Early fault detection and diagnosis plays an increasingly important role in various energy systems where it is critical to avoid deteriorating condition, degraded efficiency and unexpected failures. Rolling- element bearings are among the most common components of rotating machinery used for transformation of energy. Mechanical wear and defective bearings cause rotating machinery to decrease its efficiency, and thus increase energy consumption. A new technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis is presented. After normalization and the wavelet transform of vibration signals, the standard deviation as a measure of average energy and the logarithmic energy entropy as a measure of the degree of disorder are extracted in sub-bands of interest as representative features. Then the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is performed by quadratic classifiers. Accuracy of the new technique was tested on four classes of the recorded vi- brations signals, i.e. normal, with the fault of inner race, outer race and balls operation. An overall ac- curacy of 100% was achieved. The new technique will be further tested and implemented in a real production environment.

Early Fault Detection and Diagnosis in Bearings for more Efficient Operation of Rotating Machinery

I. Savic-Gajic;Stefano DI GENNARO
2017-01-01

Abstract

Early fault detection and diagnosis plays an increasingly important role in various energy systems where it is critical to avoid deteriorating condition, degraded efficiency and unexpected failures. Rolling- element bearings are among the most common components of rotating machinery used for transformation of energy. Mechanical wear and defective bearings cause rotating machinery to decrease its efficiency, and thus increase energy consumption. A new technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis is presented. After normalization and the wavelet transform of vibration signals, the standard deviation as a measure of average energy and the logarithmic energy entropy as a measure of the degree of disorder are extracted in sub-bands of interest as representative features. Then the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is performed by quadratic classifiers. Accuracy of the new technique was tested on four classes of the recorded vi- brations signals, i.e. normal, with the fault of inner race, outer race and balls operation. An overall ac- curacy of 100% was achieved. The new technique will be further tested and implemented in a real production environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/130510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 61
social impact