphere S
d−1 such that: i) ak,i = a−k,i for all k ∈ Z

d
0 ; ii) for

fixed k, {ak,i}d−1
i=1 is an ONB of k⊥ = {y ∈ R

d : y · k = 0}. In this way, {σk,i}k,i is a CONS of the

subspace of L2(T d ;C
d) of mean zero, divergence free vector fields.

1.3.1. Quantitative finite horizon mixing

In the first part, we consider on T
d the stochastic transport equation

df + ◦dW · ∇f = 0

which has the Itô form

df + dW · ∇f = κ1f dt. (1.11)

Given f0 ∈ L∞, this equation admits a weak L∞-solution satisfying

P -a.s. sup
t≥0

‖ft‖Lp = ‖f0‖Lp (1.12)

for every p ∈ [1,∞]. Indeed, if θ enjoys suitable summability (e.g.
∑

k |k|2θ2
k < ∞) we can

construct the stochastic flow {Xt }t≥0 associated to W and represent the solution as ft (x) =
f0(X

−1
t (x)) (see for instance [33, Proposition 2.3]); W being divergence-free implies incom-

pressibility of Xt and thus (1.12). The result can then be generalized to any θ ∈ ℓ2 by classical

compactness arguments.

The expected value f t = E [ft ] is a weak L∞-solution of the deterministic heat equation

∂tf t = κ1f t (1.13)

which decays exponentially in L2-norm, as opposed to ft which is L2-norm-preserving. How-

ever, in the weak sense, ft and f t are close to each other if ‖θ‖ℓ∞ is small; more precisely:

Theorem 1.7. For every φ ∈ L2(T d) and all t ≥ 0,

E

[

∣

∣〈ft , φ〉 −
〈

f t , φ
〉∣

∣

2
]

≤ ‖θ‖2
ℓ∞‖f0‖2

L∞‖φ‖2
L2 . (1.14)

If χ is a smooth mollifier, then

E

[

‖χ ∗ ft − χ ∗ f t‖2
L2

]

≤ ‖θ‖2
ℓ∞‖f0‖2

L∞‖χ‖2
L2 . (1.15)

The proof will be presented in Section 5.1; see [15, Theorem 1.1] for related results con-

cerning stochastic heat equations on bounded domains, where the difficulty lies in dealing with

Dirichlet boundary condition.

8
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The above result could be interpreted under the light of the concept of mixing of passive

scalars under suitable transport coefficients. Strictly speaking, what is usually called mixing is

the property

lim
t→∞

〈ft , φ〉 = 0

for all test functions φ of a suitable class, reformulated also by means of decay to zero of neg-

ative Sobolev norms and improved to exponential decays in most of the available results. The

deterministic literature on the subject is very large, see for instance [1,5]. Mixing by random

transport has been proved in two outstanding works, first in the case of white noise in time (as in

our model) in [10], then in the case when the random velocity field is the solution of stochastic

equations, including Navier-Stokes, see [3]. Compared to such mixing results, the above theorem

misses the decay at infinity; our result only claims that 〈ft , φ〉 decays similarly to
〈

f t , φ
〉

as soon

as ‖θ‖ℓ∞ is so small that the number ‖θ‖2
ℓ∞‖f0‖2

L∞‖φ‖2
L2 is smaller than e−κt (hence only on a

finite time horizon). However, it contributes additional information and it has some advantages:

i) the decay rate κ is related to the noise in a very simple way; ii) the shape of the random pro-

cess ft , suitably smeared (see (1.15)), is close to the shape of the decaying solution f t of the

heat equation; iii) the technique extends to nonlinear problems, as shown in the main body of the

paper.

Our result states that if the parameters θk have small norm ‖θ‖ℓ∞ , the solution of the stochastic

problem is close to the solution of the heat equation; and if the intensity κ of the noise is large, the

solution of the heat equation decays fast to zero, so does the solution of the stochastic problem

on a finite time interval. In a sense, with this result the theory of mixing meets the theory of

turbulent diffusion, see [27].

Remark 1.8. The case of Kraichnan noise, including the particular case of Kolmogorov 41

scaling, is included in the previous example and it may be useful to see the meaning of our

conditions on κ and ‖θ‖ℓ∞ in such a case. The divergence free part of Kraichnan noise, on the d-

dimensional torus T
d , is usually defined by means of the covariance, space-homogeneous, given

by the matrix-function

Q(z) = σ 2
∑

|k|≥k0

k
ζ
0

|k|d+ζ

(

Id −
k ⊗ k

|k|2

)

eik·z,

where Id is the identity matrix, k0 is a positive number and the sum is computed over all k ∈ Z
d
0

such that |k| ≥ k0. Kolmogorov 41 scaling is given by the value ζ = 4/3.

The covariance function of the noise W(t, x) defined in (1.10), which is space-homogeneous,

is given by

QW (z) = E [W(1, x + z) ⊗ W(1, x)] = 2Cdκ
∑

k∈Z
d
0

d−1
∑

i=1

θ2
k σk,i(x + z) ⊗ σ−k,i(x)

= 2Cdκ
∑

k∈Z
d
0

θ2
k

( d−1
∑

i=1

ak,i ⊗ ak,i

)

eik·z.

9
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Note that

Id −
k ⊗ k

|k|2
=

d−1
∑

i=1

ak,i ⊗ ak,i, k ∈ Z
d
0 ,

hence the comparison with Kraichnan noise and our noise is

2Cdκ = σ 2, θ2
k =

k
ζ
0

|k|d+ζ
1{|k|≥k0}.

We then have

‖θ‖ℓ∞ = k
−d/2
0

and therefore the condition that ‖θ‖ℓ∞ is small corresponds to the requirement that k0 is large,

namely that we consider a noise acting at small scales. Simultaneously we ask that σ 2 is large.

Therefore we can prove a finite-horizon mixing property using a small scale large intensity

Kraichnan-type noise.

1.3.2. Dissipation enhancement

Similarly to Section 1.3.1, we consider on T
d the stochastic transport equation but now with

dissipation

df + ◦dW · ∇f = ν1f dt (1.16)

where the noise W is the same as in the previous section, parametrized by the pair (κ, θ). The

quantitative estimates developed in this paper allow us, in this particular case, to go beyond a re-

sult of interest over finite time and prove the following result on decay at infinity (see Section 5.2

for its proof).

Theorem 1.9. For any p ≥ 1 and λ > 0, there exists a pair (κ, θ) with the following property:

for every f0 ∈ L2(T d) with zero mean, there exists a random constant C > 0 with finite p-th

moment, such that for the solution ft of equation (1.16) with initial condition f0, we have P -a.s.

‖ft‖L2 ≤ Ce−λt‖f0‖L2 for all t ≥ 0.

Results of this form have been obtained in [4]; those results are technically more demanding,

in particular because the noise W is not white in time, and to some extent it is very general and not

required to have parameters (like (κ, θ)) large or small, namely close to their scaling limit. After

the first version of this paper was completed, the work [17] appeared, where the authors readapt

the techniques from [10,4] to establish long time mixing and enhanced dissipation estimates for

solutions to (1.16). The results therein are far reaching and allow for very low dimensional noise,

provided it is smooth enough; in comparison, our techniques have the advantage that they allow

rougher noise and that they work for both linear and nonlinear PDEs.

10
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1.4. Our strategy

For the reader’s convenience, we give here a brief description of our approach on how to derive

quantitative estimates in the style of Theorem 1.1. As the method is quite general, we present it

in an abstract but rather simple setting, in order to highlight the main ideas. The strategy for

proving Theorem 1.5 follows similar considerations but will not be discussed here.

Consider an SPDE with a nonlinearity F of the form

dω + F(ω)dt + ◦dW · ∇ω = ν1ω dt (1.17)

where W is defined as above for a given pair (κ, θ). As mentioned above, the structure of the

noise is so that the SPDE has equivalent Itô formulation

dω + F(ω)dt + dW · ∇ω = (κ + ν)1ω dt.

Such formulation can be misleading, as the enhanced viscosity κ1 does not imply any regulariz-

ing effect at this stage; the right way to derive an energy balance for the solution is still to use the

Stratonovich formulation (1.17). Nevertheless, if suitable a priori estimates for ω are available,

the stochastic term dMω := dW · ∇ω is a well defined martingale (taking values in a suitable

distributional space); the SPDE can therefore be written as

dω + F(ω)dt = (κ + ν)1ω dt − dMω. (1.18)

In particular, equation (1.18) can be regarded as a stochastic perturbation of the deterministic

PDE with enhanced viscosity

∂t ω̃ + F(ω̃) = (κ + ν)1ω̃ (1.19)

due to the presence of a stochastic forcing term dMω; the key point is that the very poor space-

time regularity of dMω exactly counters the term (κ +ν)1 and does not allow to derive estimates

for ω in Hα for any α ≥ 0. This is consistent with the fact that the variational approach requires

to interpret the SPDE in the Stratonovich form (1.17), as done in [14].

The major intuition of the current work is that, while formulation (1.18) cannot be used to

derive estimates in strong spaces, it can be employed within the semigroup approach to obtain

rates of convergence in the weaker scales H−α for α > 0.

To explain what we mean, we start by writing equation (1.18) in the corresponding mild

formulation

ωt = Ptω0 −
t

∫

0

Pt−sF(ωs)ds − Zt , Zt :=
t

∫

0

Pt−s dMω
s .

Here Pt = et (κ+ν)1 for t ≥ 0, while the process Z is an instance of a stochastic convolution.

Both the passage from weak to mild formulation and the definition of Z are classical, but will be

explained in detail in Sections 2.2 and 2.3.

Consider now a solution ω̃ to (1.19) with the same initial data ω0 and write it in mild form

(which is the same as above with Z ≡ 0). Defining the difference ξt = ωt − ω̃t , it holds

11
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ξt = −
t

∫

0

Pt−s

[

F(ωs) − F(ω̃s)
]

ds − Zt . (1.20)

At this stage, the stochastic process Z can be seen as a random element of C([0, T ];H−α) and

equation (1.20) can be treated by purely analytic methods in a pathwise manner. Assume that the

nonlinearity F satisfies some regularity condition of the form

‖F(ω) − F(ω̃)‖H−α−1 . ‖ω − ω̃‖H−α ∀ω, ω̃ ∈ L2; (1.21)

such assumption is not very realistic, especially for polynomial nonlinearities, and more compli-

cated variants should be considered, but for the sake of exposition here we stick to (1.21).

Assumption (1.21), together with classical estimates for convolution with heat kernel (which

will be recalled in Section 2.1), implies that the solution ξ to (1.20) satisfies

‖ξt‖2
H−α .

