The feasibility of square-pulsed thermography nondestructive testing for the detection of defects in one ceramic material sample has been carried out by finite element (FE) analysis. In particular, a ceramic plate containing defects of different diameters, depths, locations, nature, and shapes has been numerically investigated by means of Comsol® Multiphysics computer program, taking into account the results coming from both a MATLAB™ script and the infrared thermography (IRT) technique. Indeed, the FE method simulates through a 3D model the heat transfer process induced into the ceramic material by two halogen lamps that have been applied in order to provoke an optimum thermal stress. Moreover, further defects like cracks arose beneath the surface of the plate due to the shrinkage process, have been discovered, and contrasted using a non-usual segmentation algorithm that when correlated in the time to IRT data simulates the thermo-elastic effect. Following the non-direct procedure proposed, both the depth of each defect and its main dimensions have been retrieved into a satisfactory accuracy.

Ceramics and defects: Infrared thermography and numerical simulations - A wide-ranging view for quantitative analysis

SFARRA, STEFANO
;
PERILLI, STEFANO;PAOLETTI, Domenica;AMBROSINI, DARIO
2016-01-01

Abstract

The feasibility of square-pulsed thermography nondestructive testing for the detection of defects in one ceramic material sample has been carried out by finite element (FE) analysis. In particular, a ceramic plate containing defects of different diameters, depths, locations, nature, and shapes has been numerically investigated by means of Comsol® Multiphysics computer program, taking into account the results coming from both a MATLAB™ script and the infrared thermography (IRT) technique. Indeed, the FE method simulates through a 3D model the heat transfer process induced into the ceramic material by two halogen lamps that have been applied in order to provoke an optimum thermal stress. Moreover, further defects like cracks arose beneath the surface of the plate due to the shrinkage process, have been discovered, and contrasted using a non-usual segmentation algorithm that when correlated in the time to IRT data simulates the thermo-elastic effect. Following the non-direct procedure proposed, both the depth of each defect and its main dimensions have been retrieved into a satisfactory accuracy.
File in questo prodotto:
File Dimensione Formato  
Sfarra_et_al_with_Vol_&_No.pdf

non disponibili

Descrizione: Versione pubblicata sul Journal con Vol. & No.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/101000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact