We consider non-autonomous functionals of the form F(u,ω) = int_ω f(x,Du(x))dx,where u : ω →ℝ^N , ω subset ℝ^n . We assume that f(x, z) grows at least as |z|^p and at most as |z|^q.Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap..

Absence of Lavrentiev gap for non-autonomous functionals with (p,q)-growth

Leonetti, Francesco;
2019-01-01

Abstract

We consider non-autonomous functionals of the form F(u,ω) = int_ω f(x,Du(x))dx,where u : ω →ℝ^N , ω subset ℝ^n . We assume that f(x, z) grows at least as |z|^p and at most as |z|^q.Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap..
File in questo prodotto:
File Dimensione Formato  
anona-2016-0198_pubblicato2019.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 721.64 kB
Formato Adobe PDF
721.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/132917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact