In this paper, optical and mechanical excitation thermography was used to investigate basalt-fiber-reinforced polymer, carbon-fiber-reinforced polymer, and basalt-carbon fiber hybrid specimens subjected to impact loading. Interestingly, two different hybrid structures including sandwich-like and intercalated stacking sequence were used. Pulsed phase thermography, principal component thermography, and partial least-squares thermography (PLST) were used to process the thermographic data. X-ray computed tomography was used for validation. In addition, signal-to-noise ratio analysis was used as a means of quantitatively comparing the thermographic results. Of particular interest, the depth information linked to Loadings in PLST was estimated for the first time. Finally, a reference was provided for taking advantage of different hybrids in view of special industrial applications.
Optical and Mechanical Excitation Thermography for Impact Response in Basalt-Carbon Hybrid Fiber-Reinforced Composite Laminates
Stefano Sfarra;Stefano Perilli;
2018-01-01
Abstract
In this paper, optical and mechanical excitation thermography was used to investigate basalt-fiber-reinforced polymer, carbon-fiber-reinforced polymer, and basalt-carbon fiber hybrid specimens subjected to impact loading. Interestingly, two different hybrid structures including sandwich-like and intercalated stacking sequence were used. Pulsed phase thermography, principal component thermography, and partial least-squares thermography (PLST) were used to process the thermographic data. X-ray computed tomography was used for validation. In addition, signal-to-noise ratio analysis was used as a means of quantitatively comparing the thermographic results. Of particular interest, the depth information linked to Loadings in PLST was estimated for the first time. Finally, a reference was provided for taking advantage of different hybrids in view of special industrial applications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.