The stable set problem is a well-known NP-hard combinatorial optimization problem. As well as being hard to solve (or even approximate) in theory, it is often hard to solve in practice. The main difficulty is that upper bounds based on linear programming (LP) tend to be weak, whereas upper bounds based on semidefinite programming (SDP) take a long time to compute. We propose a new method to strengthen the LPbased upper bounds. The key idea is to take violated Chvátal-Gomory cuts and then strengthen their right-hand sides. Although the strengthening problem is itself NP-hard, it can be solved reasonably quickly in practice. As a result, the overall procedure proves to be capable of yielding competitive upper bounds in reasonable computing times.
Strengthening Chvátal-Gomory cuts for the stable set problem
MARZI, FRANCESCA;ROSSI, FABRIZIO;SMRIGLIO, STEFANO
2016-01-01
Abstract
The stable set problem is a well-known NP-hard combinatorial optimization problem. As well as being hard to solve (or even approximate) in theory, it is often hard to solve in practice. The main difficulty is that upper bounds based on linear programming (LP) tend to be weak, whereas upper bounds based on semidefinite programming (SDP) take a long time to compute. We propose a new method to strengthen the LPbased upper bounds. The key idea is to take violated Chvátal-Gomory cuts and then strengthen their right-hand sides. Although the strengthening problem is itself NP-hard, it can be solved reasonably quickly in practice. As a result, the overall procedure proves to be capable of yielding competitive upper bounds in reasonable computing times.File | Dimensione | Formato | |
---|---|---|---|
Strengthening_Chvatal-Gomory_cuts_for_the_stable_set_problem.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
365.15 kB
Formato
Adobe PDF
|
365.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.