1

κ + ν

t
∫

0

‖F(ωs) − F(ω̃s)‖2
H−α−1 ds + ‖Zt‖2

H−α

.
1

κ + ν

t
∫

0

‖ξs‖2
H−α ds + ‖Zt‖2

H−α .

Then, an application of Gronwall’s lemma yields the pathwise estimate

sup
t∈[0,T ]

‖ξt‖H−α . eCT sup
t∈[0,T ]

‖Zt‖H−α (1.22)

for some constant C depending on parameters like α,κ, ν, etc. Finally, estimates like those in

Theorem 1.1 will follow from taking expectation in (1.22), assuming we have enough integrabil-

ity on Z and we can control it in terms of ‖θ‖ℓ∞ ; this is indeed possible and will be presented in

Section 2.2.

Overall we see that obtaining convergence rates of the SPDE (1.17) to the deterministic PDE

(1.19) requires a nice interplay of analytic and probabilistic arguments as follows:

• Passing from (1.20) to (1.22) in a pathwise manner requires an assumption on the nonlin-

earity F similar (but possibly more complicated) to (1.21); this step is purely analytical and

requires different treatment depending on the PDE in consideration.

• Estimating the stochastic convolution Z instead can be done in full generality and mostly

relies on probabilistic arguments; it requires however some information on Mω and subse-

quently the given solution ω.

• The Stratonovich formulation (1.17), together with the divergence free structure of the noise

and the variational approach, are the right tools to derive a priori estimates on ω; this step is

a mixture of analytic and probabilistic techniques and has already been developed for several

PDEs in [16,13,24,25,14].

12
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We conclude the introduction with the structure of the paper. In Section 2 we make some

preparations, the most important part being devoted to maximal estimates for stochastic convo-

lutions. Theorem 1.1 will be proved in Section 3, together with its extensions to 2D Boussinesq

and mSQG systems. Section 4 is dedicated to the estimates on blow-up probability, dealing with

the Keller-Segel model. We provide the proofs of Theorems 1.7 and 1.9 in the two subsections

of Section 5; some related results concerning the solution operator of (1.11) will also be proved

in Section 5.1.

2. Preliminaries

In this section we provide several tools of fundamental importance for the next sections: Sec-

tion 2.1 contains some technical results that will be frequently used below; Section 2.2 presents

maximal estimates for stochastic convolutions; finally Section 2.3 explains the link between weak

and mild form for the class of SPDEs of our interest.

2.1. Some analytical lemmas

We first recall the following well known estimates on the transport term and products of

functions in Sobolev spaces.

Lemma 2.1. In the following, V ∈ L2(T 2,R
2) always denotes a divergence free vector field.

(a) For V ∈ L∞(T 2,R
2) and f ∈ L2(T 2), we have

‖V · ∇f ‖H−1 . ‖V ‖L∞‖f ‖L2 .

(b) Let α ∈ (1,2], β ∈ (0, α − 1), V ∈ Hα(T 2,R
2) and f ∈ H−β(T 2), then

‖V · ∇f ‖H−1−β .α,β ‖V ‖Hα‖f ‖H−β .

(c) Let β ∈ (0,1), then for any f ∈ H β(T 2) and g ∈ H 1−β(T 2) it holds

‖f g‖L2 .β ‖f ‖Hβ ‖g‖H 1−β .

(d) Let β ∈ (0,1), V ∈ H 1−β(T 2,R
2) and f ∈ L2(T 2), then one has

‖V · ∇f ‖H−1−β .β ‖V ‖H 1−β ‖f ‖L2 .

Proof. The proofs are classical, but we provide them for completeness. First observe that, by the

divergence free assumption, ‖V · ∇f ‖H s−1 = ‖∇ · (Vf )‖H s−1 . ‖Vf ‖H s for any s ∈ R. Point

(a) then immediately follows from ‖Vf ‖L2 ≤ ‖V ‖L∞‖f ‖L2 .

(b) By the assumptions and Sobolev embedding, V ∈ Cs(T 2,R
2) for any s ∈ (β,α − 1); by

classical results regarding paraproducts (see for instance [2]), the product between f ∈ H−β and

V ∈ Cs with s > β is a well defined element of H−β and ‖f V ‖H−β . ‖V ‖Cs ‖f ‖H−β .

(c) The assertion follows from Hölder’s inequality combined with the Sobolev embeddings

‖f ‖L2/(1−β) . ‖f ‖Hβ , ‖g‖L2/β . ‖g‖H 1−β .

13
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(d) By point (c), for any ϕ ∈ C∞(T 2,R
2) we have

|〈V f,ϕ〉| = |〈f,V · ϕ〉| ≤ ‖f ‖L2‖V · ϕ‖L2 . ‖f ‖L2‖V ‖H 1−β ‖ϕ‖Hβ

showing that f V ∈ H−β(T 2,R
2); the desired estimate follows from the initial observation. 2

Next we state some classical heat kernel estimates for later use.

Lemma 2.2. Let u ∈ Hα , α ∈ R. Then:

(i) for any ρ ≥ 0, it holds ‖et1u‖Hα+ρ ≤ Cρ t−ρ/2‖u‖Hα for some constant increasing in ρ;

(ii) for any ρ ∈ [0,2], it holds ‖(I − et1)u‖Hα−ρ . tρ/2‖u‖Hα .

We also present the following regularizing effect by convolution with eδt1 for some δ > 0.

Lemma 2.3. For any α ∈ R and any f ∈ L2(0, T ;Hα), it holds

∥

∥

∥

∥

t
∫

0

eδ(t−s)1fs ds

∥

∥

∥

∥

2

Hα+1

.
1

δ

t
∫

0

‖fs‖2
Hα ds ∀ t ∈ [0, T ].

Proof. For any fixed t ∈ [0, T ], it holds

∥

∥

∥

∥

t
∫

0

eδ(t−s)1fs ds

∥

∥

∥

∥

2

Hα+1

=
∑

k

|k|2(α+1)

∣

∣

∣

∣

t
∫

0

e−4π2δ(t−s)|k|2〈fs, ek〉ds

∣

∣

∣

∣

2

≤
∑

k

|k|2(α+1)

t
∫

0

e−8π2δ(t−s)|k|2 ds

t
∫

0

|〈fs, ek〉|2 ds

.
1

δ

∑

k

|k|2α

t
∫

0

|〈fs, ek〉|2 ds

which gives the conclusion. 2

2.2. Maximal estimates on stochastic convolution

We present here some estimates for the process Z which was shortly introduced in Section 1.4.

Maximal estimates for stochastic convolutions are not a new topic, see [23,31,9] for some clas-

sical results; however we have not found in the literature a result fitting our framework, which is

why we provide it here.

For future use, we assume we are in T
d with d ≥ 2 and consider the noise W defined in (1.10).

As the definition of Z is independent of the specific SPDE in consideration, we pose ourselves

in a slightly more general framework. Throughout this section we will assume ω is just a given

L2-valued stochastic process with measurable trajectories satisfying the following

14
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Assumption 2.4. There exists a deterministic constant R > 0 such that

sup
t≥0

‖ωt‖L2 ≤ R P -a.s.

Given an Hilbert space E, we will denote by [M]E the cross-quadratic variation of an E-

valued martingale M , namely the unique increasing process such that ‖M‖2
E − [M]E is a

real-valued martingale (so the definition depends on the choice of ‖ · ‖E). We mention that

Burkholder-Davis-Gundy’s inequality still holds on Hilbert spaces (and in the more general class

of UMD Banach spaces, cf. [28]).

For W as in (1.10) and a stochastic process ω satisfying Assumption 2.4, we define

Mt =
t

∫

0

∇ωs · dWs =
√

Cdκ

t
∫

0

∑

k,i

θkσk,i · ∇ωs dW k,i
s

where we simply write
∑

k,i in place of
∑

k∈Z
d
0

∑d−1
i=1 . M is a well-defined continuous martin-

gale with values in H−1; indeed,

E

[

sup
t∈[0,T ]

∥

∥

∥

t
∫

0

dWs · ∇ωs

∥

∥

∥

2

H−1

]

. κ E

[

∑

k,i

T
∫

0

θ2
k ‖σk,i · ∇ωs‖2

H−1 ds

]

. κ
∑

k,i

T
∫

0

θ2
k E

[

‖ak,iek‖2
L∞‖ωs‖2

L2

]

ds

. κ ‖θ‖2
ℓ2 R2 T < ∞,

where we used the property
[

W k,i,W l,j
]

t
= 2tδk,−lδi,j , Lemma 2.1(a) (which also holds in high

dimensions) and Assumption 2.4.

Given δ > 0, our aim is to study the stochastic convolution process {Zt }t∈[0,T ] given by

Zt =
t

∫

0

eδ(t−s)1 dMs =
√

Cdκ

t
∫

0

∑

k,i

θke
δ(t−s)1(σk,i · ∇ωs)dW k,i

s . (2.1)

Lemma 2.5. Let κ, δ > 0, θ ∈ ℓ2 as above, ω satisfying Assumption 2.4 and define Z as in (2.1).

Then for any ε ∈ (0,1/2) and any p ∈ [1,∞) it holds

E

[

sup
t∈[0,T ]

‖Zt‖p

H−ε

]1/p

.ε,p,T

√

κδε−1 ‖θ‖ℓ2R; (2.2)

similarly,

E

[

sup
t∈[0,T ]

‖Zt‖p

H−d/2−ε

]1/p

.ε,p,T

√

κδε−1 ‖θ‖ℓ∞R. (2.3)

15
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Proof. For fixed ε ∈ (0,1/2] and t ∈ [0, T ], we can estimate ‖Zt‖H−ε by Burkholder-Davis-

Gundy’s inequality:

E
[

‖Zt‖2p

H−ε

]1/2p ∼
√

κ E

[

∥

∥

∥

∑

k,i

θk

t
∫

0

eδ(t−r)1(σk,i · ∇ωr)dW k,i
r

∥

∥

∥

2p

H−ε

]1/2p

.p

√
κ E

[

[

∑

k,i

θk

·
∫

0

eδ(t−r)1(σk,i · ∇ωr)dW k,i
r

]p

t;H−ε

]1/2p

.
√

κ E

[(

∑

k,i

θ2
k

t
∫

0

∥

∥eδ(t−r)1(σk,i · ∇ωr)
∥

∥

2

H−ε dr

)p]1/2p

.

