We consider non-autonomous functionals of the form F(u,ω) = int_ω f(x,Du(x))dx,where u : ω →ℝ^N , ω subset ℝ^n . We assume that f(x, z) grows at least as |z|^p and at most as |z|^q.Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap..
Absence of Lavrentiev gap for non-autonomous functionals with (p,q)-growth
Esposito, Antonio;Leonetti, Francesco;
2019-01-01
Abstract
We consider non-autonomous functionals of the form F(u,ω) = int_ω f(x,Du(x))dx,where u : ω →ℝ^N , ω subset ℝ^n . We assume that f(x, z) grows at least as |z|^p and at most as |z|^q.Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap..File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
anona-2016-0198_pubblicato2019.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
721.64 kB
Formato
Adobe PDF
|
721.64 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.