Artificial Pancreas (AP) is an expression referred to a set of techniques for the closed-loop control of the plasma glucose concentration by means of exogenous insulin administration in diabetic patients. Diabetes comprises a group of metabolic disorders characterized by high blood sugar levels over a prolonged period, due to pancreas failure to produce enough insulin and/or insulin resistance, so that higher amounts of insulin are usually required in order to keep glycemia in a safe range. In this work, we face the problem of glucose control for a class of Type-2 diabetic patients, in the presence of sampled glucose measurements and without any information about the time course of insulinemia. A compact physiological model of the glucose-insulin system is reviewed, then an observer (based on this model) is designed to estimate the insulin trajectory from the glucose samples. Finally, a feedback control law (based on the reconstructed state) is designed to deliver exogenous intra-venous insulin to each individual. Simulations have been performed in-silico on models of virtual patients, whose parameters are tuned according to real data, and aim at validating the method in the presence of parameter variations and quantization errors.
Sampled-data Observer-based Glucose Control for the Artificial Pancreas
BORRI, ALESSANDRO;PALUMBO, PASQUALE;MANES, COSTANZO;
2017-01-01
Abstract
Artificial Pancreas (AP) is an expression referred to a set of techniques for the closed-loop control of the plasma glucose concentration by means of exogenous insulin administration in diabetic patients. Diabetes comprises a group of metabolic disorders characterized by high blood sugar levels over a prolonged period, due to pancreas failure to produce enough insulin and/or insulin resistance, so that higher amounts of insulin are usually required in order to keep glycemia in a safe range. In this work, we face the problem of glucose control for a class of Type-2 diabetic patients, in the presence of sampled glucose measurements and without any information about the time course of insulinemia. A compact physiological model of the glucose-insulin system is reviewed, then an observer (based on this model) is designed to estimate the insulin trajectory from the glucose samples. Finally, a feedback control law (based on the reconstructed state) is designed to deliver exogenous intra-venous insulin to each individual. Simulations have been performed in-silico on models of virtual patients, whose parameters are tuned according to real data, and aim at validating the method in the presence of parameter variations and quantization errors.File | Dimensione | Formato | |
---|---|---|---|
R034_Sampled-data Observer-based Glucose Control for the Artificial Pancreas_Borri-Palumbo-Manes-Panunzi-DeGaetano_APH17.pdf
accesso aperto
Descrizione: Articolo Principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
102.02 kB
Formato
Adobe PDF
|
102.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.