Next, we apply Lemma 2.2(i) with ρ = 1 − ε (since ε > 0 it holds Cρ = C1−ε ≤ C1) and obtain

E
[

‖Zt‖2p

H−ε

]1/2p
.

√

κδε−1 E

[(

∑

k,i

θ2
k

t
∫

0

|t − r|ε−1‖σk,i · ∇ωr‖2
H−1 dr

)p]1/2p

.
√

κδε−1 ‖θ‖ℓ2 E

[

‖ω‖2p

L∞(0,T ;L2)

]1/2p
(

t
∫

0

|t − r|ε−1 dr

)1/2

.T

√

κδε−1ε−1 ‖θ‖ℓ2R,

where the last two steps follow from Lemma 2.1(a) with ‖σk,i‖L∞ = 1 and Assumption 2.4. A

similar computation shows that

√
κ E

[

∥

∥

∥

t
∫

s

eδ(t−r)1 dMr

∥

∥

∥

2p

H−ε

]1/2p

.p

√

κδε−1ε−1 |t − s|ε/2‖θ‖ℓ2R.

Next, observing that by construction Z satisfies the relation

Zt = eδ(t−s)1Zs +
t

∫

s

eδ(t−r)1 dMr ,

by Lemma 2.2(ii) we obtain

‖Zt − Zs‖H−2ε ≤ ‖(I − eδ(t−s)1)Zs‖H−2ε +
∥

∥

∥

t
∫

s

eδ(t−r)1 dMr

∥

∥

∥

H−2ε

. δε/2|t − s|ε/2‖Zs‖H−ε +
∥

∥

∥

t
∫

s

eδ(t−r)1 dMr

∥

∥

∥

H−2ε
.
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Taking expectation and applying the previous estimates we arrive at

E
[

‖Zt − Zs‖2p

H−2ε

]1/2p
.p,T

√

κδ2ε−1ε−1 ‖θ‖ℓ2R
(

|t − s|ε/2 + |t − s|ε
)

.p,T

√

κδ2ε−1ε−1 ‖θ‖ℓ2R|t − s|ε/2.

Renaming 2ε as ε gives us

E
[

‖Zt − Zs‖2p

H−ε

]

.p,T

(

√

κδε−1ε−1 ‖θ‖ℓ2R
)2p|t − s|pε/2.

Now for ε ∈ (0,1/2), choosing p > 2/ε (which is allowed since otherwise we can control the

Lp-norm by the Lp̃-one for some p̃ > p) and applying Kolmogorov’s continuity criterion (which

produces some additional constants depending on p,ε) we obtain (2.2).

The proof of (2.3) is very similar, so we only sketch it. Repeating the initial computations

with H−d/2−2ε in place of H−ε , we arrive at

E

[

‖Zt‖2p

H−d/2−2ε

]1/2p

.p

√
κ E

[(

∑

k,i

θ2
k

t
∫

0

∥

∥eδ(t−r)1(σk,i · ∇ωr)
∥

∥

2

H−d/2−2ε dr

)p]1/2p

.
√

κδε−1 ‖θ‖ℓ∞E

[(

t
∫

0

|t − r|ε−1
∑

k,i

‖σk,i · ∇ωr‖2
H−1−d/2−ε dr

)p]1/2p

where in the last step we used again Lemma 2.2(i) with ρ = 1 − ε. We have

‖σk,i · ∇ωr‖H−1−d/2−ε = ‖∇ · (σk,i ωr)‖H−1−d/2−ε . ‖σk,i ωr‖H−d/2−ε . ‖ek ωr‖H−d/2−ε

and

∑

k

‖ek ωr‖2
H−d/2−ε .

∑

k

∑

l

1

|l|d+2ε
|〈ωr , el−k〉|2 = ‖ωr‖2

L2

∑

l

1

|l|d+2ε
. ε−1‖ωr‖2

L2 .

The last step is due to

∑

l

1

|l|d+2ε
≤

∫

{x∈Rd :|x|≥1/2}

dx

|x|d+2ε
∼

∞
∫

1/2

ds

s1+2ε
∼ ε−1.

Combining these estimates with Assumption 2.4 yields

E

[

‖Zt‖2p

H−d/2−2ε

]1/2p

.
√

κδε−1ε−1 ‖θ‖ℓ∞R

(

t
∫

0

|t − r|ε−1dr

)1/2

.T

√

κδε−1ε−2 ‖θ‖ℓ∞R.

From here on, the proof is almost identical to the one of (2.2). 2
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Corollary 2.6. Suppose now ‖θ‖ℓ2 = 1. Then for any β ∈ (0, d/2] and any ε ∈ (0, β], it holds

E

[

sup
t∈[0,T ]

‖Zt‖p

H−β

]1/p

.ε,p,T

√

κδε−1 ‖θ‖2(β−ε)/d

ℓ∞ R. (2.4)

In particular, if d = 2, then for any β ∈ (0,1] and any ε ∈ (0, β], it holds

E

[

sup
t∈[0,T ]

‖Zt‖p

H−β

]1/p

.ε,p,T

√

κδε−1 ‖θ‖β−ε
ℓ∞ R. (2.5)

Proof. Setting λ = 2(β − ε)/d , then λ ∈ [0,1) and −β = λ(−d/2 − ε)+ (1 −λ)(−ε). Estimate

(2.4) readily follows by interpolating between (2.2) and (2.3). 2

2.3. Mild formulation of the equation

In this section we rigorously show that weak solutions of a general class of SPDEs also satisfy

the corresponding mild formulation. The result is classical, cf. [8, Theorem 6.5], but rather un-

usual for SPDEs of hyperbolic nature (think of stochastic 2D Euler, namely eq. (1.1) with ν = 0),

which is why we prefer to present the argument with some care.

We consider a class of SPDEs of the form

dωt = [ν1ωt + F(ωt )]dt + ◦dWt · ∇ωt . (2.6)

For simplicity we assume we are on the torus T
2 with periodic boundary condition and noise

defined as in (1.2) for a given pair (κ, θ); the generalization to higher dimension d ≥ 3 or different

domains � ⊂ R
d is omitted here. By standard computations (see [16,14] for more details) we can

rewrite the above SPDE in the equivalent Itô form (we set δ = κ + ν for notational simplicity)

dωt = [δ1ωt + F(ωt )]dt + dWt · ∇ωt . (2.7)

We impose the following assumption on the nonlinearity F : there exists s ≥ 0 big enough and

an increasing function G : R+ → R+ such that F maps L2 into H−s and satisfies

‖F(ω)‖H−s ≤ G(‖ω‖L2) ∀ω ∈ L2.

It is immediate to verify that the nonlinearities associated to the Euler, mSQG and Keller-Segel

equations satisfy this condition.

Definition 2.7. Let (�,F , {Ft }t≥0,P ) be a complete filtered probability space on which W is

defined by (1.2) (i.e. W k are Ft -Brownian motions); let ω be an L2-valued, Ft -adapted stochastic

process satisfying Assumption 2.4. We say that ω is a weak solution to (2.6) with initial data

ω0 ∈ L2 if for any ϕ ∈ C∞(T 2), P -a.s. it holds, for all t ∈ [0, T ],

〈ωt , ϕ〉 = 〈ω0, ϕ〉 +
t

∫

0

[

〈ωs, δ1ϕ〉 + 〈F(ωs), ϕ〉
]

ds −
√

2κ
∑

k

θk

t
∫

0

〈ωs, σk · ∇ϕ〉dW k
s .

18
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In the above definition we have imposed for simplicity Assumption 2.4, as it fits nicely with

the divergence free structure of the noise and the SPDEs considered here; but the requirement

can be further weakened.

Under Assumption 2.4, the function

t 7→
t

∫

0

[δ1ωs + F(ωs)]ds

is pathwise defined as an element of C([0, T ];H−s′
) for s′ = s ∨2, once we interpret the integral

in the Bochner sense. Indeed we have the estimate

∥

∥

∥

∥

t
∫

0

[δ1ωs + F(ωs)]ds

∥

∥

∥

∥

H−s′
≤

T
∫

0

[

δ‖1ωs‖H−s′ + ‖F(ωs)‖H−s′
]

ds ≤ T (δR + G(R)).

Similarly, by the computations from Section 2.2, the process

Mt =
t

∫

0

∇ωs · dWs

is a well-defined, H−1-valued, continuous martingale. It is then easy to check (take a countable

collection {ϕn}n∈N ⊂ C∞(T 2) which is dense in H s′
) that ω is a weak solution in the sense of

Definition 2.7 if and only if it satisfies

ωt = ω0 +
t

∫

0

[δ1ωs + F(ωs)]ds +
t

∫

0

∇ωs · dWs

with the integrals being interpreted as above.

Lemma 2.8. Let ω be a weak solution to the SPDE (2.6) in the sense of Definition 2.7, let M be

defined as above and set Pt = eδt1. Then, P -a.s., it holds

ωt = Ptω0 +
t

∫

0

Pt−sF(ωs)ds +
t

∫

0

Pt−s dMs ∀ t ∈ [0, T ], (2.8)

where the second integral is a stochastic convolution as defined in Section 2.2.

Proof. By definition of the martingale M , for any ϕ ∈ C∞(T 2) it holds

d〈ϕ,Mt 〉 = 〈ϕ,dMt 〉 = −
√

2κ
∑

k

θk〈ωt , σk · ∇ϕ〉dW k
t .

For j ∈ Z
2, set λj = 4π2|j |2 and take ϕ = ej in the definition of weak solution, then
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d〈ωt , ej 〉 =
[

− δλj 〈ωt , ej 〉 + 〈F(ωt ), ej 〉
]

dt + 〈ej ,dMt 〉.

Applying the Itô formula to the process e−tδλj 〈ωt , ej 〉 and integrating in time yield, P -a.s.,

〈ωt , ej 〉 = e−tδλj 〈ω0, ej 〉 +
t

∫

0

e−(t−s)δλj 〈F(ωs), ej 〉ds +
t

∫

0

e−(t−s)δλj 〈ej ,dMs〉 ∀ t ∈ [0, T ].

We can then find Ŵ ⊂ � of full probability such that the above equality holds for all t ∈ [0, T ]
and all j ∈ Z

2. But this is exactly (2.8) written in Fourier modes. 2

3. Proofs of Theorem 1.1 and related models

In this section we first prove Theorem 1.1, then we adapt the same idea to treat other fluid

dynamical models, including the 2D Boussinesq system and mSQG equations, which will be

presented in Sections 3.2 and 3.3 respectively.

