We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform âcoercivenessâ assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the JordanâKinderlehrerâOtto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure.
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11697/123434
Titolo: | Nonlinear degenerate cross-diffusion systems with nonlocal interaction |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Handle: | http://hdl.handle.net/11697/123434 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.