Organosulfur compounds show a negative environmental impact because of SOx emissions by combustion of fuel oils. As a consequence, removal of sulfur is becoming a worldwide challenge. The hydrodesulfurization (HDS) process achieves limited performances in the case of refractory S-containing aromatic compounds, such as thiophene and substituted benzothiophenes (BTs), which require highly energy-demanding conditions (high temperature and pressure conditions). Oxidative desulfurization (ODS) is considered the most promising alternative to HDS. During ODS treatment, the organosulfur compounds are oxidized to corresponding sulfoxides and sulfones, which can be successively removed by extraction with polar solvents. Different stoichiometric oxidants have been used in the ODS processes with a different degree of efficacy and environmental impact. The design and development of catalytic procedures can increase the ODS energy efficiency as well as make it more economical and environmentally acceptable. Here we describe the advances in nanostructured organometallic catalysis and biotechology applied to ODS treatment.
Advances in Nanotechnology Transition Metal Catalysts in Oxidative Desulfurization (ODS) Processes:
CRUCIANELLI, MARCELLO
2016-01-01
Abstract
Organosulfur compounds show a negative environmental impact because of SOx emissions by combustion of fuel oils. As a consequence, removal of sulfur is becoming a worldwide challenge. The hydrodesulfurization (HDS) process achieves limited performances in the case of refractory S-containing aromatic compounds, such as thiophene and substituted benzothiophenes (BTs), which require highly energy-demanding conditions (high temperature and pressure conditions). Oxidative desulfurization (ODS) is considered the most promising alternative to HDS. During ODS treatment, the organosulfur compounds are oxidized to corresponding sulfoxides and sulfones, which can be successively removed by extraction with polar solvents. Different stoichiometric oxidants have been used in the ODS processes with a different degree of efficacy and environmental impact. The design and development of catalytic procedures can increase the ODS energy efficiency as well as make it more economical and environmentally acceptable. Here we describe the advances in nanostructured organometallic catalysis and biotechology applied to ODS treatment.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.