3.1. Proofs of Theorem 1.1 and Corollary 1.4

Let us quickly recall the setting: given ω0 ∈ L2, we consider a weak solution ω to the stochas-

tic Euler/Navier-Stokes equation (1.1) with the property that

sup
t≥0

{

‖ωt‖2
L2 + 2ν

t
∫

0

‖∇ωs‖2
L2 ds

}

≤ ‖ω0‖2
L2 P -a.s. (3.1)

For ν = 0 weak existence of such solutions follows from [13, Theorem 2.2], while for ν > 0

strong existence and uniqueness is classical (it can also be derived from the results of [14]).

Similarly, we denote by ω̃ the solution to the deterministic Navier–Stokes (1.7) with initial data

ω0, which satisfies

sup
t≥0

{

‖ω̃t‖2
L2 + 2(ν + κ)

t
∫

0

‖∇ω̃s‖2
L2 ds

}

≤ ‖ω0‖2
L2; (3.2)

existence and uniqueness of ω̃ in the class L2(0, T ;H 1) ∩ C([0, T ];L2) is again classical, cf.

[30] (here ν = 0 does not make any difference due to the presence of κ > 0).

Before giving the proof, we need the following analytical lemma.

Lemma 3.1. For ω ∈ L2, define F(ω) := (K ∗ ω) · ∇ω; then for any α ∈ (0,1) it holds

‖F(ω) − F(ω̃)‖H−α−1 .α ‖ω − ω̃‖H−α (‖ω‖L2 + ‖ω̃‖H 1) ∀ω ∈ L2, ω̃ ∈ H 1. (3.3)

Proof. It holds

‖F(ω) − F(ω̃)‖H−α−1 ≤ ‖[K ∗ (ω − ω̃)] · ∇ω‖H−α−1 + ‖(K ∗ ω̃) · ∇(ω − ω̃)‖H−α−1 =: I1 + I2.
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Applying Lemma 2.1(d) with β = α, we can estimate I1 by

I1 .α ‖K ∗ (ω − ω̃)‖H 1−α‖ω‖L2 . ‖ω − ω̃‖H−α‖ω‖L2;

on the other hand, invoking Lemma 2.1(b) for I2 provides

I2 .α ‖K ∗ ω̃‖H 2‖ω − ω̃‖H−α . ‖ω̃‖H 1‖ω − ω̃‖H−α .

Combining the two estimates gives the conclusion. 2

Proof of Theorem 1.1. Let ω, ω̃ be solutions as above, for the same initial data ω0 ∈ L2; let F

be defined as in Lemma 3.1. By Section 2.3, we know that ω, ω̃ both satisfy the mild formulation;

by the same reasoning as in Section 1.4, their difference ξ := ω − ω̃ solves

ξt = −
t

∫

0

e(κ+ν)(t−s)1[F(ωs) − F(ω̃s)]ds − Zt ,

where the stochastic convolution Z is given by

Zt =
√

2κ

t
∫

0

∑

k

θke
(κ+ν)(t−s)1(σk · ∇ωs)dW k

s .

By Lemmas 2.3 and 3.1, we can estimate ξ as follows:

‖ξt‖2
H−α .α

1

κ + ν

t
∫

0

‖F(ωs) − F(ω̃s)‖2
H−α−1 ds + ‖Zt‖2

H−α

.α

1

κ + ν

t
∫

0

‖ξs‖2
H−α

(

‖ωs‖2
L2 + ‖ω̃s‖2

H 1

)

ds + ‖Zt‖2
H−α .

Gronwall’s inequality then implies the existence of C = C(α) such that

‖ξt‖2
H−α .

(

sup
t∈[0,T ]

‖Zt‖2
H−α

)

exp

(

C

κ + ν

T
∫

0

(

‖ωs‖2
L2 + ‖ω̃s‖2

H 1

)

ds

)

. (3.4)

Recalling that ω and ω̃ satisfy respectively the a priori estimates (3.1) and (3.2), we arrive at

‖ξt‖2
H−α .

(

sup
t∈[0,T ]

‖Zt‖2
H−α

)

exp

(

C
1 + T (κ + ν)

(κ + ν)2
‖ω0‖2

L2

)

.

Taking expectation on both sides and applying (2.5) with δ = κ + ν ≥ κ yield the assertion (i).
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If ν > 0, we can employ the a priori estimates in a different manner, giving

T
∫

0

(

‖ωs‖2
L2 + ‖ω̃s‖2

H 1

)

ds .

+∞
∫

0

(

‖∇ωs‖2
L2 + ‖∇ω̃s‖2

L2

)

ds

.

(

1

ν
+

1

κ + ν

)

‖ω0‖2
L2 ≤

2

ν
‖ω0‖2

L2;

inserting this estimate in (3.4) and taking expectation as before readily gives (ii). 2

Let us stress the importance of the asymmetric estimate (3.3) in our analysis, especially in

order to achieve a convergence rate which is uniform in ν ≥ 0. Indeed we exploit crucially the

information on the regularity of ω̃, which is better than the one available for ω (for ν = 0 estimate

(3.1) only gives a control on its L2-norm). The same idea will be used in the next sections for

other fluid dynamics equations.

We complete this section with

Proof of Corollary 1.4. The proof is very simple. Recall that ω̃ is the unique solution to the

deterministic 2D Navier-Stokes equation (1.7) with initial data ω0 ∈ L2(T 2); we regard its law

as a delta Dirac mass δω̃ on C([0, T ],H−α). Then for any Q,Q′ ∈ Lθ , by the triangle inequality

for the Wasserstein distance,

dp(Q,Q′) ≤ dp(Q, δω̃) + dp(Q′, δω̃).

Let ω (resp. ω′) be a weak solution to the stochastic 2D Euler equation (1.1) (taking ν = 0) with

law Q (resp. Q′); here ω and ω′ might be defined on two different probability spaces, but we do

not distinguish the expectations below. Then we have

dp(Q,Q′) ≤ E

[

‖ω − ω̃‖p

C([0,T ],H−α)

]1/p

+ E

[

‖ω′ − ω̃‖p

C([0,T ],H−α)

]1/p

.

Combining this inequality with Theorem 1.1 and choosing ε = α/2, we immediately obtain the

desired result. The second inequality follows from the first one and Example 1.3-(1). 2

3.2. 2D Boussinesq system

The 2D Boussinesq system models the evolution of velocity field of an incompressible fluid

under a vertical force, which is proportional to some scalar field such as the temperature, the

latter being transported by the former. We refer to [26] for the geophysical background of the

system. In this section we aim at deriving similar quantitative estimates between the solutions to

the stochastic 2D inviscid Boussinesq model (in vorticity form)

{

dγ 1 + u1 · ∇γ 1dt + ◦dW · ∇γ 1 = ν1γ 1dt,

dω1 + u1 · ∇ω1dt + ◦dW · ∇ω1 = ∂1γ
1dt

(3.5)

and those of the deterministic viscous system

22



ARTICLE IN PRESS
JID:YJDEQ AID:12531 /FLA [m1+; v1.365] P.23 (1-41)

F. Flandoli, L. Galeati and D. Luo Journal of Differential Equations ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

{

∂tγ
2 + u2 · ∇γ 2 = (κ + ν)1γ 2,

∂tω
2 + u2 · ∇ω2 = κ1ω2 + ∂1γ

2.
(3.6)

In the above equations, u1 = K ∗ω1 and u2 = K ∗ω2 where K is still the Biot-Savart kernel. As

before, we take identical initial data ω1
0 = ω2

0 = ω0 ∈ L2(T 2), γ 1
0 = γ 2

0 = γ0 ∈ L2(T 2), and the

noise W is the same as in Section 1.1. Recall that there exist weak solutions to (3.5) satisfying

the following a priori estimates: P -a.s.,

sup
t∈[0,T ]

‖γ 1
t ‖2

L2 + ν

T
∫

0

‖γ 1
t ‖H 1 dt ≤ ‖γ0‖2

L2 , sup
t∈[0,T ]

‖ω1
t ‖2

L2 ≤ Cν,T

(

‖ω0‖2
L2 + ‖γ0‖2

L2

)

(3.7)

for some deterministic constant Cν,T > 0, see [24, Theorem 2.2]; moreover

sup
t∈[0,T ]

‖γ 2
t ‖2

L2 + (κ + ν)

T
∫

0

‖γ 2
t ‖2

H 1 dt ≤ ‖γ0‖2
L2,

sup
t∈[0,T ]

‖ω2
t ‖2

L2 + κ

T
∫

0

‖ω2
t ‖2

H 1 dt ≤ Cν,T

(

‖ω0‖2
L2 + ‖γ0‖2

L2

)

uniformly in κ ≥ 0, for the same constant Cν,T (indeed the presence of the additional viscosity

κ1 can only further improve the control on the energy).

As before, we define two martingale terms M,N by setting

Mt =
t

∫

0

∇γ 1
s · dWs, Nt =

t
∫

0

∇ω1
s · dWs

as well as the associated stochastic convolutions

Zt =
t

∫

0

e(κ+ν)(t−s)1 dMs, Z̃t =
t

∫

0

eκ(t−s)1 dNs .

Passing to Itô form of the system (3.5), and rewriting it and (3.6) in the corresponding mild

formulations, we arrive at























γ 1
t = e(κ+ν)t1γ0 −

∫ t

0 e(κ+ν)(t−s)1(u1
s · ∇γ 1

s )ds − Zt ,

ω1
t = eκt1ω0 −

∫ t

0 eκ(t−s)1(u1
s · ∇ω1

s − ∂1γ
1
s )ds − Z̃t ,

γ 2
t = e(κ+ν)t1γ0 −

∫ t

0 e(κ+ν)(t−s)1(u2
s · ∇γ 2

s )ds,

ω2
t = eκt1ω0 −

∫ t

0 eκ(t−s)1(u2
s · ∇ω2

s − ∂1γ
2
s )ds.

(3.8)

Setting λ = γ 1 − γ 2, ξ = ω1 − ω2, the differences satisfy the equations
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{

λt = −
∫ t

0 e(κ+ν)(t−s)1(u1
s · ∇γ 1

s − u2
s · ∇γ 2

s )ds − Zt

ξt = −
∫ t

0 eκ(t−s)1(u1
s · ∇ω1

s − u2
s · ∇ω2

s − ∂1λs)ds − Z̃t .
(3.9)

With these preparations, we are ready to give an estimate for (λ, ξ).

Lemma 3.2. Under the above assumptions, for any α ∈ (0,1), there exists a deterministic C =
C(α, ν,T ) > 0 such that P -a.s. it holds

sup
t∈[0,T ]

(

‖λt‖H−α + ‖ξt‖H−α

)

. exp

[

C

κ

(

1 + ‖γ0‖2
L2 + ‖ω0‖2

L2 +
‖ω0‖2

L2

κ

)]

×
(

sup
t∈[0,T ]

‖Zt‖H−α + sup
t∈[0,T ]

‖Z̃t‖H−α

)

.

(3.10)

Proof. Reasoning as before, by Lemma 2.3 we have

‖λt‖2
H−α .

1

κ + ν

t
∫

0

∥

∥u1
s · ∇γ 1

s − u2
s · ∇γ 2

s

∥

∥

2

H−α−1 ds + ‖Zt‖2
H−α ,

‖ξt‖2
H−α .

1

κ

t
∫

0

∥

∥u1
s · ∇ω1

s − u2
s · ∇ω2

s − ∂1λs

∥

∥

2

H−α−1 ds + ‖Z̃t‖2
H−α .

(3.11)

For s ∈ [0, T ], define

I1(s) =
∥

∥u1
s · ∇γ 1

s − u2
s · ∇γ 2

s

∥

∥

2

H−α−1 , I2(s) =
∥

∥u1
s · ∇ω1

s − u2
s · ∇ω2

s − ∂1λs

∥

∥

2

H−α−1 .

Note that u1
s − u2

s = K ∗ ξs and γ 1
s − γ 2

s = λs ; arguing as in the proof of Lemma 3.1, we can

estimate I1 by applying respectively points (d) and (b) of Lemma 2.1 as follows:

I1(s) . ‖(K ∗ ξs) · ∇γ 1
s ‖2

H−α−1 + ‖(K ∗ ω2
s ) · ∇λs‖2

H−α−1

.α ‖K ∗ ξs‖2
H 1−α‖γ 1

s ‖2
L2 + ‖K ∗ ω2

s ‖2
H 2‖λs‖2

H−α

. ‖γ 1
s ‖2

L2‖ξs‖2
H−α + ‖ω2

s ‖2
H 1‖λs‖2

H−α .

For the term I2 we can apply directly Lemma 3.1:

I2(s).‖u1
s · ∇ω1

s − u2
s · ∇ω2

s ‖2
H−α−1 + ‖∂1λs‖2

H−α−1 .α

(

‖ω1
s ‖2

L2 + ‖ω2
s ‖2

H 1

)

‖ξs‖2
H−α + ‖λs‖2

H−α .

Substituting the above estimates into (3.11), using (κ + ν)−1 ≤ κ−1, we arrive at

‖λt‖2
H−α + ‖ξt‖2

H−α .α

1

κ

t
∫

0

(

1 + ‖γ 1
s ‖2

L2 + ‖ω1
s ‖2

L2 + ‖ω2
s ‖2

H 1

)(

‖λs‖2
H−α + ‖ξs‖2

H−α

)

ds

+
(

‖Zt‖2
H−α + ‖Z̃t‖2

H−α

)

.
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The a priori estimate (3.7) gives us

‖λt‖2
H−α + ‖ξt‖2

H−α .α

1

κ

t
∫

0

[

C̃ν,T

(

1 + ‖γ0‖2
L2 + ‖ω0‖2

L2

)

+ ‖ω2
s ‖2

H 1

](

‖λs‖2
H−α + ‖ξs‖2

H−α

)

ds

+
(

‖Zt‖2
H−α + ‖Z̃t‖2

H−α

)

,

where C̃ν,T = 1 + Cν,T . Finally, applying Gronwall’s lemma we obtain the conclusion. 2

Combining the above result with the maximal estimate in Corollary 2.6 for stochastic convo-

lution, we immediately get

Proposition 3.3. For any α ∈ (0,1) and ε ∈ (0, α), we have

E

[

sup
t∈[0,T ]

(

‖γ 1
t − γ 2

t ‖H−α + ‖ω1
t − ω2

t ‖H−α

)

]

.ε,T exp

[

C

κ

(

1 + ‖γ0‖2
L2 + ‖ω0‖2

L2 +
‖ω0‖2

L2

κ

)]

κε/2‖θ‖α−ε
ℓ∞

(

‖γ0‖L2 + ‖ω0‖L2

)

.

3.3. mSQG equations

The mSQG (modified Surface Quasi-Geostrophic) equation is an interpolation between the

vorticity form of 2D Euler equation and the SQG equation, the latter being widely used in mete-

orological and oceanic flows to describe the temperature in a rapidly rotating stratified fluid with

uniform potential vorticity (cf. [18]).

For β ∈ (0,1), set Kβ := ∇⊥ · (−1)−
1+β

2 ; note that K1 is the Biot-Savart kernel while K0 is

the kernel in the SQG equation. We see that the regularizing effect of Kβ is increasing in β . The

aim of this section is to obtain rates of convergence for the stochastic mSQG equation

dω + (Kβ ∗ ω) · ∇ω dt + ◦dW · ∇ω = 0

to its deterministic viscous counterpart

∂t ω̃ + (Kβ ∗ ω̃) · ∇ω̃ = κ1ω̃.

Assuming that ω0 = ω̃0 ∈ L2, we have the a priori estimates

sup
t∈[0,T ]

‖ωt‖L2 ≤ ‖ω0‖L2 (P -a.s.), sup
t∈[0,T ]

{

‖ω̃t‖2
L2 +2κ

t
∫

0

‖∇ω̃s‖2
L2 ds

}

≤ ‖ω0‖2
L2; (3.12)

see respectively Theorem 2.1 and Theorem 4.1 from [25].

As before, writing both equations in mild formulation (after passing to Itô form), defining the

martingale M and associated stochastic convolution
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Zt =
t

∫

0

eκ(t−s)1 dMs =
√

2κ

t
∫

0

∑

k

θke
κ(t−s)1(σk · ∇ωs)dW k

s ,

we arrive at an equation for the difference ξ = ω − ω̃ of the form

ξt = −
t

∫

0

eκ(t−s)1
[

(Kβ ∗ ωs) · ∇ωs − (Kβ ∗ ω̃s) · ∇ω̃s

]

ds − Zt . (3.13)

Before going into calculations, let us make the following remark. As the kernel Kβ is not as

regularizing as the classical Biot-Savart kernel K = K1, we are not able to prove an estimate of

the form (3.3); consequently, the strategy employed in Sections 3.1-3.2 does not trivially extend

to mSQG. The challenge here is entirely analytic, as the bounds for the stochastic convolution Z

are the same as in previous sections; we must adopt slightly different estimates.

Proposition 3.4. Fix δ > 0, β ∈ (0,1), q > 2/β and α ∈ (0, β). Then for any T < ∞ there exists

a constant C = C(T , δ,α,β, q) such that for any κ ≥ δ and any two solutions ω, ω̃ as above it

holds

sup
t∈[0,T ]

‖ωt − ω̃t‖H−α ≤ C exp
(

C‖ω0‖q

L2

)

sup
t∈[0,T ]

‖Zt‖H−α . (3.14)

Proof. It holds

ξt = −
t

∫

0

eκ(t−s)1[(Kβ ∗ ξs) · ∇ωs]ds −
t

∫

0

eκ(t−s)1[(Kβ ∗ ω̃s) · ∇ξs]ds − Zt

=: I 1
t + I 2

t − Zt .

Using Lemma 2.2 and Lemma 2.1(d), we can estimate the first term as follows:

‖I 1
t ‖H−α ≤

t
∫

0

∥

∥eκ(t−s)1[(Kβ ∗ ξs) · ∇ωs]
∥

∥

H−α ds

. κ−1+β/2

t
∫

0

|t − s|−1+β/2 ‖(Kβ ∗ ξs) · ∇ωs‖Hβ−α−2 ds

. κ−1+β/2

t
∫

0

|t − s|−1+β/2‖Kβ ∗ ξs‖Hβ−α‖ωs‖L2 ds

. κ−1+β/2 ‖ω0‖L2

t
∫

0

|t − s|−1+β/2 ‖ξs‖H−α ds,
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where the last step follows from the first bound in (3.12) and the regularizing properties of Kβ .

By Hölder’s inequality (q ′ is the conjugate number of q),

‖I 1
t ‖H−α . κ−1+β/2 ‖ω0‖L2

(

t
∫

0

|t − s|(−1+β/2)q ′
ds

)1/q ′( t
∫

0

‖ξs‖q

H−α ds

)1/q

.T κ−1+β/2 ‖ω0‖L2

(

t
∫

0

‖ξs‖q

H−α ds

)1/q

where by the assumption q > 2/β the first integral in the first line is finite.

For the second term we use Lemma 2.3, together with Lemma 2.1(b) and the hypothesis β > α

to obtain

‖I 2
t ‖H−α . κ−1/2

(

t
∫

0

‖(Kβ ∗ ω̃s) · ∇ξs‖2
H−α−1 ds

)1/2

. κ−1/2

(

t
∫

0

‖Kβ ∗ ω̃s‖2
H 1+β ‖ξs‖2

H−α ds

)1/2

. κ−1/2

(

t
∫

0

‖ω̃s‖2
H 1 ‖ξs‖2

H−α ds

)1/2

.

For q > 2, by Hölder’s inequality,

‖I 2
t ‖H−α . κ−1/2

(

t
∫

0

‖ω̃s‖2
H 1 ds

)
q−2
2q

(

t
∫

0

‖ω̃s‖2
H 1‖ξs‖q

H−α ds

)1/q

. κ
−1+ 1

q ‖ω0‖
1− 2

q

L2

(

t
∫

0

‖ω̃s‖2
H 1‖ξs‖q

H−α ds

)1/q

.

Combining the above estimates we obtain

‖ξt‖q

H−α . ‖I 1
t ‖q

H−α + ‖I 2
t ‖q

H−α + ‖Zt‖q

H−α

.

t
∫

0

(

κ−q+qβ/2‖ω0‖q

L2 + κ−q+1‖ω0‖q−2

L2 ‖ω̃s‖2
H 1

)

‖ξs‖q

H−α ds + ‖Zt‖q

H−α .

By Gronwall’s lemma and the second bound in (3.12), using the assumption κ ≥ δ, we find

C = C(T , δ,α,β, q) > 0 such that
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sup
t∈[0,T ]

‖ξt‖q

H−α . exp
[

C(1 + T )‖ω0‖q

L2

]

sup
t∈[0,T ]

‖Zt‖q

H−α ;

up to relabelling C, the conclusion follows. 2

Applying the maximal estimate for stochastic convolution, we obtain

Corollary 3.5. Consider parameters δ,β, q,α,T as above, C be the constant from Proposi-

tion 3.4; then for any p ∈ [1,∞), κ ≥ δ and any ε ∈ (0, α], we have

E

[

sup
t∈[0,T ]

‖ωt − ω̃t‖p

H−α

]1/p

.ε,p,T κε/2‖θ‖α−ε
ℓ∞ C‖ω0‖L2 exp

(

C‖ω0‖q

L2

)

.

4. Blow-up probability estimates

The purpose of this section is to prove Theorem 1.5. To this end, we first make some necessary

preparations in Section 4.1, and then provide the proof in Section 4.2, following the main idea in

the previous sections.

4.1. Preliminaries on the Keller-Segel system

Let us start by reformulating system (1.9) in a way which is more suited for our purposes.

For any f ∈ L2(T 2) we define the operator ∇−1f = ∇(−1)−1(f − fT 2); ∇−1 extends to a

continuous linear operator from H s to H s+1 for any s ∈ R and satisfies ∇ · ∇−1f = −f + fT 2 ,

(∇−1f )T 2 = 0 for regular f . With this notation, system (1.9) can be written in a more compact

form:

dρ =
(

1ρ − ∇ · [ρ∇−1ρ]
)

dt + ◦dW · ∇ρ.

Observe that if ρ satisfies the SPDE, then it has constant mean ρT 2(t) = ρT 2(0) =: ρ̄ > 0, since

W is spatially divergence free. Defining u = ρ − ρ̄ and using the properties of ∇−1, we obtain

du =
(

1u − ∇ · [u∇−1u] + ρ̄u
)

dt + ◦dW · ∇u. (4.1)

Finally, this equation has the following equivalent Itô form

du =
(

(1 + κ)1u − ∇ · [u∇−1u] + ρ̄u
)

dt + dW · ∇u. (4.2)

Similarly, if we start from the deterministic system (1.8) with χ = 1 and (1 + κ)1 in place of 1,

we would have ρ̃ = ũ + ρ̄ with

∂t ũ = (1 + κ)1ũ + ρ̄ũ − ∇ · [ũ∇−1ũ]. (4.3)

The advantage in dealing with u in place of ρ lies in the fact that ρ blows up if and only if u does,

but uT 2 = 0, allowing easy use of Poincaré inequality. However, keep in mind that ρ0 encodes

the pair (ρ̄, u) of data of the problem; also observe that ‖u0‖2
L2 + ρ̄2 = ‖ρ0‖2

L2 .
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Let us quickly explain the main idea involving estimates on blow-up: we expect equation (4.2)

to be close to (4.3) in the scaling limit, at least in some weak norm H−α . Therefore, blow-up can

be delayed if we can show that: i) the solution ũ to (4.3) exists globally; ii) blow-up for (4.2) in

strong norms only takes place if ‖u‖H−α blows up.

Below we verify that both requirements are met.

Lemma 4.1. There exists C > 0 with the following property: given ρ0 ∈ L2, if κ ≥ C‖ρ0‖2
L2 + 1,

then global existence holds for (4.3) and moreover the solution satisfies

max

{

sup
t≥0

‖ρ̃t‖2
L2 ,

+∞
∫

0

‖∇ρ̃t‖2
L2 dt

}

≤ ‖ρ0‖2
L2 . (4.4)

Proof. The energy balance for (4.3) can be computed as follows:

d

dt
‖ũ‖2

L2 + 2(1 + κ)‖∇ũ‖2
L2 = 2ρ̄ ‖ũ‖2

L2 + 2〈ũ∇ũ,∇−1ũ〉 = 2ρ̄ ‖ũ‖2
L2 + ‖ũ‖3

L3 .

By Sobolev embedding, interpolation and Young’s inequality we have

‖ũ‖3
L3 . ‖ũ‖3

H 1/3 . ‖ũ‖2
L2‖∇ũ‖L2 ≤ ‖∇ũ‖2

L2 + c‖ũ‖4
L2

for some constant c > 0. By the Poincaré inequality ‖∇ũ‖2
L2 ≥ 4π2‖ũ‖2

L2 we deduce that

d

dt
‖ũ‖2

L2 + ‖∇ũ‖2
L2 ≤ −

(

8π2κ − 2ρ̄ − c‖ũ‖2
L2

)

‖ũ‖2
L2 . (4.5)

We claim that the constant C in the statement can be chosen as

C =
c + 1

8π2

where c is the constant appearing above. Indeed, if κ ≥ C‖ρ0‖2
L2 + 1, then

8π2κ − 2ρ̄ − c‖u0‖2
L2 ≥ 8π2κ − 2‖ρ0‖L2 − c‖ρ0‖2

L2 ≥ 8π2κ − (c + 1)‖ρ0‖2
L2 − 1 ≥ 1.

This implies that d
dt

‖ũt‖2
L2 < 0 at the initial time t = 0, so the energy is decreasing, enforcing

the fact that 8π2κ − 2ρ̄ − c‖ũ‖2
L2 ≥ 1 will also be true at subsequent times and so that

d

dt
‖ũ‖2

L2 ≤ −‖ũ‖2
L2 ∀ t ≥ 0.

As a consequence ‖ũt‖2
L2 ≤ e−t‖u0‖2

L2 , which together with the energy balance (4.5) also im-

plies

+∞
∫

0

‖∇ũt‖2
L2 dt ≤ ‖u0‖2

L2 .
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The conclusion readily follows from the relations ∇ũt = ∇ρ̃t and ‖ρ̃t‖2
L2 = ‖ũt‖2

L2 + ρ̄2. 2

Given α > 0 to be chosen later, in order to show that u blows up only if ‖u‖H−α does so, we

turn to study the following modified version of (4.1):

du =
{

1u + ρ̄ u − gα,R(u)∇ · [u∇−1u]
}

dt + ◦dW · ∇u. (4.6)

Here gα,R(u) := gR(‖u‖H−α ) is a cutoff function, where gR ∈ C([0,+∞); [0,1]) satisfies gR ≡
1 on [0,R], gR ≡ 0 on [R + 1,+∞) and is Lipschitz with constant 1.

Lemma 4.2. Let α ∈ (0,1) and R > 0 be fixed. Then global existence of solutions holds for (4.6)

for any initial data ρ0 ∈ L2. Furthermore, there exists a constant Cα such that the unique solution

u satisfies

sup
t∈[0,T ]

‖ut‖2
L2 ≤ e2ρ̄ T

(

‖u0‖2
L2 +

Cα

ρ̄
(R + 1)

4
1−α

)

P -a.s. (4.7)

Proof. Global existence and uniqueness of solutions follows from [14, Proposition 3.6], so we

only need to focus on the proof of (4.7). Due to the divergence free property and Stratonovich

structure of the noise, the energy balance is given by

d

dt
‖u‖2

L2 + 2‖∇u‖2
L2 = 2ρ̄ ‖u‖2

L2 + gα,R(u)‖u‖3
L3 .

As before, we can estimate the last term by Sobolev embedding and interpolation, only replacing

‖ · ‖L2 with ‖ · ‖H−α :

gα,R(u)‖u‖3
L3 . gα,R(u)‖u‖3

H 1/3 .α gα,R(u)‖∇u‖
1+3α
1+α

L2 ‖u‖
2

1+α

H−α

≤ ‖∇u‖2
L2 + Cα gα,R(u)

2+2α
1−α ‖u‖

4
1−α

H−α ,

where in the last passage Young’s inequality is allowed under the condition (1+3α)/(1+α) < 2,

which holds since α < 1. Together with the properties of gα,R , this gives the estimate

d

dt
‖u‖2

L2 + ‖∇u‖2
L2 ≤ 2ρ̄ ‖u‖2

L2 + Cα (R + 1)
4

1−α

and the conclusion follows from Gronwall’s lemma. 2

Remark 4.3. If u solves (4.6) on [0, T ] and satisfies supt∈[0,T ] ‖ut‖H−α ≤ R, then it also solves

the equation (4.1) without cut-off. Due to the freedom in choosing R, this shows that u blows

up if and only if ‖u‖H−α does. A similar reasoning applies if we consider equation (4.3) with

cut-off gα,R(ũ) in front of the nonlinearity; in particular, if κ is chosen to be a function of ρ0 as

in Lemma 4.1 and R ≥ ‖ρ0‖L2 , then the solutions to (4.3) and to the PDE with cut-off coincide.

We conclude this section with an analytical lemma.
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Lemma 4.4. Let R > 0, α ∈ (0,1) and gα,R be as above; set F(u) := gα,R(u)∇ · [u∇−1u]. Then

we have

‖F(u) − F(ũ)‖H−α−1 .α ‖u − ũ‖H−α

(

1 + ‖u‖2
L2 + ‖ũ‖H 1

)

∀u ∈ L2, ũ ∈ H 1. (4.8)

Proof. It holds ‖F(u) − F(ũ)‖H−α−1 ≤ I1 + I2 for

I1 = |gα,R(u) − gα,R(ũ)| ‖∇ · [u∇−1u]‖H−α−1 , I2 = |gα,R(ũ)| ‖∇ · [u∇−1u − ũ∇−1ũ]‖H−α−1 .

The first term can be estimated by

I1 ≤ ‖gR‖Lip‖u − ũ‖H−α‖u∇−1u‖H−α

.α ‖u − ũ‖H−α‖u‖L2‖∇−1u‖H 1−α

.α ‖u − ũ‖H−α‖u‖2
L2 ,

where the second passage follows from a similar proof of Lemma 2.1(d). Using the property

‖gα,R‖∞ ≤ 1 and going through computations similar to Lemma 3.1, we have

I2 . ‖u∇−1u − ũ∇−1ũ‖H−α

≤ ‖u∇−1(u − ũ)‖H−α + ‖(u − ũ)∇−1ũ‖H−α

.α ‖u‖L2‖u − ũ‖H−α + ‖u − ũ‖H−α‖∇−1ũ‖H 2

≤ ‖u − ũ‖H−α (‖u‖L2 + ‖ũ‖H 1)

and the conclusion follows. 2

4.2. Proof of Theorem 1.5

We now fix parameters ε,p,L,T and pass to the proof of main theorem of this section. Given

the constant C as in Lemma 4.1, we fix κ ≥ CL2 + 1; we also choose parameters α = 1 − ε/2

and R = 2L. Rather than looking directly at the solution to the SPDE (4.2), we will compare the

solution u to

du =
{

1u + ρ̄ u − gα,R(u)∇ · [u∇−1u]
}

dt + ◦dW · ∇u

=
{

(1 + κ)1u + ρ̄ u − gα,R(u)∇ · [u∇−1u]
}

dt + dW · ∇u

and ũ to

∂t ũ = (1 + κ)1ũ + ρ̄ ũ − gα,R(ũ)∇ · [ũ∇−1ũ]

for the choice of α,R,κ as above; the noise W is determined by (κ, θ) with κ as above and

θ ∈ ℓ2 satisfying usual assumptions. Both equations are considered with initial data ρ0 satisfying

‖ρ0‖L2 ≤ L (which implies |ρ̄| ∨ ‖u0‖L2 ≤ L as well).

It readily follows from Remark 4.3 that the solution ũ coincides with the one to (4.3) which

satisfies (4.4). Moreover our choice of parameters and Lemma 4.2 imply that
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sup
t∈[0,T ]

‖ut‖L2 ≤ Kε,L,T := eLT

[

L +
(

C1−ε/2

ρ̄

)1/2

(2L + 1)4/ε

]

. (4.9)

In the following, we are still going to use the parameter α, but we ask the reader to keep in mind

that it is given by α = 1 − ε/2.

With these preparations, we are now ready to give the

Proof of Theorem 1.5. First observe that, if supt∈[0,T ] ‖ut‖H−α ≤ 2L = R, then u solves the

stochastic Keller-Segel equation without cutoff and so τ(ρ0;κ, θ) ≥ T . In other terms

P (τ (ρ0;κ, θ) < T ) ≤ P

(

sup
t∈[0,T ]

‖ut‖H−α > 2L

)

;

furthermore, under the condition κ ≥ CL2 + 1, we know that ũ is a solution to the deterministic

PDE without cutoff and satisfies supt≥0 ‖ũt‖H−α ≤ supt≥0 ‖ũt‖L2 ≤ L. Set ξ = u − ũ, then by

triangular inequality

‖u‖H−α ≤ ‖ξ‖H−α + ‖ũ‖H−α ≤ ‖ξ‖H−α + L;

therefore

P (τ (ρ0;κ, θ) < T ) ≤ P

(

sup
t∈[0,T ]

‖ξt‖H−α > L

)

≤
1

Lp
E

[

sup
t∈[0,T ]

‖ξt‖p

H−α

]

,

where we applied Markov’s inequality. It only remains to estimate the right-hand side. Passing

to the mild formulation as usual and defining F as in Lemma 4.4, we can write the equation for

ξ as

ξt =
t

∫

0

e(1+κ)(t−s)1
[

ρ̄ ξs − F(us) + F(ũs)
]

ds + Zt ,

where

Zt =
t

∫

0

e(1+κ)(t−s)1 dWs · ∇us .

By Lemmas 2.3 and 4.4 we can find a constant Cα = C̃ε such that

‖ξt‖2
H−α ≤

C̃ε

1 + κ

t
∫

0

‖ξs‖2
H−α

(

1 + ρ̄2 + ‖us‖4
L2 + ‖ũs‖2

H 1

)

ds + ‖Zt‖2
H−α

≤ C̃ε

t
∫

0

‖ξs‖2
H−α

(

1 + L2 + ‖us‖4
L2 + ‖ũs‖2

H 1

)

ds + ‖Zt‖2
H−α .
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Applying Gronwall’s lemma, together with the estimates (4.4) and (4.9), we get

sup
t∈[0,T ]

‖ξt‖H−α ≤ exp
(

C̃ε

[

T (1 + L2 + K4
ε,L,T ) + L2

]

)

sup
t∈[0,T ]

‖Zt‖H−α

=: K ′
ε,L,T sup

t∈[0,T ]
‖Zt‖H−α .

Finally, we can apply Corollary 2.6 to Z for the choice β = α, ε̃ = ε/2 (so that β − ε̃ = 1 − ε)

and δ = 1 + κ ∼ κ (recall that κ ≥ 1) to obtain

E

[

sup
t∈[0,T ]

‖ξt‖p

H−α

]

.ε,p,T (K ′
ε,L,T )p κεp/4‖θ‖p(1−ε)

ℓ∞ .

Combining everything together we arrive at

P (τ (ρ0;κ, θ)) < T ) ≤ C2 κεp/4‖θ‖p(1−ε)

ℓ∞ ,

where the constant C2 = C2(ε,p,L,T ) can be calculated explicitly in terms of the ones which

appeared previously. Taking C1 as the constant from Lemma 4.1 gives the conclusion. 2

5. Proofs in the linear case

This section consists of two parts: in Section 5.1 we prove Theorem 1.7 and some related

results, while in Section 5.2 we prove the exponential decay of L2-norm at infinity for solutions

to the transport-diffusion equation (1.16).

5.1. Proofs of Theorem 1.7 and related results

We first provide the

Proof of Theorem 1.7. Denote by Pt = etκ1 the heat semigroup on T
d ; using the mild formu-

lation of equations (1.11) and (1.13), we have

〈ft , φ〉 −
〈

f t , φ
〉

= −
√

Cdκ
∑

k,i

θk

t
∫

0

〈

Pt−s

(

σk,i · ∇fs

)

, φ
〉

dW k,i
s

=
√

Cdκ
∑

k,i

θk

t
∫

0

〈

fs, σk,i · ∇Pt−sφ
〉

dW k,i
s

and thus

E

[

∣

∣〈ft , φ〉 −
〈

f t , φ
〉∣

∣

2
]

= Cdκ
∑

k,i

θ2
k E

t
∫

0

|〈fs, σk,i · ∇Pt−sφ〉|2 ds.
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Denote by gs,t (x) the function fs(x) (∇Pt−sφ) (x); since Cd = d/(d − 1) ≤ 2 and {σk,i}k,i is an

orthonormal system in L2(T d ;R
d), we have

E

[

∣

∣〈ft , φ〉 −
〈

f t , φ
〉∣

∣

2
]

≤ 2κ
∑

k,i

θ2
k E

t
∫

0

∣

∣〈σk,i, gs,t 〉
∣

∣

2
ds

≤ 2κ ‖θ‖2
ℓ∞ E

[

∑

k,i

t
∫

0

∣

∣〈σk,i, gs,t 〉
∣

∣

2
ds

]

≤ 2κ ‖θ‖2
ℓ∞ E

t
∫

0

‖fs (∇Pt−sφ)‖2
L2 ds.

Now we use the P -a.s. inequality ‖ft‖L∞ ≤ ‖f0‖L∞ from (1.12) to get

E

[

∣

∣〈ft , φ〉 −
〈

f t , φ
〉∣

∣

2
]

≤ 2κ‖θ‖2
ℓ∞‖f0‖2

L∞

t
∫

0

‖∇Pt−sφ‖2
L2 ds.

Finally,

2κ

t
∫

0

‖∇Pt−sφ‖2
L2 ds = −

t
∫

0

2 〈κ1Psφ,Psφ〉ds =
t

∫

0

d

ds
‖Psφ‖2

L2 ds ≤ ‖φ‖2
L2 .

This completes the proof of estimate (1.14); estimate (1.15) follows by taking, for every x0 ∈ T
2,

φx0 (x) := χ (x0 − x); thus we get

E

[

∣

∣(χ ∗ ft ) (x0) −
(

χ ∗ f t

)

(x0)
∣

∣

2
]

≤ ‖θ‖2
ℓ∞‖f0‖2

L∞‖χ (x0 − ·)‖2
L2 .

Integrating in x0 we deduce the second inequality of the theorem. 2

Compared to other results in this paper, Theorem 1.7 has the nice feature that it does not

produce any constants depending on t or κ ; this comes at the price of imposing higher regularity

on the initial data f0 ∈ L∞ and obtaining a probabilistic estimate which depends on the given

f0, φ in consideration.

For this reason, we will now complement Theorem 1.7 with another result quantifying the

distance of the random solution operator associated to (1.11) from the heat kernel operator Pt =
etκ1, in some weak norm.

Before giving the statement, we need some preparations. In the remainder of the section for

simplicity we will assume θ to enjoy suitable summability (as before,
∑

k |k|2θ2
k < ∞ would

suffice), so that we can construct the incompressible stochastic flow {Xt }t≥0 associated to W

and represent any solution f to (1.11) by ft (x) = f0(X
−1
t (x)). We can then define the random

solution operator Stϕ := ϕ ◦ X−1
t , which by incompressibility of Xt is a family of isomorphisms

of Lp(T d) for any p ∈ [1,∞].
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Next, let us recall that, given any two Hilbert spaces E1,E2, a linear operator A : E1 → E2 is

Hilbert–Schmidt, A ∈ L2(E1,E2), if

‖A‖2
L2(E1;E2)

=
∑

n

‖Aϕn‖2
E2

< ∞

for some (equivalently any) {ϕn}n CONS of E1; in this case ‖A‖E1→E2
≤ ‖A‖L2(E1;E2)

.

Proposition 5.1. For any s > d/2, T > 0, α > 0, p ∈ [2,∞) and ε ∈ (0, α) it holds

E

[

sup
t∈[0,T ]

‖St − Pt‖p

L2(H s ,H−α)

]1/p

.s,ε,T ,p κε/2 ‖θ‖2(α−ε)/d
ℓ∞ . (5.1)

Proof. Given f solution to (1.11) with initial data f0, passing to mild formulation we have

(St − Pt )f0 =
t

∫

0

e(t−s)κ1∇fs · dWs =: Zf0
s

which is a stochastic convolution as the ones treated in Section 2.2. Moreover, given any CONS

{ϕn}n of H s , denoting by Zϕn the associated processes, it holds

sup
t∈[0,T ]

‖St − Pt‖L2(H s ,H−α) ≤
[

∑

n

sup
t∈[0,T ]

‖(St − Pt )ϕn‖2
H−α

]1/2

=
[

∑

n

sup
t∈[0,T ]

‖Zϕn
t ‖2

H−α

]1/2

.

Now choose as a CONS of H s the family gk = (1 + |k|2)−s/2ek for k ∈ Z
d
0 , then applying the

above estimates, together with Minkowski’s inequality and Corollary 2.6, we obtain

E

[

sup
t∈[0,T ]

‖St − Pt‖p

L2(H s ,H−α)

]2/p

.
∑

k

E

[

sup
t∈[0,T ]

‖Zgk
t ‖p

H−α

]2/p

.ε,κ,p,T κε‖θ‖4(α−ε)/d

ℓ∞

∑

k

‖gk‖2
L2

.ε,κ,p,T κε‖θ‖4(α−ε)/d

ℓ∞

∑

k

(1 + |k|2)−s

which gives the conclusion. 2

Compared to Theorem 1.7, estimate (5.1) depends on several parameters and requires the use

of the strong norm H s ; but it gives a bound on the random operator St and thus on

〈ft − f̄t , φ〉 = 〈(St − Pt )f0, φ〉 =
∫

T d

f0(x)
(

φ(Xx
t ) − E[φ(Xx

t )]
)

dx

uniformly over all possible f0 ∈ H s , φ ∈ Hα at once, thus revealing more information on the

behaviour of the stochastic flow Xx
t as well.
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Remark 5.2. The property ‖ · ‖H s→H−α . ‖ · ‖L2(H s ;Hα), combined with estimate (5.1) and

Markov’s inequality, yields

P

(

sup
t∈[0,T ]

‖St − Pt‖H s→H−α > δ

)

. δ−pκεp/2‖θ‖2(α−ε)p/d

ℓ∞

for all δ > 0; in particular, for suitable chosen (κ, θ) the quantity supt∈[0,T ] ‖St − Pt‖H s→H−α is

very small with high probability. Moreover this can be attained while choosing κ arbitrarily large,

so that ‖Pt‖H s→H−α becomes arbitrarily small as well (for t ≥ t0 > 0), implying a probabilistic

bound for ‖St‖H s→H−α as well. Finally, interpolating the estimate on ‖St − Pt‖H s→H−α with

the P -a.s. one ‖St − Pt‖L2→L2 ≤ 2, we can deduce similar bounds for ‖St − Pt‖H s′→H−α with

s′ ∈ (0, s), thus removing the restriction s > d/2.

5.2. Proof of Theorem 1.9

We first briefly recall the setting. We consider the linear transport-diffusion equation

df + ◦dW · ∇f = ν1f dt

with ν > 0; it admits the Itô formulation

df + dW · ∇f = (κ + ν)1f dt.

For any f0 ∈ L2(T d), it is well known that the equation has a unique solution f satisfying:

P -a.s., f ∈ C([0,+∞);L2) ∩ L2(0,+∞;H 1).

Below we assume f0 has zero mean, a property preserved by the solution {ft }t≥0; set Pt =
et (κ+ν)1. For any 0 ≤ s < t , we have the mild formulation

ft = Pt−sfs + Zs,t , (5.2)

where

Zs,t := −
√

Cdκ
∑

k,i

θk

t
∫

s

Pt−r(σk,i · ∇fr)dW k,i
r ; (5.3)

and

P -a.s., ‖ft‖2
L2 + 2ν

t
∫

s

‖∇fr‖2
L2 dr = ‖fs‖2

L2 . (5.4)

This implies that t → ‖ft‖L2 is almost surely decreasing.

In order to get estimates on ‖ft‖L2 , the key is to estimate ‖Zs,t‖L2 ; due to the linear struc-

ture, here we directly estimate E‖Zs,t‖2
L2 without applying Grönwall’s lemma, contrary to the

nonlinear case.
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Lemma 5.3. There exists δ ∈ (0,1) such that, for any n ≥ 0,

E‖fn+1‖2
L2 ≤ δ E‖fn‖2

L2 ,

where, for some 0 < α < 1 ≤ d
2

< β < d
2

+ 2,

δ .α,β κ−1 + κ
4β−α(2β+d)

4(α+β) ν
− β

α+β ‖θ‖
2α

α+β

ℓ∞ .

In particular, δ can be as small as we want by first taking κ big and then choosing θ ∈ ℓ2(Zd
0)

with ‖θ‖ℓ∞ small enough.

Proof. Since ‖ft‖L2 is decreasing in t , we have, by (5.2),

‖fn+1‖2
L2 ≤

n+1
∫

n

‖ft‖2
L2 dt ≤ 2

n+1
∫

n

‖Pt−nfn‖2
L2 dt + 2

n+1
∫

n

‖Zn,t‖2
L2 dt.

First,

n+1
∫

n

‖Pt−nfn‖2
L2 dt ≤

n+1
∫

n

e−8π2(κ+ν)(t−n)‖fn‖2
L2 dt .

‖fn‖2
L2

κ + ν
. (5.5)

Next, we turn to estimate the second term for which we use an interpolation argument. Fix an

α ∈ (0,1), we have, by (5.3),

n+1
∫

n

E‖Zn,t‖2
Hα dt = Cdκ

n+1
∫

n

E

∥

∥

∥

∥

∑

k,i

θk

t
∫

n

Pt−r(σk,i · ∇fr)dW k,i
r

∥

∥

∥

∥

2

Hα

dt

. κ

n+1
∫

n

E

[

∑

k,i

θ2
k

t
∫

n

‖Pt−r(σk,i · ∇fr)‖2
Hα dr

]

dt

.
κ

(κ + ν)α

n+1
∫

n

E

[

∑

k,i

θ2
k

t
∫

n

1

(t − r)α
‖σk,i · ∇fr‖2

L2 dr

]

dt,

where the last step follows from Lemma 2.2(i). Using the fact ‖σk,i · ∇fr‖L2 ≤ ‖∇fr‖L2 , we

obtain
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n+1
∫

n

E‖Zn,t‖2
Hα dt .

κ

(κ + ν)α
‖θ‖2

ℓ2

n+1
∫

n

E

t
∫

n

1

(t − r)α
‖∇fr‖2

L2 drdt

≤ κ1−α‖θ‖2
ℓ2 E

n+1
∫

n

‖∇fr‖2
L2 dr

n+1
∫

r

1

(t − r)α
dt

≤
κ1−α

1 − α
E

n+1
∫

n

‖∇fr‖2
L2 dr,

where in the last step we have used ‖θ‖ℓ2 = 1. Now by (5.4) we arrive at

n+1
∫

n

E‖Zn,t‖2
Hα dt .α κ1−αν−1

E‖fn‖2
L2 . (5.6)

Next, for d
2

< β < d
2

+ 2, we define ε = (2β − d)/4 ∈ (0,1); similarly to the proof of (2.3),

we have

E‖Zn,t‖2
H−β ≤ Cdκ E

[

∑

k,i

θ2
k

t
∫

n

‖Pt−r(σk,i · ∇fr)‖2
H−d/2−2ε dr

]

.
κ

(κ + ν)1−ε
E

[

∑

k,i

θ2
k

t
∫

n

‖σk,i · ∇fr‖2
H−1−d/2−ε

(t − r)1−ε
dr

]

.ε κε‖θ‖2
ℓ∞ E‖fn‖2

L2 .

Thus, noting that ε = (2β − d)/4,

n+1
∫

n

E‖Zn,t‖2
H−β dt .β κ(2β−d)/4‖θ‖2

ℓ∞ E‖fn‖2
L2 . (5.7)

Finally, for 0 < α < 1 ≤ d
2

< β < d
2

+ 2, by interpolation

‖φ‖L2 . ‖φ‖β/(α+β)
Hα ‖φ‖α/(α+β)

H−β , ∀φ ∈ Hα,

we have

n+1
∫

n

E‖Zn,t‖2
L2 dt .

n+1
∫

n

E

(

‖Zn,t‖2β/(α+β)
Hα ‖Zn,t‖2α/(α+β)

H−β

)

dt

≤
(

n+1
∫

n

E‖Zn,t‖2
Hα dt

)
β

α+β
(

n+1
∫

n

E‖Zn,t‖2
H−β dt

)
α

α+β
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by Hölder’s inequality. Inserting (5.6) and (5.7) into this estimate leads to

n+1
∫

n

E‖Zn,t‖2
L2 dt ≤ κ

4β−α(2β+d)
4(α+β) ν

− β
α+β ‖θ‖

2α
α+β

ℓ∞ E‖fn‖2
L2 .

Combining this estimate with (5.5), we complete the proof. 2

We can now provide

Proof of Theorem 1.9. Lemma 5.3 implies that there exists a small δ ∈ (0,1) such that for any

n ≥ 1,

E‖fn‖2
L2 ≤ δ E‖fn−1‖2

L2 ≤ · · · ≤ δn‖f0‖2
L2 .

Recall that t → ‖ft‖L2 is P -a.s. decreasing, we have

E

(

sup
t∈[n,n+1]

‖ft‖2
L2

)

≤ E‖fn‖2
L2 ≤ δn‖f0‖2

L2 = e−2λ′n‖f0‖2
L2,

where λ′ = − 1
2

log δ > 0. By Lemma 5.3, we can choose a suitable pair (κ, θ) such that λ′ >

λ(1 + p/2), where λ > 0 and p ≥ 1 are parameters in the statement of Theorem 1.9.

Now for any n ≥ 1, we define

An =
{

ω ∈ � : sup
t∈[n,n+1]

‖ft (ω)‖L2 > e−λn‖f0‖L2

}

.

Then by Chebyshev’s inequality,

∑

n

P (An) ≤
∑

n

e2λn

‖f0‖2
L2

E

(

sup
t∈[n,n+1]

‖ft‖2
L2

)

≤
∑

n

e2(λ−λ′)n < +∞,

therefore, by Borel-Cantelli lemma, for P -a.e. ω ∈ �, there exists a big N(ω) ≥ 1 such that

sup
t∈[n,n+1]

‖ft (ω)‖L2 ≤ e−λn‖f0‖L2 ∀n > N(ω).

For 0 ≤ n ≤ N(ω), we have

sup
t∈[n,n+1]

‖ft (ω)‖L2 ≤ ‖fn(ω)‖L2 = eλne−λn‖fn(ω)‖L2 ≤ eλN(ω)e−λn‖f0‖L2 .

Thus, if we take C(ω) = eλ(1+N(ω)), then it is easy to show that, P -a.s. for all t ≥ 0, ‖ft (ω)‖L2 ≤
C(ω)e−λt‖f0‖L2 .

It remains to estimate the p-th moment of the random variable C(ω); to this end, we need

to estimate the tail probability P ({N(ω) ≥ k}). Note that N(ω) may be defined as the largest

integer n such that supt∈[n,n+1] ‖ft (ω)‖L2 > e−λn‖f0‖L2 ; hence
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{ω ∈ � : N(ω) ≥ k} =
∞
⋃

n=k

An.

Then, we have

P ({N(ω) ≥ k}) ≤
∞
∑

n=k

P (An) ≤
∞
∑

n=k

e2(λ−λ′)n =
e2(λ−λ′)k

1 − e2(λ−λ′)
.

As a result,

EeλpN(ω) =
∞
∑

k=0

eλpk
P ({N(ω) = k}) ≤

1

1 − e2(λ−λ′)

∞
∑

k=0

eλpke2(λ−λ′)k < +∞,

where the last step is due to the choice of λ′. Therefore C(ω) has finite p-th moment. 2
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